APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 11 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 6 | 99.57 7 | 99.97 8 | 99.53 15 | 99.65 2 | 99.25 15 | 99.84 12 | 99.77 56 |
|
TSAR-MVS + MP. | | | 99.27 10 | 99.57 5 | 98.92 22 | 98.78 52 | 99.53 55 | 99.72 2 | 98.11 28 | 99.73 2 | 97.43 25 | 99.15 24 | 99.96 12 | 99.59 9 | 99.73 1 | 99.07 26 | 99.88 4 | 99.82 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 99.20 15 | 99.51 11 | 98.83 26 | 99.66 16 | 99.66 21 | 99.71 3 | 98.12 27 | 99.14 61 | 96.62 33 | 99.16 23 | 99.98 2 | 99.12 48 | 99.63 3 | 99.19 21 | 99.78 34 | 99.83 27 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 99.30 9 | 99.54 7 | 99.03 16 | 99.66 16 | 99.64 26 | 99.68 4 | 98.25 14 | 99.56 11 | 97.12 30 | 99.19 21 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 15 | 99.72 64 | 99.77 56 |
|
PGM-MVS | | | 98.86 31 | 99.35 27 | 98.29 34 | 99.77 1 | 99.63 29 | 99.67 5 | 95.63 45 | 98.66 118 | 95.27 51 | 99.11 28 | 99.82 41 | 99.67 4 | 99.33 24 | 99.19 21 | 99.73 57 | 99.74 72 |
|
DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 20 | 99.71 15 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 11 | 99.64 5 | 99.98 2 | 99.31 33 | 99.56 9 | 98.96 36 | 99.85 10 | 99.70 91 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 99.07 23 | 99.36 24 | 98.74 27 | 99.63 20 | 99.57 50 | 99.66 6 | 98.25 14 | 99.00 81 | 95.62 44 | 98.97 37 | 99.94 25 | 99.54 14 | 99.51 12 | 98.79 53 | 99.71 74 | 99.73 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DVP-MVS++ | | | 99.41 4 | 99.64 1 | 99.14 7 | 99.69 7 | 99.75 9 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 13 | 99.66 4 | 99.99 1 | 99.33 30 | 99.62 5 | 98.86 44 | 99.74 49 | 99.90 6 |
|
MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 7 | 99.68 12 | 99.75 9 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 13 | 99.28 18 | 99.98 2 | 99.30 35 | 99.34 23 | 99.05 29 | 99.81 22 | 99.79 43 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ACMMP_NAP | | | 99.05 25 | 99.45 14 | 98.58 30 | 99.73 5 | 99.60 43 | 99.64 8 | 98.28 13 | 99.23 45 | 94.57 63 | 99.35 16 | 99.97 8 | 99.55 13 | 99.63 3 | 98.66 56 | 99.70 82 | 99.74 72 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 14 | 98.85 24 | 99.55 28 | 99.37 80 | 99.64 8 | 98.05 31 | 99.53 14 | 96.58 34 | 98.93 40 | 99.92 28 | 99.49 18 | 99.46 14 | 99.32 10 | 99.80 30 | 99.64 112 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 6 | 99.76 6 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 39 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 29 | 99.74 49 | 99.79 43 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 13 | 99.69 7 | 99.59 45 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 26 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 22 | 99.24 17 | 99.71 74 | 99.76 61 |
|
SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 7 | 99.76 6 | 99.62 14 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 37 | 99.61 6 | 98.83 49 | 99.70 82 | 99.77 56 |
|
X-MVS | | | 98.93 29 | 99.37 23 | 98.42 31 | 99.67 13 | 99.62 33 | 99.60 15 | 98.15 23 | 99.08 70 | 93.81 81 | 98.46 61 | 99.95 17 | 99.59 9 | 99.49 13 | 99.21 20 | 99.68 93 | 99.75 68 |
|
HPM-MVS++ |  | | 99.10 21 | 99.30 30 | 98.86 23 | 99.69 7 | 99.48 64 | 99.59 16 | 98.34 4 | 99.26 42 | 96.55 36 | 99.10 30 | 99.96 12 | 99.36 28 | 99.25 27 | 98.37 74 | 99.64 114 | 99.66 105 |
|
APD-MVS |  | | 99.25 12 | 99.38 22 | 99.09 11 | 99.69 7 | 99.58 48 | 99.56 17 | 98.32 8 | 98.85 95 | 97.87 19 | 98.91 42 | 99.92 28 | 99.30 35 | 99.45 15 | 99.38 8 | 99.79 31 | 99.58 121 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 99.27 10 | 99.44 17 | 99.08 12 | 99.62 22 | 99.58 48 | 99.53 18 | 98.16 21 | 99.21 48 | 97.79 20 | 99.15 24 | 99.96 12 | 99.59 9 | 99.54 11 | 98.86 44 | 99.78 34 | 99.74 72 |
|
LS3D | | | 97.79 60 | 98.25 73 | 97.26 60 | 98.40 58 | 99.63 29 | 99.53 18 | 98.63 1 | 99.25 44 | 88.13 127 | 96.93 98 | 94.14 122 | 99.19 40 | 99.14 35 | 99.23 18 | 99.69 85 | 99.42 146 |
|
MCST-MVS | | | 99.11 20 | 99.27 32 | 98.93 21 | 99.67 13 | 99.33 89 | 99.51 20 | 98.31 9 | 99.28 38 | 96.57 35 | 99.10 30 | 99.90 32 | 99.71 2 | 99.19 31 | 98.35 75 | 99.82 16 | 99.71 89 |
|
CDPH-MVS | | | 98.41 45 | 99.10 40 | 97.61 50 | 99.32 41 | 99.36 81 | 99.49 21 | 96.15 44 | 98.82 102 | 91.82 110 | 98.41 62 | 99.66 50 | 99.10 50 | 98.93 49 | 98.97 35 | 99.75 44 | 99.58 121 |
|
CSCG | | | 98.90 30 | 98.93 53 | 98.85 24 | 99.75 3 | 99.72 12 | 99.49 21 | 96.58 42 | 99.38 25 | 98.05 16 | 98.97 37 | 97.87 76 | 99.49 18 | 97.78 127 | 98.92 39 | 99.78 34 | 99.90 6 |
|
train_agg | | | 98.73 35 | 99.11 39 | 98.28 35 | 99.36 38 | 99.35 84 | 99.48 23 | 97.96 33 | 98.83 100 | 93.86 80 | 98.70 54 | 99.86 37 | 99.44 23 | 99.08 39 | 98.38 72 | 99.61 122 | 99.58 121 |
|
CNVR-MVS | | | 99.23 14 | 99.28 31 | 99.17 5 | 99.65 18 | 99.34 86 | 99.46 24 | 98.21 19 | 99.28 38 | 98.47 8 | 98.89 44 | 99.94 25 | 99.50 16 | 99.42 17 | 98.61 59 | 99.73 57 | 99.52 133 |
|
CPTT-MVS | | | 99.14 19 | 99.20 36 | 99.06 14 | 99.58 25 | 99.53 55 | 99.45 25 | 97.80 36 | 99.19 51 | 98.32 12 | 98.58 56 | 99.95 17 | 99.60 7 | 99.28 26 | 98.20 86 | 99.64 114 | 99.69 95 |
|
DeepC-MVS | | 97.63 4 | 98.33 48 | 98.57 62 | 98.04 40 | 98.62 55 | 99.65 22 | 99.45 25 | 98.15 23 | 99.51 17 | 92.80 98 | 95.74 126 | 96.44 91 | 99.46 21 | 99.37 19 | 99.50 2 | 99.78 34 | 99.81 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + ACMM | | | 98.77 33 | 99.45 14 | 97.98 42 | 99.37 36 | 99.46 66 | 99.44 27 | 98.13 26 | 99.65 5 | 92.30 106 | 98.91 42 | 99.95 17 | 99.05 53 | 99.42 17 | 98.95 37 | 99.58 140 | 99.82 28 |
|
NCCC | | | 99.05 25 | 99.08 41 | 99.02 18 | 99.62 22 | 99.38 77 | 99.43 28 | 98.21 19 | 99.36 30 | 97.66 23 | 97.79 79 | 99.90 32 | 99.45 22 | 99.17 32 | 98.43 69 | 99.77 39 | 99.51 138 |
|
SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 9 | 99.76 2 | 99.62 33 | 99.39 29 | 98.23 18 | 99.52 16 | 98.03 17 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 93 | 99.76 61 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
AdaColmap |  | | 99.06 24 | 98.98 51 | 99.15 6 | 99.60 24 | 99.30 92 | 99.38 30 | 98.16 21 | 99.02 79 | 98.55 7 | 98.71 53 | 99.57 55 | 99.58 12 | 99.09 37 | 97.84 104 | 99.64 114 | 99.36 151 |
|
CANet | | | 98.46 44 | 99.16 37 | 97.64 49 | 98.48 57 | 99.64 26 | 99.35 31 | 94.71 56 | 99.53 14 | 95.17 53 | 97.63 85 | 99.59 53 | 98.38 86 | 98.88 56 | 98.99 34 | 99.74 49 | 99.86 19 |
|
SD-MVS | | | 99.25 12 | 99.50 12 | 98.96 20 | 98.79 51 | 99.55 53 | 99.33 32 | 98.29 12 | 99.75 1 | 97.96 18 | 99.15 24 | 99.95 17 | 99.61 6 | 99.17 32 | 99.06 28 | 99.81 22 | 99.84 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
COLMAP_ROB |  | 96.15 12 | 97.78 61 | 98.17 79 | 97.32 56 | 98.84 49 | 99.45 68 | 99.28 33 | 95.43 48 | 99.48 19 | 91.80 111 | 94.83 138 | 98.36 71 | 98.90 63 | 98.09 105 | 97.85 103 | 99.68 93 | 99.15 162 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MVS_0304 | | | 98.14 54 | 99.03 48 | 97.10 63 | 98.05 65 | 99.63 29 | 99.27 34 | 94.33 68 | 99.63 7 | 93.06 94 | 97.32 88 | 99.05 63 | 98.09 94 | 98.82 59 | 98.87 43 | 99.81 22 | 99.89 10 |
|
OMC-MVS | | | 98.84 32 | 99.01 50 | 98.65 29 | 99.39 35 | 99.23 98 | 99.22 35 | 96.70 41 | 99.40 24 | 97.77 21 | 97.89 78 | 99.80 42 | 99.21 38 | 99.02 43 | 98.65 57 | 99.57 144 | 99.07 168 |
|
ACMMP |  | | 98.74 34 | 99.03 48 | 98.40 32 | 99.36 38 | 99.64 26 | 99.20 36 | 97.75 37 | 98.82 102 | 95.24 52 | 98.85 45 | 99.87 36 | 99.17 45 | 98.74 67 | 97.50 117 | 99.71 74 | 99.76 61 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSDG | | | 98.27 50 | 98.29 71 | 98.24 36 | 99.20 43 | 99.22 99 | 99.20 36 | 97.82 35 | 99.37 27 | 94.43 69 | 95.90 122 | 97.31 82 | 99.12 48 | 98.76 64 | 98.35 75 | 99.67 101 | 99.14 165 |
|
QAPM | | | 98.62 40 | 99.04 47 | 98.13 38 | 99.57 26 | 99.48 64 | 99.17 38 | 94.78 54 | 99.57 10 | 96.16 38 | 96.73 102 | 99.80 42 | 99.33 30 | 98.79 61 | 99.29 13 | 99.75 44 | 99.64 112 |
|
TAPA-MVS | | 97.53 5 | 98.41 45 | 98.84 57 | 97.91 43 | 99.08 46 | 99.33 89 | 99.15 39 | 97.13 40 | 99.34 32 | 93.20 91 | 97.75 81 | 99.19 59 | 99.20 39 | 98.66 71 | 98.13 89 | 99.66 106 | 99.48 142 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DPM-MVS | | | 98.31 49 | 98.53 64 | 98.05 39 | 98.76 53 | 98.77 120 | 99.13 40 | 98.07 29 | 99.10 67 | 94.27 74 | 96.70 103 | 99.84 40 | 98.70 72 | 97.90 121 | 98.11 91 | 99.40 171 | 99.28 154 |
|
DELS-MVS | | | 98.19 52 | 98.77 59 | 97.52 52 | 98.29 60 | 99.71 15 | 99.12 41 | 94.58 62 | 98.80 105 | 95.38 50 | 96.24 116 | 98.24 73 | 97.92 100 | 99.06 40 | 99.52 1 | 99.82 16 | 99.79 43 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PHI-MVS | | | 99.08 22 | 99.43 19 | 98.67 28 | 99.15 44 | 99.59 45 | 99.11 42 | 97.35 39 | 99.14 61 | 97.30 27 | 99.44 12 | 99.96 12 | 99.32 32 | 98.89 54 | 99.39 7 | 99.79 31 | 99.58 121 |
|
3Dnovator | | 96.92 7 | 98.67 37 | 99.05 44 | 98.23 37 | 99.57 26 | 99.45 68 | 99.11 42 | 94.66 57 | 99.69 3 | 96.80 32 | 96.55 111 | 99.61 52 | 99.40 25 | 98.87 57 | 99.49 3 | 99.85 10 | 99.66 105 |
|
MSLP-MVS++ | | | 99.15 18 | 99.24 34 | 99.04 15 | 99.52 31 | 99.49 63 | 99.09 44 | 98.07 29 | 99.37 27 | 98.47 8 | 97.79 79 | 99.89 34 | 99.50 16 | 98.93 49 | 99.45 4 | 99.61 122 | 99.76 61 |
|
TSAR-MVS + COLMAP | | | 96.79 94 | 96.55 135 | 97.06 65 | 97.70 70 | 98.46 144 | 99.07 45 | 96.23 43 | 99.38 25 | 91.32 114 | 98.80 46 | 85.61 172 | 98.69 74 | 97.64 137 | 96.92 133 | 99.37 173 | 99.06 169 |
|
PLC |  | 97.93 2 | 99.02 28 | 98.94 52 | 99.11 10 | 99.46 33 | 99.24 97 | 99.06 46 | 97.96 33 | 99.31 34 | 99.16 1 | 97.90 77 | 99.79 44 | 99.36 28 | 98.71 69 | 98.12 90 | 99.65 110 | 99.52 133 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 44 | 98.32 33 | 99.53 29 | 99.34 86 | 99.06 46 | 94.61 58 | 99.65 5 | 97.49 24 | 96.75 101 | 99.86 37 | 99.44 23 | 98.78 62 | 99.30 11 | 99.81 22 | 99.67 101 |
|
TSAR-MVS + GP. | | | 98.66 39 | 99.36 24 | 97.85 44 | 97.16 81 | 99.46 66 | 99.03 48 | 94.59 61 | 99.09 68 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 26 | 98.95 47 | 98.69 55 | 99.75 44 | 99.65 108 |
|
CNLPA | | | 99.03 27 | 99.05 44 | 99.01 19 | 99.27 42 | 99.22 99 | 99.03 48 | 97.98 32 | 99.34 32 | 99.00 4 | 98.25 68 | 99.71 48 | 99.31 33 | 98.80 60 | 98.82 51 | 99.48 159 | 99.17 161 |
|
DROMVSNet | | | 98.22 51 | 99.44 17 | 96.79 75 | 95.62 120 | 99.56 51 | 99.01 50 | 92.22 99 | 99.17 53 | 94.51 66 | 99.41 13 | 99.62 51 | 99.49 18 | 99.16 34 | 99.26 14 | 99.91 2 | 99.94 1 |
|
OPM-MVS | | | 96.22 113 | 95.85 154 | 96.65 79 | 97.75 68 | 98.54 139 | 99.00 51 | 95.53 46 | 96.88 181 | 89.88 121 | 95.95 121 | 86.46 166 | 98.07 95 | 97.65 136 | 96.63 140 | 99.67 101 | 98.83 178 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PCF-MVS | | 97.50 6 | 98.18 53 | 98.35 70 | 97.99 41 | 98.65 54 | 99.36 81 | 98.94 52 | 98.14 25 | 98.59 120 | 93.62 86 | 96.61 107 | 99.76 47 | 99.03 55 | 97.77 128 | 97.45 122 | 99.57 144 | 98.89 176 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 96.23 11 | 97.95 58 | 98.45 67 | 97.35 55 | 99.52 31 | 99.42 73 | 98.91 53 | 94.61 58 | 98.87 92 | 92.24 108 | 94.61 139 | 99.05 63 | 99.10 50 | 98.64 73 | 99.05 29 | 99.74 49 | 99.51 138 |
|
SF-MVS | | | 99.18 16 | 99.32 28 | 99.03 16 | 99.65 18 | 99.41 75 | 98.87 54 | 98.24 17 | 99.14 61 | 98.73 5 | 99.11 28 | 99.92 28 | 98.92 60 | 99.22 28 | 98.84 48 | 99.76 41 | 99.56 127 |
|
CANet_DTU | | | 96.64 103 | 99.08 41 | 93.81 128 | 97.10 82 | 99.42 73 | 98.85 55 | 90.01 137 | 99.31 34 | 79.98 179 | 99.78 2 | 99.10 62 | 97.42 115 | 98.35 92 | 98.05 94 | 99.47 161 | 99.53 130 |
|
RPSCF | | | 97.61 67 | 98.16 80 | 96.96 74 | 98.10 62 | 99.00 106 | 98.84 56 | 93.76 78 | 99.45 20 | 94.78 60 | 99.39 15 | 99.31 57 | 98.53 83 | 96.61 163 | 95.43 172 | 97.74 200 | 97.93 194 |
|
LGP-MVS_train | | | 96.23 112 | 96.89 126 | 95.46 106 | 97.32 75 | 98.77 120 | 98.81 57 | 93.60 83 | 98.58 121 | 85.52 145 | 99.08 32 | 86.67 163 | 97.83 107 | 97.87 123 | 97.51 116 | 99.69 85 | 99.73 76 |
|
CLD-MVS | | | 96.74 97 | 96.51 138 | 97.01 71 | 96.71 89 | 98.62 133 | 98.73 58 | 94.38 67 | 98.94 86 | 94.46 68 | 97.33 87 | 87.03 157 | 98.07 95 | 97.20 153 | 96.87 134 | 99.72 64 | 99.54 129 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DI_MVS_plusplus_trai | | | 96.90 92 | 97.49 102 | 96.21 91 | 95.61 121 | 99.40 76 | 98.72 59 | 92.11 100 | 99.14 61 | 92.98 97 | 93.08 159 | 95.14 108 | 98.13 93 | 98.05 112 | 97.91 100 | 99.74 49 | 99.73 76 |
|
CS-MVS | | | 98.56 43 | 99.32 28 | 97.68 47 | 98.28 61 | 99.89 2 | 98.71 60 | 94.53 63 | 99.41 23 | 95.43 48 | 99.05 35 | 98.66 65 | 99.19 40 | 99.21 29 | 99.07 26 | 99.93 1 | 99.94 1 |
|
gg-mvs-nofinetune | | | 90.85 196 | 94.14 175 | 87.02 201 | 94.89 141 | 99.25 95 | 98.64 61 | 76.29 215 | 88.24 216 | 57.50 220 | 79.93 211 | 95.45 104 | 95.18 174 | 98.77 63 | 98.07 93 | 99.62 120 | 99.24 158 |
|
MVSTER | | | 97.16 82 | 97.71 96 | 96.52 84 | 95.97 106 | 98.48 142 | 98.63 62 | 92.10 101 | 98.68 117 | 95.96 41 | 99.23 20 | 91.79 137 | 96.87 126 | 98.76 64 | 97.37 126 | 99.57 144 | 99.68 100 |
|
CS-MVS-test | | | 98.58 42 | 99.42 20 | 97.60 51 | 98.52 56 | 99.91 1 | 98.60 63 | 94.60 60 | 99.37 27 | 94.62 62 | 99.40 14 | 99.16 60 | 99.39 26 | 99.36 20 | 98.85 47 | 99.90 3 | 99.92 3 |
|
XVS | | | | | | 97.42 73 | 99.62 33 | 98.59 64 | | | 93.81 81 | | 99.95 17 | | | | 99.69 85 | |
|
X-MVStestdata | | | | | | 97.42 73 | 99.62 33 | 98.59 64 | | | 93.81 81 | | 99.95 17 | | | | 99.69 85 | |
|
MVS_111021_LR | | | 98.67 37 | 99.41 21 | 97.81 45 | 99.37 36 | 99.53 55 | 98.51 66 | 95.52 47 | 99.27 40 | 94.85 58 | 99.56 8 | 99.69 49 | 99.04 54 | 99.36 20 | 98.88 42 | 99.60 130 | 99.58 121 |
|
test2506 | | | 97.16 82 | 96.68 132 | 97.73 46 | 96.95 85 | 99.79 4 | 98.48 67 | 94.42 65 | 99.17 53 | 97.74 22 | 99.15 24 | 80.93 199 | 98.89 66 | 99.03 41 | 99.09 24 | 99.88 4 | 99.62 116 |
|
ECVR-MVS |  | | 97.27 78 | 97.09 119 | 97.48 53 | 96.95 85 | 99.79 4 | 98.48 67 | 94.42 65 | 99.17 53 | 96.28 37 | 93.54 149 | 89.39 149 | 98.89 66 | 99.03 41 | 99.09 24 | 99.88 4 | 99.61 119 |
|
EPNet | | | 98.05 55 | 98.86 55 | 97.10 63 | 99.02 47 | 99.43 72 | 98.47 69 | 94.73 55 | 99.05 76 | 95.62 44 | 98.93 40 | 97.62 80 | 95.48 165 | 98.59 81 | 98.55 61 | 99.29 178 | 99.84 23 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP-MVS | | | 96.37 109 | 96.58 133 | 96.13 93 | 97.31 77 | 98.44 146 | 98.45 70 | 95.22 49 | 98.86 93 | 88.58 125 | 98.33 66 | 87.00 158 | 97.67 109 | 97.23 151 | 96.56 143 | 99.56 147 | 99.62 116 |
|
test1111 | | | 97.09 86 | 96.83 129 | 97.39 54 | 96.92 87 | 99.81 3 | 98.44 71 | 94.45 64 | 99.17 53 | 95.85 42 | 92.10 162 | 88.97 150 | 98.78 70 | 99.02 43 | 99.11 23 | 99.88 4 | 99.63 114 |
|
casdiffmvs_mvg |  | | 97.27 78 | 97.97 90 | 96.46 87 | 95.83 111 | 99.51 61 | 98.42 72 | 93.32 89 | 98.34 134 | 92.38 104 | 95.64 129 | 95.35 106 | 98.91 61 | 98.73 68 | 98.45 66 | 99.86 9 | 99.80 35 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
tfpn200view9 | | | 96.75 96 | 96.51 138 | 97.03 67 | 96.31 95 | 99.67 18 | 98.41 73 | 93.99 74 | 97.35 168 | 94.52 64 | 95.90 122 | 86.93 159 | 99.14 47 | 98.26 95 | 97.80 106 | 99.82 16 | 99.70 91 |
|
thres600view7 | | | 96.69 100 | 96.43 145 | 97.00 72 | 96.28 98 | 99.67 18 | 98.41 73 | 93.99 74 | 97.85 158 | 94.29 73 | 95.96 120 | 85.91 170 | 99.19 40 | 98.26 95 | 97.63 111 | 99.82 16 | 99.73 76 |
|
thres400 | | | 96.71 99 | 96.45 143 | 97.02 69 | 96.28 98 | 99.63 29 | 98.41 73 | 94.00 73 | 97.82 159 | 94.42 70 | 95.74 126 | 86.26 167 | 99.18 43 | 98.20 99 | 97.79 107 | 99.81 22 | 99.70 91 |
|
DCV-MVSNet | | | 97.56 69 | 98.36 69 | 96.62 82 | 96.44 92 | 98.36 153 | 98.37 76 | 91.73 108 | 99.11 66 | 94.80 59 | 98.36 65 | 96.28 94 | 98.60 79 | 98.12 102 | 98.44 67 | 99.76 41 | 99.87 16 |
|
thres200 | | | 96.76 95 | 96.53 136 | 97.03 67 | 96.31 95 | 99.67 18 | 98.37 76 | 93.99 74 | 97.68 164 | 94.49 67 | 95.83 125 | 86.77 161 | 99.18 43 | 98.26 95 | 97.82 105 | 99.82 16 | 99.66 105 |
|
CHOSEN 280x420 | | | 97.99 57 | 99.24 34 | 96.53 83 | 98.34 59 | 99.61 38 | 98.36 78 | 89.80 143 | 99.27 40 | 95.08 55 | 99.81 1 | 98.58 67 | 98.64 76 | 99.02 43 | 98.92 39 | 98.93 187 | 99.48 142 |
|
IS_MVSNet | | | 97.86 59 | 98.86 55 | 96.68 77 | 96.02 102 | 99.72 12 | 98.35 79 | 93.37 88 | 98.75 115 | 94.01 75 | 96.88 100 | 98.40 70 | 98.48 84 | 99.09 37 | 99.42 5 | 99.83 15 | 99.80 35 |
|
FMVSNet3 | | | 97.02 88 | 98.12 82 | 95.73 103 | 93.59 159 | 97.98 162 | 98.34 80 | 91.32 118 | 98.80 105 | 93.92 77 | 97.21 90 | 95.94 101 | 97.63 110 | 98.61 76 | 98.62 58 | 99.61 122 | 99.65 108 |
|
baseline | | | 97.45 73 | 98.70 61 | 95.99 98 | 95.89 107 | 99.36 81 | 98.29 81 | 91.37 117 | 99.21 48 | 92.99 96 | 98.40 63 | 96.87 88 | 97.96 99 | 98.60 79 | 98.60 60 | 99.42 168 | 99.86 19 |
|
ET-MVSNet_ETH3D | | | 96.17 114 | 96.99 124 | 95.21 108 | 88.53 209 | 98.54 139 | 98.28 82 | 92.61 97 | 98.85 95 | 93.60 87 | 99.06 34 | 90.39 142 | 98.63 77 | 95.98 184 | 96.68 138 | 99.61 122 | 99.41 147 |
|
thres100view900 | | | 96.72 98 | 96.47 141 | 97.00 72 | 96.31 95 | 99.52 58 | 98.28 82 | 94.01 72 | 97.35 168 | 94.52 64 | 95.90 122 | 86.93 159 | 99.09 52 | 98.07 108 | 97.87 102 | 99.81 22 | 99.63 114 |
|
ETV-MVS | | | 98.05 55 | 99.25 33 | 96.65 79 | 95.61 121 | 99.61 38 | 98.26 84 | 93.52 84 | 98.90 91 | 93.74 85 | 99.32 17 | 99.20 58 | 98.90 63 | 99.21 29 | 98.72 54 | 99.87 8 | 99.79 43 |
|
canonicalmvs | | | 97.31 76 | 97.81 95 | 96.72 76 | 96.20 101 | 99.45 68 | 98.21 85 | 91.60 111 | 99.22 46 | 95.39 49 | 98.48 59 | 90.95 140 | 99.16 46 | 97.66 134 | 99.05 29 | 99.76 41 | 99.90 6 |
|
MVS_Test | | | 97.30 77 | 98.54 63 | 95.87 99 | 95.74 114 | 99.28 93 | 98.19 86 | 91.40 116 | 99.18 52 | 91.59 112 | 98.17 70 | 96.18 96 | 98.63 77 | 98.61 76 | 98.55 61 | 99.66 106 | 99.78 49 |
|
Anonymous20231211 | | | 97.10 85 | 97.06 122 | 97.14 62 | 96.32 94 | 99.52 58 | 98.16 87 | 93.76 78 | 98.84 99 | 95.98 40 | 90.92 168 | 94.58 117 | 98.90 63 | 97.72 132 | 98.10 92 | 99.71 74 | 99.75 68 |
|
EIA-MVS | | | 97.70 65 | 98.78 58 | 96.44 88 | 95.72 115 | 99.65 22 | 98.14 88 | 93.72 81 | 98.30 136 | 92.31 105 | 98.63 55 | 97.90 75 | 98.97 58 | 98.92 51 | 98.30 81 | 99.78 34 | 99.80 35 |
|
MVS_111021_HR | | | 98.59 41 | 99.36 24 | 97.68 47 | 99.42 34 | 99.61 38 | 98.14 88 | 94.81 53 | 99.31 34 | 95.00 56 | 99.51 9 | 99.79 44 | 99.00 57 | 98.94 48 | 98.83 49 | 99.69 85 | 99.57 126 |
|
GBi-Net | | | 96.98 89 | 98.00 88 | 95.78 100 | 93.81 153 | 97.98 162 | 98.09 90 | 91.32 118 | 98.80 105 | 93.92 77 | 97.21 90 | 95.94 101 | 97.89 101 | 98.07 108 | 98.34 77 | 99.68 93 | 99.67 101 |
|
test1 | | | 96.98 89 | 98.00 88 | 95.78 100 | 93.81 153 | 97.98 162 | 98.09 90 | 91.32 118 | 98.80 105 | 93.92 77 | 97.21 90 | 95.94 101 | 97.89 101 | 98.07 108 | 98.34 77 | 99.68 93 | 99.67 101 |
|
FMVSNet2 | | | 96.64 103 | 97.50 101 | 95.63 105 | 93.81 153 | 97.98 162 | 98.09 90 | 90.87 124 | 98.99 82 | 93.48 88 | 93.17 156 | 95.25 107 | 97.89 101 | 98.63 74 | 98.80 52 | 99.68 93 | 99.67 101 |
|
Anonymous202405211 | | | | 97.40 108 | | 96.45 91 | 99.54 54 | 98.08 93 | 93.79 77 | 98.24 140 | | 93.55 148 | 94.41 118 | 98.88 68 | 98.04 113 | 98.24 84 | 99.75 44 | 99.76 61 |
|
diffmvs |  | | 96.83 93 | 97.33 111 | 96.25 90 | 95.76 113 | 99.34 86 | 98.06 94 | 93.22 92 | 99.43 22 | 92.30 106 | 96.90 99 | 89.83 148 | 98.55 81 | 98.00 116 | 98.14 88 | 99.64 114 | 99.70 91 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
GeoE | | | 95.98 120 | 97.24 117 | 94.51 116 | 95.02 138 | 99.38 77 | 98.02 95 | 87.86 166 | 98.37 132 | 87.86 131 | 92.99 161 | 93.54 127 | 98.56 80 | 98.61 76 | 97.92 98 | 99.73 57 | 99.85 22 |
|
Effi-MVS+-dtu | | | 95.74 123 | 98.04 85 | 93.06 146 | 93.92 149 | 99.16 101 | 97.90 96 | 88.16 163 | 99.07 75 | 82.02 167 | 98.02 75 | 94.32 120 | 96.74 130 | 98.53 84 | 97.56 114 | 99.61 122 | 99.62 116 |
|
USDC | | | 94.26 152 | 94.83 164 | 93.59 134 | 96.02 102 | 98.44 146 | 97.84 97 | 88.65 156 | 98.86 93 | 82.73 164 | 94.02 144 | 80.56 200 | 96.76 129 | 97.28 150 | 96.15 157 | 99.55 149 | 98.50 182 |
|
Vis-MVSNet (Re-imp) | | | 97.40 75 | 98.89 54 | 95.66 104 | 95.99 105 | 99.62 33 | 97.82 98 | 93.22 92 | 98.82 102 | 91.40 113 | 96.94 97 | 98.56 68 | 95.70 157 | 99.14 35 | 99.41 6 | 99.79 31 | 99.75 68 |
|
PMMVS | | | 97.52 70 | 98.39 68 | 96.51 85 | 95.82 112 | 98.73 127 | 97.80 99 | 93.05 96 | 98.76 112 | 94.39 72 | 99.07 33 | 97.03 87 | 98.55 81 | 98.31 94 | 97.61 112 | 99.43 166 | 99.21 160 |
|
ACMP | | 96.25 10 | 96.62 105 | 96.72 130 | 96.50 86 | 96.96 84 | 98.75 124 | 97.80 99 | 94.30 69 | 98.85 95 | 93.12 93 | 98.78 48 | 86.61 164 | 97.23 119 | 97.73 131 | 96.61 141 | 99.62 120 | 99.71 89 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TDRefinement | | | 93.04 172 | 93.57 189 | 92.41 151 | 96.58 90 | 98.77 120 | 97.78 101 | 91.96 105 | 98.12 144 | 80.84 172 | 89.13 182 | 79.87 207 | 87.78 207 | 96.44 168 | 94.50 194 | 99.54 153 | 98.15 189 |
|
casdiffmvs |  | | 96.93 91 | 97.43 107 | 96.34 89 | 95.70 116 | 99.50 62 | 97.75 102 | 93.22 92 | 98.98 83 | 92.64 99 | 94.97 135 | 91.71 138 | 98.93 59 | 98.62 75 | 98.52 64 | 99.82 16 | 99.72 86 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline1 | | | 97.58 68 | 98.05 84 | 97.02 69 | 96.21 100 | 99.45 68 | 97.71 103 | 93.71 82 | 98.47 128 | 95.75 43 | 98.78 48 | 93.20 132 | 98.91 61 | 98.52 85 | 98.44 67 | 99.81 22 | 99.53 130 |
|
CHOSEN 1792x2688 | | | 96.41 108 | 96.99 124 | 95.74 102 | 98.01 66 | 99.72 12 | 97.70 104 | 90.78 128 | 99.13 65 | 90.03 120 | 87.35 195 | 95.36 105 | 98.33 87 | 98.59 81 | 98.91 41 | 99.59 136 | 99.87 16 |
|
FA-MVS(training) | | | 96.52 107 | 98.29 71 | 94.45 118 | 95.88 109 | 99.52 58 | 97.66 105 | 81.47 194 | 98.94 86 | 93.79 84 | 95.54 133 | 99.11 61 | 98.29 88 | 98.89 54 | 96.49 145 | 99.63 119 | 99.52 133 |
|
MAR-MVS | | | 97.71 64 | 98.04 85 | 97.32 56 | 99.35 40 | 98.91 113 | 97.65 106 | 91.68 109 | 98.00 148 | 97.01 31 | 97.72 83 | 94.83 112 | 98.85 69 | 98.44 90 | 98.86 44 | 99.41 169 | 99.52 133 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
UA-Net | | | 97.13 84 | 99.14 38 | 94.78 112 | 97.21 79 | 99.38 77 | 97.56 107 | 92.04 102 | 98.48 127 | 88.03 128 | 98.39 64 | 99.91 31 | 94.03 188 | 99.33 24 | 99.23 18 | 99.81 22 | 99.25 157 |
|
EPP-MVSNet | | | 97.75 63 | 98.71 60 | 96.63 81 | 95.68 118 | 99.56 51 | 97.51 108 | 93.10 95 | 99.22 46 | 94.99 57 | 97.18 93 | 97.30 83 | 98.65 75 | 98.83 58 | 98.93 38 | 99.84 12 | 99.92 3 |
|
TinyColmap | | | 94.00 156 | 94.35 173 | 93.60 133 | 95.89 107 | 98.26 155 | 97.49 109 | 88.82 153 | 98.56 123 | 83.21 158 | 91.28 167 | 80.48 202 | 96.68 132 | 97.34 147 | 96.26 153 | 99.53 155 | 98.24 188 |
|
CDS-MVSNet | | | 96.59 106 | 98.02 87 | 94.92 111 | 94.45 146 | 98.96 111 | 97.46 110 | 91.75 107 | 97.86 157 | 90.07 119 | 96.02 119 | 97.25 84 | 96.21 144 | 98.04 113 | 98.38 72 | 99.60 130 | 99.65 108 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS | | | 94.81 141 | 97.71 96 | 91.42 171 | 94.83 143 | 97.63 180 | 97.38 111 | 85.08 183 | 98.93 88 | 75.67 196 | 94.02 144 | 97.64 78 | 96.66 134 | 98.45 88 | 97.60 113 | 98.90 188 | 99.72 86 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EPNet_dtu | | | 96.30 111 | 98.53 64 | 93.70 132 | 98.97 48 | 98.24 157 | 97.36 112 | 94.23 70 | 98.85 95 | 79.18 183 | 99.19 21 | 98.47 69 | 94.09 187 | 97.89 122 | 98.21 85 | 98.39 193 | 98.85 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Fast-Effi-MVS+-dtu | | | 95.38 130 | 98.20 78 | 92.09 157 | 93.91 150 | 98.87 114 | 97.35 113 | 85.01 185 | 99.08 70 | 81.09 171 | 98.10 71 | 96.36 92 | 95.62 160 | 98.43 91 | 97.03 130 | 99.55 149 | 99.50 140 |
|
PVSNet_BlendedMVS | | | 97.51 71 | 97.71 96 | 97.28 58 | 98.06 63 | 99.61 38 | 97.31 114 | 95.02 51 | 99.08 70 | 95.51 46 | 98.05 72 | 90.11 143 | 98.07 95 | 98.91 52 | 98.40 70 | 99.72 64 | 99.78 49 |
|
PVSNet_Blended | | | 97.51 71 | 97.71 96 | 97.28 58 | 98.06 63 | 99.61 38 | 97.31 114 | 95.02 51 | 99.08 70 | 95.51 46 | 98.05 72 | 90.11 143 | 98.07 95 | 98.91 52 | 98.40 70 | 99.72 64 | 99.78 49 |
|
MS-PatchMatch | | | 95.99 118 | 97.26 116 | 94.51 116 | 97.46 72 | 98.76 123 | 97.27 116 | 86.97 171 | 99.09 68 | 89.83 122 | 93.51 151 | 97.78 77 | 96.18 146 | 97.53 141 | 95.71 169 | 99.35 174 | 98.41 184 |
|
Vis-MVSNet |  | | 96.16 115 | 98.22 77 | 93.75 129 | 95.33 133 | 99.70 17 | 97.27 116 | 90.85 125 | 98.30 136 | 85.51 146 | 95.72 128 | 96.45 89 | 93.69 194 | 98.70 70 | 99.00 33 | 99.84 12 | 99.69 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IterMVS-SCA-FT | | | 94.89 139 | 97.87 93 | 91.42 171 | 94.86 142 | 97.70 173 | 97.24 118 | 84.88 186 | 98.93 88 | 75.74 195 | 94.26 143 | 98.25 72 | 96.69 131 | 98.52 85 | 97.68 110 | 99.10 185 | 99.73 76 |
|
Effi-MVS+ | | | 95.81 121 | 97.31 115 | 94.06 124 | 95.09 136 | 99.35 84 | 97.24 118 | 88.22 161 | 98.54 124 | 85.38 147 | 98.52 57 | 88.68 151 | 98.70 72 | 98.32 93 | 97.93 97 | 99.74 49 | 99.84 23 |
|
Fast-Effi-MVS+ | | | 95.38 130 | 96.52 137 | 94.05 125 | 94.15 148 | 99.14 103 | 97.24 118 | 86.79 172 | 98.53 125 | 87.62 133 | 94.51 140 | 87.06 156 | 98.76 71 | 98.60 79 | 98.04 95 | 99.72 64 | 99.77 56 |
|
MDTV_nov1_ep13 | | | 95.57 125 | 97.48 103 | 93.35 143 | 95.43 130 | 98.97 110 | 97.19 121 | 83.72 192 | 98.92 90 | 87.91 130 | 97.75 81 | 96.12 98 | 97.88 104 | 96.84 162 | 95.64 170 | 97.96 198 | 98.10 190 |
|
CR-MVSNet | | | 94.57 149 | 97.34 110 | 91.33 174 | 94.90 140 | 98.59 136 | 97.15 122 | 79.14 205 | 97.98 149 | 80.42 175 | 96.59 110 | 93.50 129 | 96.85 127 | 98.10 103 | 97.49 118 | 99.50 158 | 99.15 162 |
|
Patchmtry | | | | | | | 98.59 136 | 97.15 122 | 79.14 205 | | 80.42 175 | | | | | | | |
|
IterMVS-LS | | | 96.12 116 | 97.48 103 | 94.53 115 | 95.19 135 | 97.56 187 | 97.15 122 | 89.19 150 | 99.08 70 | 88.23 126 | 94.97 135 | 94.73 114 | 97.84 106 | 97.86 124 | 98.26 83 | 99.60 130 | 99.88 14 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 95.77 122 | 96.41 146 | 95.03 109 | 93.42 160 | 97.86 169 | 97.11 125 | 89.89 140 | 98.53 125 | 92.00 109 | 89.17 180 | 93.23 131 | 98.15 92 | 98.07 108 | 98.34 77 | 99.61 122 | 99.69 95 |
|
UGNet | | | 97.66 66 | 99.07 43 | 96.01 97 | 97.19 80 | 99.65 22 | 97.09 126 | 93.39 86 | 99.35 31 | 94.40 71 | 98.79 47 | 99.59 53 | 94.24 185 | 98.04 113 | 98.29 82 | 99.73 57 | 99.80 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LTVRE_ROB | | 93.20 16 | 92.84 174 | 94.92 161 | 90.43 187 | 92.83 162 | 98.63 132 | 97.08 127 | 87.87 165 | 97.91 154 | 68.42 213 | 93.54 149 | 79.46 209 | 96.62 135 | 97.55 140 | 97.40 125 | 99.74 49 | 99.92 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PatchMatch-RL | | | 97.77 62 | 98.25 73 | 97.21 61 | 99.11 45 | 99.25 95 | 97.06 128 | 94.09 71 | 98.72 116 | 95.14 54 | 98.47 60 | 96.29 93 | 98.43 85 | 98.65 72 | 97.44 123 | 99.45 163 | 98.94 171 |
|
RPMNet | | | 94.66 143 | 97.16 118 | 91.75 167 | 94.98 139 | 98.59 136 | 97.00 129 | 78.37 211 | 97.98 149 | 83.78 152 | 96.27 115 | 94.09 125 | 96.91 125 | 97.36 146 | 96.73 136 | 99.48 159 | 99.09 167 |
|
thisisatest0530 | | | 97.23 80 | 98.25 73 | 96.05 94 | 95.60 123 | 99.59 45 | 96.96 130 | 93.23 90 | 99.17 53 | 92.60 101 | 98.75 51 | 96.19 95 | 98.17 89 | 98.19 100 | 96.10 158 | 99.72 64 | 99.77 56 |
|
tttt0517 | | | 97.23 80 | 98.24 76 | 96.04 95 | 95.60 123 | 99.60 43 | 96.94 131 | 93.23 90 | 99.15 58 | 92.56 102 | 98.74 52 | 96.12 98 | 98.17 89 | 98.21 98 | 96.10 158 | 99.73 57 | 99.78 49 |
|
ACMH+ | | 95.51 13 | 95.40 129 | 96.00 148 | 94.70 113 | 96.33 93 | 98.79 117 | 96.79 132 | 91.32 118 | 98.77 111 | 87.18 135 | 95.60 131 | 85.46 173 | 96.97 123 | 97.15 154 | 96.59 142 | 99.59 136 | 99.65 108 |
|
EPMVS | | | 95.05 135 | 96.86 128 | 92.94 148 | 95.84 110 | 98.96 111 | 96.68 133 | 79.87 200 | 99.05 76 | 90.15 118 | 97.12 94 | 95.99 100 | 97.49 113 | 95.17 193 | 94.75 191 | 97.59 204 | 96.96 204 |
|
TAMVS | | | 95.53 126 | 96.50 140 | 94.39 120 | 93.86 152 | 99.03 105 | 96.67 134 | 89.55 147 | 97.33 170 | 90.64 117 | 93.02 160 | 91.58 139 | 96.21 144 | 97.72 132 | 97.43 124 | 99.43 166 | 99.36 151 |
|
tpm cat1 | | | 94.06 154 | 94.90 162 | 93.06 146 | 95.42 132 | 98.52 141 | 96.64 135 | 80.67 196 | 97.82 159 | 92.63 100 | 93.39 153 | 95.00 110 | 96.06 150 | 91.36 211 | 91.58 210 | 96.98 210 | 96.66 207 |
|
FC-MVSNet-test | | | 96.07 117 | 97.94 91 | 93.89 126 | 93.60 158 | 98.67 130 | 96.62 136 | 90.30 136 | 98.76 112 | 88.62 124 | 95.57 132 | 97.63 79 | 94.48 181 | 97.97 117 | 97.48 120 | 99.71 74 | 99.52 133 |
|
dps | | | 94.63 145 | 95.31 160 | 93.84 127 | 95.53 126 | 98.71 128 | 96.54 137 | 80.12 199 | 97.81 161 | 97.21 28 | 96.98 95 | 92.37 133 | 96.34 143 | 92.46 208 | 91.77 208 | 97.26 208 | 97.08 202 |
|
HyFIR lowres test | | | 95.99 118 | 96.56 134 | 95.32 107 | 97.99 67 | 99.65 22 | 96.54 137 | 88.86 152 | 98.44 129 | 89.77 123 | 84.14 205 | 97.05 86 | 99.03 55 | 98.55 83 | 98.19 87 | 99.73 57 | 99.86 19 |
|
FC-MVSNet-train | | | 97.04 87 | 97.91 92 | 96.03 96 | 96.00 104 | 98.41 149 | 96.53 139 | 93.42 85 | 99.04 78 | 93.02 95 | 98.03 74 | 94.32 120 | 97.47 114 | 97.93 119 | 97.77 108 | 99.75 44 | 99.88 14 |
|
ACMM | | 96.26 9 | 96.67 102 | 96.69 131 | 96.66 78 | 97.29 78 | 98.46 144 | 96.48 140 | 95.09 50 | 99.21 48 | 93.19 92 | 98.78 48 | 86.73 162 | 98.17 89 | 97.84 125 | 96.32 150 | 99.74 49 | 99.49 141 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline2 | | | 96.36 110 | 97.82 94 | 94.65 114 | 94.60 145 | 99.09 104 | 96.45 141 | 89.63 145 | 98.36 133 | 91.29 115 | 97.60 86 | 94.13 123 | 96.37 141 | 98.45 88 | 97.70 109 | 99.54 153 | 99.41 147 |
|
test-LLR | | | 95.50 127 | 97.32 112 | 93.37 141 | 95.49 128 | 98.74 125 | 96.44 142 | 90.82 126 | 98.18 141 | 82.75 162 | 96.60 108 | 94.67 115 | 95.54 163 | 98.09 105 | 96.00 160 | 99.20 181 | 98.93 172 |
|
TESTMET0.1,1 | | | 94.95 137 | 97.32 112 | 92.20 155 | 92.62 164 | 98.74 125 | 96.44 142 | 86.67 174 | 98.18 141 | 82.75 162 | 96.60 108 | 94.67 115 | 95.54 163 | 98.09 105 | 96.00 160 | 99.20 181 | 98.93 172 |
|
DeepPCF-MVS | | 97.74 3 | 98.34 47 | 99.46 13 | 97.04 66 | 98.82 50 | 99.33 89 | 96.28 144 | 97.47 38 | 99.58 9 | 94.70 61 | 98.99 36 | 99.85 39 | 97.24 118 | 99.55 10 | 99.34 9 | 97.73 202 | 99.56 127 |
|
SCA | | | 94.95 137 | 97.44 106 | 92.04 158 | 95.55 125 | 99.16 101 | 96.26 145 | 79.30 204 | 99.02 79 | 85.73 144 | 98.18 69 | 97.13 85 | 97.69 108 | 96.03 182 | 94.91 186 | 97.69 203 | 97.65 196 |
|
CostFormer | | | 94.25 153 | 94.88 163 | 93.51 138 | 95.43 130 | 98.34 154 | 96.21 146 | 80.64 197 | 97.94 153 | 94.01 75 | 98.30 67 | 86.20 169 | 97.52 111 | 92.71 206 | 92.69 202 | 97.23 209 | 98.02 192 |
|
test-mter | | | 94.86 140 | 97.32 112 | 92.00 160 | 92.41 169 | 98.82 116 | 96.18 147 | 86.35 178 | 98.05 146 | 82.28 165 | 96.48 112 | 94.39 119 | 95.46 167 | 98.17 101 | 96.20 154 | 99.32 176 | 99.13 166 |
|
PVSNet_Blended_VisFu | | | 97.41 74 | 98.49 66 | 96.15 92 | 97.49 71 | 99.76 6 | 96.02 148 | 93.75 80 | 99.26 42 | 93.38 90 | 93.73 147 | 99.35 56 | 96.47 140 | 98.96 46 | 98.46 65 | 99.77 39 | 99.90 6 |
|
ADS-MVSNet | | | 94.65 144 | 97.04 123 | 91.88 166 | 95.68 118 | 98.99 108 | 95.89 149 | 79.03 207 | 99.15 58 | 85.81 143 | 96.96 96 | 98.21 74 | 97.10 120 | 94.48 201 | 94.24 195 | 97.74 200 | 97.21 200 |
|
test0.0.03 1 | | | 96.69 100 | 98.12 82 | 95.01 110 | 95.49 128 | 98.99 108 | 95.86 150 | 90.82 126 | 98.38 131 | 92.54 103 | 96.66 105 | 97.33 81 | 95.75 155 | 97.75 130 | 98.34 77 | 99.60 130 | 99.40 149 |
|
PatchmatchNet |  | | 94.70 142 | 97.08 121 | 91.92 163 | 95.53 126 | 98.85 115 | 95.77 151 | 79.54 202 | 98.95 84 | 85.98 141 | 98.52 57 | 96.45 89 | 97.39 116 | 95.32 190 | 94.09 196 | 97.32 206 | 97.38 199 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
NR-MVSNet | | | 94.01 155 | 94.51 170 | 93.44 139 | 92.56 166 | 97.77 170 | 95.67 152 | 91.57 112 | 97.17 174 | 85.84 142 | 93.13 157 | 80.53 201 | 95.29 171 | 97.01 158 | 96.17 155 | 99.69 85 | 99.75 68 |
|
FMVSNet5 | | | 95.42 128 | 96.47 141 | 94.20 121 | 92.26 172 | 95.99 208 | 95.66 153 | 87.15 170 | 97.87 156 | 93.46 89 | 96.68 104 | 93.79 126 | 97.52 111 | 97.10 157 | 97.21 128 | 99.11 184 | 96.62 208 |
|
tpmrst | | | 93.86 161 | 95.88 152 | 91.50 170 | 95.69 117 | 98.62 133 | 95.64 154 | 79.41 203 | 98.80 105 | 83.76 154 | 95.63 130 | 96.13 97 | 97.25 117 | 92.92 205 | 92.31 204 | 97.27 207 | 96.74 205 |
|
TranMVSNet+NR-MVSNet | | | 93.67 163 | 94.14 175 | 93.13 145 | 91.28 200 | 97.58 185 | 95.60 155 | 91.97 104 | 97.06 177 | 84.05 148 | 90.64 173 | 82.22 193 | 96.17 147 | 94.94 198 | 96.78 135 | 99.69 85 | 99.78 49 |
|
Baseline_NR-MVSNet | | | 93.87 160 | 93.98 182 | 93.75 129 | 91.66 186 | 97.02 200 | 95.53 156 | 91.52 115 | 97.16 176 | 87.77 132 | 87.93 193 | 83.69 182 | 96.35 142 | 95.10 195 | 97.23 127 | 99.68 93 | 99.73 76 |
|
CVMVSNet | | | 95.33 132 | 97.09 119 | 93.27 144 | 95.23 134 | 98.39 151 | 95.49 157 | 92.58 98 | 97.71 163 | 83.00 161 | 94.44 142 | 93.28 130 | 93.92 191 | 97.79 126 | 98.54 63 | 99.41 169 | 99.45 144 |
|
tfpnnormal | | | 93.85 162 | 94.12 177 | 93.54 137 | 93.22 161 | 98.24 157 | 95.45 158 | 91.96 105 | 94.61 207 | 83.91 150 | 90.74 170 | 81.75 196 | 97.04 121 | 97.49 142 | 96.16 156 | 99.68 93 | 99.84 23 |
|
pmmvs4 | | | 95.09 134 | 95.90 151 | 94.14 122 | 92.29 171 | 97.70 173 | 95.45 158 | 90.31 134 | 98.60 119 | 90.70 116 | 93.25 154 | 89.90 146 | 96.67 133 | 97.13 155 | 95.42 173 | 99.44 165 | 99.28 154 |
|
GA-MVS | | | 93.93 159 | 96.31 147 | 91.16 178 | 93.61 157 | 98.79 117 | 95.39 160 | 90.69 131 | 98.25 139 | 73.28 204 | 96.15 117 | 88.42 152 | 94.39 183 | 97.76 129 | 95.35 174 | 99.58 140 | 99.45 144 |
|
testgi | | | 95.67 124 | 97.48 103 | 93.56 135 | 95.07 137 | 99.00 106 | 95.33 161 | 88.47 158 | 98.80 105 | 86.90 137 | 97.30 89 | 92.33 134 | 95.97 152 | 97.66 134 | 97.91 100 | 99.60 130 | 99.38 150 |
|
anonymousdsp | | | 93.12 170 | 95.86 153 | 89.93 192 | 91.09 201 | 98.25 156 | 95.12 162 | 85.08 183 | 97.44 167 | 73.30 203 | 90.89 169 | 90.78 141 | 95.25 173 | 97.91 120 | 95.96 164 | 99.71 74 | 99.82 28 |
|
UniMVSNet_NR-MVSNet | | | 94.59 147 | 95.47 157 | 93.55 136 | 91.85 181 | 97.89 168 | 95.03 163 | 92.00 103 | 97.33 170 | 86.12 139 | 93.19 155 | 87.29 155 | 96.60 136 | 96.12 179 | 96.70 137 | 99.72 64 | 99.80 35 |
|
DU-MVS | | | 93.98 157 | 94.44 172 | 93.44 139 | 91.66 186 | 97.77 170 | 95.03 163 | 91.57 112 | 97.17 174 | 86.12 139 | 93.13 157 | 81.13 198 | 96.60 136 | 95.10 195 | 97.01 132 | 99.67 101 | 99.80 35 |
|
UniMVSNet (Re) | | | 94.58 148 | 95.34 158 | 93.71 131 | 92.25 173 | 98.08 161 | 94.97 165 | 91.29 122 | 97.03 179 | 87.94 129 | 93.97 146 | 86.25 168 | 96.07 149 | 96.27 176 | 95.97 163 | 99.72 64 | 99.79 43 |
|
TransMVSNet (Re) | | | 93.45 165 | 94.08 178 | 92.72 150 | 92.83 162 | 97.62 183 | 94.94 166 | 91.54 114 | 95.65 204 | 83.06 160 | 88.93 183 | 83.53 184 | 94.25 184 | 97.41 144 | 97.03 130 | 99.67 101 | 98.40 187 |
|
V42 | | | 93.05 171 | 93.90 185 | 92.04 158 | 91.91 178 | 97.66 177 | 94.91 167 | 89.91 139 | 96.85 183 | 80.58 174 | 89.66 177 | 83.43 186 | 95.37 169 | 95.03 197 | 94.90 187 | 99.59 136 | 99.78 49 |
|
GG-mvs-BLEND | | | 69.11 213 | 98.13 81 | 35.26 217 | 3.49 226 | 98.20 159 | 94.89 168 | 2.38 223 | 98.42 130 | 5.82 227 | 96.37 114 | 98.60 66 | 5.97 222 | 98.75 66 | 97.98 96 | 99.01 186 | 98.61 179 |
|
EG-PatchMatch MVS | | | 92.45 183 | 93.92 184 | 90.72 184 | 92.56 166 | 98.43 148 | 94.88 169 | 84.54 188 | 97.18 173 | 79.55 181 | 86.12 202 | 83.23 187 | 93.15 198 | 97.22 152 | 96.00 160 | 99.67 101 | 99.27 156 |
|
pm-mvs1 | | | 94.27 151 | 95.57 156 | 92.75 149 | 92.58 165 | 98.13 160 | 94.87 170 | 90.71 130 | 96.70 187 | 83.78 152 | 89.94 176 | 89.85 147 | 94.96 178 | 97.58 139 | 97.07 129 | 99.61 122 | 99.72 86 |
|
v10 | | | 92.79 177 | 94.06 179 | 91.31 175 | 91.78 183 | 97.29 199 | 94.87 170 | 86.10 179 | 96.97 180 | 79.82 180 | 88.16 189 | 84.56 180 | 95.63 159 | 96.33 174 | 95.31 175 | 99.65 110 | 99.80 35 |
|
UniMVSNet_ETH3D | | | 93.15 169 | 92.33 202 | 94.11 123 | 93.91 150 | 98.61 135 | 94.81 172 | 90.98 123 | 97.06 177 | 87.51 134 | 82.27 209 | 76.33 215 | 97.87 105 | 94.79 199 | 97.47 121 | 99.56 147 | 99.81 33 |
|
v8 | | | 92.87 173 | 93.87 186 | 91.72 169 | 92.05 175 | 97.50 190 | 94.79 173 | 88.20 162 | 96.85 183 | 80.11 178 | 90.01 175 | 82.86 190 | 95.48 165 | 95.15 194 | 94.90 187 | 99.66 106 | 99.80 35 |
|
v1144 | | | 92.81 175 | 94.03 180 | 91.40 173 | 91.68 185 | 97.60 184 | 94.73 174 | 88.40 159 | 96.71 186 | 78.48 186 | 88.14 190 | 84.46 181 | 95.45 168 | 96.31 175 | 95.22 178 | 99.65 110 | 99.76 61 |
|
ACMH | | 95.42 14 | 95.27 133 | 95.96 150 | 94.45 118 | 96.83 88 | 98.78 119 | 94.72 175 | 91.67 110 | 98.95 84 | 86.82 138 | 96.42 113 | 83.67 183 | 97.00 122 | 97.48 143 | 96.68 138 | 99.69 85 | 99.76 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v1921920 | | | 92.36 190 | 93.57 189 | 90.94 181 | 91.39 196 | 97.39 195 | 94.70 176 | 87.63 168 | 96.60 189 | 76.63 192 | 86.98 198 | 82.89 189 | 95.75 155 | 96.26 177 | 95.14 181 | 99.55 149 | 99.73 76 |
|
MIMVSNet | | | 94.49 150 | 97.59 100 | 90.87 183 | 91.74 184 | 98.70 129 | 94.68 177 | 78.73 209 | 97.98 149 | 83.71 155 | 97.71 84 | 94.81 113 | 96.96 124 | 97.97 117 | 97.92 98 | 99.40 171 | 98.04 191 |
|
PEN-MVS | | | 92.72 179 | 93.20 195 | 92.15 156 | 91.29 198 | 97.31 197 | 94.67 178 | 89.81 141 | 96.19 194 | 81.83 168 | 88.58 186 | 79.06 210 | 95.61 161 | 95.21 192 | 96.27 151 | 99.72 64 | 99.82 28 |
|
WR-MVS | | | 93.43 167 | 94.48 171 | 92.21 154 | 91.52 193 | 97.69 175 | 94.66 179 | 89.98 138 | 96.86 182 | 83.43 156 | 90.12 174 | 85.03 177 | 93.94 190 | 96.02 183 | 95.82 166 | 99.71 74 | 99.82 28 |
|
v1192 | | | 92.43 186 | 93.61 188 | 91.05 179 | 91.53 192 | 97.43 193 | 94.61 180 | 87.99 164 | 96.60 189 | 76.72 191 | 87.11 197 | 82.74 191 | 95.85 154 | 96.35 173 | 95.30 176 | 99.60 130 | 99.74 72 |
|
WR-MVS_H | | | 93.54 164 | 94.67 168 | 92.22 153 | 91.95 177 | 97.91 167 | 94.58 181 | 88.75 154 | 96.64 188 | 83.88 151 | 90.66 172 | 85.13 176 | 94.40 182 | 96.54 167 | 95.91 165 | 99.73 57 | 99.89 10 |
|
v2v482 | | | 92.77 178 | 93.52 192 | 91.90 165 | 91.59 191 | 97.63 180 | 94.57 182 | 90.31 134 | 96.80 185 | 79.22 182 | 88.74 185 | 81.55 197 | 96.04 151 | 95.26 191 | 94.97 185 | 99.66 106 | 99.69 95 |
|
DTE-MVSNet | | | 92.42 187 | 92.85 198 | 91.91 164 | 90.87 203 | 96.97 201 | 94.53 183 | 89.81 141 | 95.86 203 | 81.59 169 | 88.83 184 | 77.88 213 | 95.01 177 | 94.34 202 | 96.35 149 | 99.64 114 | 99.73 76 |
|
CP-MVSNet | | | 93.25 168 | 94.00 181 | 92.38 152 | 91.65 188 | 97.56 187 | 94.38 184 | 89.20 149 | 96.05 198 | 83.16 159 | 89.51 178 | 81.97 194 | 96.16 148 | 96.43 169 | 96.56 143 | 99.71 74 | 99.89 10 |
|
v144192 | | | 92.38 188 | 93.55 191 | 91.00 180 | 91.44 194 | 97.47 192 | 94.27 185 | 87.41 169 | 96.52 191 | 78.03 187 | 87.50 194 | 82.65 192 | 95.32 170 | 95.82 187 | 95.15 180 | 99.55 149 | 99.78 49 |
|
v1240 | | | 91.99 193 | 93.33 194 | 90.44 186 | 91.29 198 | 97.30 198 | 94.25 186 | 86.79 172 | 96.43 192 | 75.49 198 | 86.34 201 | 81.85 195 | 95.29 171 | 96.42 170 | 95.22 178 | 99.52 156 | 99.73 76 |
|
tpm | | | 92.38 188 | 94.79 165 | 89.56 194 | 94.30 147 | 97.50 190 | 94.24 187 | 78.97 208 | 97.72 162 | 74.93 200 | 97.97 76 | 82.91 188 | 96.60 136 | 93.65 204 | 94.81 190 | 98.33 194 | 98.98 170 |
|
PS-CasMVS | | | 92.72 179 | 93.36 193 | 91.98 161 | 91.62 190 | 97.52 189 | 94.13 188 | 88.98 151 | 95.94 201 | 81.51 170 | 87.35 195 | 79.95 206 | 95.91 153 | 96.37 171 | 96.49 145 | 99.70 82 | 99.89 10 |
|
v7n | | | 91.61 195 | 92.95 196 | 90.04 189 | 90.56 204 | 97.69 175 | 93.74 189 | 85.59 181 | 95.89 202 | 76.95 190 | 86.60 200 | 78.60 212 | 93.76 193 | 97.01 158 | 94.99 184 | 99.65 110 | 99.87 16 |
|
pmmvs6 | | | 91.90 194 | 92.53 201 | 91.17 177 | 91.81 182 | 97.63 180 | 93.23 190 | 88.37 160 | 93.43 212 | 80.61 173 | 77.32 213 | 87.47 154 | 94.12 186 | 96.58 165 | 95.72 168 | 98.88 189 | 99.53 130 |
|
pmmvs5 | | | 92.71 181 | 94.27 174 | 90.90 182 | 91.42 195 | 97.74 172 | 93.23 190 | 86.66 175 | 95.99 200 | 78.96 185 | 91.45 165 | 83.44 185 | 95.55 162 | 97.30 149 | 95.05 183 | 99.58 140 | 98.93 172 |
|
CMPMVS |  | 70.31 18 | 90.74 197 | 91.06 205 | 90.36 188 | 97.32 75 | 97.43 193 | 92.97 192 | 87.82 167 | 93.50 211 | 75.34 199 | 83.27 207 | 84.90 178 | 92.19 202 | 92.64 207 | 91.21 211 | 96.50 213 | 94.46 211 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SixPastTwentyTwo | | | 93.44 166 | 95.32 159 | 91.24 176 | 92.11 174 | 98.40 150 | 92.77 193 | 88.64 157 | 98.09 145 | 77.83 188 | 93.51 151 | 85.74 171 | 96.52 139 | 96.91 160 | 94.89 189 | 99.59 136 | 99.73 76 |
|
v148 | | | 92.36 190 | 92.88 197 | 91.75 167 | 91.63 189 | 97.66 177 | 92.64 194 | 90.55 132 | 96.09 196 | 83.34 157 | 88.19 188 | 80.00 204 | 92.74 199 | 93.98 203 | 94.58 193 | 99.58 140 | 99.69 95 |
|
EU-MVSNet | | | 92.80 176 | 94.76 166 | 90.51 185 | 91.88 179 | 96.74 205 | 92.48 195 | 88.69 155 | 96.21 193 | 79.00 184 | 91.51 164 | 87.82 153 | 91.83 203 | 95.87 186 | 96.27 151 | 99.21 180 | 98.92 175 |
|
MDTV_nov1_ep13_2view | | | 92.44 184 | 95.66 155 | 88.68 196 | 91.05 202 | 97.92 166 | 92.17 196 | 79.64 201 | 98.83 100 | 76.20 193 | 91.45 165 | 93.51 128 | 95.04 176 | 95.68 188 | 93.70 199 | 97.96 198 | 98.53 181 |
|
thisisatest0515 | | | 94.61 146 | 96.89 126 | 91.95 162 | 92.00 176 | 98.47 143 | 92.01 197 | 90.73 129 | 98.18 141 | 83.96 149 | 94.51 140 | 95.13 109 | 93.38 195 | 97.38 145 | 94.74 192 | 99.61 122 | 99.79 43 |
|
pmmvs-eth3d | | | 89.81 201 | 89.65 208 | 90.00 190 | 86.94 211 | 95.38 210 | 91.08 198 | 86.39 177 | 94.57 208 | 82.27 166 | 83.03 208 | 64.94 218 | 93.96 189 | 96.57 166 | 93.82 198 | 99.35 174 | 99.24 158 |
|
ambc | | | | 80.99 213 | | 80.04 218 | 90.84 215 | 90.91 199 | | 96.09 196 | 74.18 201 | 62.81 216 | 30.59 227 | 82.44 212 | 96.25 178 | 91.77 208 | 95.91 215 | 98.56 180 |
|
PM-MVS | | | 89.55 202 | 90.30 207 | 88.67 197 | 87.06 210 | 95.60 209 | 90.88 200 | 84.51 189 | 96.14 195 | 75.75 194 | 86.89 199 | 63.47 221 | 94.64 180 | 96.85 161 | 93.89 197 | 99.17 183 | 99.29 153 |
|
FPMVS | | | 83.82 209 | 84.61 211 | 82.90 208 | 90.39 206 | 90.71 216 | 90.85 201 | 84.10 191 | 95.47 206 | 65.15 215 | 83.44 206 | 74.46 216 | 75.48 213 | 81.63 215 | 79.42 217 | 91.42 218 | 87.14 216 |
|
IB-MVS | | 93.96 15 | 95.02 136 | 96.44 144 | 93.36 142 | 97.05 83 | 99.28 93 | 90.43 202 | 93.39 86 | 98.02 147 | 96.02 39 | 94.92 137 | 92.07 136 | 83.52 211 | 95.38 189 | 95.82 166 | 99.72 64 | 99.59 120 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS-HIRNet | | | 92.51 182 | 95.97 149 | 88.48 198 | 93.73 156 | 98.37 152 | 90.33 203 | 75.36 217 | 98.32 135 | 77.78 189 | 89.15 181 | 94.87 111 | 95.14 175 | 97.62 138 | 96.39 148 | 98.51 190 | 97.11 201 |
|
Anonymous20231206 | | | 90.70 198 | 93.93 183 | 86.92 202 | 90.21 207 | 96.79 203 | 90.30 204 | 86.61 176 | 96.05 198 | 69.25 211 | 88.46 187 | 84.86 179 | 85.86 209 | 97.11 156 | 96.47 147 | 99.30 177 | 97.80 195 |
|
PatchT | | | 93.96 158 | 97.36 109 | 90.00 190 | 94.76 144 | 98.65 131 | 90.11 205 | 78.57 210 | 97.96 152 | 80.42 175 | 96.07 118 | 94.10 124 | 96.85 127 | 98.10 103 | 97.49 118 | 99.26 179 | 99.15 162 |
|
our_test_3 | | | | | | 92.30 170 | 97.58 185 | 90.09 206 | | | | | | | | | | |
|
pmnet_mix02 | | | 92.44 184 | 94.68 167 | 89.83 193 | 92.46 168 | 97.65 179 | 89.92 207 | 90.49 133 | 98.76 112 | 73.05 206 | 91.78 163 | 90.08 145 | 94.86 179 | 94.53 200 | 91.94 207 | 98.21 196 | 98.01 193 |
|
test20.03 | | | 90.65 199 | 93.71 187 | 87.09 200 | 90.44 205 | 96.24 206 | 89.74 208 | 85.46 182 | 95.59 205 | 72.99 207 | 90.68 171 | 85.33 174 | 84.41 210 | 95.94 185 | 95.10 182 | 99.52 156 | 97.06 203 |
|
N_pmnet | | | 92.21 192 | 94.60 169 | 89.42 195 | 91.88 179 | 97.38 196 | 89.15 209 | 89.74 144 | 97.89 155 | 73.75 202 | 87.94 192 | 92.23 135 | 93.85 192 | 96.10 180 | 93.20 201 | 98.15 197 | 97.43 198 |
|
new_pmnet | | | 90.45 200 | 92.84 199 | 87.66 199 | 88.96 208 | 96.16 207 | 88.71 210 | 84.66 187 | 97.56 165 | 71.91 210 | 85.60 203 | 86.58 165 | 93.28 196 | 96.07 181 | 93.54 200 | 98.46 191 | 94.39 212 |
|
MIMVSNet1 | | | 88.61 204 | 90.68 206 | 86.19 204 | 81.56 216 | 95.30 212 | 87.78 211 | 85.98 180 | 94.19 210 | 72.30 209 | 78.84 212 | 78.90 211 | 90.06 204 | 96.59 164 | 95.47 171 | 99.46 162 | 95.49 210 |
|
DeepMVS_CX |  | | | | | | 96.85 202 | 87.43 212 | 89.27 148 | 98.30 136 | 75.55 197 | 95.05 134 | 79.47 208 | 92.62 201 | 89.48 212 | | 95.18 216 | 95.96 209 |
|
test_method | | | 87.27 207 | 91.58 203 | 82.25 209 | 75.65 220 | 87.52 219 | 86.81 213 | 72.60 218 | 97.51 166 | 73.20 205 | 85.07 204 | 79.97 205 | 88.69 206 | 97.31 148 | 95.24 177 | 96.53 212 | 98.41 184 |
|
pmmvs3 | | | 88.19 205 | 91.27 204 | 84.60 207 | 85.60 213 | 93.66 214 | 85.68 214 | 81.13 195 | 92.36 214 | 63.66 219 | 89.51 178 | 77.10 214 | 93.22 197 | 96.37 171 | 92.40 203 | 98.30 195 | 97.46 197 |
|
MDA-MVSNet-bldmvs | | | 87.84 206 | 89.22 209 | 86.23 203 | 81.74 215 | 96.77 204 | 83.74 215 | 89.57 146 | 94.50 209 | 72.83 208 | 96.64 106 | 64.47 220 | 92.71 200 | 81.43 216 | 92.28 205 | 96.81 211 | 98.47 183 |
|
new-patchmatchnet | | | 86.12 208 | 87.30 210 | 84.74 206 | 86.92 212 | 95.19 213 | 83.57 216 | 84.42 190 | 92.67 213 | 65.66 214 | 80.32 210 | 64.72 219 | 89.41 205 | 92.33 210 | 89.21 212 | 98.43 192 | 96.69 206 |
|
tmp_tt | | | | | 82.25 209 | 97.73 69 | 88.71 217 | 80.18 217 | 68.65 220 | 99.15 58 | 86.98 136 | 99.47 10 | 85.31 175 | 68.35 218 | 87.51 213 | 83.81 215 | 91.64 217 | |
|
Gipuma |  | | 81.40 210 | 81.78 212 | 80.96 211 | 83.21 214 | 85.61 220 | 79.73 218 | 76.25 216 | 97.33 170 | 64.21 218 | 55.32 217 | 55.55 222 | 86.04 208 | 92.43 209 | 92.20 206 | 96.32 214 | 93.99 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
gm-plane-assit | | | 89.44 203 | 92.82 200 | 85.49 205 | 91.37 197 | 95.34 211 | 79.55 219 | 82.12 193 | 91.68 215 | 64.79 217 | 87.98 191 | 80.26 203 | 95.66 158 | 98.51 87 | 97.56 114 | 99.45 163 | 98.41 184 |
|
PMMVS2 | | | 77.26 211 | 79.47 214 | 74.70 213 | 76.00 219 | 88.37 218 | 74.22 220 | 76.34 214 | 78.31 218 | 54.13 221 | 69.96 215 | 52.50 223 | 70.14 217 | 84.83 214 | 88.71 213 | 97.35 205 | 93.58 214 |
|
PMVS |  | 72.60 17 | 76.39 212 | 77.66 215 | 74.92 212 | 81.04 217 | 69.37 224 | 68.47 221 | 80.54 198 | 85.39 217 | 65.07 216 | 73.52 214 | 72.91 217 | 65.67 219 | 80.35 217 | 76.81 218 | 88.71 219 | 85.25 219 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Patchmatch-RL test | | | | | | | | 66.86 222 | | | | | | | | | | |
|
E-PMN | | | 68.30 214 | 68.43 216 | 68.15 214 | 74.70 222 | 71.56 223 | 55.64 223 | 77.24 212 | 77.48 220 | 39.46 223 | 51.95 220 | 41.68 225 | 73.28 215 | 70.65 219 | 79.51 216 | 88.61 220 | 86.20 218 |
|
EMVS | | | 68.12 215 | 68.11 217 | 68.14 215 | 75.51 221 | 71.76 222 | 55.38 224 | 77.20 213 | 77.78 219 | 37.79 224 | 53.59 218 | 43.61 224 | 74.72 214 | 67.05 220 | 76.70 219 | 88.27 221 | 86.24 217 |
|
MVE |  | 67.97 19 | 65.53 216 | 67.43 218 | 63.31 216 | 59.33 223 | 74.20 221 | 53.09 225 | 70.43 219 | 66.27 221 | 43.13 222 | 45.98 221 | 30.62 226 | 70.65 216 | 79.34 218 | 86.30 214 | 83.25 222 | 89.33 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 31.24 217 | 40.15 219 | 20.86 218 | 12.61 224 | 17.99 225 | 25.16 226 | 13.30 221 | 48.42 222 | 24.82 225 | 53.07 219 | 30.13 228 | 28.47 220 | 42.73 221 | 37.65 220 | 20.79 223 | 51.04 220 |
|
test123 | | | 26.75 218 | 34.25 220 | 18.01 219 | 7.93 225 | 17.18 226 | 24.85 227 | 12.36 222 | 44.83 223 | 16.52 226 | 41.80 222 | 18.10 229 | 28.29 221 | 33.08 222 | 34.79 221 | 18.10 224 | 49.95 221 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 69.05 212 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.79 44 | | | | | |
|
SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 8 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 10 | | 99.96 12 | | | | | |
|
mPP-MVS | | | | | | 99.53 29 | | | | | | | 99.89 34 | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 122 | | | | | | | | |
|