This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3499.24 10099.06 4697.96 3399.31 3499.16 197.90 8099.79 4599.36 2898.71 6998.12 9299.65 11399.52 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 5199.70 8599.77 58
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 5199.79 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNLPA99.03 2799.05 4499.01 1999.27 4399.22 10299.03 4897.98 3299.34 3299.00 498.25 7199.71 4999.31 3398.80 6098.82 5399.48 16299.17 165
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7798.87 5498.24 1799.14 6398.73 599.11 2899.92 2898.92 6299.22 2898.84 5099.76 4199.56 130
APDe-MVScopyleft99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 58
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9499.38 3098.16 2199.02 8198.55 798.71 5399.57 5699.58 1299.09 3797.84 10699.64 11799.36 154
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3299.49 6399.09 4498.07 2999.37 2798.47 897.79 8299.89 3599.50 1698.93 4999.45 499.61 12599.76 63
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8899.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 6199.73 5999.52 136
MTMP98.46 1099.96 12
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3899.85 1099.70 94
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5398.32 1298.58 5799.95 1799.60 799.28 2698.20 8899.64 11799.69 98
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4699.74 5199.90 7
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.09 1599.97 8
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7799.49 1897.78 12798.92 4199.78 3499.90 7
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9699.76 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1299.50 1298.96 2098.79 5299.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 25
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9797.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 5097.79 2099.15 2499.96 1299.59 999.54 1198.86 4699.78 3499.74 75
OMC-MVS98.84 3299.01 5098.65 2999.39 3699.23 10199.22 3596.70 4199.40 2497.77 2197.89 8199.80 4399.21 3899.02 4398.65 5999.57 14799.07 172
test250697.16 8496.68 13497.73 4696.95 8699.79 498.48 6894.42 6599.17 5597.74 2299.15 2480.93 20498.89 6899.03 4199.09 2499.88 499.62 119
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7999.43 2898.21 1999.36 3097.66 2397.79 8299.90 3399.45 2299.17 3298.43 7199.77 3999.51 141
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 3099.34 8899.06 4694.61 5899.65 597.49 2496.75 10599.86 3899.44 2398.78 6299.30 1199.81 2299.67 104
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5399.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7799.76 63
PHI-MVS99.08 2299.43 1998.67 2899.15 4599.59 4599.11 4297.35 3999.14 6397.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 124
dps94.63 14895.31 16393.84 13095.53 12998.71 13296.54 14180.12 20397.81 16397.21 2896.98 9992.37 13496.34 14792.46 21191.77 21197.26 21297.08 206
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8299.46 6699.03 4894.59 6199.09 7097.19 2999.73 399.95 1799.39 2698.95 4798.69 5799.75 4699.65 111
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6799.77 58
MAR-MVS97.71 6498.04 8597.32 5699.35 4198.91 11697.65 10991.68 11098.00 15097.01 3197.72 8694.83 11398.85 7198.44 9098.86 4699.41 17399.52 136
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11599.61 5399.40 2598.87 5799.49 399.85 1099.66 108
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6396.62 3399.16 2399.98 299.12 4999.63 399.19 2199.78 3499.83 29
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2999.37 8299.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 9199.51 2098.31 999.28 3896.57 3599.10 3099.90 3399.71 299.19 3198.35 7799.82 1699.71 92
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7699.64 11799.66 108
TPM-MVS99.57 2698.90 11798.79 5896.52 3798.62 5699.91 3197.56 11499.44 16899.28 157
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
ECVR-MVScopyleft97.27 7997.09 12197.48 5396.95 8699.79 498.48 6894.42 6599.17 5596.28 3893.54 15389.39 15298.89 6899.03 4199.09 2499.88 499.61 122
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3996.73 10699.80 4399.33 3098.79 6199.29 1399.75 4699.64 115
IB-MVS93.96 1595.02 13996.44 14793.36 14597.05 8499.28 9590.43 20693.39 8798.02 14996.02 4094.92 14192.07 13783.52 21595.38 19295.82 16999.72 6799.59 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2023121197.10 8797.06 12497.14 6296.32 9599.52 5898.16 8993.76 7998.84 10195.98 4190.92 17394.58 11898.90 6597.72 13298.10 9499.71 7799.75 71
MVSTER97.16 8497.71 9896.52 8695.97 10998.48 14698.63 6392.10 10298.68 11995.96 4299.23 2091.79 13896.87 13098.76 6497.37 12899.57 14799.68 103
test111197.09 8896.83 13197.39 5496.92 8899.81 398.44 7294.45 6499.17 5595.85 4392.10 16788.97 15398.78 7299.02 4399.11 2399.88 499.63 117
baseline197.58 6898.05 8497.02 6996.21 10199.45 6897.71 10693.71 8398.47 13095.75 4498.78 4893.20 13398.91 6398.52 8598.44 6999.81 2299.53 133
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8395.62 4598.97 3799.94 2599.54 1499.51 1298.79 5599.71 7799.73 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet98.05 5598.86 5597.10 6399.02 4899.43 7398.47 7094.73 5599.05 7895.62 4598.93 4097.62 8195.48 16998.59 8198.55 6399.29 18299.84 25
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
PVSNet_Blended97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
CS-MVS98.56 4399.32 2897.68 4798.28 6299.89 298.71 6194.53 6399.41 2395.43 4999.05 3598.66 6699.19 4099.21 2999.07 2699.93 199.94 1
sasdasda97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
canonicalmvs97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
DELS-MVS98.19 5298.77 5997.52 5298.29 6199.71 1599.12 4194.58 6298.80 10795.38 5296.24 12098.24 7497.92 10399.06 4099.52 199.82 1699.79 45
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 12095.27 5399.11 2899.82 4299.67 499.33 2499.19 2199.73 5999.74 75
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3999.64 2699.20 3697.75 3798.82 10495.24 5498.85 4599.87 3799.17 4598.74 6797.50 11999.71 7799.76 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.46 4499.16 3797.64 4998.48 5899.64 2699.35 3194.71 5699.53 1495.17 5597.63 8899.59 5498.38 8898.88 5698.99 3699.74 5199.86 21
MGCFI-Net97.26 8197.79 9796.64 8296.17 10499.43 7398.14 9091.52 11799.23 4595.16 5698.48 6090.87 14399.07 5497.59 14099.02 3499.76 4199.91 6
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4699.25 9897.06 13294.09 7198.72 11895.14 5798.47 6396.29 9498.43 8798.65 7297.44 12599.45 16698.94 175
CHOSEN 280x42097.99 5799.24 3496.53 8598.34 6099.61 3898.36 7989.80 14699.27 4095.08 5899.81 198.58 6898.64 7899.02 4398.92 4198.93 19199.48 145
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3599.61 3898.14 9094.81 5399.31 3495.00 5999.51 999.79 4599.00 5998.94 4898.83 5199.69 8899.57 129
EPP-MVSNet97.75 6398.71 6096.63 8395.68 12199.56 5197.51 11193.10 9699.22 4794.99 6097.18 9797.30 8498.65 7798.83 5898.93 4099.84 1299.92 3
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3799.53 5598.51 6795.52 4799.27 4094.85 6199.56 899.69 5099.04 5699.36 2098.88 4499.60 13399.58 124
DCV-MVSNet97.56 6998.36 6996.62 8496.44 9398.36 15798.37 7791.73 10999.11 6894.80 6298.36 6896.28 9598.60 8198.12 10298.44 6999.76 4199.87 18
RPSCF97.61 6798.16 8096.96 7498.10 6399.00 10998.84 5693.76 7999.45 2094.78 6399.39 1599.31 5898.53 8596.61 16695.43 17597.74 20497.93 198
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5199.33 9196.28 14897.47 3899.58 994.70 6498.99 3699.85 4097.24 12299.55 1099.34 997.73 20699.56 130
CS-MVS-test98.58 4299.42 2097.60 5198.52 5799.91 198.60 6494.60 6099.37 2794.62 6599.40 1499.16 6199.39 2699.36 2098.85 4999.90 399.92 3
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6699.35 1699.97 899.55 1399.63 398.66 5899.70 8599.74 75
thres100view90096.72 10096.47 14497.00 7296.31 9699.52 5898.28 8394.01 7297.35 17194.52 6795.90 12686.93 16399.09 5398.07 10897.87 10499.81 2299.63 117
tfpn200view996.75 9896.51 14097.03 6796.31 9699.67 1898.41 7493.99 7497.35 17194.52 6795.90 12686.93 16399.14 4898.26 9597.80 10899.82 1699.70 94
EC-MVSNet98.22 5199.44 1796.79 7595.62 12399.56 5199.01 5092.22 10099.17 5594.51 6999.41 1399.62 5299.49 1899.16 3499.26 1499.91 299.94 1
thres20096.76 9796.53 13897.03 6796.31 9699.67 1898.37 7793.99 7497.68 16694.49 7095.83 12986.77 16599.18 4398.26 9597.82 10799.82 1699.66 108
CLD-MVS96.74 9996.51 14097.01 7196.71 9098.62 13798.73 5994.38 6798.94 8894.46 7197.33 9187.03 16198.07 9897.20 15596.87 13699.72 6799.54 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSDG98.27 5098.29 7198.24 3699.20 4499.22 10299.20 3697.82 3599.37 2794.43 7295.90 12697.31 8399.12 4998.76 6498.35 7799.67 10499.14 169
thres40096.71 10196.45 14697.02 6996.28 9999.63 2998.41 7494.00 7397.82 16194.42 7395.74 13086.26 17199.18 4398.20 9997.79 10999.81 2299.70 94
UGNet97.66 6699.07 4396.01 9997.19 8199.65 2297.09 13093.39 8799.35 3194.40 7498.79 4799.59 5494.24 18998.04 11398.29 8499.73 5999.80 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS97.52 7098.39 6896.51 8795.82 11598.73 13197.80 10293.05 9798.76 11494.39 7599.07 3397.03 8898.55 8398.31 9497.61 11499.43 17099.21 164
thres600view796.69 10296.43 14897.00 7296.28 9999.67 1898.41 7493.99 7497.85 16094.29 7695.96 12485.91 17499.19 4098.26 9597.63 11399.82 1699.73 79
DPM-MVS98.31 4998.53 6498.05 3998.76 5498.77 12499.13 4098.07 2999.10 6994.27 7796.70 10799.84 4198.70 7497.90 12198.11 9399.40 17599.28 157
CostFormer94.25 15694.88 16693.51 14195.43 13398.34 15896.21 15080.64 20197.94 15594.01 7898.30 7086.20 17397.52 11592.71 20992.69 20597.23 21398.02 196
IS_MVSNet97.86 5998.86 5596.68 7896.02 10599.72 1298.35 8093.37 8998.75 11794.01 7896.88 10498.40 7198.48 8699.09 3799.42 599.83 1599.80 37
GBi-Net96.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
test196.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
FMVSNet397.02 9098.12 8295.73 10593.59 16297.98 16698.34 8191.32 12198.80 10793.92 8097.21 9495.94 10297.63 11398.61 7698.62 6099.61 12599.65 111
train_agg98.73 3599.11 3998.28 3599.36 3999.35 8699.48 2397.96 3398.83 10293.86 8398.70 5499.86 3899.44 2399.08 3998.38 7499.61 12599.58 124
XVS97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVStestdata97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7293.81 8498.46 6499.95 1799.59 999.49 1399.21 2099.68 9699.75 71
FA-MVS(training)96.52 10998.29 7194.45 12195.88 11299.52 5897.66 10881.47 19898.94 8893.79 8795.54 13799.11 6298.29 9098.89 5496.49 14899.63 12299.52 136
ETV-MVS98.05 5599.25 3396.65 8095.61 12499.61 3898.26 8593.52 8598.90 9393.74 8899.32 1799.20 5998.90 6599.21 2998.72 5699.87 899.79 45
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5599.36 8398.94 5298.14 2598.59 12293.62 8996.61 11199.76 4899.03 5797.77 12897.45 12499.57 14798.89 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.17 11696.99 12695.21 11188.53 21498.54 14398.28 8392.61 9898.85 9793.60 9099.06 3490.39 14598.63 7995.98 18796.68 14099.61 12599.41 150
FMVSNet296.64 10597.50 10395.63 10793.81 15697.98 16698.09 9390.87 12798.99 8493.48 9193.17 16095.25 10897.89 10498.63 7498.80 5499.68 9699.67 104
FMVSNet595.42 13196.47 14494.20 12492.26 17695.99 21295.66 15787.15 17497.87 15893.46 9296.68 10893.79 12797.52 11597.10 15997.21 13099.11 18896.62 212
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9497.49 7299.76 696.02 15293.75 8199.26 4293.38 9393.73 15199.35 5796.47 14498.96 4698.46 6799.77 3999.90 7
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4799.33 9199.15 3997.13 4099.34 3293.20 9497.75 8499.19 6099.20 3998.66 7198.13 9199.66 10999.48 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.26 996.67 10496.69 13396.66 7997.29 7998.46 14896.48 14495.09 5099.21 5093.19 9598.78 4886.73 16698.17 9197.84 12596.32 15399.74 5199.49 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP96.25 1096.62 10796.72 13296.50 8896.96 8598.75 12897.80 10294.30 6998.85 9793.12 9698.78 4886.61 16897.23 12397.73 13196.61 14399.62 12399.71 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030498.14 5499.03 4897.10 6398.05 6699.63 2999.27 3494.33 6899.63 793.06 9797.32 9299.05 6498.09 9798.82 5998.87 4599.81 2299.89 12
FC-MVSNet-train97.04 8997.91 9296.03 9896.00 10798.41 15396.53 14393.42 8699.04 8093.02 9898.03 7794.32 12197.47 11897.93 11997.77 11099.75 4699.88 16
baseline97.45 7398.70 6195.99 10095.89 11099.36 8398.29 8291.37 12099.21 5092.99 9998.40 6696.87 8997.96 10298.60 7998.60 6299.42 17299.86 21
DI_MVS_plusplus_trai96.90 9497.49 10496.21 9395.61 12499.40 7898.72 6092.11 10199.14 6392.98 10093.08 16395.14 10998.13 9598.05 11297.91 10299.74 5199.73 79
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5699.65 2299.45 2598.15 2399.51 1792.80 10195.74 13096.44 9299.46 2199.37 1999.50 299.78 3499.81 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive96.93 9397.43 10996.34 9195.70 11999.50 6297.75 10593.22 9398.98 8592.64 10294.97 13991.71 13998.93 6198.62 7598.52 6699.82 1699.72 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm cat194.06 15794.90 16593.06 14995.42 13598.52 14596.64 13980.67 20097.82 16192.63 10393.39 15795.00 11196.06 15491.36 21591.58 21396.98 21496.66 211
thisisatest053097.23 8298.25 7396.05 9695.60 12699.59 4596.96 13493.23 9199.17 5592.60 10498.75 5196.19 9698.17 9198.19 10096.10 16199.72 6799.77 58
tttt051797.23 8298.24 7696.04 9795.60 12699.60 4396.94 13593.23 9199.15 6092.56 10598.74 5296.12 9998.17 9198.21 9896.10 16199.73 5999.78 51
test0.0.03 196.69 10298.12 8295.01 11395.49 13198.99 11195.86 15490.82 12998.38 13392.54 10696.66 10997.33 8295.75 15997.75 13098.34 7999.60 13399.40 152
casdiffmvs_mvgpermissive97.27 7997.97 9096.46 8995.83 11499.51 6198.42 7393.32 9098.34 13692.38 10795.64 13395.35 10798.91 6398.73 6898.45 6899.86 999.80 37
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS97.70 6598.78 5896.44 9095.72 11899.65 2298.14 9093.72 8298.30 13892.31 10898.63 5597.90 7698.97 6098.92 5198.30 8399.78 3499.80 37
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3799.46 6699.44 2798.13 2699.65 592.30 10998.91 4299.95 1799.05 5599.42 1798.95 3999.58 14399.82 30
diffmvspermissive96.83 9597.33 11396.25 9295.76 11699.34 8898.06 9793.22 9399.43 2292.30 10996.90 10389.83 15198.55 8398.00 11698.14 9099.64 11799.70 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3299.42 7598.91 5394.61 5898.87 9492.24 11194.61 14399.05 6499.10 5198.64 7399.05 2999.74 5199.51 141
FMVSNet195.77 12596.41 14995.03 11293.42 16497.86 17397.11 12989.89 14398.53 12792.00 11289.17 18593.23 13298.15 9498.07 10898.34 7999.61 12599.69 98
CDPH-MVS98.41 4599.10 4097.61 5099.32 4299.36 8399.49 2196.15 4498.82 10491.82 11398.41 6599.66 5199.10 5198.93 4998.97 3799.75 4699.58 124
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 5099.45 6899.28 3395.43 4899.48 1991.80 11494.83 14298.36 7298.90 6598.09 10597.85 10599.68 9699.15 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_Test97.30 7898.54 6395.87 10195.74 11799.28 9598.19 8891.40 11999.18 5491.59 11598.17 7396.18 9798.63 7998.61 7698.55 6399.66 10999.78 51
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10695.99 10899.62 3397.82 10193.22 9398.82 10491.40 11696.94 10198.56 6995.70 16199.14 3599.41 699.79 3199.75 71
TSAR-MVS + COLMAP96.79 9696.55 13797.06 6597.70 7198.46 14899.07 4596.23 4399.38 2591.32 11798.80 4685.61 17698.69 7697.64 13896.92 13599.37 17799.06 173
baseline296.36 11297.82 9494.65 11794.60 14899.09 10796.45 14589.63 14898.36 13591.29 11897.60 8994.13 12496.37 14598.45 8897.70 11199.54 15699.41 150
pmmvs495.09 13795.90 15494.14 12592.29 17597.70 17795.45 16290.31 13798.60 12190.70 11993.25 15889.90 14996.67 13797.13 15795.42 17699.44 16899.28 157
TAMVS95.53 12996.50 14294.39 12393.86 15599.03 10896.67 13889.55 15097.33 17390.64 12093.02 16491.58 14096.21 14897.72 13297.43 12699.43 17099.36 154
dmvs_re96.02 12096.49 14395.47 10893.49 16399.26 9797.25 12193.82 7797.51 16890.43 12197.52 9087.93 15698.12 9696.86 16396.59 14499.73 5999.76 63
EPMVS95.05 13896.86 13092.94 15195.84 11398.96 11496.68 13779.87 20499.05 7890.15 12297.12 9895.99 10197.49 11795.17 19694.75 19497.59 20896.96 208
CDS-MVSNet96.59 10898.02 8794.92 11494.45 14998.96 11497.46 11391.75 10897.86 15990.07 12396.02 12397.25 8596.21 14898.04 11398.38 7499.60 13399.65 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 11096.99 12695.74 10498.01 6799.72 1297.70 10790.78 13199.13 6790.03 12487.35 20095.36 10698.33 8998.59 8198.91 4399.59 13999.87 18
OPM-MVS96.22 11595.85 15796.65 8097.75 6998.54 14399.00 5195.53 4696.88 18489.88 12595.95 12586.46 17098.07 9897.65 13796.63 14299.67 10498.83 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch95.99 12197.26 11894.51 11997.46 7398.76 12797.27 11986.97 17599.09 7089.83 12693.51 15597.78 7896.18 15097.53 14395.71 17299.35 17898.41 188
HyFIR lowres test95.99 12196.56 13695.32 11097.99 6899.65 2296.54 14188.86 15598.44 13189.77 12784.14 21097.05 8799.03 5798.55 8398.19 8999.73 5999.86 21
FC-MVSNet-test96.07 11997.94 9193.89 12993.60 16198.67 13496.62 14090.30 13998.76 11488.62 12895.57 13697.63 8094.48 18597.97 11797.48 12299.71 7799.52 136
HQP-MVS96.37 11196.58 13596.13 9597.31 7898.44 15098.45 7195.22 4998.86 9588.58 12998.33 6987.00 16297.67 11297.23 15396.56 14699.56 15099.62 119
IterMVS-LS96.12 11897.48 10594.53 11895.19 13897.56 19197.15 12689.19 15399.08 7288.23 13094.97 13994.73 11597.84 10997.86 12498.26 8599.60 13399.88 16
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D97.79 6098.25 7397.26 6098.40 5999.63 2999.53 1898.63 199.25 4488.13 13196.93 10294.14 12399.19 4099.14 3599.23 1899.69 8899.42 149
UA-Net97.13 8699.14 3894.78 11597.21 8099.38 7997.56 11092.04 10398.48 12988.03 13298.39 6799.91 3194.03 19299.33 2499.23 1899.81 2299.25 161
UniMVSNet (Re)94.58 15195.34 16193.71 13492.25 17798.08 16594.97 16991.29 12597.03 18287.94 13393.97 15086.25 17296.07 15396.27 17995.97 16699.72 6799.79 45
MDTV_nov1_ep1395.57 12897.48 10593.35 14695.43 13398.97 11397.19 12583.72 19698.92 9287.91 13497.75 8496.12 9997.88 10796.84 16595.64 17397.96 20298.10 194
GeoE95.98 12397.24 11994.51 11995.02 14199.38 7998.02 9887.86 17098.37 13487.86 13592.99 16593.54 12898.56 8298.61 7697.92 10099.73 5999.85 24
Baseline_NR-MVSNet93.87 16393.98 18593.75 13291.66 19097.02 20495.53 16091.52 11797.16 17987.77 13687.93 19883.69 18696.35 14695.10 19897.23 12999.68 9699.73 79
Fast-Effi-MVS+95.38 13396.52 13994.05 12894.15 15199.14 10697.24 12286.79 17698.53 12787.62 13794.51 14487.06 16098.76 7398.60 7998.04 9799.72 6799.77 58
UniMVSNet_ETH3D93.15 17292.33 20594.11 12693.91 15398.61 13994.81 17690.98 12697.06 18087.51 13882.27 21476.33 22097.87 10894.79 20297.47 12399.56 15099.81 35
ACMH+95.51 1395.40 13296.00 15194.70 11696.33 9498.79 12196.79 13691.32 12198.77 11387.18 13995.60 13585.46 17796.97 12797.15 15696.59 14499.59 13999.65 111
tmp_tt82.25 21297.73 7088.71 22180.18 22168.65 22499.15 6086.98 14099.47 1085.31 17968.35 22287.51 21783.81 21991.64 221
testgi95.67 12797.48 10593.56 13895.07 14099.00 10995.33 16588.47 16198.80 10786.90 14197.30 9392.33 13595.97 15697.66 13497.91 10299.60 13399.38 153
ACMH95.42 1495.27 13695.96 15394.45 12196.83 8998.78 12394.72 17991.67 11198.95 8686.82 14296.42 11783.67 18797.00 12697.48 14596.68 14099.69 8899.76 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet94.59 15095.47 16093.55 13991.85 18597.89 17295.03 16792.00 10497.33 17386.12 14393.19 15987.29 15996.60 14096.12 18296.70 13999.72 6799.80 37
DU-MVS93.98 16094.44 17593.44 14291.66 19097.77 17495.03 16791.57 11497.17 17786.12 14393.13 16181.13 20396.60 14095.10 19897.01 13499.67 10499.80 37
PatchmatchNetpermissive94.70 14597.08 12391.92 16695.53 12998.85 11995.77 15579.54 20698.95 8685.98 14598.52 5896.45 9097.39 12095.32 19394.09 19997.32 21097.38 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 15894.51 17393.44 14292.56 17097.77 17495.67 15691.57 11497.17 17785.84 14693.13 16180.53 20695.29 17597.01 16096.17 15899.69 8899.75 71
ADS-MVSNet94.65 14797.04 12591.88 16995.68 12198.99 11195.89 15379.03 21199.15 6085.81 14796.96 10098.21 7597.10 12494.48 20494.24 19897.74 20497.21 204
SCA94.95 14097.44 10892.04 16195.55 12899.16 10496.26 14979.30 20899.02 8185.73 14898.18 7297.13 8697.69 11196.03 18594.91 18997.69 20797.65 200
LGP-MVS_train96.23 11496.89 12895.46 10997.32 7698.77 12498.81 5793.60 8498.58 12385.52 14999.08 3286.67 16797.83 11097.87 12397.51 11899.69 8899.73 79
Vis-MVSNetpermissive96.16 11798.22 7793.75 13295.33 13699.70 1797.27 11990.85 12898.30 13885.51 15095.72 13296.45 9093.69 19898.70 7099.00 3599.84 1299.69 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+95.81 12497.31 11794.06 12795.09 13999.35 8697.24 12288.22 16498.54 12685.38 15198.52 5888.68 15498.70 7498.32 9397.93 9999.74 5199.84 25
TranMVSNet+NR-MVSNet93.67 16694.14 17893.13 14891.28 20497.58 18995.60 15991.97 10597.06 18084.05 15290.64 17882.22 19896.17 15194.94 20196.78 13799.69 8899.78 51
thisisatest051594.61 14996.89 12891.95 16592.00 18098.47 14792.01 20190.73 13298.18 14383.96 15394.51 14495.13 11093.38 19997.38 14794.74 19599.61 12599.79 45
tfpnnormal93.85 16594.12 18093.54 14093.22 16598.24 16195.45 16291.96 10694.61 21183.91 15490.74 17581.75 20197.04 12597.49 14496.16 15999.68 9699.84 25
WR-MVS_H93.54 16794.67 17192.22 15691.95 18197.91 17194.58 18588.75 15796.64 19183.88 15590.66 17785.13 18094.40 18696.54 17095.91 16899.73 5999.89 12
pm-mvs194.27 15495.57 15992.75 15292.58 16998.13 16494.87 17490.71 13396.70 19083.78 15689.94 18189.85 15094.96 18297.58 14197.07 13199.61 12599.72 89
RPMNet94.66 14697.16 12091.75 17094.98 14298.59 14097.00 13378.37 21597.98 15183.78 15696.27 11994.09 12696.91 12997.36 14896.73 13899.48 16299.09 171
tpmrst93.86 16495.88 15591.50 17395.69 12098.62 13795.64 15879.41 20798.80 10783.76 15895.63 13496.13 9897.25 12192.92 20892.31 20797.27 21196.74 209
MIMVSNet94.49 15397.59 10290.87 18691.74 18898.70 13394.68 18178.73 21397.98 15183.71 15997.71 8794.81 11496.96 12897.97 11797.92 10099.40 17598.04 195
WR-MVS93.43 17094.48 17492.21 15791.52 19797.69 17994.66 18389.98 14196.86 18583.43 16090.12 17985.03 18193.94 19496.02 18695.82 16999.71 7799.82 30
v14892.36 19392.88 20091.75 17091.63 19397.66 18192.64 19890.55 13596.09 20083.34 16188.19 19380.00 20992.74 20393.98 20694.58 19699.58 14399.69 98
TinyColmap94.00 15994.35 17693.60 13695.89 11098.26 15997.49 11288.82 15698.56 12583.21 16291.28 17280.48 20796.68 13697.34 14996.26 15699.53 15898.24 192
CP-MVSNet93.25 17194.00 18492.38 15591.65 19297.56 19194.38 18889.20 15296.05 20283.16 16389.51 18381.97 19996.16 15296.43 17296.56 14699.71 7799.89 12
TransMVSNet (Re)93.45 16894.08 18192.72 15392.83 16697.62 18794.94 17091.54 11695.65 20883.06 16488.93 18883.53 18894.25 18897.41 14697.03 13299.67 10498.40 191
CVMVSNet95.33 13597.09 12193.27 14795.23 13798.39 15595.49 16192.58 9997.71 16583.00 16594.44 14693.28 13193.92 19597.79 12698.54 6599.41 17399.45 147
test-LLR95.50 13097.32 11493.37 14495.49 13198.74 12996.44 14690.82 12998.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
TESTMET0.1,194.95 14097.32 11492.20 15892.62 16898.74 12996.44 14686.67 17898.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
USDC94.26 15594.83 16793.59 13796.02 10598.44 15097.84 10088.65 15998.86 9582.73 16894.02 14880.56 20596.76 13397.28 15296.15 16099.55 15298.50 186
test-mter94.86 14397.32 11492.00 16392.41 17398.82 12096.18 15186.35 18298.05 14882.28 16996.48 11694.39 12095.46 17198.17 10196.20 15799.32 18099.13 170
pmmvs-eth3d89.81 20489.65 21290.00 19386.94 21695.38 21491.08 20286.39 18194.57 21282.27 17083.03 21364.94 22393.96 19396.57 16993.82 20199.35 17899.24 162
Effi-MVS+-dtu95.74 12698.04 8593.06 14993.92 15299.16 10497.90 9988.16 16699.07 7782.02 17198.02 7894.32 12196.74 13498.53 8497.56 11699.61 12599.62 119
PEN-MVS92.72 18293.20 19892.15 15991.29 20297.31 20194.67 18289.81 14496.19 19881.83 17288.58 19179.06 21595.61 16595.21 19596.27 15499.72 6799.82 30
DTE-MVSNet92.42 19092.85 20191.91 16790.87 20796.97 20594.53 18789.81 14495.86 20781.59 17388.83 18977.88 21895.01 18194.34 20596.35 15299.64 11799.73 79
PS-CasMVS92.72 18293.36 19691.98 16491.62 19497.52 19394.13 19288.98 15495.94 20581.51 17487.35 20079.95 21195.91 15796.37 17496.49 14899.70 8599.89 12
Fast-Effi-MVS+-dtu95.38 13398.20 7892.09 16093.91 15398.87 11897.35 11685.01 18999.08 7281.09 17598.10 7496.36 9395.62 16498.43 9197.03 13299.55 15299.50 143
TDRefinement93.04 17593.57 19292.41 15496.58 9198.77 12497.78 10491.96 10698.12 14680.84 17689.13 18779.87 21287.78 21196.44 17194.50 19799.54 15698.15 193
pmmvs691.90 19792.53 20491.17 18091.81 18697.63 18493.23 19488.37 16393.43 21680.61 17777.32 21887.47 15894.12 19096.58 16895.72 17198.88 19399.53 133
V4293.05 17493.90 18892.04 16191.91 18297.66 18194.91 17189.91 14296.85 18680.58 17889.66 18283.43 19095.37 17395.03 20094.90 19099.59 13999.78 51
CR-MVSNet94.57 15297.34 11291.33 17794.90 14398.59 14097.15 12679.14 20997.98 15180.42 17996.59 11493.50 13096.85 13198.10 10397.49 12099.50 16199.15 166
Patchmtry98.59 14097.15 12679.14 20980.42 179
PatchT93.96 16197.36 11190.00 19394.76 14798.65 13590.11 20978.57 21497.96 15480.42 17996.07 12294.10 12596.85 13198.10 10397.49 12099.26 18399.15 166
v892.87 17693.87 18991.72 17292.05 17997.50 19494.79 17788.20 16596.85 18680.11 18290.01 18082.86 19595.48 16995.15 19794.90 19099.66 10999.80 37
CANet_DTU96.64 10599.08 4193.81 13197.10 8399.42 7598.85 5590.01 14099.31 3479.98 18399.78 299.10 6397.42 11998.35 9298.05 9699.47 16499.53 133
v1092.79 18094.06 18291.31 17891.78 18797.29 20394.87 17486.10 18396.97 18379.82 18488.16 19484.56 18495.63 16396.33 17795.31 17899.65 11399.80 37
EG-PatchMatch MVS92.45 18693.92 18790.72 18792.56 17098.43 15294.88 17384.54 19297.18 17679.55 18586.12 20783.23 19193.15 20297.22 15496.00 16399.67 10499.27 160
v2v48292.77 18193.52 19591.90 16891.59 19597.63 18494.57 18690.31 13796.80 18879.22 18688.74 19081.55 20296.04 15595.26 19494.97 18899.66 10999.69 98
EPNet_dtu96.30 11398.53 6493.70 13598.97 4998.24 16197.36 11594.23 7098.85 9779.18 18799.19 2198.47 7094.09 19197.89 12298.21 8798.39 19798.85 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet92.80 17994.76 16990.51 18891.88 18396.74 20992.48 19988.69 15896.21 19779.00 18891.51 16987.82 15791.83 20795.87 18996.27 15499.21 18498.92 179
pmmvs592.71 18494.27 17790.90 18591.42 19997.74 17693.23 19486.66 17995.99 20478.96 18991.45 17083.44 18995.55 16697.30 15195.05 18699.58 14398.93 176
v114492.81 17894.03 18391.40 17691.68 18997.60 18894.73 17888.40 16296.71 18978.48 19088.14 19584.46 18595.45 17296.31 17895.22 18199.65 11399.76 63
v14419292.38 19193.55 19491.00 18391.44 19897.47 19694.27 18987.41 17396.52 19478.03 19187.50 19982.65 19795.32 17495.82 19095.15 18399.55 15299.78 51
SixPastTwentyTwo93.44 16995.32 16291.24 17992.11 17898.40 15492.77 19788.64 16098.09 14777.83 19293.51 15585.74 17596.52 14396.91 16294.89 19299.59 13999.73 79
MVS-HIRNet92.51 18595.97 15288.48 20193.73 15998.37 15690.33 20775.36 22198.32 13777.78 19389.15 18694.87 11295.14 17997.62 13996.39 15198.51 19497.11 205
v7n91.61 19892.95 19990.04 19290.56 20897.69 17993.74 19385.59 18595.89 20676.95 19486.60 20578.60 21793.76 19797.01 16094.99 18799.65 11399.87 18
v119292.43 18993.61 19191.05 18291.53 19697.43 19794.61 18487.99 16896.60 19276.72 19587.11 20282.74 19695.85 15896.35 17695.30 17999.60 13399.74 75
v192192092.36 19393.57 19290.94 18491.39 20097.39 19994.70 18087.63 17296.60 19276.63 19686.98 20382.89 19495.75 15996.26 18095.14 18499.55 15299.73 79
MDTV_nov1_ep13_2view92.44 18795.66 15888.68 19991.05 20697.92 17092.17 20079.64 20598.83 10276.20 19791.45 17093.51 12995.04 18095.68 19193.70 20297.96 20298.53 185
PM-MVS89.55 20590.30 21088.67 20087.06 21595.60 21390.88 20484.51 19396.14 19975.75 19886.89 20463.47 22694.64 18496.85 16493.89 20099.17 18799.29 156
IterMVS-SCA-FT94.89 14297.87 9391.42 17494.86 14597.70 17797.24 12284.88 19098.93 9075.74 19994.26 14798.25 7396.69 13598.52 8597.68 11299.10 18999.73 79
IterMVS94.81 14497.71 9891.42 17494.83 14697.63 18497.38 11485.08 18798.93 9075.67 20094.02 14897.64 7996.66 13898.45 8897.60 11598.90 19299.72 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepMVS_CXcopyleft96.85 20687.43 21689.27 15198.30 13875.55 20195.05 13879.47 21392.62 20589.48 21695.18 22095.96 213
v124091.99 19693.33 19790.44 18991.29 20297.30 20294.25 19086.79 17696.43 19575.49 20286.34 20681.85 20095.29 17596.42 17395.22 18199.52 15999.73 79
CMPMVSbinary70.31 1890.74 20091.06 20890.36 19197.32 7697.43 19792.97 19687.82 17193.50 21575.34 20383.27 21284.90 18292.19 20692.64 21091.21 21496.50 21794.46 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm92.38 19194.79 16889.56 19794.30 15097.50 19494.24 19178.97 21297.72 16474.93 20497.97 7982.91 19396.60 14093.65 20794.81 19398.33 19898.98 174
ambc80.99 21780.04 22390.84 21990.91 20396.09 20074.18 20562.81 22130.59 23282.44 21696.25 18191.77 21195.91 21998.56 184
N_pmnet92.21 19594.60 17289.42 19891.88 18397.38 20089.15 21389.74 14797.89 15773.75 20687.94 19792.23 13693.85 19696.10 18393.20 20498.15 20197.43 202
anonymousdsp93.12 17395.86 15689.93 19591.09 20598.25 16095.12 16685.08 18797.44 17073.30 20790.89 17490.78 14495.25 17797.91 12095.96 16799.71 7799.82 30
GA-MVS93.93 16296.31 15091.16 18193.61 16098.79 12195.39 16490.69 13498.25 14173.28 20896.15 12188.42 15594.39 18797.76 12995.35 17799.58 14399.45 147
test_method87.27 21091.58 20682.25 21275.65 22587.52 22486.81 21772.60 22297.51 16873.20 20985.07 20979.97 21088.69 21097.31 15095.24 18096.53 21698.41 188
pmnet_mix0292.44 18794.68 17089.83 19692.46 17297.65 18389.92 21190.49 13698.76 11473.05 21091.78 16890.08 14894.86 18394.53 20391.94 21098.21 20098.01 197
test20.0390.65 20293.71 19087.09 20390.44 20996.24 21089.74 21285.46 18695.59 20972.99 21190.68 17685.33 17884.41 21495.94 18895.10 18599.52 15997.06 207
MDA-MVSNet-bldmvs87.84 20989.22 21386.23 20681.74 22096.77 20883.74 21989.57 14994.50 21372.83 21296.64 11064.47 22592.71 20481.43 22092.28 20896.81 21598.47 187
MIMVSNet188.61 20790.68 20986.19 20781.56 22195.30 21687.78 21585.98 18494.19 21472.30 21378.84 21778.90 21690.06 20896.59 16795.47 17499.46 16595.49 214
new_pmnet90.45 20392.84 20287.66 20288.96 21296.16 21188.71 21484.66 19197.56 16771.91 21485.60 20886.58 16993.28 20096.07 18493.54 20398.46 19594.39 216
Anonymous2023120690.70 20193.93 18686.92 20590.21 21196.79 20790.30 20886.61 18096.05 20269.25 21588.46 19284.86 18385.86 21397.11 15896.47 15099.30 18197.80 199
RE-MVS-def69.05 216
LTVRE_ROB93.20 1692.84 17794.92 16490.43 19092.83 16698.63 13697.08 13187.87 16997.91 15668.42 21793.54 15379.46 21496.62 13997.55 14297.40 12799.74 5199.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet86.12 21187.30 21484.74 20986.92 21795.19 21783.57 22084.42 19492.67 21765.66 21880.32 21564.72 22489.41 20992.33 21389.21 21698.43 19696.69 210
FPMVS83.82 21284.61 21582.90 21190.39 21090.71 22090.85 20584.10 19595.47 21065.15 21983.44 21174.46 22175.48 21781.63 21979.42 22191.42 22287.14 221
PMVScopyleft72.60 1776.39 21677.66 21974.92 21581.04 22269.37 22968.47 22680.54 20285.39 22165.07 22073.52 21972.91 22265.67 22380.35 22176.81 22288.71 22485.25 224
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gm-plane-assit89.44 20692.82 20385.49 20891.37 20195.34 21579.55 22382.12 19791.68 21964.79 22187.98 19680.26 20895.66 16298.51 8797.56 11699.45 16698.41 188
Gipumacopyleft81.40 21381.78 21680.96 21483.21 21985.61 22579.73 22276.25 22097.33 17364.21 22255.32 22255.55 22786.04 21292.43 21292.20 20996.32 21893.99 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs388.19 20891.27 20784.60 21085.60 21893.66 21885.68 21881.13 19992.36 21863.66 22389.51 18377.10 21993.22 20196.37 17492.40 20698.30 19997.46 201
gg-mvs-nofinetune90.85 19994.14 17887.02 20494.89 14499.25 9898.64 6276.29 21988.24 22057.50 22479.93 21695.45 10595.18 17898.77 6398.07 9599.62 12399.24 162
PMMVS277.26 21579.47 21874.70 21676.00 22488.37 22274.22 22476.34 21878.31 22254.13 22569.96 22052.50 22870.14 22184.83 21888.71 21797.35 20993.58 218
MVEpermissive67.97 1965.53 22067.43 22263.31 22059.33 22874.20 22653.09 23070.43 22366.27 22543.13 22645.98 22630.62 23170.65 22079.34 22286.30 21883.25 22789.33 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN68.30 21868.43 22068.15 21874.70 22771.56 22855.64 22877.24 21677.48 22439.46 22751.95 22541.68 23073.28 21970.65 22379.51 22088.61 22586.20 223
EMVS68.12 21968.11 22168.14 21975.51 22671.76 22755.38 22977.20 21777.78 22337.79 22853.59 22343.61 22974.72 21867.05 22476.70 22388.27 22686.24 222
WB-MVS81.36 21489.93 21171.35 21788.65 21387.85 22371.46 22588.12 16796.23 19632.21 22992.61 16683.00 19256.27 22491.92 21489.43 21591.39 22388.49 220
testmvs31.24 22140.15 22320.86 22212.61 22917.99 23025.16 23113.30 22548.42 22624.82 23053.07 22430.13 23328.47 22542.73 22537.65 22420.79 22851.04 225
test12326.75 22234.25 22418.01 2237.93 23017.18 23124.85 23212.36 22644.83 22716.52 23141.80 22718.10 23428.29 22633.08 22634.79 22518.10 22949.95 226
GG-mvs-BLEND69.11 21798.13 8135.26 2213.49 23198.20 16394.89 1722.38 22798.42 1325.82 23296.37 11898.60 675.97 22798.75 6697.98 9899.01 19098.61 183
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 11096.45 9299.54 5498.08 9693.79 7898.24 14293.55 15294.41 11998.88 7098.04 11398.24 8699.75 4699.76 63
our_test_392.30 17497.58 18990.09 210
Patchmatch-RL test66.86 227
mPP-MVS99.53 3099.89 35
NP-MVS98.57 124