This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CHOSEN 280x42097.99 5799.24 3496.53 8398.34 5999.61 3898.36 7889.80 14399.27 4095.08 5599.81 198.58 6798.64 7699.02 4398.92 3998.93 18799.48 142
CANet_DTU96.64 10399.08 4193.81 12897.10 8299.42 7398.85 5590.01 13799.31 3479.98 17999.78 299.10 6297.42 11598.35 9298.05 9499.47 16199.53 130
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8199.46 6699.03 4894.59 6199.09 6897.19 2999.73 399.95 1799.39 2698.95 4798.69 5599.75 4499.65 108
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4499.74 4999.90 6
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3699.85 1099.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 4999.70 8299.77 56
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 56
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3699.53 5598.51 6695.52 4799.27 4094.85 5899.56 899.69 4999.04 5499.36 2098.88 4299.60 13099.58 121
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3499.61 3898.14 8894.81 5399.31 3495.00 5699.51 999.79 4499.00 5798.94 4898.83 4999.69 8599.57 126
tmp_tt82.25 20997.73 6988.71 21780.18 21768.65 22099.15 5886.98 13699.47 1085.31 17568.35 21887.51 21383.81 21591.64 217
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9399.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS99.08 2299.43 1998.67 2899.15 4499.59 4599.11 4297.35 3999.14 6197.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 121
DROMVSNet98.22 5199.44 1796.79 7595.62 12099.56 5199.01 5092.22 9999.17 5394.51 6699.41 1399.62 5199.49 1899.16 3499.26 1499.91 299.94 1
CS-MVS-test98.58 4299.42 2097.60 5198.52 5699.91 198.60 6394.60 6099.37 2794.62 6299.40 1499.16 6099.39 2699.36 2098.85 4799.90 399.92 3
RPSCF97.61 6798.16 8096.96 7498.10 6299.00 10698.84 5693.76 7899.45 2094.78 6099.39 1599.31 5798.53 8396.61 16395.43 17297.74 20097.93 194
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6399.35 1699.97 899.55 1399.63 398.66 5699.70 8299.74 72
ETV-MVS98.05 5599.25 3396.65 7995.61 12199.61 3898.26 8493.52 8498.90 9193.74 8599.32 1799.20 5898.90 6399.21 2998.72 5499.87 899.79 43
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 43
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
MVSTER97.16 8297.71 9696.52 8495.97 10698.48 14298.63 6292.10 10198.68 11795.96 4199.23 2091.79 13796.87 12698.76 6497.37 12699.57 14499.68 100
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6499.77 56
EPNet_dtu96.30 11198.53 6493.70 13298.97 4898.24 15797.36 11294.23 7098.85 9579.18 18399.19 2198.47 6994.09 18797.89 12298.21 8598.39 19398.85 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6196.62 3399.16 2399.98 299.12 4899.63 399.19 2199.78 3499.83 27
Skip Steuart: Steuart Systems R&D Blog.
test250697.16 8296.68 13297.73 4696.95 8599.79 498.48 6794.42 6599.17 5397.74 2299.15 2480.93 19998.89 6699.03 4199.09 2499.88 499.62 116
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5299.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.25 1299.50 1298.96 2098.79 5199.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 4897.79 2099.15 2499.96 1299.59 999.54 1198.86 4499.78 3499.74 72
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7598.87 5498.24 1799.14 6198.73 599.11 2899.92 2898.92 6099.22 2898.84 4899.76 4199.56 127
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 11895.27 5199.11 2899.82 4199.67 499.33 2499.19 2199.73 5799.74 72
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7499.64 11499.66 105
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 8999.51 2098.31 999.28 3896.57 3599.10 3099.90 3299.71 299.19 3198.35 7599.82 1699.71 89
LGP-MVS_train96.23 11296.89 12695.46 10697.32 7598.77 12098.81 5793.60 8398.58 12185.52 14599.08 3286.67 16397.83 10797.87 12397.51 11699.69 8599.73 76
PMMVS97.52 7098.39 6896.51 8595.82 11298.73 12797.80 9993.05 9698.76 11294.39 7299.07 3397.03 8798.55 8198.31 9497.61 11299.43 16699.21 160
ET-MVSNet_ETH3D96.17 11496.99 12495.21 10888.53 20998.54 13998.28 8292.61 9798.85 9593.60 8799.06 3490.39 14298.63 7795.98 18496.68 13899.61 12299.41 147
CS-MVS98.56 4399.32 2897.68 4798.28 6199.89 298.71 6094.53 6399.41 2395.43 4899.05 3598.66 6599.19 4099.21 2999.07 2699.93 199.94 1
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5099.33 8996.28 14497.47 3899.58 994.70 6198.99 3699.85 3997.24 11899.55 1099.34 997.73 20299.56 127
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8195.62 4498.97 3799.94 2599.54 1499.51 1298.79 5399.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7699.49 1897.78 12798.92 3999.78 3499.90 6
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 4999.79 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
EPNet98.05 5598.86 5597.10 6399.02 4799.43 7298.47 6994.73 5599.05 7695.62 4498.93 4097.62 8095.48 16598.59 8198.55 6199.29 17899.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2899.37 8099.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3699.46 6699.44 2798.13 2699.65 592.30 10698.91 4299.95 1799.05 5399.42 1798.95 3799.58 14099.82 28
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9597.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8699.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 5999.73 5799.52 133
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3899.64 2699.20 3697.75 3798.82 10295.24 5298.85 4599.87 3699.17 4598.74 6797.50 11799.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + COLMAP96.79 9496.55 13597.06 6597.70 7098.46 14499.07 4596.23 4399.38 2591.32 11498.80 4685.61 17298.69 7497.64 13796.92 13399.37 17399.06 169
UGNet97.66 6699.07 4396.01 9797.19 8099.65 2297.09 12693.39 8699.35 3194.40 7198.79 4799.59 5394.24 18598.04 11398.29 8299.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline197.58 6898.05 8497.02 6996.21 10099.45 6897.71 10393.71 8298.47 12895.75 4398.78 4893.20 13298.91 6198.52 8598.44 6799.81 2299.53 130
ACMP96.25 1096.62 10596.72 13096.50 8696.96 8498.75 12497.80 9994.30 6998.85 9593.12 9398.78 4886.61 16497.23 11997.73 13196.61 14199.62 12099.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM96.26 996.67 10296.69 13196.66 7897.29 7898.46 14496.48 14095.09 5099.21 4893.19 9298.78 4886.73 16298.17 8997.84 12596.32 15099.74 4999.49 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053097.23 8098.25 7396.05 9495.60 12399.59 4596.96 13093.23 9099.17 5392.60 10198.75 5196.19 9598.17 8998.19 10096.10 15899.72 6499.77 56
tttt051797.23 8098.24 7696.04 9595.60 12399.60 4396.94 13193.23 9099.15 5892.56 10298.74 5296.12 9898.17 8998.21 9896.10 15899.73 5799.78 49
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9299.38 3098.16 2199.02 7998.55 798.71 5399.57 5599.58 1299.09 3797.84 10499.64 11499.36 151
train_agg98.73 3599.11 3998.28 3599.36 3899.35 8499.48 2397.96 3398.83 10093.86 8098.70 5499.86 3799.44 2399.08 3998.38 7299.61 12299.58 121
EIA-MVS97.70 6598.78 5896.44 8895.72 11599.65 2298.14 8893.72 8198.30 13692.31 10598.63 5597.90 7598.97 5898.92 5198.30 8199.78 3499.80 35
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5198.32 1298.58 5699.95 1799.60 799.28 2698.20 8699.64 11499.69 95
Effi-MVS+95.81 12197.31 11594.06 12495.09 13699.35 8497.24 11888.22 16198.54 12485.38 14798.52 5788.68 15198.70 7298.32 9397.93 9799.74 4999.84 23
PatchmatchNetpermissive94.70 14297.08 12191.92 16395.53 12698.85 11595.77 15179.54 20298.95 8485.98 14198.52 5796.45 8997.39 11695.32 19094.09 19697.32 20697.38 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
canonicalmvs97.31 7697.81 9596.72 7696.20 10199.45 6898.21 8591.60 11199.22 4695.39 4998.48 5990.95 14099.16 4697.66 13499.05 2999.76 4199.90 6
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4599.25 9597.06 12894.09 7198.72 11695.14 5498.47 6096.29 9398.43 8598.65 7297.44 12399.45 16398.94 171
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7093.81 8198.46 6199.95 1799.59 999.49 1399.21 2099.68 9399.75 68
CDPH-MVS98.41 4599.10 4097.61 5099.32 4199.36 8199.49 2196.15 4498.82 10291.82 11098.41 6299.66 5099.10 5098.93 4998.97 3599.75 4499.58 121
baseline97.45 7398.70 6195.99 9895.89 10799.36 8198.29 8191.37 11799.21 4892.99 9698.40 6396.87 8897.96 9998.60 7998.60 6099.42 16899.86 19
UA-Net97.13 8499.14 3894.78 11297.21 7999.38 7797.56 10792.04 10298.48 12788.03 12898.39 6499.91 3194.03 18899.33 2499.23 1899.81 2299.25 157
DCV-MVSNet97.56 6998.36 6996.62 8296.44 9298.36 15398.37 7691.73 10899.11 6694.80 5998.36 6596.28 9498.60 7998.12 10298.44 6799.76 4199.87 16
HQP-MVS96.37 10996.58 13396.13 9397.31 7798.44 14698.45 7095.22 4998.86 9388.58 12598.33 6687.00 15897.67 10997.23 15196.56 14399.56 14799.62 116
CostFormer94.25 15394.88 16393.51 13895.43 13098.34 15496.21 14680.64 19797.94 15394.01 7598.30 6786.20 16997.52 11192.71 20692.69 20297.23 20998.02 192
CNLPA99.03 2799.05 4499.01 1999.27 4299.22 9999.03 4897.98 3299.34 3299.00 498.25 6899.71 4899.31 3398.80 6098.82 5199.48 15999.17 161
SCA94.95 13797.44 10692.04 15895.55 12599.16 10196.26 14579.30 20499.02 7985.73 14498.18 6997.13 8597.69 10896.03 18294.91 18697.69 20397.65 196
MVS_Test97.30 7798.54 6395.87 9995.74 11499.28 9398.19 8691.40 11699.18 5291.59 11298.17 7096.18 9698.63 7798.61 7698.55 6199.66 10699.78 49
Fast-Effi-MVS+-dtu95.38 13098.20 7892.09 15793.91 15098.87 11497.35 11385.01 18599.08 7081.09 17198.10 7196.36 9295.62 16098.43 9197.03 13099.55 14999.50 140
PVSNet_BlendedMVS97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
PVSNet_Blended97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
FC-MVSNet-train97.04 8797.91 9296.03 9696.00 10498.41 14996.53 13993.42 8599.04 7893.02 9598.03 7494.32 12097.47 11497.93 11997.77 10899.75 4499.88 14
Effi-MVS+-dtu95.74 12398.04 8593.06 14693.92 14999.16 10197.90 9688.16 16399.07 7582.02 16798.02 7594.32 12096.74 13098.53 8497.56 11499.61 12299.62 116
tpm92.38 18894.79 16589.56 19494.30 14797.50 19094.24 18778.97 20897.72 16274.93 20097.97 7682.91 18896.60 13693.65 20494.81 19098.33 19498.98 170
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3399.24 9799.06 4697.96 3399.31 3499.16 197.90 7799.79 4499.36 2898.71 6998.12 9099.65 11099.52 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OMC-MVS98.84 3299.01 5098.65 2999.39 3599.23 9899.22 3596.70 4199.40 2497.77 2197.89 7899.80 4299.21 3899.02 4398.65 5799.57 14499.07 168
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3199.49 6399.09 4498.07 2999.37 2798.47 897.79 7999.89 3499.50 1698.93 4999.45 499.61 12299.76 61
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7799.43 2898.21 1999.36 3097.66 2397.79 7999.90 3299.45 2299.17 3298.43 6999.77 3999.51 138
MDTV_nov1_ep1395.57 12597.48 10393.35 14395.43 13098.97 11097.19 12183.72 19298.92 9087.91 13097.75 8196.12 9897.88 10496.84 16295.64 17097.96 19898.10 190
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4699.33 8999.15 3997.13 4099.34 3293.20 9197.75 8199.19 5999.20 3998.66 7198.13 8999.66 10699.48 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS97.71 6498.04 8597.32 5699.35 4098.91 11397.65 10691.68 10998.00 14897.01 3197.72 8394.83 11298.85 6998.44 9098.86 4499.41 16999.52 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 15097.59 10090.87 18391.74 18498.70 12994.68 17778.73 20997.98 14983.71 15597.71 8494.81 11396.96 12497.97 11797.92 9899.40 17198.04 191
CANet98.46 4499.16 3797.64 4998.48 5799.64 2699.35 3194.71 5699.53 1495.17 5397.63 8599.59 5398.38 8698.88 5698.99 3499.74 4999.86 19
baseline296.36 11097.82 9494.65 11494.60 14599.09 10496.45 14189.63 14598.36 13391.29 11597.60 8694.13 12396.37 14198.45 8897.70 10999.54 15399.41 147
CLD-MVS96.74 9796.51 13897.01 7196.71 8998.62 13398.73 5894.38 6798.94 8694.46 6897.33 8787.03 15798.07 9597.20 15396.87 13499.72 6499.54 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030498.14 5499.03 4897.10 6398.05 6599.63 2999.27 3494.33 6899.63 793.06 9497.32 8899.05 6398.09 9498.82 5998.87 4399.81 2299.89 10
testgi95.67 12497.48 10393.56 13595.07 13799.00 10695.33 16188.47 15898.80 10586.90 13797.30 8992.33 13495.97 15297.66 13497.91 10099.60 13099.38 150
GBi-Net96.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
test196.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
FMVSNet397.02 8898.12 8295.73 10393.59 15997.98 16298.34 8091.32 11898.80 10593.92 7797.21 9095.94 10197.63 11098.61 7698.62 5899.61 12299.65 108
EPP-MVSNet97.75 6398.71 6096.63 8195.68 11899.56 5197.51 10893.10 9599.22 4694.99 5797.18 9397.30 8398.65 7598.83 5898.93 3899.84 1299.92 3
EPMVS95.05 13596.86 12892.94 14895.84 11098.96 11196.68 13379.87 20099.05 7690.15 11897.12 9495.99 10097.49 11395.17 19394.75 19197.59 20496.96 204
dps94.63 14595.31 16093.84 12795.53 12698.71 12896.54 13780.12 19997.81 16197.21 2896.98 9592.37 13396.34 14392.46 20891.77 20897.26 20897.08 202
ADS-MVSNet94.65 14497.04 12391.88 16695.68 11898.99 10895.89 14979.03 20799.15 5885.81 14396.96 9698.21 7497.10 12094.48 20194.24 19597.74 20097.21 200
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10495.99 10599.62 3397.82 9893.22 9298.82 10291.40 11396.94 9798.56 6895.70 15799.14 3599.41 699.79 3199.75 68
LS3D97.79 6098.25 7397.26 6098.40 5899.63 2999.53 1898.63 199.25 4488.13 12796.93 9894.14 12299.19 4099.14 3599.23 1899.69 8599.42 146
diffmvspermissive96.83 9397.33 11196.25 9095.76 11399.34 8698.06 9493.22 9299.43 2292.30 10696.90 9989.83 14898.55 8198.00 11698.14 8899.64 11499.70 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS_MVSNet97.86 5998.86 5596.68 7796.02 10299.72 1298.35 7993.37 8898.75 11594.01 7596.88 10098.40 7098.48 8499.09 3799.42 599.83 1599.80 35
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 2999.34 8699.06 4694.61 5899.65 597.49 2496.75 10199.86 3799.44 2398.78 6299.30 1199.81 2299.67 101
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3896.73 10299.80 4299.33 3098.79 6199.29 1399.75 4499.64 112
DPM-MVS98.31 4998.53 6498.05 3998.76 5398.77 12099.13 4098.07 2999.10 6794.27 7496.70 10399.84 4098.70 7297.90 12198.11 9199.40 17199.28 154
FMVSNet595.42 12896.47 14194.20 12192.26 17295.99 20895.66 15387.15 17097.87 15693.46 8996.68 10493.79 12697.52 11197.10 15797.21 12899.11 18496.62 208
test0.0.03 196.69 10098.12 8295.01 11095.49 12898.99 10895.86 15090.82 12698.38 13192.54 10396.66 10597.33 8195.75 15597.75 13098.34 7799.60 13099.40 149
MDA-MVSNet-bldmvs87.84 20689.22 20986.23 20381.74 21596.77 20483.74 21589.57 14694.50 20972.83 20896.64 10664.47 22092.71 20081.43 21692.28 20596.81 21198.47 183
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5499.36 8198.94 5298.14 2598.59 12093.62 8696.61 10799.76 4799.03 5597.77 12897.45 12299.57 14498.89 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test-LLR95.50 12797.32 11293.37 14195.49 12898.74 12596.44 14290.82 12698.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
TESTMET0.1,194.95 13797.32 11292.20 15592.62 16498.74 12596.44 14286.67 17498.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
CR-MVSNet94.57 14997.34 11091.33 17494.90 14098.59 13697.15 12279.14 20597.98 14980.42 17596.59 11093.50 12996.85 12798.10 10397.49 11899.50 15899.15 162
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11199.61 5299.40 2598.87 5799.49 399.85 1099.66 105
test-mter94.86 14097.32 11292.00 16092.41 16998.82 11696.18 14786.35 17898.05 14682.28 16596.48 11294.39 11995.46 16798.17 10196.20 15499.32 17699.13 166
ACMH95.42 1495.27 13395.96 15094.45 11896.83 8898.78 11994.72 17591.67 11098.95 8486.82 13896.42 11383.67 18397.00 12297.48 14396.68 13899.69 8599.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND69.11 21398.13 8135.26 2173.49 22698.20 15994.89 1682.38 22398.42 1305.82 22796.37 11498.60 665.97 22298.75 6697.98 9699.01 18698.61 179
RPMNet94.66 14397.16 11891.75 16794.98 13998.59 13697.00 12978.37 21197.98 14983.78 15296.27 11594.09 12596.91 12597.36 14696.73 13699.48 15999.09 167
DELS-MVS98.19 5298.77 5997.52 5298.29 6099.71 1599.12 4194.58 6298.80 10595.38 5096.24 11698.24 7397.92 10099.06 4099.52 199.82 1699.79 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GA-MVS93.93 15996.31 14791.16 17893.61 15798.79 11795.39 16090.69 13198.25 13973.28 20496.15 11788.42 15294.39 18397.76 12995.35 17499.58 14099.45 144
PatchT93.96 15897.36 10990.00 19094.76 14498.65 13190.11 20578.57 21097.96 15280.42 17596.07 11894.10 12496.85 12798.10 10397.49 11899.26 17999.15 162
CDS-MVSNet96.59 10698.02 8794.92 11194.45 14698.96 11197.46 11091.75 10797.86 15790.07 11996.02 11997.25 8496.21 14498.04 11398.38 7299.60 13099.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres600view796.69 10096.43 14597.00 7296.28 9899.67 1898.41 7393.99 7497.85 15894.29 7395.96 12085.91 17099.19 4098.26 9597.63 11199.82 1699.73 76
OPM-MVS96.22 11395.85 15496.65 7997.75 6898.54 13999.00 5195.53 4696.88 18189.88 12195.95 12186.46 16698.07 9597.65 13696.63 14099.67 10198.83 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres100view90096.72 9896.47 14197.00 7296.31 9599.52 5898.28 8294.01 7297.35 16894.52 6495.90 12286.93 15999.09 5298.07 10897.87 10299.81 2299.63 114
tfpn200view996.75 9696.51 13897.03 6796.31 9599.67 1898.41 7393.99 7497.35 16894.52 6495.90 12286.93 15999.14 4798.26 9597.80 10699.82 1699.70 91
MSDG98.27 5098.29 7198.24 3699.20 4399.22 9999.20 3697.82 3599.37 2794.43 6995.90 12297.31 8299.12 4898.76 6498.35 7599.67 10199.14 165
thres20096.76 9596.53 13697.03 6796.31 9599.67 1898.37 7693.99 7497.68 16494.49 6795.83 12586.77 16199.18 4398.26 9597.82 10599.82 1699.66 105
thres40096.71 9996.45 14397.02 6996.28 9899.63 2998.41 7394.00 7397.82 15994.42 7095.74 12686.26 16799.18 4398.20 9997.79 10799.81 2299.70 91
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5599.65 2299.45 2598.15 2399.51 1792.80 9895.74 12696.44 9199.46 2199.37 1999.50 299.78 3499.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive96.16 11598.22 7793.75 12995.33 13399.70 1797.27 11690.85 12598.30 13685.51 14695.72 12896.45 8993.69 19498.70 7099.00 3399.84 1299.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive97.27 7897.97 9096.46 8795.83 11199.51 6198.42 7293.32 8998.34 13492.38 10495.64 12995.35 10698.91 6198.73 6898.45 6699.86 999.80 35
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst93.86 16195.88 15291.50 17095.69 11798.62 13395.64 15479.41 20398.80 10583.76 15495.63 13096.13 9797.25 11792.92 20592.31 20497.27 20796.74 205
ACMH+95.51 1395.40 12996.00 14894.70 11396.33 9398.79 11796.79 13291.32 11898.77 11187.18 13595.60 13185.46 17396.97 12397.15 15496.59 14299.59 13699.65 108
FC-MVSNet-test96.07 11797.94 9193.89 12693.60 15898.67 13096.62 13690.30 13698.76 11288.62 12495.57 13297.63 7994.48 18197.97 11797.48 12099.71 7499.52 133
FA-MVS(training)96.52 10798.29 7194.45 11895.88 10999.52 5897.66 10581.47 19498.94 8693.79 8495.54 13399.11 6198.29 8898.89 5496.49 14599.63 11999.52 133
DeepMVS_CXcopyleft96.85 20287.43 21289.27 14898.30 13675.55 19795.05 13479.47 20892.62 20189.48 21295.18 21695.96 209
casdiffmvspermissive96.93 9197.43 10796.34 8995.70 11699.50 6297.75 10293.22 9298.98 8392.64 9994.97 13591.71 13898.93 5998.62 7598.52 6499.82 1699.72 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS96.12 11697.48 10394.53 11595.19 13597.56 18797.15 12289.19 15099.08 7088.23 12694.97 13594.73 11497.84 10697.86 12498.26 8399.60 13099.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS93.96 1595.02 13696.44 14493.36 14297.05 8399.28 9390.43 20293.39 8698.02 14796.02 3994.92 13792.07 13683.52 21195.38 18995.82 16699.72 6499.59 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 4999.45 6899.28 3395.43 4899.48 1991.80 11194.83 13898.36 7198.90 6398.09 10597.85 10399.68 9399.15 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3199.42 7398.91 5394.61 5898.87 9292.24 10894.61 13999.05 6399.10 5098.64 7399.05 2999.74 4999.51 138
thisisatest051594.61 14696.89 12691.95 16292.00 17698.47 14392.01 19790.73 12998.18 14183.96 14994.51 14095.13 10993.38 19597.38 14594.74 19299.61 12299.79 43
Fast-Effi-MVS+95.38 13096.52 13794.05 12594.15 14899.14 10397.24 11886.79 17298.53 12587.62 13394.51 14087.06 15698.76 7198.60 7998.04 9599.72 6499.77 56
CVMVSNet95.33 13297.09 11993.27 14495.23 13498.39 15195.49 15792.58 9897.71 16383.00 16194.44 14293.28 13093.92 19197.79 12698.54 6399.41 16999.45 144
IterMVS-SCA-FT94.89 13997.87 9391.42 17194.86 14297.70 17397.24 11884.88 18698.93 8875.74 19594.26 14398.25 7296.69 13198.52 8597.68 11099.10 18599.73 76
IterMVS94.81 14197.71 9691.42 17194.83 14397.63 18097.38 11185.08 18398.93 8875.67 19694.02 14497.64 7896.66 13498.45 8897.60 11398.90 18899.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC94.26 15294.83 16493.59 13496.02 10298.44 14697.84 9788.65 15698.86 9382.73 16494.02 14480.56 20096.76 12997.28 15096.15 15799.55 14998.50 182
UniMVSNet (Re)94.58 14895.34 15893.71 13192.25 17398.08 16194.97 16591.29 12297.03 17987.94 12993.97 14686.25 16896.07 14996.27 17695.97 16399.72 6499.79 43
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9297.49 7199.76 696.02 14893.75 8099.26 4293.38 9093.73 14799.35 5696.47 14098.96 4698.46 6599.77 3999.90 6
Anonymous20240521197.40 10896.45 9199.54 5498.08 9393.79 7798.24 14093.55 14894.41 11898.88 6898.04 11398.24 8499.75 4499.76 61
ECVR-MVScopyleft97.27 7897.09 11997.48 5396.95 8599.79 498.48 6794.42 6599.17 5396.28 3793.54 14989.39 14998.89 6699.03 4199.09 2499.88 499.61 119
LTVRE_ROB93.20 1692.84 17494.92 16190.43 18792.83 16298.63 13297.08 12787.87 16597.91 15468.42 21393.54 14979.46 20996.62 13597.55 14097.40 12599.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MS-PatchMatch95.99 11897.26 11694.51 11697.46 7298.76 12397.27 11686.97 17199.09 6889.83 12293.51 15197.78 7796.18 14697.53 14195.71 16999.35 17498.41 184
SixPastTwentyTwo93.44 16695.32 15991.24 17692.11 17498.40 15092.77 19388.64 15798.09 14577.83 18893.51 15185.74 17196.52 13996.91 16094.89 18999.59 13699.73 76
tpm cat194.06 15494.90 16293.06 14695.42 13298.52 14196.64 13580.67 19697.82 15992.63 10093.39 15395.00 11096.06 15091.36 21191.58 21096.98 21096.66 207
pmmvs495.09 13495.90 15194.14 12292.29 17197.70 17395.45 15890.31 13498.60 11990.70 11693.25 15489.90 14696.67 13397.13 15595.42 17399.44 16599.28 154
UniMVSNet_NR-MVSNet94.59 14795.47 15793.55 13691.85 18197.89 16895.03 16392.00 10397.33 17086.12 13993.19 15587.29 15596.60 13696.12 17996.70 13799.72 6499.80 35
FMVSNet296.64 10397.50 10195.63 10593.81 15397.98 16298.09 9090.87 12498.99 8293.48 8893.17 15695.25 10797.89 10198.63 7498.80 5299.68 9399.67 101
DU-MVS93.98 15794.44 17293.44 13991.66 18697.77 17095.03 16391.57 11297.17 17486.12 13993.13 15781.13 19896.60 13695.10 19597.01 13299.67 10199.80 35
NR-MVSNet94.01 15594.51 17093.44 13992.56 16697.77 17095.67 15291.57 11297.17 17485.84 14293.13 15780.53 20195.29 17197.01 15896.17 15599.69 8599.75 68
DI_MVS_plusplus_trai96.90 9297.49 10296.21 9195.61 12199.40 7698.72 5992.11 10099.14 6192.98 9793.08 15995.14 10898.13 9398.05 11297.91 10099.74 4999.73 76
TAMVS95.53 12696.50 14094.39 12093.86 15299.03 10596.67 13489.55 14797.33 17090.64 11793.02 16091.58 13996.21 14497.72 13297.43 12499.43 16699.36 151
GeoE95.98 12097.24 11794.51 11695.02 13899.38 7798.02 9587.86 16698.37 13287.86 13192.99 16193.54 12798.56 8098.61 7697.92 9899.73 5799.85 22
test111197.09 8696.83 12997.39 5496.92 8799.81 398.44 7194.45 6499.17 5395.85 4292.10 16288.97 15098.78 7099.02 4399.11 2399.88 499.63 114
pmnet_mix0292.44 18494.68 16789.83 19392.46 16897.65 17989.92 20790.49 13398.76 11273.05 20691.78 16390.08 14594.86 17994.53 20091.94 20798.21 19698.01 193
EU-MVSNet92.80 17694.76 16690.51 18591.88 17996.74 20592.48 19588.69 15596.21 19379.00 18491.51 16487.82 15391.83 20395.87 18696.27 15199.21 18098.92 175
pmmvs592.71 18194.27 17490.90 18291.42 19597.74 17293.23 19086.66 17595.99 20078.96 18591.45 16583.44 18595.55 16297.30 14995.05 18399.58 14098.93 172
MDTV_nov1_ep13_2view92.44 18495.66 15588.68 19691.05 20297.92 16692.17 19679.64 20198.83 10076.20 19391.45 16593.51 12895.04 17695.68 18893.70 19997.96 19898.53 181
TinyColmap94.00 15694.35 17393.60 13395.89 10798.26 15597.49 10988.82 15398.56 12383.21 15891.28 16780.48 20296.68 13297.34 14796.26 15399.53 15598.24 188
Anonymous2023121197.10 8597.06 12297.14 6296.32 9499.52 5898.16 8793.76 7898.84 9995.98 4090.92 16894.58 11798.90 6397.72 13298.10 9299.71 7499.75 68
anonymousdsp93.12 17095.86 15389.93 19291.09 20198.25 15695.12 16285.08 18397.44 16773.30 20390.89 16990.78 14195.25 17397.91 12095.96 16499.71 7499.82 28
tfpnnormal93.85 16294.12 17793.54 13793.22 16198.24 15795.45 15891.96 10594.61 20783.91 15090.74 17081.75 19697.04 12197.49 14296.16 15699.68 9399.84 23
test20.0390.65 19993.71 18787.09 20090.44 20596.24 20689.74 20885.46 18295.59 20572.99 20790.68 17185.33 17484.41 21095.94 18595.10 18299.52 15697.06 203
WR-MVS_H93.54 16494.67 16892.22 15391.95 17797.91 16794.58 18188.75 15496.64 18883.88 15190.66 17285.13 17694.40 18296.54 16795.91 16599.73 5799.89 10
TranMVSNet+NR-MVSNet93.67 16394.14 17593.13 14591.28 20097.58 18595.60 15591.97 10497.06 17784.05 14890.64 17382.22 19396.17 14794.94 19896.78 13599.69 8599.78 49
WR-MVS93.43 16794.48 17192.21 15491.52 19397.69 17594.66 17989.98 13896.86 18283.43 15690.12 17485.03 17793.94 19096.02 18395.82 16699.71 7499.82 28
v892.87 17393.87 18691.72 16992.05 17597.50 19094.79 17388.20 16296.85 18380.11 17890.01 17582.86 19095.48 16595.15 19494.90 18799.66 10699.80 35
pm-mvs194.27 15195.57 15692.75 14992.58 16598.13 16094.87 17090.71 13096.70 18783.78 15289.94 17689.85 14794.96 17897.58 13997.07 12999.61 12299.72 86
V4293.05 17193.90 18592.04 15891.91 17897.66 17794.91 16789.91 13996.85 18380.58 17489.66 17783.43 18695.37 16995.03 19794.90 18799.59 13699.78 49
pmmvs388.19 20591.27 20484.60 20785.60 21393.66 21485.68 21481.13 19592.36 21463.66 21989.51 17877.10 21493.22 19796.37 17192.40 20398.30 19597.46 197
CP-MVSNet93.25 16894.00 18192.38 15291.65 18897.56 18794.38 18489.20 14996.05 19883.16 15989.51 17881.97 19496.16 14896.43 16996.56 14399.71 7499.89 10
FMVSNet195.77 12296.41 14695.03 10993.42 16097.86 16997.11 12589.89 14098.53 12592.00 10989.17 18093.23 13198.15 9298.07 10898.34 7799.61 12299.69 95
MVS-HIRNet92.51 18295.97 14988.48 19893.73 15698.37 15290.33 20375.36 21798.32 13577.78 18989.15 18194.87 11195.14 17597.62 13896.39 14898.51 19097.11 201
TDRefinement93.04 17293.57 18992.41 15196.58 9098.77 12097.78 10191.96 10598.12 14480.84 17289.13 18279.87 20787.78 20796.44 16894.50 19499.54 15398.15 189
TransMVSNet (Re)93.45 16594.08 17892.72 15092.83 16297.62 18394.94 16691.54 11495.65 20483.06 16088.93 18383.53 18494.25 18497.41 14497.03 13099.67 10198.40 187
DTE-MVSNet92.42 18792.85 19891.91 16490.87 20396.97 20194.53 18389.81 14195.86 20381.59 16988.83 18477.88 21395.01 17794.34 20296.35 14999.64 11499.73 76
v2v48292.77 17893.52 19291.90 16591.59 19197.63 18094.57 18290.31 13496.80 18579.22 18288.74 18581.55 19796.04 15195.26 19194.97 18599.66 10699.69 95
PEN-MVS92.72 17993.20 19592.15 15691.29 19897.31 19794.67 17889.81 14196.19 19481.83 16888.58 18679.06 21095.61 16195.21 19296.27 15199.72 6499.82 28
Anonymous2023120690.70 19893.93 18386.92 20290.21 20796.79 20390.30 20486.61 17696.05 19869.25 21188.46 18784.86 17985.86 20997.11 15696.47 14799.30 17797.80 195
v14892.36 19092.88 19791.75 16791.63 18997.66 17792.64 19490.55 13296.09 19683.34 15788.19 18880.00 20492.74 19993.98 20394.58 19399.58 14099.69 95
v1092.79 17794.06 17991.31 17591.78 18397.29 19994.87 17086.10 17996.97 18079.82 18088.16 18984.56 18095.63 15996.33 17495.31 17599.65 11099.80 35
v114492.81 17594.03 18091.40 17391.68 18597.60 18494.73 17488.40 15996.71 18678.48 18688.14 19084.46 18195.45 16896.31 17595.22 17899.65 11099.76 61
gm-plane-assit89.44 20392.82 20085.49 20591.37 19795.34 21179.55 21982.12 19391.68 21564.79 21787.98 19180.26 20395.66 15898.51 8797.56 11499.45 16398.41 184
N_pmnet92.21 19294.60 16989.42 19591.88 17997.38 19689.15 20989.74 14497.89 15573.75 20287.94 19292.23 13593.85 19296.10 18093.20 20198.15 19797.43 198
Baseline_NR-MVSNet93.87 16093.98 18293.75 12991.66 18697.02 20095.53 15691.52 11597.16 17687.77 13287.93 19383.69 18296.35 14295.10 19597.23 12799.68 9399.73 76
v14419292.38 18893.55 19191.00 18091.44 19497.47 19294.27 18587.41 16996.52 19178.03 18787.50 19482.65 19295.32 17095.82 18795.15 18099.55 14999.78 49
PS-CasMVS92.72 17993.36 19391.98 16191.62 19097.52 18994.13 18888.98 15195.94 20181.51 17087.35 19579.95 20695.91 15396.37 17196.49 14599.70 8299.89 10
CHOSEN 1792x268896.41 10896.99 12495.74 10298.01 6699.72 1297.70 10490.78 12899.13 6590.03 12087.35 19595.36 10598.33 8798.59 8198.91 4199.59 13699.87 16
v119292.43 18693.61 18891.05 17991.53 19297.43 19394.61 18087.99 16496.60 18976.72 19187.11 19782.74 19195.85 15496.35 17395.30 17699.60 13099.74 72
v192192092.36 19093.57 18990.94 18191.39 19697.39 19594.70 17687.63 16896.60 18976.63 19286.98 19882.89 18995.75 15596.26 17795.14 18199.55 14999.73 76
PM-MVS89.55 20290.30 20788.67 19787.06 21095.60 20990.88 20084.51 18996.14 19575.75 19486.89 19963.47 22194.64 18096.85 16193.89 19799.17 18399.29 153
v7n91.61 19592.95 19690.04 18990.56 20497.69 17593.74 18985.59 18195.89 20276.95 19086.60 20078.60 21293.76 19397.01 15894.99 18499.65 11099.87 16
v124091.99 19393.33 19490.44 18691.29 19897.30 19894.25 18686.79 17296.43 19275.49 19886.34 20181.85 19595.29 17196.42 17095.22 17899.52 15699.73 76
EG-PatchMatch MVS92.45 18393.92 18490.72 18492.56 16698.43 14894.88 16984.54 18897.18 17379.55 18186.12 20283.23 18793.15 19897.22 15296.00 16099.67 10199.27 156
new_pmnet90.45 20092.84 19987.66 19988.96 20896.16 20788.71 21084.66 18797.56 16571.91 21085.60 20386.58 16593.28 19696.07 18193.54 20098.46 19194.39 212
test_method87.27 20791.58 20382.25 20975.65 22087.52 21986.81 21372.60 21897.51 16673.20 20585.07 20479.97 20588.69 20697.31 14895.24 17796.53 21298.41 184
HyFIR lowres test95.99 11896.56 13495.32 10797.99 6799.65 2296.54 13788.86 15298.44 12989.77 12384.14 20597.05 8699.03 5598.55 8398.19 8799.73 5799.86 19
FPMVS83.82 20984.61 21182.90 20890.39 20690.71 21690.85 20184.10 19195.47 20665.15 21583.44 20674.46 21675.48 21381.63 21579.42 21791.42 21887.14 216
CMPMVSbinary70.31 1890.74 19791.06 20590.36 18897.32 7597.43 19392.97 19287.82 16793.50 21175.34 19983.27 20784.90 17892.19 20292.64 20791.21 21196.50 21394.46 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d89.81 20189.65 20890.00 19086.94 21195.38 21091.08 19886.39 17794.57 20882.27 16683.03 20864.94 21893.96 18996.57 16693.82 19899.35 17499.24 158
UniMVSNet_ETH3D93.15 16992.33 20294.11 12393.91 15098.61 13594.81 17290.98 12397.06 17787.51 13482.27 20976.33 21597.87 10594.79 19997.47 12199.56 14799.81 33
new-patchmatchnet86.12 20887.30 21084.74 20686.92 21295.19 21383.57 21684.42 19092.67 21365.66 21480.32 21064.72 21989.41 20592.33 21089.21 21298.43 19296.69 206
gg-mvs-nofinetune90.85 19694.14 17587.02 20194.89 14199.25 9598.64 6176.29 21588.24 21657.50 22079.93 21195.45 10495.18 17498.77 6398.07 9399.62 12099.24 158
MIMVSNet188.61 20490.68 20686.19 20481.56 21695.30 21287.78 21185.98 18094.19 21072.30 20978.84 21278.90 21190.06 20496.59 16495.47 17199.46 16295.49 210
pmmvs691.90 19492.53 20191.17 17791.81 18297.63 18093.23 19088.37 16093.43 21280.61 17377.32 21387.47 15494.12 18696.58 16595.72 16898.88 18999.53 130
PMVScopyleft72.60 1776.39 21277.66 21574.92 21281.04 21769.37 22468.47 22180.54 19885.39 21765.07 21673.52 21472.91 21765.67 21980.35 21776.81 21888.71 21985.25 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.26 21179.47 21474.70 21376.00 21988.37 21874.22 22076.34 21478.31 21854.13 22169.96 21552.50 22370.14 21784.83 21488.71 21397.35 20593.58 214
ambc80.99 21380.04 21890.84 21590.91 19996.09 19674.18 20162.81 21630.59 22782.44 21296.25 17891.77 20895.91 21598.56 180
Gipumacopyleft81.40 21081.78 21280.96 21183.21 21485.61 22079.73 21876.25 21697.33 17064.21 21855.32 21755.55 22286.04 20892.43 20992.20 20696.32 21493.99 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS68.12 21568.11 21768.14 21575.51 22171.76 22255.38 22477.20 21377.78 21937.79 22453.59 21843.61 22474.72 21467.05 22076.70 21988.27 22186.24 217
testmvs31.24 21740.15 21920.86 21812.61 22417.99 22525.16 22613.30 22148.42 22224.82 22553.07 21930.13 22828.47 22042.73 22137.65 22020.79 22351.04 220
E-PMN68.30 21468.43 21668.15 21474.70 22271.56 22355.64 22377.24 21277.48 22039.46 22351.95 22041.68 22573.28 21570.65 21979.51 21688.61 22086.20 218
MVEpermissive67.97 1965.53 21667.43 21863.31 21659.33 22374.20 22153.09 22570.43 21966.27 22143.13 22245.98 22130.62 22670.65 21679.34 21886.30 21483.25 22289.33 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12326.75 21834.25 22018.01 2197.93 22517.18 22624.85 22712.36 22244.83 22316.52 22641.80 22218.10 22928.29 22133.08 22234.79 22118.10 22449.95 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def69.05 212
9.1499.79 44
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17097.58 18590.09 206
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 222
XVS97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
X-MVStestdata97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
mPP-MVS99.53 2999.89 34
NP-MVS98.57 122
Patchmtry98.59 13697.15 12279.14 20580.42 175