This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LS3D97.79 6098.25 7197.26 5798.40 5999.63 2499.53 1898.63 199.25 4388.13 12496.93 9894.14 12099.19 4099.14 3399.23 1799.69 8299.42 143
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3899.98 199.60 799.60 699.05 2599.74 4599.79 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1799.05 299.60 599.98 199.28 3799.61 598.83 4599.70 7999.77 54
HPM-MVS++copyleft99.10 2199.30 2898.86 2499.69 899.48 5899.59 1698.34 499.26 4196.55 3799.10 3099.96 1299.36 2799.25 2698.37 7099.64 11299.66 105
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1198.72 799.57 699.97 799.53 1699.65 299.25 1499.84 799.77 54
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3598.40 1299.64 499.98 199.31 3299.56 998.96 3299.85 599.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9197.87 2098.91 4199.92 2899.30 3599.45 1599.38 899.79 2699.58 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2198.10 1499.28 1799.98 199.30 3599.34 2299.05 2599.81 1799.79 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4099.63 1198.31 899.56 1197.37 2699.27 1899.97 799.70 399.35 2199.24 1699.71 7099.76 60
MCST-MVS99.11 2099.27 3198.93 2299.67 1399.33 8499.51 2098.31 899.28 3696.57 3699.10 3099.90 3299.71 299.19 3098.35 7199.82 1199.71 89
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4999.33 3298.29 1199.75 197.96 1999.15 2499.95 1799.61 699.17 3199.06 2499.81 1799.84 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3899.64 898.28 1299.23 4494.57 6099.35 1499.97 799.55 1499.63 398.66 5299.70 7999.74 71
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1699.63 1198.26 1399.27 3898.01 1899.27 1899.97 799.60 799.59 798.58 5799.71 7099.73 75
SR-MVS99.67 1398.25 1499.94 25
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2199.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1499.72 5999.77 54
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7895.62 4398.97 3699.94 2599.54 1599.51 1298.79 4999.71 7099.73 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xxxxxxxxxxxxxcwj98.14 5297.38 10699.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2786.38 16598.92 5999.22 2798.84 4399.76 3699.56 124
SF-MVS99.18 1699.32 2799.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2799.92 2898.92 5999.22 2798.84 4399.76 3699.56 124
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2899.39 2998.23 1999.52 1698.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 9199.76 60
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS99.23 1499.28 3099.17 599.65 1899.34 8199.46 2498.21 2099.28 3698.47 998.89 4399.94 2599.50 1799.42 1798.61 5599.73 5299.52 131
NCCC99.05 2599.08 4099.02 1999.62 2399.38 7299.43 2898.21 2099.36 2897.66 2397.79 7899.90 3299.45 2299.17 3198.43 6599.77 3499.51 135
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4797.79 2199.15 2499.96 1299.59 1099.54 1198.86 4199.78 2999.74 71
AdaColmapbinary99.06 2498.98 5099.15 799.60 2599.30 8799.38 3098.16 2299.02 7598.55 898.71 5299.57 5599.58 1399.09 3697.84 10199.64 11299.36 149
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2899.60 1598.15 2499.08 6693.81 7898.46 6099.95 1799.59 1099.49 1399.21 1999.68 9199.75 67
DeepC-MVS97.63 498.33 4698.57 6198.04 4298.62 5799.65 1699.45 2598.15 2499.51 1792.80 9595.74 12696.44 9099.46 2199.37 1999.50 299.78 2999.81 31
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5198.35 6997.99 4398.65 5699.36 7698.94 5198.14 2698.59 11693.62 8296.61 10799.76 4899.03 5497.77 12497.45 11999.57 14198.89 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 6099.44 2798.13 2799.65 492.30 10398.91 4199.95 1799.05 5299.42 1798.95 3399.58 13799.82 26
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5696.62 3499.16 2399.98 199.12 4799.63 399.19 2099.78 2999.83 25
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5199.72 298.11 2999.73 297.43 2599.15 2499.96 1299.59 1099.73 199.07 2399.88 299.82 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS98.31 4798.53 6398.05 4198.76 5598.77 11799.13 4098.07 3099.10 6394.27 7196.70 10399.84 4198.70 7097.90 11798.11 8799.40 16899.28 152
MSLP-MVS++99.15 1899.24 3399.04 1599.52 3299.49 5799.09 4498.07 3099.37 2698.47 997.79 7899.89 3499.50 1798.93 4699.45 499.61 11999.76 60
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7599.64 898.05 3299.53 1496.58 3598.93 3999.92 2899.49 1999.46 1499.32 1099.80 2599.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA99.03 2799.05 4399.01 2099.27 4499.22 9499.03 4897.98 3399.34 3099.00 498.25 6799.71 4999.31 3298.80 5698.82 4799.48 15699.17 159
train_agg98.73 3599.11 3898.28 3699.36 3999.35 7999.48 2397.96 3498.83 9693.86 7798.70 5399.86 3799.44 2399.08 3898.38 6899.61 11999.58 118
PLCcopyleft97.93 299.02 2898.94 5199.11 1099.46 3499.24 9299.06 4697.96 3499.31 3299.16 197.90 7699.79 4599.36 2798.71 6498.12 8699.65 10899.52 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.27 4898.29 7098.24 3799.20 4599.22 9499.20 3697.82 3699.37 2694.43 6695.90 12297.31 8199.12 4798.76 6098.35 7199.67 9999.14 163
CPTT-MVS99.14 1999.20 3599.06 1499.58 2699.53 5199.45 2597.80 3799.19 5098.32 1398.58 5599.95 1799.60 799.28 2598.20 8299.64 11299.69 95
ACMMPcopyleft98.74 3499.03 4798.40 3399.36 3999.64 2199.20 3697.75 3898.82 9895.24 5098.85 4499.87 3699.17 4498.74 6397.50 11499.71 7099.76 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8496.28 14297.47 3999.58 894.70 5998.99 3599.85 4097.24 11699.55 1099.34 997.73 20099.56 124
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4099.11 4297.35 4099.14 5697.30 2799.44 1199.96 1299.32 3198.89 5199.39 799.79 2699.58 118
TAPA-MVS97.53 598.41 4398.84 5697.91 4599.08 4899.33 8499.15 3997.13 4199.34 3093.20 8797.75 8099.19 6099.20 3998.66 6698.13 8599.66 10499.48 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS98.84 3299.01 4998.65 3099.39 3699.23 9399.22 3596.70 4299.40 2397.77 2297.89 7799.80 4399.21 3899.02 4098.65 5399.57 14199.07 166
CSCG98.90 3098.93 5298.85 2599.75 399.72 699.49 2196.58 4399.38 2498.05 1698.97 3697.87 7599.49 1997.78 12398.92 3699.78 2999.90 4
TSAR-MVS + COLMAP96.79 9096.55 13097.06 6297.70 7098.46 14199.07 4596.23 4499.38 2491.32 11198.80 4585.61 17198.69 7297.64 13396.92 13199.37 17099.06 167
CDPH-MVS98.41 4399.10 3997.61 5099.32 4399.36 7699.49 2196.15 4598.82 9891.82 10798.41 6199.66 5199.10 4998.93 4698.97 3199.75 4099.58 118
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2499.67 595.63 4698.66 11495.27 4999.11 2799.82 4299.67 499.33 2399.19 2099.73 5299.74 71
OPM-MVS96.22 10895.85 15096.65 7697.75 6898.54 13699.00 5095.53 4796.88 17989.88 11895.95 12186.46 16498.07 9297.65 13296.63 13899.67 9998.83 176
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5198.51 6795.52 4899.27 3894.85 5699.56 799.69 5099.04 5399.36 2098.88 3999.60 12799.58 118
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7797.32 5398.84 5199.45 6299.28 3395.43 4999.48 1991.80 10894.83 13698.36 7098.90 6298.09 10197.85 10099.68 9199.15 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP-MVS96.37 10496.58 12896.13 9097.31 7798.44 14398.45 6995.22 5098.86 8988.58 12298.33 6587.00 15697.67 10797.23 14796.56 14199.56 14499.62 115
ACMM96.26 996.67 9896.69 12796.66 7597.29 7898.46 14196.48 13895.09 5199.21 4793.19 8898.78 4786.73 16098.17 8697.84 12196.32 14799.74 4599.49 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
PVSNet_Blended97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
abl_698.09 4099.33 4299.22 9498.79 5994.96 5498.52 12497.00 3297.30 8899.86 3798.76 6799.69 8299.41 144
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3398.14 8594.81 5599.31 3295.00 5499.51 899.79 4599.00 5698.94 4598.83 4599.69 8299.57 123
QAPM98.62 4099.04 4698.13 3999.57 2799.48 5899.17 3894.78 5699.57 996.16 3896.73 10299.80 4399.33 2998.79 5799.29 1399.75 4099.64 112
EPNet98.05 5498.86 5497.10 6099.02 4999.43 6698.47 6894.73 5799.05 7295.62 4398.93 3997.62 7995.48 16398.59 7798.55 5899.29 17599.84 21
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet98.46 4299.16 3697.64 4998.48 5899.64 2199.35 3194.71 5899.53 1495.17 5197.63 8499.59 5398.38 8498.88 5298.99 3099.74 4599.86 17
3Dnovator96.92 798.67 3799.05 4398.23 3899.57 2799.45 6299.11 4294.66 5999.69 396.80 3396.55 11199.61 5299.40 2598.87 5399.49 399.85 599.66 105
3Dnovator+96.92 798.71 3699.05 4398.32 3499.53 3099.34 8199.06 4694.61 6099.65 497.49 2496.75 10199.86 3799.44 2398.78 5899.30 1199.81 1799.67 101
OpenMVScopyleft96.23 1197.95 5798.45 6697.35 5299.52 3299.42 6798.91 5294.61 6098.87 8892.24 10594.61 13799.05 6299.10 4998.64 6899.05 2599.74 4599.51 135
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 6099.03 4894.59 6299.09 6497.19 2999.73 399.95 1799.39 2698.95 4498.69 5199.75 4099.65 108
DELS-MVS98.19 5098.77 5897.52 5198.29 6199.71 999.12 4194.58 6398.80 10195.38 4896.24 11698.24 7297.92 9899.06 3999.52 199.82 1199.79 40
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS96.74 9396.51 13497.01 6896.71 8698.62 13098.73 6094.38 6498.94 8394.46 6597.33 8687.03 15598.07 9297.20 14996.87 13299.72 5999.54 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030498.14 5299.03 4797.10 6098.05 6599.63 2499.27 3494.33 6599.63 693.06 9097.32 8799.05 6298.09 9198.82 5598.87 4099.81 1799.89 7
ACMP96.25 1096.62 10196.72 12696.50 8396.96 8498.75 12197.80 9694.30 6698.85 9193.12 8998.78 4786.61 16297.23 11797.73 12796.61 13999.62 11799.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu96.30 10698.53 6393.70 13098.97 5098.24 15497.36 10994.23 6798.85 9179.18 18199.19 2198.47 6894.09 18597.89 11898.21 8198.39 19198.85 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.77 6298.25 7197.21 5899.11 4799.25 9097.06 12694.09 6898.72 11295.14 5298.47 5996.29 9298.43 8398.65 6797.44 12099.45 16098.94 169
thres100view90096.72 9496.47 13797.00 6996.31 9299.52 5498.28 7994.01 6997.35 16694.52 6195.90 12286.93 15799.09 5198.07 10497.87 9999.81 1799.63 114
thres40096.71 9596.45 13997.02 6696.28 9599.63 2498.41 7094.00 7097.82 15694.42 6795.74 12686.26 16699.18 4298.20 9597.79 10499.81 1799.70 91
tfpn200view996.75 9296.51 13497.03 6496.31 9299.67 1298.41 7093.99 7197.35 16694.52 6195.90 12286.93 15799.14 4698.26 9197.80 10399.82 1199.70 91
thres600view796.69 9696.43 14197.00 6996.28 9599.67 1298.41 7093.99 7197.85 15594.29 7095.96 12085.91 16999.19 4098.26 9197.63 10899.82 1199.73 75
thres20096.76 9196.53 13197.03 6496.31 9299.67 1298.37 7393.99 7197.68 16194.49 6395.83 12586.77 15999.18 4298.26 9197.82 10299.82 1199.66 105
Anonymous20240521197.40 10596.45 8899.54 5098.08 9093.79 7498.24 13793.55 14794.41 11698.88 6598.04 10998.24 8099.75 4099.76 60
Anonymous2023121197.10 8297.06 11997.14 5996.32 9199.52 5498.16 8493.76 7598.84 9595.98 4090.92 16594.58 11598.90 6297.72 12898.10 8899.71 7099.75 67
RPSCF97.61 6798.16 7896.96 7198.10 6299.00 10398.84 5793.76 7599.45 2094.78 5899.39 1299.31 5898.53 8196.61 15995.43 16997.74 19897.93 192
PVSNet_Blended_VisFu97.41 7498.49 6596.15 8997.49 7199.76 196.02 14693.75 7799.26 4193.38 8693.73 14699.35 5796.47 13898.96 4398.46 6299.77 3499.90 4
EIA-MVS97.70 6598.78 5796.44 8495.72 11199.65 1698.14 8593.72 7898.30 13392.31 10198.63 5497.90 7498.97 5798.92 4898.30 7799.78 2999.80 33
baseline197.58 6898.05 8297.02 6696.21 9799.45 6297.71 10093.71 7998.47 12695.75 4298.78 4793.20 13098.91 6198.52 8198.44 6399.81 1799.53 128
LGP-MVS_train96.23 10796.89 12395.46 10497.32 7598.77 11798.81 5893.60 8098.58 11785.52 14399.08 3286.67 16197.83 10597.87 11997.51 11399.69 8299.73 75
ETV-MVS98.05 5499.25 3296.65 7695.61 11699.61 3398.26 8193.52 8198.90 8793.74 8199.32 1599.20 5998.90 6299.21 2998.72 5099.87 399.79 40
FC-MVSNet-train97.04 8397.91 8996.03 9396.00 10298.41 14696.53 13793.42 8299.04 7493.02 9298.03 7394.32 11897.47 11297.93 11597.77 10599.75 4099.88 11
UGNet97.66 6699.07 4296.01 9497.19 8099.65 1697.09 12493.39 8399.35 2994.40 6898.79 4699.59 5394.24 18398.04 10998.29 7899.73 5299.80 33
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS93.96 1595.02 13396.44 14093.36 14097.05 8399.28 8890.43 20093.39 8398.02 14496.02 3994.92 13592.07 13483.52 20995.38 18695.82 16399.72 5999.59 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet97.86 5998.86 5496.68 7496.02 10099.72 698.35 7693.37 8598.75 11194.01 7296.88 10098.40 6998.48 8299.09 3699.42 599.83 1099.80 33
CS-MVS98.21 4999.34 2696.89 7295.51 12399.56 4798.85 5593.31 8699.01 7794.48 6499.31 1699.46 5699.31 3299.02 4099.19 2099.90 199.87 13
thisisatest053097.23 7898.25 7196.05 9195.60 11899.59 4096.96 12893.23 8799.17 5292.60 9898.75 5096.19 9498.17 8698.19 9696.10 15599.72 5999.77 54
tttt051797.23 7898.24 7496.04 9295.60 11899.60 3896.94 12993.23 8799.15 5392.56 9998.74 5196.12 9798.17 8698.21 9496.10 15599.73 5299.78 46
casdiffmvs96.93 8797.43 10496.34 8595.70 11299.50 5697.75 9993.22 8998.98 8092.64 9694.97 13391.71 13698.93 5898.62 7098.52 6199.82 1199.72 86
diffmvs96.83 8997.33 10996.25 8795.76 10999.34 8198.06 9193.22 8999.43 2292.30 10396.90 9989.83 14698.55 7998.00 11298.14 8499.64 11299.70 91
Vis-MVSNet (Re-imp)97.40 7598.89 5395.66 10295.99 10399.62 2897.82 9593.22 8998.82 9891.40 11096.94 9798.56 6795.70 15599.14 3399.41 699.79 2699.75 67
EPP-MVSNet97.75 6398.71 5996.63 7895.68 11499.56 4797.51 10593.10 9299.22 4594.99 5597.18 9397.30 8298.65 7398.83 5498.93 3499.84 799.92 2
PMMVS97.52 7098.39 6796.51 8295.82 10898.73 12497.80 9693.05 9398.76 10894.39 6999.07 3397.03 8698.55 7998.31 9097.61 10999.43 16399.21 158
ET-MVSNet_ETH3D96.17 10996.99 12195.21 10688.53 20798.54 13698.28 7992.61 9498.85 9193.60 8399.06 3490.39 14098.63 7595.98 18196.68 13699.61 11999.41 144
CVMVSNet95.33 12997.09 11793.27 14295.23 13198.39 14895.49 15592.58 9597.71 16083.00 15994.44 14193.28 12893.92 18997.79 12298.54 6099.41 16699.45 141
DI_MVS_plusplus_trai96.90 8897.49 9996.21 8895.61 11699.40 7198.72 6192.11 9699.14 5692.98 9493.08 15795.14 10698.13 9098.05 10897.91 9799.74 4599.73 75
MVSTER97.16 8097.71 9396.52 8195.97 10498.48 13998.63 6392.10 9798.68 11395.96 4199.23 2091.79 13596.87 12498.76 6097.37 12499.57 14199.68 100
UA-Net97.13 8199.14 3794.78 11097.21 7999.38 7297.56 10492.04 9898.48 12588.03 12598.39 6399.91 3194.03 18699.33 2399.23 1799.81 1799.25 155
UniMVSNet_NR-MVSNet94.59 14495.47 15393.55 13491.85 17997.89 16695.03 16192.00 9997.33 16886.12 13793.19 15387.29 15296.60 13496.12 17696.70 13599.72 5999.80 33
CS-MVS-test97.90 5899.30 2896.26 8695.44 12699.59 4098.63 6391.99 10099.57 992.31 10199.37 1398.60 6499.33 2999.11 3598.93 3499.87 399.93 1
TranMVSNet+NR-MVSNet93.67 16094.14 17293.13 14391.28 19897.58 18395.60 15391.97 10197.06 17584.05 14690.64 17082.22 19296.17 14594.94 19596.78 13399.69 8299.78 46
tfpnnormal93.85 15994.12 17493.54 13593.22 15998.24 15495.45 15691.96 10294.61 20583.91 14890.74 16781.75 19597.04 11997.49 13896.16 15399.68 9199.84 21
TDRefinement93.04 16993.57 18692.41 14996.58 8798.77 11797.78 9891.96 10298.12 14180.84 17089.13 17979.87 20587.78 20596.44 16494.50 19199.54 15098.15 187
CDS-MVSNet96.59 10298.02 8594.92 10994.45 14398.96 10897.46 10791.75 10497.86 15490.07 11696.02 11997.25 8396.21 14298.04 10998.38 6899.60 12799.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DCV-MVSNet97.56 6998.36 6896.62 7996.44 8998.36 15098.37 7391.73 10599.11 6294.80 5798.36 6496.28 9398.60 7798.12 9898.44 6399.76 3699.87 13
MAR-MVS97.71 6498.04 8397.32 5399.35 4198.91 11097.65 10291.68 10698.00 14597.01 3197.72 8294.83 11098.85 6698.44 8698.86 4199.41 16699.52 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMH95.42 1495.27 13095.96 14694.45 11696.83 8598.78 11694.72 17391.67 10798.95 8186.82 13696.42 11383.67 18297.00 12097.48 13996.68 13699.69 8299.76 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
canonicalmvs97.31 7697.81 9296.72 7396.20 9899.45 6298.21 8291.60 10899.22 4595.39 4798.48 5890.95 13899.16 4597.66 13099.05 2599.76 3699.90 4
DU-MVS93.98 15494.44 16993.44 13791.66 18497.77 16895.03 16191.57 10997.17 17286.12 13793.13 15581.13 19796.60 13495.10 19297.01 13099.67 9999.80 33
NR-MVSNet94.01 15294.51 16793.44 13792.56 16497.77 16895.67 15091.57 10997.17 17285.84 14093.13 15580.53 19995.29 16997.01 15496.17 15299.69 8299.75 67
TransMVSNet (Re)93.45 16294.08 17592.72 14892.83 16097.62 18194.94 16491.54 11195.65 20283.06 15888.93 18183.53 18394.25 18297.41 14097.03 12899.67 9998.40 185
Baseline_NR-MVSNet93.87 15793.98 17993.75 12791.66 18497.02 19895.53 15491.52 11297.16 17487.77 12987.93 19183.69 18196.35 14095.10 19297.23 12599.68 9199.73 75
MVS_Test97.30 7798.54 6295.87 9695.74 11099.28 8898.19 8391.40 11399.18 5191.59 10998.17 6996.18 9598.63 7598.61 7198.55 5899.66 10499.78 46
baseline97.45 7398.70 6095.99 9595.89 10599.36 7698.29 7891.37 11499.21 4792.99 9398.40 6296.87 8797.96 9698.60 7498.60 5699.42 16599.86 17
GBi-Net96.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
test196.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
FMVSNet397.02 8498.12 8095.73 10193.59 15797.98 16098.34 7791.32 11598.80 10193.92 7497.21 9095.94 10097.63 10898.61 7198.62 5499.61 11999.65 108
ACMH+95.51 1395.40 12596.00 14494.70 11196.33 9098.79 11496.79 13091.32 11598.77 10787.18 13395.60 13085.46 17296.97 12197.15 15096.59 14099.59 13399.65 108
UniMVSNet (Re)94.58 14595.34 15593.71 12992.25 17198.08 15994.97 16391.29 11997.03 17787.94 12693.97 14586.25 16796.07 14796.27 17395.97 16099.72 5999.79 40
UniMVSNet_ETH3D93.15 16692.33 19994.11 12093.91 14898.61 13294.81 17090.98 12097.06 17587.51 13282.27 20776.33 21397.87 10394.79 19697.47 11899.56 14499.81 31
FMVSNet296.64 9997.50 9895.63 10393.81 15197.98 16098.09 8790.87 12198.99 7993.48 8493.17 15495.25 10597.89 9998.63 6998.80 4899.68 9199.67 101
Vis-MVSNetpermissive96.16 11098.22 7593.75 12795.33 13099.70 1197.27 11390.85 12298.30 13385.51 14495.72 12896.45 8893.69 19298.70 6599.00 2999.84 799.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-LLR95.50 12397.32 11093.37 13995.49 12498.74 12296.44 14090.82 12398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
test0.0.03 196.69 9698.12 8095.01 10895.49 12498.99 10595.86 14890.82 12398.38 12992.54 10096.66 10597.33 8095.75 15397.75 12698.34 7399.60 12799.40 147
test_part195.56 12195.38 15495.78 9796.07 9998.16 15797.57 10390.78 12597.43 16593.04 9189.12 18089.41 14797.93 9796.38 16797.38 12399.29 17599.78 46
CHOSEN 1792x268896.41 10396.99 12195.74 10098.01 6699.72 697.70 10190.78 12599.13 6190.03 11787.35 19395.36 10498.33 8598.59 7798.91 3899.59 13399.87 13
thisisatest051594.61 14396.89 12391.95 16092.00 17498.47 14092.01 19590.73 12798.18 13883.96 14794.51 13895.13 10793.38 19397.38 14194.74 18999.61 11999.79 40
pm-mvs194.27 14895.57 15292.75 14792.58 16398.13 15894.87 16890.71 12896.70 18583.78 15089.94 17389.85 14594.96 17697.58 13597.07 12799.61 11999.72 86
GA-MVS93.93 15696.31 14391.16 17693.61 15598.79 11495.39 15890.69 12998.25 13673.28 20296.15 11788.42 14994.39 18197.76 12595.35 17199.58 13799.45 141
v14892.36 18792.88 19491.75 16591.63 18797.66 17592.64 19290.55 13096.09 19483.34 15588.19 18680.00 20292.74 19793.98 20094.58 19099.58 13799.69 95
pmnet_mix0292.44 18194.68 16489.83 19192.46 16697.65 17789.92 20590.49 13198.76 10873.05 20491.78 16090.08 14394.86 17794.53 19791.94 20498.21 19498.01 191
v2v48292.77 17593.52 18991.90 16391.59 18997.63 17894.57 18090.31 13296.80 18379.22 18088.74 18381.55 19696.04 14995.26 18894.97 18299.66 10499.69 95
pmmvs495.09 13195.90 14794.14 11992.29 16997.70 17195.45 15690.31 13298.60 11590.70 11393.25 15289.90 14496.67 13197.13 15195.42 17099.44 16299.28 152
FC-MVSNet-test96.07 11297.94 8893.89 12493.60 15698.67 12796.62 13490.30 13498.76 10888.62 12195.57 13197.63 7894.48 17997.97 11397.48 11799.71 7099.52 131
CANet_DTU96.64 9999.08 4093.81 12697.10 8299.42 6798.85 5590.01 13599.31 3279.98 17799.78 299.10 6197.42 11398.35 8898.05 9099.47 15899.53 128
WR-MVS93.43 16494.48 16892.21 15291.52 19197.69 17394.66 17789.98 13696.86 18083.43 15490.12 17185.03 17693.94 18896.02 18095.82 16399.71 7099.82 26
V4293.05 16893.90 18292.04 15691.91 17697.66 17594.91 16589.91 13796.85 18180.58 17289.66 17483.43 18595.37 16795.03 19494.90 18499.59 13399.78 46
FMVSNet195.77 11796.41 14295.03 10793.42 15897.86 16797.11 12389.89 13898.53 12192.00 10689.17 17793.23 12998.15 8998.07 10498.34 7399.61 11999.69 95
PEN-MVS92.72 17693.20 19292.15 15491.29 19697.31 19594.67 17689.81 13996.19 19281.83 16688.58 18479.06 20895.61 15995.21 18996.27 14899.72 5999.82 26
DTE-MVSNet92.42 18492.85 19591.91 16290.87 20196.97 19994.53 18189.81 13995.86 20181.59 16788.83 18277.88 21195.01 17594.34 19996.35 14699.64 11299.73 75
CHOSEN 280x42097.99 5699.24 3396.53 8098.34 6099.61 3398.36 7589.80 14199.27 3895.08 5399.81 198.58 6698.64 7499.02 4098.92 3698.93 18599.48 139
N_pmnet92.21 18994.60 16689.42 19391.88 17797.38 19489.15 20789.74 14297.89 15273.75 20087.94 19092.23 13393.85 19096.10 17793.20 19898.15 19597.43 196
baseline296.36 10597.82 9194.65 11294.60 14299.09 10196.45 13989.63 14398.36 13191.29 11297.60 8594.13 12196.37 13998.45 8497.70 10699.54 15099.41 144
MDA-MVSNet-bldmvs87.84 20389.22 20686.23 20181.74 21396.77 20283.74 21389.57 14494.50 20772.83 20696.64 10664.47 21892.71 19881.43 21392.28 20296.81 20998.47 181
TAMVS95.53 12296.50 13694.39 11793.86 15099.03 10296.67 13289.55 14597.33 16890.64 11493.02 15891.58 13796.21 14297.72 12897.43 12199.43 16399.36 149
DeepMVS_CXcopyleft96.85 20087.43 21089.27 14698.30 13375.55 19595.05 13279.47 20692.62 19989.48 20995.18 21495.96 207
CP-MVSNet93.25 16594.00 17892.38 15091.65 18697.56 18594.38 18289.20 14796.05 19683.16 15789.51 17581.97 19396.16 14696.43 16596.56 14199.71 7099.89 7
IterMVS-LS96.12 11197.48 10094.53 11395.19 13297.56 18597.15 12089.19 14899.08 6688.23 12394.97 13394.73 11297.84 10497.86 12098.26 7999.60 12799.88 11
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS92.72 17693.36 19091.98 15991.62 18897.52 18794.13 18688.98 14995.94 19981.51 16887.35 19379.95 20495.91 15196.37 16896.49 14399.70 7999.89 7
HyFIR lowres test95.99 11396.56 12995.32 10597.99 6799.65 1696.54 13588.86 15098.44 12789.77 12084.14 20397.05 8599.03 5498.55 7998.19 8399.73 5299.86 17
TinyColmap94.00 15394.35 17093.60 13195.89 10598.26 15297.49 10688.82 15198.56 11983.21 15691.28 16480.48 20096.68 13097.34 14396.26 15099.53 15298.24 186
WR-MVS_H93.54 16194.67 16592.22 15191.95 17597.91 16594.58 17988.75 15296.64 18683.88 14990.66 16985.13 17594.40 18096.54 16395.91 16299.73 5299.89 7
EU-MVSNet92.80 17394.76 16390.51 18391.88 17796.74 20392.48 19388.69 15396.21 19179.00 18291.51 16187.82 15091.83 20195.87 18396.27 14899.21 17898.92 173
USDC94.26 14994.83 16193.59 13296.02 10098.44 14397.84 9488.65 15498.86 8982.73 16294.02 14380.56 19896.76 12797.28 14696.15 15499.55 14698.50 180
SixPastTwentyTwo93.44 16395.32 15691.24 17492.11 17298.40 14792.77 19188.64 15598.09 14277.83 18693.51 14985.74 17096.52 13796.91 15694.89 18699.59 13399.73 75
testgi95.67 11997.48 10093.56 13395.07 13499.00 10395.33 15988.47 15698.80 10186.90 13597.30 8892.33 13295.97 15097.66 13097.91 9799.60 12799.38 148
v114492.81 17294.03 17791.40 17191.68 18397.60 18294.73 17288.40 15796.71 18478.48 18488.14 18884.46 18095.45 16696.31 17295.22 17599.65 10899.76 60
pmmvs691.90 19192.53 19891.17 17591.81 18097.63 17893.23 18888.37 15893.43 21080.61 17177.32 21187.47 15194.12 18496.58 16195.72 16598.88 18799.53 128
Effi-MVS+95.81 11697.31 11394.06 12195.09 13399.35 7997.24 11588.22 15998.54 12085.38 14598.52 5688.68 14898.70 7098.32 8997.93 9499.74 4599.84 21
v892.87 17093.87 18391.72 16792.05 17397.50 18894.79 17188.20 16096.85 18180.11 17690.01 17282.86 18995.48 16395.15 19194.90 18499.66 10499.80 33
Effi-MVS+-dtu95.74 11898.04 8393.06 14493.92 14799.16 9797.90 9388.16 16199.07 7182.02 16598.02 7494.32 11896.74 12898.53 8097.56 11199.61 11999.62 115
v119292.43 18393.61 18591.05 17791.53 19097.43 19194.61 17887.99 16296.60 18776.72 18987.11 19582.74 19095.85 15296.35 17095.30 17399.60 12799.74 71
LTVRE_ROB93.20 1692.84 17194.92 15890.43 18592.83 16098.63 12997.08 12587.87 16397.91 15168.42 21193.54 14879.46 20796.62 13397.55 13697.40 12299.74 4599.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GeoE95.98 11597.24 11594.51 11495.02 13599.38 7298.02 9287.86 16498.37 13087.86 12892.99 15993.54 12598.56 7898.61 7197.92 9599.73 5299.85 20
CMPMVSbinary70.31 1890.74 19491.06 20290.36 18697.32 7597.43 19192.97 19087.82 16593.50 20975.34 19783.27 20584.90 17792.19 20092.64 20491.21 20896.50 21194.46 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v192192092.36 18793.57 18690.94 17991.39 19497.39 19394.70 17487.63 16696.60 18776.63 19086.98 19682.89 18895.75 15396.26 17495.14 17899.55 14699.73 75
v14419292.38 18593.55 18891.00 17891.44 19297.47 19094.27 18387.41 16796.52 18978.03 18587.50 19282.65 19195.32 16895.82 18495.15 17799.55 14699.78 46
FMVSNet595.42 12496.47 13794.20 11892.26 17095.99 20695.66 15187.15 16897.87 15393.46 8596.68 10493.79 12497.52 10997.10 15397.21 12699.11 18296.62 206
MS-PatchMatch95.99 11397.26 11494.51 11497.46 7298.76 12097.27 11386.97 16999.09 6489.83 11993.51 14997.78 7696.18 14497.53 13795.71 16699.35 17198.41 182
Fast-Effi-MVS+95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
v124091.99 19093.33 19190.44 18491.29 19697.30 19694.25 18486.79 17096.43 19075.49 19686.34 19981.85 19495.29 16996.42 16695.22 17599.52 15399.73 75
DROMVSNet95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
TESTMET0.1,194.95 13497.32 11092.20 15392.62 16298.74 12296.44 14086.67 17398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
pmmvs592.71 17894.27 17190.90 18091.42 19397.74 17093.23 18886.66 17495.99 19878.96 18391.45 16283.44 18495.55 16097.30 14595.05 18099.58 13798.93 170
Anonymous2023120690.70 19593.93 18086.92 20090.21 20596.79 20190.30 20286.61 17596.05 19669.25 20988.46 18584.86 17885.86 20797.11 15296.47 14499.30 17497.80 193
pmmvs-eth3d89.81 19889.65 20590.00 18886.94 20995.38 20891.08 19686.39 17694.57 20682.27 16483.03 20664.94 21693.96 18796.57 16293.82 19599.35 17199.24 156
test-mter94.86 13797.32 11092.00 15892.41 16798.82 11396.18 14586.35 17798.05 14382.28 16396.48 11294.39 11795.46 16598.17 9796.20 15199.32 17399.13 164
v1092.79 17494.06 17691.31 17391.78 18197.29 19794.87 16886.10 17896.97 17879.82 17888.16 18784.56 17995.63 15796.33 17195.31 17299.65 10899.80 33
MIMVSNet188.61 20190.68 20386.19 20281.56 21495.30 21087.78 20985.98 17994.19 20872.30 20778.84 21078.90 20990.06 20296.59 16095.47 16899.46 15995.49 208
v7n91.61 19292.95 19390.04 18790.56 20297.69 17393.74 18785.59 18095.89 20076.95 18886.60 19878.60 21093.76 19197.01 15494.99 18199.65 10899.87 13
test20.0390.65 19693.71 18487.09 19890.44 20396.24 20489.74 20685.46 18195.59 20372.99 20590.68 16885.33 17384.41 20895.94 18295.10 17999.52 15397.06 201
anonymousdsp93.12 16795.86 14989.93 19091.09 19998.25 15395.12 16085.08 18297.44 16473.30 20190.89 16690.78 13995.25 17197.91 11695.96 16199.71 7099.82 26
IterMVS94.81 13897.71 9391.42 16994.83 14097.63 17897.38 10885.08 18298.93 8475.67 19494.02 14397.64 7796.66 13298.45 8497.60 11098.90 18699.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu95.38 12698.20 7692.09 15593.91 14898.87 11197.35 11085.01 18499.08 6681.09 16998.10 7096.36 9195.62 15898.43 8797.03 12899.55 14699.50 137
IterMVS-SCA-FT94.89 13697.87 9091.42 16994.86 13997.70 17197.24 11584.88 18598.93 8475.74 19394.26 14298.25 7196.69 12998.52 8197.68 10799.10 18399.73 75
new_pmnet90.45 19792.84 19687.66 19788.96 20696.16 20588.71 20884.66 18697.56 16271.91 20885.60 20186.58 16393.28 19496.07 17893.54 19798.46 18994.39 210
EG-PatchMatch MVS92.45 18093.92 18190.72 18292.56 16498.43 14594.88 16784.54 18797.18 17179.55 17986.12 20083.23 18693.15 19697.22 14896.00 15799.67 9999.27 154
PM-MVS89.55 19990.30 20488.67 19587.06 20895.60 20790.88 19884.51 18896.14 19375.75 19286.89 19763.47 21994.64 17896.85 15793.89 19499.17 18199.29 151
new-patchmatchnet86.12 20587.30 20784.74 20486.92 21095.19 21183.57 21484.42 18992.67 21165.66 21280.32 20864.72 21789.41 20392.33 20789.21 20998.43 19096.69 204
FPMVS83.82 20684.61 20882.90 20690.39 20490.71 21490.85 19984.10 19095.47 20465.15 21383.44 20474.46 21475.48 21181.63 21279.42 21491.42 21687.14 214
MDTV_nov1_ep1395.57 12097.48 10093.35 14195.43 12798.97 10797.19 11983.72 19198.92 8687.91 12797.75 8096.12 9797.88 10296.84 15895.64 16797.96 19698.10 188
gm-plane-assit89.44 20092.82 19785.49 20391.37 19595.34 20979.55 21782.12 19291.68 21364.79 21587.98 18980.26 20195.66 15698.51 8397.56 11199.45 16098.41 182
pmmvs388.19 20291.27 20184.60 20585.60 21193.66 21285.68 21281.13 19392.36 21263.66 21789.51 17577.10 21293.22 19596.37 16892.40 20098.30 19397.46 195
tpm cat194.06 15194.90 15993.06 14495.42 12998.52 13896.64 13380.67 19497.82 15692.63 9793.39 15195.00 10896.06 14891.36 20891.58 20796.98 20896.66 205
CostFormer94.25 15094.88 16093.51 13695.43 12798.34 15196.21 14480.64 19597.94 15094.01 7298.30 6686.20 16897.52 10992.71 20392.69 19997.23 20798.02 190
PMVScopyleft72.60 1776.39 20977.66 21274.92 21081.04 21569.37 22268.47 21980.54 19685.39 21565.07 21473.52 21272.91 21565.67 21780.35 21476.81 21588.71 21785.25 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dps94.63 14295.31 15793.84 12595.53 12198.71 12596.54 13580.12 19797.81 15897.21 2896.98 9592.37 13196.34 14192.46 20591.77 20597.26 20697.08 200
EPMVS95.05 13296.86 12592.94 14695.84 10798.96 10896.68 13179.87 19899.05 7290.15 11597.12 9495.99 9997.49 11195.17 19094.75 18897.59 20296.96 202
MDTV_nov1_ep13_2view92.44 18195.66 15188.68 19491.05 20097.92 16492.17 19479.64 19998.83 9676.20 19191.45 16293.51 12695.04 17495.68 18593.70 19697.96 19698.53 179
PatchmatchNetpermissive94.70 13997.08 11891.92 16195.53 12198.85 11295.77 14979.54 20098.95 8185.98 13998.52 5696.45 8897.39 11495.32 18794.09 19397.32 20497.38 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 15895.88 14891.50 16895.69 11398.62 13095.64 15279.41 20198.80 10183.76 15295.63 12996.13 9697.25 11592.92 20292.31 20197.27 20596.74 203
SCA94.95 13497.44 10392.04 15695.55 12099.16 9796.26 14379.30 20299.02 7585.73 14298.18 6897.13 8497.69 10696.03 17994.91 18397.69 20197.65 194
CR-MVSNet94.57 14697.34 10891.33 17294.90 13798.59 13397.15 12079.14 20397.98 14680.42 17396.59 11093.50 12796.85 12598.10 9997.49 11599.50 15599.15 160
Patchmtry98.59 13397.15 12079.14 20380.42 173
ADS-MVSNet94.65 14197.04 12091.88 16495.68 11498.99 10595.89 14779.03 20599.15 5385.81 14196.96 9698.21 7397.10 11894.48 19894.24 19297.74 19897.21 198
tpm92.38 18594.79 16289.56 19294.30 14497.50 18894.24 18578.97 20697.72 15974.93 19897.97 7582.91 18796.60 13493.65 20194.81 18798.33 19298.98 168
MIMVSNet94.49 14797.59 9790.87 18191.74 18298.70 12694.68 17578.73 20797.98 14683.71 15397.71 8394.81 11196.96 12297.97 11397.92 9599.40 16898.04 189
PatchT93.96 15597.36 10790.00 18894.76 14198.65 12890.11 20378.57 20897.96 14980.42 17396.07 11894.10 12296.85 12598.10 9997.49 11599.26 17799.15 160
RPMNet94.66 14097.16 11691.75 16594.98 13698.59 13397.00 12778.37 20997.98 14683.78 15096.27 11594.09 12396.91 12397.36 14296.73 13499.48 15699.09 165
E-PMN68.30 21168.43 21368.15 21274.70 22071.56 22155.64 22177.24 21077.48 21839.46 22151.95 21841.68 22373.28 21370.65 21679.51 21388.61 21886.20 216
EMVS68.12 21268.11 21468.14 21375.51 21971.76 22055.38 22277.20 21177.78 21737.79 22253.59 21643.61 22274.72 21267.05 21776.70 21688.27 21986.24 215
PMMVS277.26 20879.47 21174.70 21176.00 21788.37 21674.22 21876.34 21278.31 21654.13 21969.96 21352.50 22170.14 21584.83 21188.71 21097.35 20393.58 212
gg-mvs-nofinetune90.85 19394.14 17287.02 19994.89 13899.25 9098.64 6276.29 21388.24 21457.50 21879.93 20995.45 10395.18 17298.77 5998.07 8999.62 11799.24 156
Gipumacopyleft81.40 20781.78 20980.96 20983.21 21285.61 21879.73 21676.25 21497.33 16864.21 21655.32 21555.55 22086.04 20692.43 20692.20 20396.32 21293.99 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS-HIRNet92.51 17995.97 14588.48 19693.73 15498.37 14990.33 20175.36 21598.32 13277.78 18789.15 17894.87 10995.14 17397.62 13496.39 14598.51 18897.11 199
test_method87.27 20491.58 20082.25 20775.65 21887.52 21786.81 21172.60 21697.51 16373.20 20385.07 20279.97 20388.69 20497.31 14495.24 17496.53 21098.41 182
MVEpermissive67.97 1965.53 21367.43 21563.31 21459.33 22174.20 21953.09 22370.43 21766.27 21943.13 22045.98 21930.62 22470.65 21479.34 21586.30 21183.25 22089.33 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20797.73 6988.71 21580.18 21568.65 21899.15 5386.98 13499.47 985.31 17468.35 21687.51 21083.81 21291.64 215
testmvs31.24 21440.15 21620.86 21612.61 22217.99 22325.16 22413.30 21948.42 22024.82 22353.07 21730.13 22628.47 21842.73 21837.65 21720.79 22151.04 218
test12326.75 21534.25 21718.01 2177.93 22317.18 22424.85 22512.36 22044.83 22116.52 22441.80 22018.10 22728.29 21933.08 21934.79 21818.10 22249.95 219
GG-mvs-BLEND69.11 21098.13 7935.26 2153.49 22498.20 15694.89 1662.38 22198.42 1285.82 22596.37 11498.60 645.97 22098.75 6297.98 9399.01 18498.61 177
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def69.05 210
9.1499.79 45
our_test_392.30 16897.58 18390.09 204
ambc80.99 21080.04 21690.84 21390.91 19796.09 19474.18 19962.81 21430.59 22582.44 21096.25 17591.77 20595.91 21398.56 178
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 220
XVS97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVStestdata97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
mPP-MVS99.53 3099.89 34
NP-MVS98.57 118