This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVScopyleft99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 58
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5399.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6396.62 3399.16 2399.98 299.12 4999.63 399.19 2199.78 3499.83 29
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6799.77 58
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 12095.27 5399.11 2899.82 4299.67 499.33 2499.19 2199.73 5999.74 75
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3899.85 1099.70 94
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8395.62 4598.97 3799.94 2599.54 1499.51 1298.79 5599.71 7799.73 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4699.74 5199.90 7
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6699.35 1699.97 899.55 1399.63 398.66 5899.70 8599.74 75
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2999.37 8299.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 5199.79 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7799.76 63
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 5199.70 8599.77 58
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7293.81 8498.46 6499.95 1799.59 999.49 1399.21 2099.68 9699.75 71
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7699.64 11799.66 108
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9797.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 5097.79 2099.15 2499.96 1299.59 999.54 1198.86 4699.78 3499.74 75
LS3D97.79 6098.25 7397.26 6098.40 5999.63 2999.53 1898.63 199.25 4488.13 13196.93 10294.14 12399.19 4099.14 3599.23 1899.69 8899.42 149
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 9199.51 2098.31 999.28 3896.57 3599.10 3099.90 3399.71 299.19 3198.35 7799.82 1699.71 92
CDPH-MVS98.41 4599.10 4097.61 5099.32 4299.36 8399.49 2196.15 4498.82 10491.82 11398.41 6599.66 5199.10 5198.93 4998.97 3799.75 4699.58 124
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7799.49 1897.78 12798.92 4199.78 3499.90 7
train_agg98.73 3599.11 3998.28 3599.36 3999.35 8699.48 2397.96 3398.83 10293.86 8398.70 5499.86 3899.44 2399.08 3998.38 7499.61 12599.58 124
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8899.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 6199.73 5999.52 136
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5398.32 1298.58 5799.95 1799.60 799.28 2698.20 8899.64 11799.69 98
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5699.65 2299.45 2598.15 2399.51 1792.80 10195.74 13096.44 9299.46 2199.37 1999.50 299.78 3499.81 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3799.46 6699.44 2798.13 2699.65 592.30 10998.91 4299.95 1799.05 5599.42 1798.95 3999.58 14399.82 30
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7999.43 2898.21 1999.36 3097.66 2397.79 8299.90 3399.45 2299.17 3298.43 7199.77 3999.51 141
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9699.76 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9499.38 3098.16 2199.02 8198.55 798.71 5399.57 5699.58 1299.09 3797.84 10699.64 11799.36 154
CANet98.46 4499.16 3797.64 4998.48 5899.64 2699.35 3194.71 5699.53 1495.17 5597.63 8899.59 5498.38 8898.88 5698.99 3699.74 5199.86 21
SD-MVS99.25 1299.50 1298.96 2098.79 5299.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 25
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 5099.45 6899.28 3395.43 4899.48 1991.80 11494.83 14298.36 7298.90 6598.09 10597.85 10599.68 9699.15 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030498.14 5499.03 4897.10 6398.05 6699.63 2999.27 3494.33 6899.63 793.06 9797.32 9299.05 6498.09 9798.82 5998.87 4599.81 2299.89 12
OMC-MVS98.84 3299.01 5098.65 2999.39 3699.23 10199.22 3596.70 4199.40 2497.77 2197.89 8199.80 4399.21 3899.02 4398.65 5999.57 14799.07 172
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3999.64 2699.20 3697.75 3798.82 10495.24 5498.85 4599.87 3799.17 4598.74 6797.50 11999.71 7799.76 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSDG98.27 5098.29 7198.24 3699.20 4499.22 10299.20 3697.82 3599.37 2794.43 7295.90 12697.31 8399.12 4998.76 6498.35 7799.67 10499.14 169
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3996.73 10699.80 4399.33 3098.79 6199.29 1399.75 4699.64 115
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4799.33 9199.15 3997.13 4099.34 3293.20 9497.75 8499.19 6099.20 3998.66 7198.13 9199.66 10999.48 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS98.31 4998.53 6498.05 3998.76 5498.77 12499.13 4098.07 2999.10 6994.27 7796.70 10799.84 4198.70 7497.90 12198.11 9399.40 17599.28 157
DELS-MVS98.19 5298.77 5997.52 5298.29 6199.71 1599.12 4194.58 6298.80 10795.38 5296.24 12098.24 7497.92 10399.06 4099.52 199.82 1699.79 45
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS99.08 2299.43 1998.67 2899.15 4599.59 4599.11 4297.35 3999.14 6397.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 124
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11599.61 5399.40 2598.87 5799.49 399.85 1099.66 108
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3299.49 6399.09 4498.07 2999.37 2798.47 897.79 8299.89 3599.50 1698.93 4999.45 499.61 12599.76 63
TSAR-MVS + COLMAP96.79 9696.55 13797.06 6597.70 7198.46 14899.07 4596.23 4399.38 2591.32 11798.80 4685.61 17698.69 7697.64 13896.92 13599.37 17799.06 173
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3499.24 10099.06 4697.96 3399.31 3499.16 197.90 8099.79 4599.36 2898.71 6998.12 9299.65 11399.52 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 3099.34 8899.06 4694.61 5899.65 597.49 2496.75 10599.86 3899.44 2398.78 6299.30 1199.81 2299.67 104
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8299.46 6699.03 4894.59 6199.09 7097.19 2999.73 399.95 1799.39 2698.95 4798.69 5799.75 4699.65 111
CNLPA99.03 2799.05 4499.01 1999.27 4399.22 10299.03 4897.98 3299.34 3299.00 498.25 7199.71 4999.31 3398.80 6098.82 5399.48 16299.17 165
EC-MVSNet98.22 5199.44 1796.79 7595.62 12399.56 5199.01 5092.22 10099.17 5594.51 6999.41 1399.62 5299.49 1899.16 3499.26 1499.91 299.94 1
OPM-MVS96.22 11595.85 15796.65 8097.75 6998.54 14399.00 5195.53 4696.88 18489.88 12595.95 12586.46 17098.07 9897.65 13796.63 14299.67 10498.83 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5599.36 8398.94 5298.14 2598.59 12293.62 8996.61 11199.76 4899.03 5797.77 12897.45 12499.57 14798.89 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3299.42 7598.91 5394.61 5898.87 9492.24 11194.61 14399.05 6499.10 5198.64 7399.05 2999.74 5199.51 141
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7798.87 5498.24 1799.14 6398.73 599.11 2899.92 2898.92 6299.22 2898.84 5099.76 4199.56 130
CANet_DTU96.64 10599.08 4193.81 13197.10 8399.42 7598.85 5590.01 14099.31 3479.98 18399.78 299.10 6397.42 11998.35 9298.05 9699.47 16499.53 133
RPSCF97.61 6798.16 8096.96 7498.10 6399.00 10998.84 5693.76 7999.45 2094.78 6399.39 1599.31 5898.53 8596.61 16695.43 17597.74 20497.93 198
LGP-MVS_train96.23 11496.89 12895.46 10997.32 7698.77 12498.81 5793.60 8498.58 12385.52 14999.08 3286.67 16797.83 11097.87 12397.51 11899.69 8899.73 79
TPM-MVS99.57 2698.90 11798.79 5896.52 3798.62 5699.91 3197.56 11499.44 16899.28 157
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
CLD-MVS96.74 9996.51 14097.01 7196.71 9098.62 13798.73 5994.38 6798.94 8894.46 7197.33 9187.03 16198.07 9897.20 15596.87 13699.72 6799.54 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DI_MVS_plusplus_trai96.90 9497.49 10496.21 9395.61 12499.40 7898.72 6092.11 10199.14 6392.98 10093.08 16395.14 10998.13 9598.05 11297.91 10299.74 5199.73 79
CS-MVS98.56 4399.32 2897.68 4798.28 6299.89 298.71 6194.53 6399.41 2395.43 4999.05 3598.66 6699.19 4099.21 2999.07 2699.93 199.94 1
gg-mvs-nofinetune90.85 19994.14 17887.02 20494.89 14499.25 9898.64 6276.29 21988.24 22057.50 22479.93 21695.45 10595.18 17898.77 6398.07 9599.62 12399.24 162
MVSTER97.16 8497.71 9896.52 8695.97 10998.48 14698.63 6392.10 10298.68 11995.96 4299.23 2091.79 13896.87 13098.76 6497.37 12899.57 14799.68 103
CS-MVS-test98.58 4299.42 2097.60 5198.52 5799.91 198.60 6494.60 6099.37 2794.62 6599.40 1499.16 6199.39 2699.36 2098.85 4999.90 399.92 3
XVS97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVStestdata97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3799.53 5598.51 6795.52 4799.27 4094.85 6199.56 899.69 5099.04 5699.36 2098.88 4499.60 13399.58 124
test250697.16 8496.68 13497.73 4696.95 8699.79 498.48 6894.42 6599.17 5597.74 2299.15 2480.93 20498.89 6899.03 4199.09 2499.88 499.62 119
ECVR-MVScopyleft97.27 7997.09 12197.48 5396.95 8699.79 498.48 6894.42 6599.17 5596.28 3893.54 15389.39 15298.89 6899.03 4199.09 2499.88 499.61 122
EPNet98.05 5598.86 5597.10 6399.02 4899.43 7398.47 7094.73 5599.05 7895.62 4598.93 4097.62 8195.48 16998.59 8198.55 6399.29 18299.84 25
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP-MVS96.37 11196.58 13596.13 9597.31 7898.44 15098.45 7195.22 4998.86 9588.58 12998.33 6987.00 16297.67 11297.23 15396.56 14699.56 15099.62 119
test111197.09 8896.83 13197.39 5496.92 8899.81 398.44 7294.45 6499.17 5595.85 4392.10 16788.97 15398.78 7299.02 4399.11 2399.88 499.63 117
casdiffmvs_mvgpermissive97.27 7997.97 9096.46 8995.83 11499.51 6198.42 7393.32 9098.34 13692.38 10795.64 13395.35 10798.91 6398.73 6898.45 6899.86 999.80 37
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpn200view996.75 9896.51 14097.03 6796.31 9699.67 1898.41 7493.99 7497.35 17194.52 6795.90 12686.93 16399.14 4898.26 9597.80 10899.82 1699.70 94
thres600view796.69 10296.43 14897.00 7296.28 9999.67 1898.41 7493.99 7497.85 16094.29 7695.96 12485.91 17499.19 4098.26 9597.63 11399.82 1699.73 79
thres40096.71 10196.45 14697.02 6996.28 9999.63 2998.41 7494.00 7397.82 16194.42 7395.74 13086.26 17199.18 4398.20 9997.79 10999.81 2299.70 94
DCV-MVSNet97.56 6998.36 6996.62 8496.44 9398.36 15798.37 7791.73 10999.11 6894.80 6298.36 6896.28 9598.60 8198.12 10298.44 6999.76 4199.87 18
thres20096.76 9796.53 13897.03 6796.31 9699.67 1898.37 7793.99 7497.68 16694.49 7095.83 12986.77 16599.18 4398.26 9597.82 10799.82 1699.66 108
CHOSEN 280x42097.99 5799.24 3496.53 8598.34 6099.61 3898.36 7989.80 14699.27 4095.08 5899.81 198.58 6898.64 7899.02 4398.92 4198.93 19199.48 145
IS_MVSNet97.86 5998.86 5596.68 7896.02 10599.72 1298.35 8093.37 8998.75 11794.01 7896.88 10498.40 7198.48 8699.09 3799.42 599.83 1599.80 37
FMVSNet397.02 9098.12 8295.73 10593.59 16297.98 16698.34 8191.32 12198.80 10793.92 8097.21 9495.94 10297.63 11398.61 7698.62 6099.61 12599.65 111
baseline97.45 7398.70 6195.99 10095.89 11099.36 8398.29 8291.37 12099.21 5092.99 9998.40 6696.87 8997.96 10298.60 7998.60 6299.42 17299.86 21
ET-MVSNet_ETH3D96.17 11696.99 12695.21 11188.53 21498.54 14398.28 8392.61 9898.85 9793.60 9099.06 3490.39 14598.63 7995.98 18796.68 14099.61 12599.41 150
thres100view90096.72 10096.47 14497.00 7296.31 9699.52 5898.28 8394.01 7297.35 17194.52 6795.90 12686.93 16399.09 5398.07 10897.87 10499.81 2299.63 117
ETV-MVS98.05 5599.25 3396.65 8095.61 12499.61 3898.26 8593.52 8598.90 9393.74 8899.32 1799.20 5998.90 6599.21 2998.72 5699.87 899.79 45
sasdasda97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
canonicalmvs97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
MVS_Test97.30 7898.54 6395.87 10195.74 11799.28 9598.19 8891.40 11999.18 5491.59 11598.17 7396.18 9798.63 7998.61 7698.55 6399.66 10999.78 51
Anonymous2023121197.10 8797.06 12497.14 6296.32 9599.52 5898.16 8993.76 7998.84 10195.98 4190.92 17394.58 11898.90 6597.72 13298.10 9499.71 7799.75 71
MGCFI-Net97.26 8197.79 9796.64 8296.17 10499.43 7398.14 9091.52 11799.23 4595.16 5698.48 6090.87 14399.07 5497.59 14099.02 3499.76 4199.91 6
EIA-MVS97.70 6598.78 5896.44 9095.72 11899.65 2298.14 9093.72 8298.30 13892.31 10898.63 5597.90 7698.97 6098.92 5198.30 8399.78 3499.80 37
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3599.61 3898.14 9094.81 5399.31 3495.00 5999.51 999.79 4599.00 5998.94 4898.83 5199.69 8899.57 129
GBi-Net96.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
test196.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
FMVSNet296.64 10597.50 10395.63 10793.81 15697.98 16698.09 9390.87 12798.99 8493.48 9193.17 16095.25 10897.89 10498.63 7498.80 5499.68 9699.67 104
Anonymous20240521197.40 11096.45 9299.54 5498.08 9693.79 7898.24 14293.55 15294.41 11998.88 7098.04 11398.24 8699.75 4699.76 63
diffmvspermissive96.83 9597.33 11396.25 9295.76 11699.34 8898.06 9793.22 9399.43 2292.30 10996.90 10389.83 15198.55 8398.00 11698.14 9099.64 11799.70 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE95.98 12397.24 11994.51 11995.02 14199.38 7998.02 9887.86 17098.37 13487.86 13592.99 16593.54 12898.56 8298.61 7697.92 10099.73 5999.85 24
Effi-MVS+-dtu95.74 12698.04 8593.06 14993.92 15299.16 10497.90 9988.16 16699.07 7782.02 17198.02 7894.32 12196.74 13498.53 8497.56 11699.61 12599.62 119
USDC94.26 15594.83 16793.59 13796.02 10598.44 15097.84 10088.65 15998.86 9582.73 16894.02 14880.56 20596.76 13397.28 15296.15 16099.55 15298.50 186
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10695.99 10899.62 3397.82 10193.22 9398.82 10491.40 11696.94 10198.56 6995.70 16199.14 3599.41 699.79 3199.75 71
PMMVS97.52 7098.39 6896.51 8795.82 11598.73 13197.80 10293.05 9798.76 11494.39 7599.07 3397.03 8898.55 8398.31 9497.61 11499.43 17099.21 164
ACMP96.25 1096.62 10796.72 13296.50 8896.96 8598.75 12897.80 10294.30 6998.85 9793.12 9698.78 4886.61 16897.23 12397.73 13196.61 14399.62 12399.71 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.04 17593.57 19292.41 15496.58 9198.77 12497.78 10491.96 10698.12 14680.84 17689.13 18779.87 21287.78 21196.44 17194.50 19799.54 15698.15 193
casdiffmvspermissive96.93 9397.43 10996.34 9195.70 11999.50 6297.75 10593.22 9398.98 8592.64 10294.97 13991.71 13998.93 6198.62 7598.52 6699.82 1699.72 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline197.58 6898.05 8497.02 6996.21 10199.45 6897.71 10693.71 8398.47 13095.75 4498.78 4893.20 13398.91 6398.52 8598.44 6999.81 2299.53 133
CHOSEN 1792x268896.41 11096.99 12695.74 10498.01 6799.72 1297.70 10790.78 13199.13 6790.03 12487.35 20095.36 10698.33 8998.59 8198.91 4399.59 13999.87 18
FA-MVS(training)96.52 10998.29 7194.45 12195.88 11299.52 5897.66 10881.47 19898.94 8893.79 8795.54 13799.11 6298.29 9098.89 5496.49 14899.63 12299.52 136
MAR-MVS97.71 6498.04 8597.32 5699.35 4198.91 11697.65 10991.68 11098.00 15097.01 3197.72 8694.83 11398.85 7198.44 9098.86 4699.41 17399.52 136
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UA-Net97.13 8699.14 3894.78 11597.21 8099.38 7997.56 11092.04 10398.48 12988.03 13298.39 6799.91 3194.03 19299.33 2499.23 1899.81 2299.25 161
EPP-MVSNet97.75 6398.71 6096.63 8395.68 12199.56 5197.51 11193.10 9699.22 4794.99 6097.18 9797.30 8498.65 7798.83 5898.93 4099.84 1299.92 3
TinyColmap94.00 15994.35 17693.60 13695.89 11098.26 15997.49 11288.82 15698.56 12583.21 16291.28 17280.48 20796.68 13697.34 14996.26 15699.53 15898.24 192
CDS-MVSNet96.59 10898.02 8794.92 11494.45 14998.96 11497.46 11391.75 10897.86 15990.07 12396.02 12397.25 8596.21 14898.04 11398.38 7499.60 13399.65 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS94.81 14497.71 9891.42 17494.83 14697.63 18497.38 11485.08 18798.93 9075.67 20094.02 14897.64 7996.66 13898.45 8897.60 11598.90 19299.72 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu96.30 11398.53 6493.70 13598.97 4998.24 16197.36 11594.23 7098.85 9779.18 18799.19 2198.47 7094.09 19197.89 12298.21 8798.39 19798.85 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu95.38 13398.20 7892.09 16093.91 15398.87 11897.35 11685.01 18999.08 7281.09 17598.10 7496.36 9395.62 16498.43 9197.03 13299.55 15299.50 143
PVSNet_BlendedMVS97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
PVSNet_Blended97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
MS-PatchMatch95.99 12197.26 11894.51 11997.46 7398.76 12797.27 11986.97 17599.09 7089.83 12693.51 15597.78 7896.18 15097.53 14395.71 17299.35 17898.41 188
Vis-MVSNetpermissive96.16 11798.22 7793.75 13295.33 13699.70 1797.27 11990.85 12898.30 13885.51 15095.72 13296.45 9093.69 19898.70 7099.00 3599.84 1299.69 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dmvs_re96.02 12096.49 14395.47 10893.49 16399.26 9797.25 12193.82 7797.51 16890.43 12197.52 9087.93 15698.12 9696.86 16396.59 14499.73 5999.76 63
IterMVS-SCA-FT94.89 14297.87 9391.42 17494.86 14597.70 17797.24 12284.88 19098.93 9075.74 19994.26 14798.25 7396.69 13598.52 8597.68 11299.10 18999.73 79
Effi-MVS+95.81 12497.31 11794.06 12795.09 13999.35 8697.24 12288.22 16498.54 12685.38 15198.52 5888.68 15498.70 7498.32 9397.93 9999.74 5199.84 25
Fast-Effi-MVS+95.38 13396.52 13994.05 12894.15 15199.14 10697.24 12286.79 17698.53 12787.62 13794.51 14487.06 16098.76 7398.60 7998.04 9799.72 6799.77 58
MDTV_nov1_ep1395.57 12897.48 10593.35 14695.43 13398.97 11397.19 12583.72 19698.92 9287.91 13497.75 8496.12 9997.88 10796.84 16595.64 17397.96 20298.10 194
CR-MVSNet94.57 15297.34 11291.33 17794.90 14398.59 14097.15 12679.14 20997.98 15180.42 17996.59 11493.50 13096.85 13198.10 10397.49 12099.50 16199.15 166
Patchmtry98.59 14097.15 12679.14 20980.42 179
IterMVS-LS96.12 11897.48 10594.53 11895.19 13897.56 19197.15 12689.19 15399.08 7288.23 13094.97 13994.73 11597.84 10997.86 12498.26 8599.60 13399.88 16
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet195.77 12596.41 14995.03 11293.42 16497.86 17397.11 12989.89 14398.53 12792.00 11289.17 18593.23 13298.15 9498.07 10898.34 7999.61 12599.69 98
UGNet97.66 6699.07 4396.01 9997.19 8199.65 2297.09 13093.39 8799.35 3194.40 7498.79 4799.59 5494.24 18998.04 11398.29 8499.73 5999.80 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LTVRE_ROB93.20 1692.84 17794.92 16490.43 19092.83 16698.63 13697.08 13187.87 16997.91 15668.42 21793.54 15379.46 21496.62 13997.55 14297.40 12799.74 5199.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4699.25 9897.06 13294.09 7198.72 11895.14 5798.47 6396.29 9498.43 8798.65 7297.44 12599.45 16698.94 175
RPMNet94.66 14697.16 12091.75 17094.98 14298.59 14097.00 13378.37 21597.98 15183.78 15696.27 11994.09 12696.91 12997.36 14896.73 13899.48 16299.09 171
thisisatest053097.23 8298.25 7396.05 9695.60 12699.59 4596.96 13493.23 9199.17 5592.60 10498.75 5196.19 9698.17 9198.19 10096.10 16199.72 6799.77 58
tttt051797.23 8298.24 7696.04 9795.60 12699.60 4396.94 13593.23 9199.15 6092.56 10598.74 5296.12 9998.17 9198.21 9896.10 16199.73 5999.78 51
ACMH+95.51 1395.40 13296.00 15194.70 11696.33 9498.79 12196.79 13691.32 12198.77 11387.18 13995.60 13585.46 17796.97 12797.15 15696.59 14499.59 13999.65 111
EPMVS95.05 13896.86 13092.94 15195.84 11398.96 11496.68 13779.87 20499.05 7890.15 12297.12 9895.99 10197.49 11795.17 19694.75 19497.59 20896.96 208
TAMVS95.53 12996.50 14294.39 12393.86 15599.03 10896.67 13889.55 15097.33 17390.64 12093.02 16491.58 14096.21 14897.72 13297.43 12699.43 17099.36 154
tpm cat194.06 15794.90 16593.06 14995.42 13598.52 14596.64 13980.67 20097.82 16192.63 10393.39 15795.00 11196.06 15491.36 21591.58 21396.98 21496.66 211
FC-MVSNet-test96.07 11997.94 9193.89 12993.60 16198.67 13496.62 14090.30 13998.76 11488.62 12895.57 13697.63 8094.48 18597.97 11797.48 12299.71 7799.52 136
dps94.63 14895.31 16393.84 13095.53 12998.71 13296.54 14180.12 20397.81 16397.21 2896.98 9992.37 13496.34 14792.46 21191.77 21197.26 21297.08 206
HyFIR lowres test95.99 12196.56 13695.32 11097.99 6899.65 2296.54 14188.86 15598.44 13189.77 12784.14 21097.05 8799.03 5798.55 8398.19 8999.73 5999.86 21
FC-MVSNet-train97.04 8997.91 9296.03 9896.00 10798.41 15396.53 14393.42 8699.04 8093.02 9898.03 7794.32 12197.47 11897.93 11997.77 11099.75 4699.88 16
ACMM96.26 996.67 10496.69 13396.66 7997.29 7998.46 14896.48 14495.09 5099.21 5093.19 9598.78 4886.73 16698.17 9197.84 12596.32 15399.74 5199.49 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.36 11297.82 9494.65 11794.60 14899.09 10796.45 14589.63 14898.36 13591.29 11897.60 8994.13 12496.37 14598.45 8897.70 11199.54 15699.41 150
test-LLR95.50 13097.32 11493.37 14495.49 13198.74 12996.44 14690.82 12998.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
TESTMET0.1,194.95 14097.32 11492.20 15892.62 16898.74 12996.44 14686.67 17898.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5199.33 9196.28 14897.47 3899.58 994.70 6498.99 3699.85 4097.24 12299.55 1099.34 997.73 20699.56 130
SCA94.95 14097.44 10892.04 16195.55 12899.16 10496.26 14979.30 20899.02 8185.73 14898.18 7297.13 8697.69 11196.03 18594.91 18997.69 20797.65 200
CostFormer94.25 15694.88 16693.51 14195.43 13398.34 15896.21 15080.64 20197.94 15594.01 7898.30 7086.20 17397.52 11592.71 20992.69 20597.23 21398.02 196
test-mter94.86 14397.32 11492.00 16392.41 17398.82 12096.18 15186.35 18298.05 14882.28 16996.48 11694.39 12095.46 17198.17 10196.20 15799.32 18099.13 170
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9497.49 7299.76 696.02 15293.75 8199.26 4293.38 9393.73 15199.35 5796.47 14498.96 4698.46 6799.77 3999.90 7
ADS-MVSNet94.65 14797.04 12591.88 16995.68 12198.99 11195.89 15379.03 21199.15 6085.81 14796.96 10098.21 7597.10 12494.48 20494.24 19897.74 20497.21 204
test0.0.03 196.69 10298.12 8295.01 11395.49 13198.99 11195.86 15490.82 12998.38 13392.54 10696.66 10997.33 8295.75 15997.75 13098.34 7999.60 13399.40 152
PatchmatchNetpermissive94.70 14597.08 12391.92 16695.53 12998.85 11995.77 15579.54 20698.95 8685.98 14598.52 5896.45 9097.39 12095.32 19394.09 19997.32 21097.38 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 15894.51 17393.44 14292.56 17097.77 17495.67 15691.57 11497.17 17785.84 14693.13 16180.53 20695.29 17597.01 16096.17 15899.69 8899.75 71
FMVSNet595.42 13196.47 14494.20 12492.26 17695.99 21295.66 15787.15 17497.87 15893.46 9296.68 10893.79 12797.52 11597.10 15997.21 13099.11 18896.62 212
tpmrst93.86 16495.88 15591.50 17395.69 12098.62 13795.64 15879.41 20798.80 10783.76 15895.63 13496.13 9897.25 12192.92 20892.31 20797.27 21196.74 209
TranMVSNet+NR-MVSNet93.67 16694.14 17893.13 14891.28 20497.58 18995.60 15991.97 10597.06 18084.05 15290.64 17882.22 19896.17 15194.94 20196.78 13799.69 8899.78 51
Baseline_NR-MVSNet93.87 16393.98 18593.75 13291.66 19097.02 20495.53 16091.52 11797.16 17987.77 13687.93 19883.69 18696.35 14695.10 19897.23 12999.68 9699.73 79
CVMVSNet95.33 13597.09 12193.27 14795.23 13798.39 15595.49 16192.58 9997.71 16583.00 16594.44 14693.28 13193.92 19597.79 12698.54 6599.41 17399.45 147
tfpnnormal93.85 16594.12 18093.54 14093.22 16598.24 16195.45 16291.96 10694.61 21183.91 15490.74 17581.75 20197.04 12597.49 14496.16 15999.68 9699.84 25
pmmvs495.09 13795.90 15494.14 12592.29 17597.70 17795.45 16290.31 13798.60 12190.70 11993.25 15889.90 14996.67 13797.13 15795.42 17699.44 16899.28 157
GA-MVS93.93 16296.31 15091.16 18193.61 16098.79 12195.39 16490.69 13498.25 14173.28 20896.15 12188.42 15594.39 18797.76 12995.35 17799.58 14399.45 147
testgi95.67 12797.48 10593.56 13895.07 14099.00 10995.33 16588.47 16198.80 10786.90 14197.30 9392.33 13595.97 15697.66 13497.91 10299.60 13399.38 153
anonymousdsp93.12 17395.86 15689.93 19591.09 20598.25 16095.12 16685.08 18797.44 17073.30 20790.89 17490.78 14495.25 17797.91 12095.96 16799.71 7799.82 30
UniMVSNet_NR-MVSNet94.59 15095.47 16093.55 13991.85 18597.89 17295.03 16792.00 10497.33 17386.12 14393.19 15987.29 15996.60 14096.12 18296.70 13999.72 6799.80 37
DU-MVS93.98 16094.44 17593.44 14291.66 19097.77 17495.03 16791.57 11497.17 17786.12 14393.13 16181.13 20396.60 14095.10 19897.01 13499.67 10499.80 37
UniMVSNet (Re)94.58 15195.34 16193.71 13492.25 17798.08 16594.97 16991.29 12597.03 18287.94 13393.97 15086.25 17296.07 15396.27 17995.97 16699.72 6799.79 45
TransMVSNet (Re)93.45 16894.08 18192.72 15392.83 16697.62 18794.94 17091.54 11695.65 20883.06 16488.93 18883.53 18894.25 18897.41 14697.03 13299.67 10498.40 191
V4293.05 17493.90 18892.04 16191.91 18297.66 18194.91 17189.91 14296.85 18680.58 17889.66 18283.43 19095.37 17395.03 20094.90 19099.59 13999.78 51
GG-mvs-BLEND69.11 21798.13 8135.26 2213.49 23198.20 16394.89 1722.38 22798.42 1325.82 23296.37 11898.60 675.97 22798.75 6697.98 9899.01 19098.61 183
EG-PatchMatch MVS92.45 18693.92 18790.72 18792.56 17098.43 15294.88 17384.54 19297.18 17679.55 18586.12 20783.23 19193.15 20297.22 15496.00 16399.67 10499.27 160
pm-mvs194.27 15495.57 15992.75 15292.58 16998.13 16494.87 17490.71 13396.70 19083.78 15689.94 18189.85 15094.96 18297.58 14197.07 13199.61 12599.72 89
v1092.79 18094.06 18291.31 17891.78 18797.29 20394.87 17486.10 18396.97 18379.82 18488.16 19484.56 18495.63 16396.33 17795.31 17899.65 11399.80 37
UniMVSNet_ETH3D93.15 17292.33 20594.11 12693.91 15398.61 13994.81 17690.98 12697.06 18087.51 13882.27 21476.33 22097.87 10894.79 20297.47 12399.56 15099.81 35
v892.87 17693.87 18991.72 17292.05 17997.50 19494.79 17788.20 16596.85 18680.11 18290.01 18082.86 19595.48 16995.15 19794.90 19099.66 10999.80 37
v114492.81 17894.03 18391.40 17691.68 18997.60 18894.73 17888.40 16296.71 18978.48 19088.14 19584.46 18595.45 17296.31 17895.22 18199.65 11399.76 63
ACMH95.42 1495.27 13695.96 15394.45 12196.83 8998.78 12394.72 17991.67 11198.95 8686.82 14296.42 11783.67 18797.00 12697.48 14596.68 14099.69 8899.76 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192092.36 19393.57 19290.94 18491.39 20097.39 19994.70 18087.63 17296.60 19276.63 19686.98 20382.89 19495.75 15996.26 18095.14 18499.55 15299.73 79
MIMVSNet94.49 15397.59 10290.87 18691.74 18898.70 13394.68 18178.73 21397.98 15183.71 15997.71 8794.81 11496.96 12897.97 11797.92 10099.40 17598.04 195
PEN-MVS92.72 18293.20 19892.15 15991.29 20297.31 20194.67 18289.81 14496.19 19881.83 17288.58 19179.06 21595.61 16595.21 19596.27 15499.72 6799.82 30
WR-MVS93.43 17094.48 17492.21 15791.52 19797.69 17994.66 18389.98 14196.86 18583.43 16090.12 17985.03 18193.94 19496.02 18695.82 16999.71 7799.82 30
v119292.43 18993.61 19191.05 18291.53 19697.43 19794.61 18487.99 16896.60 19276.72 19587.11 20282.74 19695.85 15896.35 17695.30 17999.60 13399.74 75
WR-MVS_H93.54 16794.67 17192.22 15691.95 18197.91 17194.58 18588.75 15796.64 19183.88 15590.66 17785.13 18094.40 18696.54 17095.91 16899.73 5999.89 12
v2v48292.77 18193.52 19591.90 16891.59 19597.63 18494.57 18690.31 13796.80 18879.22 18688.74 19081.55 20296.04 15595.26 19494.97 18899.66 10999.69 98
DTE-MVSNet92.42 19092.85 20191.91 16790.87 20796.97 20594.53 18789.81 14495.86 20781.59 17388.83 18977.88 21895.01 18194.34 20596.35 15299.64 11799.73 79
CP-MVSNet93.25 17194.00 18492.38 15591.65 19297.56 19194.38 18889.20 15296.05 20283.16 16389.51 18381.97 19996.16 15296.43 17296.56 14699.71 7799.89 12
v14419292.38 19193.55 19491.00 18391.44 19897.47 19694.27 18987.41 17396.52 19478.03 19187.50 19982.65 19795.32 17495.82 19095.15 18399.55 15299.78 51
v124091.99 19693.33 19790.44 18991.29 20297.30 20294.25 19086.79 17696.43 19575.49 20286.34 20681.85 20095.29 17596.42 17395.22 18199.52 15999.73 79
tpm92.38 19194.79 16889.56 19794.30 15097.50 19494.24 19178.97 21297.72 16474.93 20497.97 7982.91 19396.60 14093.65 20794.81 19398.33 19898.98 174
PS-CasMVS92.72 18293.36 19691.98 16491.62 19497.52 19394.13 19288.98 15495.94 20581.51 17487.35 20079.95 21195.91 15796.37 17496.49 14899.70 8599.89 12
v7n91.61 19892.95 19990.04 19290.56 20897.69 17993.74 19385.59 18595.89 20676.95 19486.60 20578.60 21793.76 19797.01 16094.99 18799.65 11399.87 18
pmmvs691.90 19792.53 20491.17 18091.81 18697.63 18493.23 19488.37 16393.43 21680.61 17777.32 21887.47 15894.12 19096.58 16895.72 17198.88 19399.53 133
pmmvs592.71 18494.27 17790.90 18591.42 19997.74 17693.23 19486.66 17995.99 20478.96 18991.45 17083.44 18995.55 16697.30 15195.05 18699.58 14398.93 176
CMPMVSbinary70.31 1890.74 20091.06 20890.36 19197.32 7697.43 19792.97 19687.82 17193.50 21575.34 20383.27 21284.90 18292.19 20692.64 21091.21 21496.50 21794.46 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SixPastTwentyTwo93.44 16995.32 16291.24 17992.11 17898.40 15492.77 19788.64 16098.09 14777.83 19293.51 15585.74 17596.52 14396.91 16294.89 19299.59 13999.73 79
v14892.36 19392.88 20091.75 17091.63 19397.66 18192.64 19890.55 13596.09 20083.34 16188.19 19380.00 20992.74 20393.98 20694.58 19699.58 14399.69 98
EU-MVSNet92.80 17994.76 16990.51 18891.88 18396.74 20992.48 19988.69 15896.21 19779.00 18891.51 16987.82 15791.83 20795.87 18996.27 15499.21 18498.92 179
MDTV_nov1_ep13_2view92.44 18795.66 15888.68 19991.05 20697.92 17092.17 20079.64 20598.83 10276.20 19791.45 17093.51 12995.04 18095.68 19193.70 20297.96 20298.53 185
thisisatest051594.61 14996.89 12891.95 16592.00 18098.47 14792.01 20190.73 13298.18 14383.96 15394.51 14495.13 11093.38 19997.38 14794.74 19599.61 12599.79 45
pmmvs-eth3d89.81 20489.65 21290.00 19386.94 21695.38 21491.08 20286.39 18194.57 21282.27 17083.03 21364.94 22393.96 19396.57 16993.82 20199.35 17899.24 162
ambc80.99 21780.04 22390.84 21990.91 20396.09 20074.18 20562.81 22130.59 23282.44 21696.25 18191.77 21195.91 21998.56 184
PM-MVS89.55 20590.30 21088.67 20087.06 21595.60 21390.88 20484.51 19396.14 19975.75 19886.89 20463.47 22694.64 18496.85 16493.89 20099.17 18799.29 156
FPMVS83.82 21284.61 21582.90 21190.39 21090.71 22090.85 20584.10 19595.47 21065.15 21983.44 21174.46 22175.48 21781.63 21979.42 22191.42 22287.14 221
IB-MVS93.96 1595.02 13996.44 14793.36 14597.05 8499.28 9590.43 20693.39 8798.02 14996.02 4094.92 14192.07 13783.52 21595.38 19295.82 16999.72 6799.59 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS-HIRNet92.51 18595.97 15288.48 20193.73 15998.37 15690.33 20775.36 22198.32 13777.78 19389.15 18694.87 11295.14 17997.62 13996.39 15198.51 19497.11 205
Anonymous2023120690.70 20193.93 18686.92 20590.21 21196.79 20790.30 20886.61 18096.05 20269.25 21588.46 19284.86 18385.86 21397.11 15896.47 15099.30 18197.80 199
PatchT93.96 16197.36 11190.00 19394.76 14798.65 13590.11 20978.57 21497.96 15480.42 17996.07 12294.10 12596.85 13198.10 10397.49 12099.26 18399.15 166
our_test_392.30 17497.58 18990.09 210
pmnet_mix0292.44 18794.68 17089.83 19692.46 17297.65 18389.92 21190.49 13698.76 11473.05 21091.78 16890.08 14894.86 18394.53 20391.94 21098.21 20098.01 197
test20.0390.65 20293.71 19087.09 20390.44 20996.24 21089.74 21285.46 18695.59 20972.99 21190.68 17685.33 17884.41 21495.94 18895.10 18599.52 15997.06 207
N_pmnet92.21 19594.60 17289.42 19891.88 18397.38 20089.15 21389.74 14797.89 15773.75 20687.94 19792.23 13693.85 19696.10 18393.20 20498.15 20197.43 202
new_pmnet90.45 20392.84 20287.66 20288.96 21296.16 21188.71 21484.66 19197.56 16771.91 21485.60 20886.58 16993.28 20096.07 18493.54 20398.46 19594.39 216
MIMVSNet188.61 20790.68 20986.19 20781.56 22195.30 21687.78 21585.98 18494.19 21472.30 21378.84 21778.90 21690.06 20896.59 16795.47 17499.46 16595.49 214
DeepMVS_CXcopyleft96.85 20687.43 21689.27 15198.30 13875.55 20195.05 13879.47 21392.62 20589.48 21695.18 22095.96 213
test_method87.27 21091.58 20682.25 21275.65 22587.52 22486.81 21772.60 22297.51 16873.20 20985.07 20979.97 21088.69 21097.31 15095.24 18096.53 21698.41 188
pmmvs388.19 20891.27 20784.60 21085.60 21893.66 21885.68 21881.13 19992.36 21863.66 22389.51 18377.10 21993.22 20196.37 17492.40 20698.30 19997.46 201
MDA-MVSNet-bldmvs87.84 20989.22 21386.23 20681.74 22096.77 20883.74 21989.57 14994.50 21372.83 21296.64 11064.47 22592.71 20481.43 22092.28 20896.81 21598.47 187
new-patchmatchnet86.12 21187.30 21484.74 20986.92 21795.19 21783.57 22084.42 19492.67 21765.66 21880.32 21564.72 22489.41 20992.33 21389.21 21698.43 19696.69 210
tmp_tt82.25 21297.73 7088.71 22180.18 22168.65 22499.15 6086.98 14099.47 1085.31 17968.35 22287.51 21783.81 21991.64 221
Gipumacopyleft81.40 21381.78 21680.96 21483.21 21985.61 22579.73 22276.25 22097.33 17364.21 22255.32 22255.55 22786.04 21292.43 21292.20 20996.32 21893.99 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gm-plane-assit89.44 20692.82 20385.49 20891.37 20195.34 21579.55 22382.12 19791.68 21964.79 22187.98 19680.26 20895.66 16298.51 8797.56 11699.45 16698.41 188
PMMVS277.26 21579.47 21874.70 21676.00 22488.37 22274.22 22476.34 21878.31 22254.13 22569.96 22052.50 22870.14 22184.83 21888.71 21797.35 20993.58 218
WB-MVS81.36 21489.93 21171.35 21788.65 21387.85 22371.46 22588.12 16796.23 19632.21 22992.61 16683.00 19256.27 22491.92 21489.43 21591.39 22388.49 220
PMVScopyleft72.60 1776.39 21677.66 21974.92 21581.04 22269.37 22968.47 22680.54 20285.39 22165.07 22073.52 21972.91 22265.67 22380.35 22176.81 22288.71 22485.25 224
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Patchmatch-RL test66.86 227
E-PMN68.30 21868.43 22068.15 21874.70 22771.56 22855.64 22877.24 21677.48 22439.46 22751.95 22541.68 23073.28 21970.65 22379.51 22088.61 22586.20 223
EMVS68.12 21968.11 22168.14 21975.51 22671.76 22755.38 22977.20 21777.78 22337.79 22853.59 22343.61 22974.72 21867.05 22476.70 22388.27 22686.24 222
MVEpermissive67.97 1965.53 22067.43 22263.31 22059.33 22874.20 22653.09 23070.43 22366.27 22543.13 22645.98 22630.62 23170.65 22079.34 22286.30 21883.25 22789.33 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 22140.15 22320.86 22212.61 22917.99 23025.16 23113.30 22548.42 22624.82 23053.07 22430.13 23328.47 22542.73 22537.65 22420.79 22851.04 225
test12326.75 22234.25 22418.01 2237.93 23017.18 23124.85 23212.36 22644.83 22716.52 23141.80 22718.10 23428.29 22633.08 22634.79 22518.10 22949.95 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def69.05 216
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
mPP-MVS99.53 3099.89 35
NP-MVS98.57 124