This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8694.34 9
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5282.65 3373.02 4886.37 3586.91 1990.03 3689.62 53
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3971.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4378.18 2064.78 8777.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4165.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3874.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9393.67 17
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5570.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4567.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
DELS-MVS79.15 5581.07 5176.91 5583.54 6187.31 4284.45 5164.92 8069.98 7169.34 5671.62 5676.26 5569.84 6886.57 3285.90 3489.39 4989.88 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5374.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
3Dnovator73.76 579.75 4580.52 5578.84 4384.94 5987.35 4184.43 5265.54 7578.29 4973.97 3563.00 9575.62 6274.07 4085.00 4785.34 3990.11 3589.04 56
OPM-MVS79.68 4779.28 6280.15 3787.99 3986.77 4688.52 2872.72 2964.55 10067.65 6367.87 7674.33 6774.31 3986.37 3585.25 4089.73 4489.81 51
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_HR80.13 4281.46 4678.58 4585.77 5185.17 5983.45 5569.28 4974.08 6270.31 5474.31 4475.26 6373.13 4686.46 3485.15 4189.53 4789.81 51
MAR-MVS79.21 5280.32 5777.92 4987.46 4088.15 3883.95 5367.48 6374.28 5968.25 5964.70 8877.04 5372.17 5285.42 4385.00 4288.22 7287.62 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4478.66 1968.67 7281.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
CLD-MVS79.35 5081.23 4877.16 5385.01 5786.92 4585.87 4160.89 13380.07 4775.35 3272.96 4873.21 7168.43 7985.41 4484.63 4487.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
LGP-MVS_train79.83 4381.22 4978.22 4886.28 4885.36 5886.76 3669.59 4677.34 5065.14 7475.68 3670.79 8171.37 6284.60 5084.01 4790.18 3390.74 42
ACMM72.26 878.86 5778.13 6679.71 3986.89 4483.40 7786.02 4070.50 3975.28 5571.49 4963.01 9469.26 9173.57 4384.11 5683.98 4889.76 4287.84 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EC-MVSNet79.44 4881.35 4777.22 5282.95 6384.67 6381.31 6063.65 9272.47 6968.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
CS-MVS79.22 5181.11 5077.01 5481.36 7784.03 6780.35 6763.25 9673.43 6670.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 49
ETV-MVS77.32 6478.81 6375.58 6282.24 7183.64 7579.98 6964.02 8869.64 7663.90 7970.89 6069.94 8773.41 4485.39 4583.91 5189.92 3788.31 61
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4266.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
EPNet79.08 5680.62 5377.28 5188.90 3583.17 8283.65 5472.41 3174.41 5867.15 6776.78 3374.37 6664.43 9983.70 6083.69 5387.15 9788.19 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet73.33 8477.34 7568.65 11681.29 7883.47 7674.45 12763.58 9465.75 9248.49 15267.11 8070.61 8254.63 17084.51 5283.58 5489.48 4886.34 79
ACMP73.23 779.79 4480.53 5478.94 4285.61 5285.68 5385.61 4369.59 4677.33 5171.00 5174.45 4369.16 9271.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
QAPM78.47 5980.22 5876.43 5885.03 5686.75 4780.62 6666.00 7273.77 6465.35 7365.54 8378.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
test250671.72 9572.95 9970.29 9681.49 7583.27 7875.74 10967.59 6168.19 7949.81 14661.15 9949.73 19358.82 13684.76 4882.94 5788.27 7080.63 138
ECVR-MVScopyleft72.20 9173.91 9170.20 9881.49 7583.27 7875.74 10967.59 6168.19 7949.31 15055.77 13362.00 12058.82 13684.76 4882.94 5788.27 7080.41 142
AdaColmapbinary79.74 4678.62 6481.05 3289.23 3386.06 5284.95 4971.96 3379.39 4875.51 3163.16 9368.84 9776.51 2983.55 6182.85 5988.13 7686.46 78
CS-MVS-test78.79 5880.72 5276.53 5781.11 8283.88 7079.69 7663.72 9173.80 6369.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 60
test111171.56 9773.44 9469.38 10981.16 7982.95 8374.99 12167.68 5966.89 8446.33 16655.19 13960.91 12357.99 14484.59 5182.70 6188.12 7780.85 135
MGCFI-Net76.55 6881.71 4470.52 9381.71 7384.62 6475.02 12062.17 12182.91 3553.58 12572.78 5175.87 6161.75 12282.96 6982.61 6288.86 6390.26 48
Vis-MVSNetpermissive72.77 8877.20 7667.59 12874.19 14384.01 6876.61 10861.69 12760.62 13250.61 14270.25 6471.31 7955.57 16583.85 5882.28 6386.90 10688.08 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net74.47 7877.80 6870.59 9285.33 5385.40 5773.54 14565.98 7360.65 13156.00 11072.11 5379.15 4654.63 17083.13 6882.25 6488.04 8081.92 127
IB-MVS66.94 1271.21 10271.66 11070.68 8979.18 9982.83 8572.61 15161.77 12659.66 13663.44 8253.26 15659.65 13059.16 13576.78 14882.11 6587.90 8387.33 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
casdiffmvs_mvgpermissive77.79 6279.55 6175.73 6181.56 7484.70 6282.12 5764.26 8774.27 6067.93 6170.83 6174.66 6569.19 7483.33 6681.94 6689.29 5187.14 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 4071.53 4874.23 4581.49 4076.31 3182.85 7181.87 6788.79 6592.26 29
PVSNet_Blended_VisFu76.57 6777.90 6775.02 6680.56 8786.58 4879.24 8066.18 6964.81 9768.18 6065.61 8171.45 7667.05 8384.16 5581.80 6888.90 6090.92 40
Effi-MVS+75.28 7576.20 8174.20 7481.15 8083.24 8081.11 6163.13 10166.37 8660.27 8964.30 9168.88 9670.93 6681.56 8081.69 6988.61 6687.35 68
EIA-MVS75.64 7376.60 8074.53 7282.43 6883.84 7178.32 9162.28 12065.96 9063.28 8368.95 6867.54 10271.61 6082.55 7381.63 7089.24 5285.72 83
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5478.97 4773.30 4583.86 5781.60 7188.15 7588.83 58
OpenMVScopyleft70.44 1076.15 7176.82 7975.37 6585.01 5784.79 6178.99 8462.07 12271.27 7067.88 6257.91 12472.36 7470.15 6782.23 7681.41 7288.12 7787.78 66
MVS_111021_LR78.13 6179.85 6076.13 5981.12 8181.50 9280.28 6865.25 7776.09 5471.32 5076.49 3572.87 7372.21 5182.79 7281.29 7386.59 11987.91 64
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 12977.23 11779.46 11573.48 14769.66 4460.43 13339.56 18758.82 11553.48 16755.74 16379.59 11381.21 7488.89 6182.70 117
ET-MVSNet_ETH3D72.46 9074.19 8970.44 9462.50 20281.17 9779.90 7262.46 11864.52 10157.52 10271.49 5859.15 13272.08 5378.61 12881.11 7588.16 7483.29 115
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11477.72 11280.72 10373.81 14269.65 4561.99 12043.23 17960.54 10457.50 13958.57 13879.56 11581.07 7689.34 5083.97 107
DCV-MVSNet73.65 8375.78 8371.16 8680.19 9279.27 11777.45 10061.68 12866.73 8558.72 9465.31 8469.96 8662.19 11281.29 8880.97 7786.74 11286.91 73
CANet_DTU73.29 8576.96 7869.00 11377.04 11882.06 8879.49 7856.30 17067.85 8153.29 12771.12 5970.37 8561.81 12181.59 7980.96 7886.09 12884.73 101
FC-MVSNet-train72.60 8975.07 8569.71 10481.10 8378.79 12373.74 14465.23 7866.10 8953.34 12670.36 6363.40 11656.92 15481.44 8280.96 7887.93 8284.46 105
TSAR-MVS + COLMAP78.34 6081.64 4574.48 7380.13 9485.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10771.39 6182.91 7080.78 8086.01 13485.98 80
EPP-MVSNet74.00 8177.41 7370.02 10180.53 8883.91 6974.99 12162.68 11365.06 9549.77 14768.68 7172.09 7563.06 10782.49 7580.73 8189.12 5888.91 57
GBi-Net70.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
FMVSNet168.84 12670.47 11766.94 14071.35 17277.68 13874.71 12562.35 11956.93 15249.94 14550.01 17964.59 11157.07 15181.33 8580.72 8286.25 12482.00 124
ACMH65.37 1470.71 10570.00 12071.54 8482.51 6782.47 8777.78 9568.13 5456.19 15946.06 16954.30 14351.20 18568.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet68.79 12770.56 11566.71 14577.48 11579.54 11373.52 14669.20 5061.20 12839.76 18658.52 11650.11 19151.37 17980.26 10680.71 8688.97 5983.59 113
UGNet72.78 8777.67 6967.07 13871.65 16783.24 8075.20 11463.62 9364.93 9656.72 10671.82 5573.30 6949.02 18381.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EG-PatchMatch MVS67.24 14866.94 15667.60 12778.73 10281.35 9473.28 14959.49 14946.89 20151.42 13843.65 19553.49 16655.50 16681.38 8480.66 8887.15 9781.17 133
PCF-MVS73.28 679.42 4980.41 5678.26 4684.88 6088.17 3786.08 3969.85 4375.23 5768.43 5868.03 7578.38 4871.76 5781.26 8980.65 8988.56 6891.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)69.53 11871.90 10866.76 14376.42 12180.93 9972.59 15268.03 5661.75 12341.68 18458.34 12257.23 14153.27 17579.53 11680.62 9088.57 6784.90 99
Fast-Effi-MVS+73.11 8673.66 9272.48 8077.72 11280.88 10278.55 8858.83 15965.19 9460.36 8859.98 10862.42 11971.22 6481.66 7780.61 9188.20 7384.88 100
DU-MVS69.63 11770.91 11368.13 12075.99 12379.54 11373.81 14269.20 5061.20 12843.23 17958.52 11653.50 16558.57 13879.22 12080.45 9287.97 8183.97 107
Anonymous20240521172.16 10780.85 8581.85 8976.88 10565.40 7662.89 11546.35 19067.99 10162.05 11481.15 9180.38 9385.97 13684.50 104
FMVSNet270.39 10972.67 10367.72 12472.95 15578.00 13075.15 11562.69 11263.29 11151.25 13955.64 13468.49 10057.59 14680.91 9580.35 9486.70 11382.02 121
anonymousdsp65.28 15867.98 14662.13 16758.73 21173.98 16767.10 17450.69 19448.41 19747.66 16054.27 14552.75 17761.45 12676.71 14980.20 9587.13 10189.53 55
Anonymous2023121171.90 9372.48 10471.21 8580.14 9381.53 9176.92 10362.89 10464.46 10258.94 9143.80 19470.98 8062.22 11180.70 9780.19 9686.18 12685.73 82
thisisatest053071.48 9973.01 9869.70 10573.83 14878.62 12574.53 12659.12 15364.13 10358.63 9564.60 8958.63 13464.27 10080.28 10580.17 9787.82 8784.64 103
tttt051771.41 10072.95 9969.60 10673.70 15078.70 12474.42 13059.12 15363.89 10758.35 9864.56 9058.39 13664.27 10080.29 10480.17 9787.74 8984.69 102
FA-MVS(training)73.66 8274.95 8672.15 8178.63 10480.46 10678.92 8554.79 17369.71 7565.37 7262.04 9666.89 10567.10 8280.72 9679.87 9988.10 7984.97 97
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13176.55 14874.42 13063.75 9053.55 17749.37 14959.41 11262.45 11844.44 19079.71 11279.82 10083.17 16577.36 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER72.06 9274.24 8869.51 10770.39 17875.97 15376.91 10457.36 16764.64 9961.39 8768.86 6963.76 11463.46 10481.44 8279.70 10187.56 9285.31 91
PVSNet_BlendedMVS76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PVSNet_Blended76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
DI_MVS_plusplus_trai75.13 7676.12 8273.96 7578.18 10681.55 9080.97 6262.54 11568.59 7765.13 7561.43 9874.81 6469.32 7381.01 9479.59 10487.64 9185.89 81
FMVSNet370.49 10772.90 10167.67 12672.88 15877.98 13374.96 12462.72 10864.13 10351.44 13558.37 11969.02 9357.43 14979.43 11879.57 10586.59 11981.81 128
TAPA-MVS71.42 977.69 6380.05 5974.94 6780.68 8684.52 6581.36 5963.14 10084.77 2664.82 7668.72 7075.91 6071.86 5581.62 7879.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+66.54 1371.36 10170.09 11972.85 7982.59 6681.13 9878.56 8768.04 5561.55 12452.52 13351.50 17354.14 15868.56 7878.85 12579.50 10786.82 10983.94 109
MVS_Test75.37 7477.13 7773.31 7879.07 10081.32 9579.98 6960.12 14469.72 7464.11 7870.53 6273.22 7068.90 7580.14 10979.48 10887.67 9085.50 87
Vis-MVSNet (Re-imp)67.83 13873.52 9361.19 17178.37 10576.72 14766.80 17762.96 10265.50 9334.17 19867.19 7969.68 8939.20 20179.39 11979.44 10985.68 14076.73 168
GeoE74.23 7974.84 8773.52 7680.42 9081.46 9379.77 7361.06 13167.23 8363.67 8059.56 11168.74 9867.90 8080.25 10779.37 11088.31 6987.26 71
casdiffmvspermissive76.76 6678.46 6574.77 6980.32 9183.73 7480.65 6563.24 9773.58 6566.11 7069.39 6774.09 6869.49 7282.52 7479.35 11188.84 6486.52 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PLCcopyleft68.99 1175.68 7275.31 8476.12 6082.94 6481.26 9679.94 7166.10 7077.15 5266.86 6959.13 11468.53 9973.73 4280.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gg-mvs-nofinetune62.55 17265.05 17059.62 18078.72 10377.61 13970.83 15953.63 17439.71 21322.04 21536.36 20864.32 11247.53 18581.16 9079.03 11385.00 15277.17 164
baseline170.10 11372.17 10667.69 12579.74 9576.80 14573.91 13864.38 8462.74 11648.30 15464.94 8564.08 11354.17 17281.46 8178.92 11485.66 14176.22 169
thisisatest051567.40 14668.78 13665.80 14970.02 18075.24 16069.36 16457.37 16654.94 17053.67 12355.53 13754.85 15458.00 14378.19 13278.91 11586.39 12383.78 111
LS3D74.08 8073.39 9574.88 6885.05 5582.62 8679.71 7568.66 5272.82 6758.80 9357.61 12561.31 12271.07 6580.32 10378.87 11686.00 13580.18 144
CNLPA77.20 6577.54 7076.80 5682.63 6584.31 6679.77 7364.64 8185.17 2373.18 3956.37 13169.81 8874.53 3781.12 9278.69 11786.04 13387.29 70
UniMVSNet_ETH3D67.18 15067.03 15567.36 13174.44 14178.12 12874.07 13766.38 6752.22 18446.87 16148.64 18451.84 18256.96 15277.29 14078.53 11885.42 14582.59 118
MSDG71.52 9869.87 12173.44 7782.21 7279.35 11679.52 7764.59 8266.15 8861.87 8453.21 15856.09 14865.85 9778.94 12478.50 11986.60 11876.85 167
tfpn200view968.11 13268.72 13867.40 13077.83 11078.93 11974.28 13262.81 10556.64 15446.82 16252.65 16653.47 16856.59 15580.41 9978.43 12086.11 12780.52 140
thres40067.95 13568.62 14067.17 13577.90 10778.59 12674.27 13362.72 10856.34 15845.77 17153.00 16153.35 17156.46 15680.21 10878.43 12085.91 13880.43 141
HyFIR lowres test69.47 12068.94 13470.09 10076.77 12082.93 8476.63 10760.17 14259.00 13954.03 11940.54 20465.23 11067.89 8176.54 15178.30 12285.03 15180.07 145
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15368.41 5361.33 12738.33 19151.31 17454.13 16056.03 15979.22 12078.19 12385.37 14682.45 119
CHOSEN 1792x268869.20 12369.26 13069.13 11076.86 11978.93 11977.27 10160.12 14461.86 12254.42 11542.54 19861.61 12166.91 8878.55 12978.14 12479.23 17983.23 116
diffmvspermissive74.86 7777.37 7471.93 8275.62 12980.35 10879.42 7960.15 14372.81 6864.63 7771.51 5773.11 7266.53 9379.02 12377.98 12585.25 14886.83 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20067.98 13468.55 14167.30 13377.89 10978.86 12174.18 13662.75 10656.35 15746.48 16552.98 16253.54 16456.46 15680.41 9977.97 12686.05 13179.78 148
pm-mvs165.62 15567.42 15263.53 16373.66 15176.39 14969.66 16160.87 13449.73 19443.97 17851.24 17557.00 14448.16 18479.89 11077.84 12784.85 15579.82 147
thres600view767.68 14068.43 14266.80 14277.90 10778.86 12173.84 14062.75 10656.07 16044.70 17752.85 16452.81 17555.58 16480.41 9977.77 12886.05 13180.28 143
WR-MVS63.03 16867.40 15357.92 18675.14 13377.60 14060.56 20066.10 7054.11 17623.88 20953.94 15053.58 16334.50 20573.93 16477.71 12987.35 9580.94 134
TransMVSNet (Re)64.74 16165.66 16463.66 16277.40 11675.33 15969.86 16062.67 11447.63 19941.21 18550.01 17952.33 17845.31 18979.57 11477.69 13085.49 14377.07 166
thres100view90067.60 14468.02 14567.12 13777.83 11077.75 13773.90 13962.52 11656.64 15446.82 16252.65 16653.47 16855.92 16078.77 12677.62 13185.72 13979.23 152
GA-MVS68.14 13169.17 13266.93 14173.77 14978.50 12774.45 12758.28 16155.11 16648.44 15360.08 10653.99 16161.50 12478.43 13077.57 13285.13 14980.54 139
gm-plane-assit57.00 19657.62 20356.28 19276.10 12262.43 20947.62 21746.57 20833.84 21723.24 21137.52 20540.19 21459.61 13479.81 11177.55 13384.55 15672.03 188
dmvs_re67.22 14967.92 14766.40 14675.94 12670.55 18074.97 12363.87 8957.07 15144.75 17554.29 14456.72 14554.65 16979.53 11677.51 13484.20 15879.78 148
v1070.22 11169.76 12470.74 8774.79 13780.30 11079.22 8159.81 14757.71 14756.58 10854.22 14955.31 15166.95 8678.28 13177.47 13587.12 10385.07 95
v114469.93 11569.36 12970.61 9174.89 13680.93 9979.11 8260.64 13555.97 16155.31 11353.85 15154.14 15866.54 9278.10 13377.44 13687.14 10085.09 94
v7n67.05 15166.94 15667.17 13572.35 16078.97 11873.26 15058.88 15851.16 19050.90 14048.21 18650.11 19160.96 12777.70 13677.38 13786.68 11685.05 96
IterMVS-LS71.69 9672.82 10270.37 9577.54 11476.34 15075.13 11860.46 13961.53 12557.57 10164.89 8667.33 10366.04 9677.09 14477.37 13885.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 11968.83 13570.29 9674.49 14080.92 10178.55 8860.54 13755.04 16754.21 11652.79 16552.33 17866.92 8777.88 13577.35 13987.04 10485.51 86
PEN-MVS62.96 16965.77 16359.70 17973.98 14675.45 15763.39 19367.61 6052.49 18225.49 20853.39 15349.12 19540.85 19871.94 17677.26 14086.86 10880.72 137
v2v48270.05 11469.46 12870.74 8774.62 13980.32 10979.00 8360.62 13657.41 14956.89 10555.43 13855.14 15366.39 9477.25 14177.14 14186.90 10683.57 114
MS-PatchMatch70.17 11270.49 11669.79 10380.98 8477.97 13577.51 9758.95 15662.33 11855.22 11453.14 15965.90 10862.03 11579.08 12277.11 14284.08 15977.91 159
V4268.76 12869.63 12567.74 12364.93 19878.01 12978.30 9256.48 16958.65 14156.30 10954.26 14757.03 14364.85 9877.47 13977.01 14385.60 14284.96 98
tfpnnormal64.27 16463.64 18065.02 15275.84 12775.61 15671.24 15862.52 11647.79 19842.97 18142.65 19744.49 20752.66 17778.77 12676.86 14484.88 15479.29 151
v124068.64 12967.89 14969.51 10773.89 14780.26 11176.73 10659.97 14653.43 17953.08 12851.82 17250.84 18766.62 9176.79 14776.77 14586.78 11185.34 90
v14419269.34 12168.68 13970.12 9974.06 14480.54 10478.08 9460.54 13754.99 16954.13 11852.92 16352.80 17666.73 9077.13 14376.72 14687.15 9785.63 84
v870.23 11069.86 12270.67 9074.69 13879.82 11278.79 8659.18 15258.80 14058.20 9955.00 14057.33 14066.31 9577.51 13876.71 14786.82 10983.88 110
v192192069.03 12468.32 14369.86 10274.03 14580.37 10777.55 9660.25 14154.62 17153.59 12452.36 16951.50 18466.75 8977.17 14276.69 14886.96 10585.56 85
baseline269.69 11670.27 11869.01 11275.72 12877.13 14373.82 14158.94 15761.35 12657.09 10461.68 9757.17 14261.99 11678.10 13376.58 14986.48 12279.85 146
DTE-MVSNet61.85 18164.96 17258.22 18574.32 14274.39 16661.01 19967.85 5851.76 18921.91 21653.28 15548.17 19637.74 20272.22 17376.44 15086.52 12178.49 156
LTVRE_ROB59.44 1661.82 18462.64 18660.87 17372.83 15977.19 14264.37 18958.97 15533.56 21828.00 20552.59 16842.21 21063.93 10374.52 16076.28 15177.15 18682.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs662.41 17562.88 18361.87 16871.38 17175.18 16367.76 17059.45 15141.64 20942.52 18337.33 20652.91 17446.87 18677.67 13776.26 15283.23 16479.18 153
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 13975.15 13277.97 13577.12 10255.40 17257.87 14246.68 16456.17 13260.39 12462.36 11076.32 15276.25 15385.35 14781.34 131
TDRefinement66.09 15465.03 17167.31 13269.73 18276.75 14675.33 11164.55 8360.28 13449.72 14845.63 19242.83 20960.46 13275.75 15375.95 15484.08 15978.04 158
CP-MVSNet62.68 17165.49 16659.40 18271.84 16375.34 15862.87 19567.04 6552.64 18127.19 20653.38 15448.15 19741.40 19671.26 17975.68 15586.07 12982.00 124
PS-CasMVS62.38 17765.06 16959.25 18371.73 16475.21 16262.77 19666.99 6651.94 18826.96 20752.00 17147.52 20041.06 19771.16 18275.60 15685.97 13681.97 126
Effi-MVS+-dtu71.82 9471.86 10971.78 8378.77 10180.47 10578.55 8861.67 12960.68 13055.49 11158.48 11865.48 10968.85 7676.92 14575.55 15787.35 9585.46 88
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15868.70 11580.49 8977.98 13375.29 11362.95 10363.62 10949.96 14447.32 18950.72 18858.57 13876.87 14675.50 15884.94 15375.33 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs467.89 13667.39 15468.48 11771.60 16973.57 16874.45 12760.98 13264.65 9857.97 10054.95 14151.73 18361.88 11873.78 16575.11 15983.99 16177.91 159
WR-MVS_H61.83 18365.87 16257.12 18971.72 16576.87 14461.45 19866.19 6851.97 18722.92 21353.13 16052.30 18033.80 20671.03 18375.00 16086.65 11780.78 136
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18775.05 11963.30 9566.36 8745.27 17367.40 7866.84 10643.64 19275.37 15574.98 16181.15 17177.44 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline70.45 10874.09 9066.20 14770.95 17575.67 15474.26 13453.57 17568.33 7858.42 9669.87 6571.45 7661.55 12374.84 15974.76 16278.42 18183.72 112
USDC67.36 14767.90 14866.74 14471.72 16575.23 16171.58 15560.28 14067.45 8250.54 14360.93 10045.20 20662.08 11376.56 15074.50 16384.25 15775.38 177
PatchMatch-RL67.78 13966.65 15969.10 11173.01 15472.69 17168.49 16761.85 12562.93 11460.20 9056.83 13050.42 18969.52 7175.62 15474.46 16481.51 16973.62 186
IterMVS-SCA-FT66.89 15269.22 13164.17 15771.30 17375.64 15571.33 15653.17 17957.63 14849.08 15160.72 10260.05 12863.09 10674.99 15873.92 16577.07 18781.57 130
v14867.85 13767.53 15068.23 11873.25 15377.57 14174.26 13457.36 16755.70 16257.45 10353.53 15255.42 15061.96 11775.23 15673.92 16585.08 15081.32 132
pmmvs-eth3d63.52 16762.44 18964.77 15466.82 19370.12 18169.41 16359.48 15054.34 17552.71 12946.24 19144.35 20856.93 15372.37 16973.77 16783.30 16375.91 171
PMMVS65.06 15969.17 13260.26 17655.25 21763.43 20366.71 17843.01 21262.41 11750.64 14169.44 6667.04 10463.29 10574.36 16273.54 16882.68 16673.99 185
pmmvs562.37 17864.04 17760.42 17465.03 19671.67 17567.17 17352.70 18450.30 19144.80 17454.23 14851.19 18649.37 18272.88 16873.48 16983.45 16274.55 181
CR-MVSNet64.83 16065.54 16564.01 16070.64 17769.41 18265.97 18252.74 18257.81 14452.65 13054.27 14556.31 14760.92 12872.20 17473.09 17081.12 17275.69 174
PatchT61.97 18064.04 17759.55 18160.49 20667.40 19056.54 20748.65 20256.69 15352.65 13051.10 17652.14 18160.92 12872.20 17473.09 17078.03 18275.69 174
IterMVS66.36 15368.30 14464.10 15869.48 18574.61 16573.41 14850.79 19357.30 15048.28 15560.64 10359.92 12960.85 13174.14 16372.66 17281.80 16878.82 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap62.84 17061.03 19564.96 15369.61 18371.69 17468.48 16859.76 14855.41 16347.69 15947.33 18834.20 21862.76 10974.52 16072.59 17381.44 17071.47 189
TAMVS59.58 19162.81 18555.81 19366.03 19465.64 19763.86 19148.74 20149.95 19337.07 19554.77 14258.54 13544.44 19072.29 17171.79 17474.70 19866.66 200
MIMVSNet58.52 19461.34 19455.22 19560.76 20567.01 19266.81 17649.02 20056.43 15638.90 18940.59 20354.54 15740.57 19973.16 16771.65 17575.30 19766.00 201
SixPastTwentyTwo61.84 18262.45 18861.12 17269.20 18672.20 17262.03 19757.40 16546.54 20238.03 19357.14 12941.72 21158.12 14269.67 19371.58 17681.94 16778.30 157
CVMVSNet62.55 17265.89 16158.64 18466.95 19169.15 18466.49 18156.29 17152.46 18332.70 19959.27 11358.21 13850.09 18171.77 17771.39 17779.31 17878.99 154
FC-MVSNet-test56.90 19765.20 16847.21 20766.98 19063.20 20549.11 21658.60 16059.38 13811.50 22365.60 8256.68 14624.66 21571.17 18171.36 17872.38 20569.02 196
FMVSNet557.24 19560.02 19853.99 19956.45 21462.74 20765.27 18547.03 20755.14 16539.55 18840.88 20153.42 17041.83 19372.35 17071.10 17973.79 20164.50 204
CMPMVSbinary47.78 1762.49 17462.52 18762.46 16670.01 18170.66 17962.97 19451.84 18851.98 18656.71 10742.87 19653.62 16257.80 14572.23 17270.37 18075.45 19675.91 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 158.80 19261.58 19355.56 19475.02 13468.45 18859.58 20461.96 12352.74 18029.57 20249.75 18254.56 15631.46 20871.19 18069.77 18175.75 19264.57 203
test-mter60.84 18764.62 17456.42 19155.99 21564.18 19865.39 18434.23 21754.39 17446.21 16857.40 12859.49 13155.86 16171.02 18469.65 18280.87 17476.20 170
test-LLR64.42 16264.36 17564.49 15675.02 13463.93 20066.61 17961.96 12354.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
TESTMET0.1,161.10 18664.36 17557.29 18857.53 21263.93 20066.61 17936.22 21654.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
test20.0353.93 20456.28 20551.19 20372.19 16265.83 19553.20 21161.08 13042.74 20722.08 21437.07 20745.76 20524.29 21670.44 18969.04 18574.31 20063.05 207
MIMVSNet149.27 20753.25 20744.62 20944.61 21961.52 21053.61 21052.18 18541.62 21018.68 21928.14 21741.58 21225.50 21168.46 19969.04 18573.15 20362.37 209
Anonymous2023120656.36 19857.80 20254.67 19770.08 17966.39 19460.46 20157.54 16449.50 19629.30 20333.86 21146.64 20135.18 20470.44 18968.88 18775.47 19568.88 197
CostFormer68.92 12569.58 12668.15 11975.98 12576.17 15278.22 9351.86 18765.80 9161.56 8663.57 9262.83 11761.85 11970.40 19168.67 18879.42 17779.62 150
testgi54.39 20357.86 20150.35 20471.59 17067.24 19154.95 20953.25 17843.36 20623.78 21044.64 19347.87 19824.96 21370.45 18868.66 18973.60 20262.78 208
CHOSEN 280x42058.70 19361.88 19254.98 19655.45 21650.55 21964.92 18640.36 21355.21 16438.13 19248.31 18563.76 11463.03 10873.73 16668.58 19068.00 21473.04 187
RPMNet61.71 18562.88 18360.34 17569.51 18469.41 18263.48 19249.23 19857.81 14445.64 17250.51 17750.12 19053.13 17668.17 20068.49 19181.07 17375.62 176
RPSCF67.64 14371.25 11163.43 16461.86 20470.73 17867.26 17250.86 19274.20 6158.91 9267.49 7769.33 9064.10 10271.41 17868.45 19277.61 18377.17 164
SCA65.40 15766.58 16064.02 15970.65 17673.37 16967.35 17153.46 17763.66 10854.14 11760.84 10160.20 12761.50 12469.96 19268.14 19377.01 18869.91 192
ambc53.42 20664.99 19763.36 20449.96 21447.07 20037.12 19428.97 21516.36 22741.82 19475.10 15767.34 19471.55 20775.72 173
MDTV_nov1_ep1364.37 16365.24 16763.37 16568.94 18770.81 17772.40 15450.29 19660.10 13553.91 12160.07 10759.15 13257.21 15069.43 19567.30 19577.47 18469.78 194
GG-mvs-BLEND46.86 21167.51 15122.75 2170.05 22976.21 15164.69 1870.04 22561.90 1210.09 23055.57 13571.32 780.08 22570.54 18767.19 19671.58 20669.86 193
dps64.00 16662.99 18265.18 15073.29 15272.07 17368.98 16653.07 18057.74 14658.41 9755.55 13647.74 19960.89 13069.53 19467.14 19776.44 19171.19 190
PM-MVS60.48 18860.94 19659.94 17758.85 20966.83 19364.27 19051.39 19055.03 16848.03 15650.00 18140.79 21358.26 14169.20 19667.13 19878.84 18077.60 161
MDTV_nov1_ep13_2view60.16 18960.51 19759.75 17865.39 19569.05 18568.00 16948.29 20451.99 18545.95 17048.01 18749.64 19453.39 17468.83 19766.52 19977.47 18469.55 195
PatchmatchNetpermissive64.21 16564.65 17363.69 16171.29 17468.66 18669.63 16251.70 18963.04 11253.77 12259.83 11058.34 13760.23 13368.54 19866.06 20075.56 19468.08 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 20553.01 20853.79 20043.67 22167.95 18959.69 20357.92 16343.69 20532.41 20041.47 19927.89 22452.38 17856.97 21665.99 20176.68 18967.13 199
EU-MVSNet54.63 20158.69 19949.90 20556.99 21362.70 20856.41 20850.64 19545.95 20423.14 21250.42 17846.51 20236.63 20365.51 20364.85 20275.57 19374.91 179
tpm62.41 17563.15 18161.55 17072.24 16163.79 20271.31 15746.12 21057.82 14355.33 11259.90 10954.74 15553.63 17367.24 20164.29 20370.65 20974.25 184
tpm cat165.41 15663.81 17967.28 13475.61 13072.88 17075.32 11252.85 18162.97 11363.66 8153.24 15753.29 17361.83 12065.54 20264.14 20474.43 19974.60 180
pmmvs347.65 20849.08 21345.99 20844.61 21954.79 21650.04 21331.95 22033.91 21629.90 20130.37 21333.53 21946.31 18763.50 20663.67 20573.14 20463.77 206
tpmrst62.00 17962.35 19061.58 16971.62 16864.14 19969.07 16548.22 20662.21 11953.93 12058.26 12355.30 15255.81 16263.22 20762.62 20670.85 20870.70 191
EPMVS60.00 19061.97 19157.71 18768.46 18863.17 20664.54 18848.23 20563.30 11044.72 17660.19 10556.05 14950.85 18065.27 20562.02 20769.44 21163.81 205
Gipumacopyleft36.38 21535.80 21737.07 21245.76 21833.90 22229.81 22148.47 20339.91 21218.02 2208.00 2258.14 22925.14 21259.29 21261.02 20855.19 21940.31 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0255.30 20057.01 20453.30 20264.14 19959.09 21158.39 20650.24 19753.47 17838.68 19049.75 18245.86 20440.14 20065.38 20460.22 20968.19 21365.33 202
ADS-MVSNet55.94 19958.01 20053.54 20162.48 20358.48 21259.12 20546.20 20959.65 13742.88 18252.34 17053.31 17246.31 18762.00 20960.02 21064.23 21660.24 212
MVS-HIRNet54.41 20252.10 20957.11 19058.99 20856.10 21549.68 21549.10 19946.18 20352.15 13433.18 21246.11 20356.10 15863.19 20859.70 21176.64 19060.25 211
WB-MVS40.01 21345.06 21434.13 21358.84 21053.28 21728.60 22258.10 16232.93 2204.65 22840.92 20028.33 2237.26 22258.86 21456.09 21247.36 22044.98 217
FPMVS51.87 20650.00 21154.07 19866.83 19257.25 21360.25 20250.91 19150.25 19234.36 19736.04 20932.02 22041.49 19558.98 21356.07 21370.56 21059.36 213
N_pmnet47.35 20950.13 21044.11 21059.98 20751.64 21851.86 21244.80 21149.58 19520.76 21740.65 20240.05 21529.64 20959.84 21155.15 21457.63 21754.00 215
new-patchmatchnet46.97 21049.47 21244.05 21162.82 20156.55 21445.35 21852.01 18642.47 20817.04 22135.73 21035.21 21721.84 21961.27 21054.83 21565.26 21560.26 210
PMVScopyleft39.38 1846.06 21243.30 21549.28 20662.93 20038.75 22141.88 21953.50 17633.33 21935.46 19628.90 21631.01 22133.04 20758.61 21554.63 21668.86 21257.88 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21442.64 21633.44 21437.54 22445.00 22036.60 22032.72 21940.27 21112.72 22229.89 21428.90 22224.78 21453.17 21752.90 21756.31 21848.34 216
MVEpermissive19.12 1920.47 22023.27 22017.20 22012.66 22725.41 22410.52 22834.14 21814.79 2256.53 2278.79 2244.68 23016.64 22129.49 22141.63 21822.73 22638.11 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 21629.75 21820.76 21828.00 22530.93 22323.10 22429.18 22123.14 2221.46 22918.23 22116.54 2265.08 22340.22 21841.40 21937.76 22137.79 220
tmp_tt14.50 22114.68 2267.17 22810.46 2292.21 22437.73 21428.71 20425.26 21816.98 2254.37 22431.49 22029.77 22026.56 225
E-PMN21.77 21818.24 22125.89 21540.22 22219.58 22512.46 22739.87 21418.68 2246.71 2259.57 2224.31 23222.36 21819.89 22327.28 22133.73 22328.34 222
EMVS20.98 21917.15 22225.44 21639.51 22319.37 22612.66 22639.59 21519.10 2236.62 2269.27 2234.40 23122.43 21717.99 22424.40 22231.81 22425.53 223
test_method22.26 21725.94 21917.95 2193.24 2287.17 22823.83 2237.27 22337.35 21520.44 21821.87 22039.16 21618.67 22034.56 21920.84 22334.28 22220.64 224
testmvs0.09 2210.15 2230.02 2220.01 2300.02 2300.05 2310.01 2260.11 2260.01 2310.26 2270.01 2330.06 2270.10 2250.10 2240.01 2280.43 226
test1230.09 2210.14 2240.02 2220.00 2310.02 2300.02 2320.01 2260.09 2270.00 2320.30 2260.00 2340.08 2250.03 2260.09 2250.01 2280.45 225
uanet_test0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 53
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
our_test_367.93 18970.99 17666.89 175
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 230
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 19665.97 18252.74 18252.65 130
DeepMVS_CXcopyleft18.74 22718.55 2258.02 22226.96 2217.33 22423.81 21913.05 22825.99 21025.17 22222.45 22736.25 221