This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 2987.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 3990.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3190.38 1188.61 2676.50 186.25 2277.22 2375.12 3980.28 4477.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2291.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4494.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3590.48 1085.46 4573.08 2890.97 673.77 3684.81 2285.95 2077.43 2288.22 1187.73 1187.85 8394.34 9
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3274.24 1784.88 2576.23 2775.26 3881.05 4277.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3177.74 1987.42 1987.20 1590.77 1392.63 25
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1273.24 2783.85 3276.46 2672.43 4982.65 3273.02 4886.37 3586.91 1990.03 3689.62 51
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4477.07 3281.92 3671.72 5886.98 2886.86 2090.47 2392.36 28
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1786.60 3671.48 3681.28 4178.18 2064.78 8477.96 5177.13 2687.32 2286.83 2190.41 2891.48 35
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS82.36 3585.89 2978.24 4786.40 4689.52 1885.52 4369.52 4882.38 3965.67 6981.35 2782.36 3373.07 4787.31 2386.76 2389.24 5191.56 34
PGM-MVS84.42 2786.29 2782.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2382.09 3477.03 2787.13 2486.73 2490.73 1592.06 31
CSCG85.28 2187.68 1982.49 2489.95 2391.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4190.95 987.55 1374.57 3687.08 2686.54 2687.47 9093.67 17
CP-MVS84.74 2686.43 2682.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2683.50 2977.29 2586.92 3086.49 2790.49 2293.14 23
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_030481.73 3883.86 3579.26 4186.22 4889.18 2486.41 3767.15 6475.28 5370.75 5174.59 4183.49 3074.42 3887.05 2786.34 2990.58 2091.08 39
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2588.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4367.47 6382.09 2581.44 4071.85 5685.89 4186.15 3290.24 3291.25 37
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2879.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
DELS-MVS79.15 5481.07 4976.91 5583.54 6087.31 4184.45 5064.92 8069.98 6969.34 5571.62 5376.26 5469.84 6786.57 3285.90 3489.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 3982.65 2478.22 4975.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5386.96 4384.91 4970.25 4184.71 2873.91 3585.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
CANet81.62 3983.41 3679.53 4087.06 4188.59 3185.47 4467.96 5776.59 5174.05 3374.69 4081.98 3572.98 4986.14 3985.47 3789.68 4590.42 45
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5389.81 1673.55 2583.95 3173.30 3789.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5887.35 4084.43 5165.54 7578.29 4773.97 3463.00 9275.62 5974.07 4085.00 4785.34 3990.11 3589.04 53
OPM-MVS79.68 4779.28 6080.15 3787.99 3886.77 4588.52 2872.72 2964.55 9867.65 6267.87 7374.33 6474.31 3986.37 3585.25 4089.73 4389.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5085.17 5783.45 5469.28 4974.08 6070.31 5374.31 4375.26 6073.13 4686.46 3485.15 4189.53 4689.81 49
MAR-MVS79.21 5280.32 5577.92 4987.46 3988.15 3783.95 5267.48 6374.28 5768.25 5864.70 8577.04 5272.17 5285.42 4385.00 4288.22 6987.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4287.22 4285.82 4170.04 4280.30 4278.66 1968.67 6981.04 4377.81 1885.19 4684.88 4389.19 5491.31 36
CLD-MVS79.35 5081.23 4677.16 5385.01 5686.92 4485.87 4060.89 13080.07 4575.35 3172.96 4773.21 6868.43 7785.41 4484.63 4487.41 9185.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs79.16 5382.37 4275.41 6382.33 6886.38 4980.80 6263.18 9782.90 3567.34 6472.79 4876.07 5669.62 6883.46 6484.41 4589.20 5390.60 43
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4785.36 5686.76 3569.59 4677.34 4865.14 7275.68 3670.79 7871.37 6284.60 5084.01 4690.18 3390.74 42
ACMM72.26 878.86 5678.13 6479.71 3986.89 4383.40 7486.02 3970.50 3975.28 5371.49 4863.01 9169.26 8873.57 4384.11 5683.98 4789.76 4287.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DROMVSNet79.44 4881.35 4577.22 5282.95 6284.67 6181.31 5963.65 9172.47 6768.75 5673.15 4678.33 4875.99 3286.06 4083.96 4890.67 1790.79 41
CS-MVS79.22 5181.11 4877.01 5481.36 7484.03 6480.35 6563.25 9573.43 6470.37 5274.10 4576.03 5776.40 3086.32 3783.95 4990.34 3189.93 47
ETV-MVS77.32 6378.81 6175.58 6282.24 6983.64 7279.98 6764.02 8869.64 7463.90 7770.89 5769.94 8473.41 4485.39 4583.91 5089.92 3788.31 58
HQP-MVS81.19 4083.27 3778.76 4487.40 4085.45 5486.95 3470.47 4081.31 4066.91 6679.24 3076.63 5371.67 5984.43 5483.78 5189.19 5492.05 33
EPNet79.08 5580.62 5177.28 5188.90 3483.17 7983.65 5372.41 3174.41 5667.15 6576.78 3374.37 6364.43 9783.70 6083.69 5287.15 9488.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet73.33 8277.34 7368.65 11481.29 7583.47 7374.45 12363.58 9365.75 9048.49 14967.11 7770.61 7954.63 16684.51 5283.58 5389.48 4786.34 76
ACMP73.23 779.79 4480.53 5278.94 4285.61 5185.68 5185.61 4269.59 4677.33 4971.00 5074.45 4269.16 8971.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
QAPM78.47 5880.22 5676.43 5885.03 5586.75 4680.62 6466.00 7273.77 6265.35 7165.54 8078.02 5072.69 5083.71 5983.36 5588.87 6090.41 46
test250671.72 9372.95 9770.29 9481.49 7283.27 7575.74 10767.59 6168.19 7749.81 14361.15 9649.73 18958.82 13384.76 4882.94 5688.27 6780.63 135
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7283.27 7575.74 10767.59 6168.19 7749.31 14755.77 13062.00 11758.82 13384.76 4882.94 5688.27 6780.41 139
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3286.06 5084.95 4871.96 3379.39 4675.51 3063.16 9068.84 9476.51 2983.55 6182.85 5888.13 7386.46 75
CS-MVS-test78.79 5780.72 5076.53 5781.11 7983.88 6779.69 7463.72 9073.80 6169.95 5475.40 3776.17 5574.85 3584.50 5382.78 5989.87 3988.54 57
test111171.56 9573.44 9269.38 10781.16 7682.95 8074.99 11867.68 5966.89 8246.33 16355.19 13660.91 12057.99 14184.59 5182.70 6088.12 7480.85 132
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 13984.01 6576.61 10661.69 12460.62 13050.61 13970.25 6171.31 7655.57 16283.85 5882.28 6186.90 10388.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net74.47 7677.80 6670.59 9185.33 5285.40 5573.54 14165.98 7360.65 12956.00 10872.11 5079.15 4554.63 16683.13 6782.25 6288.04 7781.92 124
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9682.83 8272.61 14761.77 12359.66 13463.44 8053.26 15259.65 12759.16 13276.78 14582.11 6387.90 8087.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7184.70 6082.12 5664.26 8774.27 5867.93 6070.83 5874.66 6269.19 7283.33 6581.94 6489.29 5087.14 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS81.77 3783.10 3880.21 3685.93 4986.45 4887.72 3370.98 3882.54 3871.53 4774.23 4481.49 3976.31 3182.85 6981.87 6588.79 6292.26 29
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8486.58 4779.24 7866.18 6964.81 9568.18 5965.61 7871.45 7367.05 8184.16 5581.80 6688.90 5890.92 40
Effi-MVS+75.28 7376.20 7974.20 7381.15 7783.24 7781.11 6063.13 9966.37 8460.27 8764.30 8868.88 9370.93 6581.56 7881.69 6788.61 6387.35 65
EIA-MVS75.64 7176.60 7874.53 7182.43 6783.84 6878.32 8962.28 11865.96 8863.28 8168.95 6567.54 9971.61 6082.55 7181.63 6889.24 5185.72 80
OMC-MVS80.26 4182.59 4177.54 5083.04 6185.54 5283.25 5565.05 7987.32 1872.42 4072.04 5178.97 4673.30 4583.86 5781.60 6988.15 7288.83 55
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5684.79 5978.99 8262.07 11971.27 6867.88 6157.91 12172.36 7170.15 6682.23 7481.41 7088.12 7487.78 63
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7881.50 8980.28 6665.25 7776.09 5271.32 4976.49 3572.87 7072.21 5182.79 7081.29 7186.59 11687.91 61
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11479.46 11273.48 14369.66 4460.43 13139.56 18358.82 11253.48 16355.74 16079.59 11181.21 7288.89 5982.70 114
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 19881.17 9479.90 7062.46 11664.52 9957.52 10071.49 5559.15 12972.08 5378.61 12581.11 7388.16 7183.29 112
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 10980.72 10073.81 13869.65 4561.99 11843.23 17560.54 10157.50 13658.57 13579.56 11381.07 7489.34 4983.97 104
DCV-MVSNet73.65 8175.78 8171.16 8580.19 8979.27 11477.45 9861.68 12566.73 8358.72 9265.31 8169.96 8362.19 11081.29 8680.97 7586.74 10986.91 70
CANet_DTU73.29 8376.96 7669.00 11177.04 11582.06 8579.49 7656.30 16667.85 7953.29 12471.12 5670.37 8261.81 11981.59 7780.96 7686.09 12584.73 98
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8078.79 12073.74 14065.23 7866.10 8753.34 12370.36 6063.40 11356.92 15181.44 8080.96 7687.93 7984.46 102
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9185.01 5881.73 5765.93 7484.75 2761.68 8385.79 1966.27 10471.39 6182.91 6880.78 7886.01 13185.98 77
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8583.91 6674.99 11862.68 11165.06 9349.77 14468.68 6872.09 7263.06 10582.49 7380.73 7989.12 5688.91 54
GBi-Net70.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
test170.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
FMVSNet168.84 12470.47 11566.94 13871.35 16877.68 13574.71 12162.35 11756.93 14949.94 14250.01 17564.59 10857.07 14881.33 8380.72 8086.25 12182.00 121
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6682.47 8477.78 9368.13 5456.19 15646.06 16654.30 14051.20 18168.68 7580.66 9680.72 8086.07 12684.45 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet68.79 12570.56 11366.71 14377.48 11279.54 11073.52 14269.20 5061.20 12639.76 18258.52 11350.11 18751.37 17580.26 10480.71 8488.97 5783.59 110
UGNet72.78 8577.67 6767.07 13671.65 16383.24 7775.20 11263.62 9264.93 9456.72 10471.82 5273.30 6649.02 17981.02 9180.70 8586.22 12288.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EG-PatchMatch MVS67.24 14666.94 15367.60 12578.73 9981.35 9173.28 14559.49 14646.89 19851.42 13543.65 19153.49 16255.50 16381.38 8280.66 8687.15 9481.17 130
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 5988.17 3686.08 3869.85 4375.23 5568.43 5768.03 7278.38 4771.76 5781.26 8780.65 8788.56 6591.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11880.93 9672.59 14868.03 5661.75 12141.68 18058.34 11957.23 13853.27 17179.53 11480.62 8888.57 6484.90 96
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 10980.88 9978.55 8658.83 15665.19 9260.36 8659.98 10562.42 11671.22 6381.66 7580.61 8988.20 7084.88 97
DU-MVS69.63 11570.91 11168.13 11875.99 12079.54 11073.81 13869.20 5061.20 12643.23 17558.52 11353.50 16158.57 13579.22 11780.45 9087.97 7883.97 104
Anonymous20240521172.16 10580.85 8281.85 8676.88 10365.40 7662.89 11346.35 18667.99 9862.05 11281.15 8980.38 9185.97 13384.50 101
FMVSNet270.39 10772.67 10167.72 12272.95 15178.00 12775.15 11362.69 11063.29 10951.25 13655.64 13168.49 9757.59 14380.91 9380.35 9286.70 11082.02 118
anonymousdsp65.28 15567.98 14462.13 16458.73 20673.98 16467.10 17050.69 19048.41 19447.66 15754.27 14152.75 17361.45 12376.71 14680.20 9387.13 9889.53 52
Anonymous2023121171.90 9172.48 10271.21 8480.14 9081.53 8876.92 10162.89 10264.46 10058.94 8943.80 19070.98 7762.22 10980.70 9580.19 9486.18 12385.73 79
thisisatest053071.48 9773.01 9669.70 10373.83 14478.62 12274.53 12259.12 15064.13 10158.63 9364.60 8658.63 13164.27 9880.28 10380.17 9587.82 8484.64 100
tttt051771.41 9872.95 9769.60 10473.70 14678.70 12174.42 12659.12 15063.89 10558.35 9664.56 8758.39 13364.27 9880.29 10280.17 9587.74 8684.69 99
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10180.46 10378.92 8354.79 16969.71 7365.37 7062.04 9366.89 10267.10 8080.72 9479.87 9788.10 7684.97 94
CDS-MVSNet67.65 14069.83 12165.09 14875.39 12776.55 14574.42 12663.75 8953.55 17449.37 14659.41 10962.45 11544.44 18679.71 11079.82 9883.17 16177.36 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER72.06 9074.24 8669.51 10570.39 17475.97 15076.91 10257.36 16364.64 9761.39 8568.86 6663.76 11163.46 10281.44 8079.70 9987.56 8985.31 88
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10381.55 8780.97 6162.54 11368.59 7565.13 7361.43 9574.81 6169.32 7181.01 9279.59 10287.64 8885.89 78
FMVSNet370.49 10572.90 9967.67 12472.88 15477.98 13074.96 12062.72 10664.13 10151.44 13258.37 11669.02 9057.43 14679.43 11579.57 10386.59 11681.81 125
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8384.52 6281.36 5863.14 9884.77 2664.82 7468.72 6775.91 5871.86 5581.62 7679.55 10487.80 8585.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6581.13 9578.56 8568.04 5561.55 12252.52 13051.50 16954.14 15468.56 7678.85 12279.50 10586.82 10683.94 106
MVS_Test75.37 7277.13 7573.31 7779.07 9781.32 9279.98 6760.12 14169.72 7264.11 7670.53 5973.22 6768.90 7380.14 10779.48 10687.67 8785.50 84
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16878.37 10276.72 14466.80 17362.96 10065.50 9134.17 19467.19 7669.68 8639.20 19779.39 11679.44 10785.68 13776.73 164
GeoE74.23 7774.84 8573.52 7580.42 8781.46 9079.77 7161.06 12867.23 8163.67 7859.56 10868.74 9567.90 7880.25 10579.37 10888.31 6687.26 68
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8883.73 7180.65 6363.24 9673.58 6366.11 6869.39 6474.09 6569.49 7082.52 7279.35 10988.84 6186.52 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6381.26 9379.94 6966.10 7077.15 5066.86 6759.13 11168.53 9673.73 4280.38 10079.04 11087.13 9881.68 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gg-mvs-nofinetune62.55 16965.05 16759.62 17778.72 10077.61 13670.83 15553.63 17039.71 21022.04 21136.36 20364.32 10947.53 18181.16 8879.03 11185.00 14977.17 160
baseline170.10 11172.17 10467.69 12379.74 9276.80 14273.91 13464.38 8462.74 11448.30 15164.94 8264.08 11054.17 16881.46 7978.92 11285.66 13876.22 165
thisisatest051567.40 14468.78 13465.80 14670.02 17675.24 15769.36 16057.37 16254.94 16753.67 12155.53 13454.85 15058.00 14078.19 12978.91 11386.39 12083.78 108
LS3D74.08 7873.39 9374.88 6785.05 5482.62 8379.71 7368.66 5272.82 6558.80 9157.61 12261.31 11971.07 6480.32 10178.87 11486.00 13280.18 141
CNLPA77.20 6477.54 6876.80 5682.63 6484.31 6379.77 7164.64 8185.17 2373.18 3856.37 12869.81 8574.53 3781.12 9078.69 11586.04 13087.29 67
UniMVSNet_ETH3D67.18 14767.03 15267.36 12974.44 13778.12 12574.07 13366.38 6752.22 18146.87 15848.64 18051.84 17856.96 14977.29 13778.53 11685.42 14282.59 115
MSDG71.52 9669.87 11973.44 7682.21 7079.35 11379.52 7564.59 8266.15 8661.87 8253.21 15456.09 14465.85 9578.94 12178.50 11786.60 11576.85 163
tfpn200view968.11 13068.72 13667.40 12877.83 10778.93 11674.28 12862.81 10356.64 15146.82 15952.65 16253.47 16456.59 15280.41 9778.43 11886.11 12480.52 137
thres40067.95 13368.62 13867.17 13377.90 10478.59 12374.27 12962.72 10656.34 15545.77 16853.00 15753.35 16756.46 15380.21 10678.43 11885.91 13580.43 138
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11782.93 8176.63 10560.17 13959.00 13754.03 11740.54 19965.23 10767.89 7976.54 14878.30 12085.03 14880.07 142
Baseline_NR-MVSNet67.53 14368.77 13566.09 14575.99 12074.75 16172.43 14968.41 5361.33 12538.33 18751.31 17054.13 15656.03 15679.22 11778.19 12185.37 14382.45 116
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11678.93 11677.27 9960.12 14161.86 12054.42 11342.54 19461.61 11866.91 8678.55 12678.14 12279.23 17583.23 113
diffmvspermissive74.86 7577.37 7271.93 8175.62 12580.35 10579.42 7760.15 14072.81 6664.63 7571.51 5473.11 6966.53 9179.02 12077.98 12385.25 14586.83 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20067.98 13268.55 13967.30 13177.89 10678.86 11874.18 13262.75 10456.35 15446.48 16252.98 15853.54 16056.46 15380.41 9777.97 12486.05 12879.78 145
pm-mvs165.62 15267.42 14963.53 16073.66 14776.39 14669.66 15760.87 13149.73 19143.97 17451.24 17157.00 14148.16 18079.89 10877.84 12584.85 15279.82 144
thres600view767.68 13868.43 14066.80 14077.90 10478.86 11873.84 13662.75 10456.07 15744.70 17352.85 16052.81 17155.58 16180.41 9777.77 12686.05 12880.28 140
WR-MVS63.03 16567.40 15057.92 18375.14 12977.60 13760.56 19666.10 7054.11 17323.88 20553.94 14653.58 15934.50 20173.93 16177.71 12787.35 9280.94 131
TransMVSNet (Re)64.74 15865.66 16163.66 15977.40 11375.33 15669.86 15662.67 11247.63 19641.21 18150.01 17552.33 17445.31 18579.57 11277.69 12885.49 14077.07 162
thres100view90067.60 14268.02 14367.12 13577.83 10777.75 13473.90 13562.52 11456.64 15146.82 15952.65 16253.47 16455.92 15778.77 12377.62 12985.72 13679.23 148
GA-MVS68.14 12969.17 13066.93 13973.77 14578.50 12474.45 12358.28 15855.11 16348.44 15060.08 10353.99 15761.50 12178.43 12777.57 13085.13 14680.54 136
gm-plane-assit57.00 19357.62 20056.28 18976.10 11962.43 20547.62 21346.57 20433.84 21423.24 20737.52 20040.19 21059.61 13179.81 10977.55 13184.55 15372.03 184
v1070.22 10969.76 12270.74 8674.79 13380.30 10779.22 7959.81 14457.71 14556.58 10654.22 14555.31 14766.95 8478.28 12877.47 13287.12 10085.07 92
v114469.93 11369.36 12770.61 9074.89 13280.93 9679.11 8060.64 13255.97 15855.31 11153.85 14754.14 15466.54 9078.10 13077.44 13387.14 9785.09 91
v7n67.05 14866.94 15367.17 13372.35 15678.97 11573.26 14658.88 15551.16 18750.90 13748.21 18250.11 18760.96 12477.70 13377.38 13486.68 11385.05 93
IterMVS-LS71.69 9472.82 10070.37 9377.54 11176.34 14775.13 11660.46 13661.53 12357.57 9964.89 8367.33 10066.04 9477.09 14177.37 13585.48 14185.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 11768.83 13370.29 9474.49 13680.92 9878.55 8660.54 13455.04 16454.21 11452.79 16152.33 17466.92 8577.88 13277.35 13687.04 10185.51 83
PEN-MVS62.96 16665.77 16059.70 17673.98 14275.45 15463.39 18967.61 6052.49 17925.49 20453.39 14949.12 19140.85 19471.94 17377.26 13786.86 10580.72 134
v2v48270.05 11269.46 12670.74 8674.62 13580.32 10679.00 8160.62 13357.41 14756.89 10355.43 13555.14 14966.39 9277.25 13877.14 13886.90 10383.57 111
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8177.97 13277.51 9558.95 15362.33 11655.22 11253.14 15565.90 10562.03 11379.08 11977.11 13984.08 15577.91 155
V4268.76 12669.63 12367.74 12164.93 19478.01 12678.30 9056.48 16558.65 13956.30 10754.26 14357.03 14064.85 9677.47 13677.01 14085.60 13984.96 95
tfpnnormal64.27 16163.64 17765.02 14975.84 12375.61 15371.24 15462.52 11447.79 19542.97 17742.65 19344.49 20352.66 17378.77 12376.86 14184.88 15179.29 147
v124068.64 12767.89 14669.51 10573.89 14380.26 10876.73 10459.97 14353.43 17653.08 12551.82 16850.84 18366.62 8976.79 14476.77 14286.78 10885.34 87
v14419269.34 11968.68 13770.12 9774.06 14080.54 10178.08 9260.54 13454.99 16654.13 11652.92 15952.80 17266.73 8877.13 14076.72 14387.15 9485.63 81
v870.23 10869.86 12070.67 8974.69 13479.82 10978.79 8459.18 14958.80 13858.20 9755.00 13757.33 13766.31 9377.51 13576.71 14486.82 10683.88 107
v192192069.03 12268.32 14169.86 10074.03 14180.37 10477.55 9460.25 13854.62 16853.59 12252.36 16551.50 18066.75 8777.17 13976.69 14586.96 10285.56 82
baseline269.69 11470.27 11669.01 11075.72 12477.13 14073.82 13758.94 15461.35 12457.09 10261.68 9457.17 13961.99 11478.10 13076.58 14686.48 11979.85 143
DTE-MVSNet61.85 17864.96 16958.22 18274.32 13874.39 16361.01 19567.85 5851.76 18621.91 21253.28 15148.17 19237.74 19872.22 17076.44 14786.52 11878.49 152
LTVRE_ROB59.44 1661.82 18162.64 18360.87 17072.83 15577.19 13964.37 18558.97 15233.56 21528.00 20152.59 16442.21 20663.93 10174.52 15776.28 14877.15 18282.13 117
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs662.41 17262.88 18061.87 16571.38 16775.18 16067.76 16659.45 14841.64 20642.52 17937.33 20152.91 17046.87 18277.67 13476.26 14983.23 16079.18 149
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 12877.97 13277.12 10055.40 16857.87 14046.68 16156.17 12960.39 12162.36 10876.32 14976.25 15085.35 14481.34 128
TDRefinement66.09 15165.03 16867.31 13069.73 17876.75 14375.33 10964.55 8360.28 13249.72 14545.63 18842.83 20560.46 12975.75 15075.95 15184.08 15578.04 154
CP-MVSNet62.68 16865.49 16359.40 17971.84 15975.34 15562.87 19167.04 6552.64 17827.19 20253.38 15048.15 19341.40 19271.26 17675.68 15286.07 12682.00 121
PS-CasMVS62.38 17465.06 16659.25 18071.73 16075.21 15962.77 19266.99 6651.94 18526.96 20352.00 16747.52 19641.06 19371.16 17975.60 15385.97 13381.97 123
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9880.47 10278.55 8661.67 12660.68 12855.49 10958.48 11565.48 10668.85 7476.92 14275.55 15487.35 9285.46 85
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15568.70 11380.49 8677.98 13075.29 11162.95 10163.62 10749.96 14147.32 18550.72 18458.57 13576.87 14375.50 15584.94 15075.33 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs467.89 13467.39 15168.48 11571.60 16573.57 16574.45 12360.98 12964.65 9657.97 9854.95 13851.73 17961.88 11673.78 16275.11 15683.99 15777.91 155
WR-MVS_H61.83 18065.87 15957.12 18671.72 16176.87 14161.45 19466.19 6851.97 18422.92 20953.13 15652.30 17633.80 20271.03 18075.00 15786.65 11480.78 133
EPNet_dtu68.08 13171.00 11064.67 15279.64 9368.62 18375.05 11763.30 9466.36 8545.27 17067.40 7566.84 10343.64 18875.37 15274.98 15881.15 16777.44 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline70.45 10674.09 8866.20 14470.95 17175.67 15174.26 13053.57 17168.33 7658.42 9469.87 6271.45 7361.55 12074.84 15674.76 15978.42 17783.72 109
USDC67.36 14567.90 14566.74 14271.72 16175.23 15871.58 15160.28 13767.45 8050.54 14060.93 9745.20 20262.08 11176.56 14774.50 16084.25 15475.38 173
PatchMatch-RL67.78 13766.65 15669.10 10973.01 15072.69 16868.49 16361.85 12262.93 11260.20 8856.83 12750.42 18569.52 6975.62 15174.46 16181.51 16573.62 182
IterMVS-SCA-FT66.89 14969.22 12964.17 15471.30 16975.64 15271.33 15253.17 17557.63 14649.08 14860.72 9960.05 12563.09 10474.99 15573.92 16277.07 18381.57 127
v14867.85 13567.53 14768.23 11673.25 14977.57 13874.26 13057.36 16355.70 15957.45 10153.53 14855.42 14661.96 11575.23 15373.92 16285.08 14781.32 129
pmmvs-eth3d63.52 16462.44 18664.77 15166.82 18970.12 17769.41 15959.48 14754.34 17252.71 12646.24 18744.35 20456.93 15072.37 16673.77 16483.30 15975.91 167
PMMVS65.06 15669.17 13060.26 17355.25 21263.43 19966.71 17443.01 20862.41 11550.64 13869.44 6367.04 10163.29 10374.36 15973.54 16582.68 16273.99 181
pmmvs562.37 17564.04 17460.42 17165.03 19271.67 17267.17 16952.70 18050.30 18844.80 17154.23 14451.19 18249.37 17872.88 16573.48 16683.45 15874.55 177
CR-MVSNet64.83 15765.54 16264.01 15770.64 17369.41 17865.97 17852.74 17857.81 14252.65 12754.27 14156.31 14360.92 12572.20 17173.09 16781.12 16875.69 170
PatchT61.97 17764.04 17459.55 17860.49 20267.40 18656.54 20348.65 19856.69 15052.65 12751.10 17252.14 17760.92 12572.20 17173.09 16778.03 17875.69 170
IterMVS66.36 15068.30 14264.10 15569.48 18174.61 16273.41 14450.79 18957.30 14848.28 15260.64 10059.92 12660.85 12874.14 16072.66 16981.80 16478.82 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap62.84 16761.03 19264.96 15069.61 17971.69 17168.48 16459.76 14555.41 16047.69 15647.33 18434.20 21462.76 10774.52 15772.59 17081.44 16671.47 185
TAMVS59.58 18862.81 18255.81 19066.03 19065.64 19363.86 18748.74 19749.95 19037.07 19154.77 13958.54 13244.44 18672.29 16871.79 17174.70 19466.66 196
MIMVSNet58.52 19161.34 19155.22 19260.76 20167.01 18866.81 17249.02 19656.43 15338.90 18540.59 19854.54 15340.57 19573.16 16471.65 17275.30 19366.00 197
SixPastTwentyTwo61.84 17962.45 18561.12 16969.20 18272.20 16962.03 19357.40 16146.54 19938.03 18957.14 12641.72 20758.12 13969.67 19071.58 17381.94 16378.30 153
CVMVSNet62.55 16965.89 15858.64 18166.95 18769.15 18066.49 17756.29 16752.46 18032.70 19559.27 11058.21 13550.09 17771.77 17471.39 17479.31 17478.99 150
FC-MVSNet-test56.90 19465.20 16547.21 20466.98 18663.20 20149.11 21258.60 15759.38 13611.50 21965.60 7956.68 14224.66 21171.17 17871.36 17572.38 20169.02 192
FMVSNet557.24 19260.02 19553.99 19656.45 20962.74 20365.27 18147.03 20355.14 16239.55 18440.88 19653.42 16641.83 18972.35 16771.10 17673.79 19764.50 200
CMPMVSbinary47.78 1762.49 17162.52 18462.46 16370.01 17770.66 17662.97 19051.84 18451.98 18356.71 10542.87 19253.62 15857.80 14272.23 16970.37 17775.45 19275.91 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 158.80 18961.58 19055.56 19175.02 13068.45 18459.58 20061.96 12052.74 17729.57 19849.75 17854.56 15231.46 20471.19 17769.77 17875.75 18864.57 199
test-mter60.84 18464.62 17156.42 18855.99 21064.18 19465.39 18034.23 21354.39 17146.21 16557.40 12559.49 12855.86 15871.02 18169.65 17980.87 17076.20 166
test-LLR64.42 15964.36 17264.49 15375.02 13063.93 19666.61 17561.96 12054.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
TESTMET0.1,161.10 18364.36 17257.29 18557.53 20763.93 19666.61 17536.22 21254.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
test20.0353.93 20156.28 20251.19 20072.19 15865.83 19153.20 20761.08 12742.74 20422.08 21037.07 20245.76 20124.29 21270.44 18669.04 18274.31 19663.05 203
MIMVSNet149.27 20453.25 20444.62 20644.61 21461.52 20653.61 20652.18 18141.62 20718.68 21528.14 21241.58 20825.50 20768.46 19669.04 18273.15 19962.37 205
Anonymous2023120656.36 19557.80 19954.67 19470.08 17566.39 19060.46 19757.54 16049.50 19329.30 19933.86 20646.64 19735.18 20070.44 18668.88 18475.47 19168.88 193
CostFormer68.92 12369.58 12468.15 11775.98 12276.17 14978.22 9151.86 18365.80 8961.56 8463.57 8962.83 11461.85 11770.40 18868.67 18579.42 17379.62 146
testgi54.39 20057.86 19850.35 20171.59 16667.24 18754.95 20553.25 17443.36 20323.78 20644.64 18947.87 19424.96 20970.45 18568.66 18673.60 19862.78 204
CHOSEN 280x42058.70 19061.88 18954.98 19355.45 21150.55 21464.92 18240.36 20955.21 16138.13 18848.31 18163.76 11163.03 10673.73 16368.58 18768.00 21073.04 183
RPMNet61.71 18262.88 18060.34 17269.51 18069.41 17863.48 18849.23 19457.81 14245.64 16950.51 17350.12 18653.13 17268.17 19768.49 18881.07 16975.62 172
RPSCF67.64 14171.25 10963.43 16161.86 20070.73 17567.26 16850.86 18874.20 5958.91 9067.49 7469.33 8764.10 10071.41 17568.45 18977.61 17977.17 160
SCA65.40 15466.58 15764.02 15670.65 17273.37 16667.35 16753.46 17363.66 10654.14 11560.84 9860.20 12461.50 12169.96 18968.14 19077.01 18469.91 188
ambc53.42 20364.99 19363.36 20049.96 21047.07 19737.12 19028.97 21016.36 22241.82 19075.10 15467.34 19171.55 20375.72 169
MDTV_nov1_ep1364.37 16065.24 16463.37 16268.94 18370.81 17472.40 15050.29 19260.10 13353.91 11960.07 10459.15 12957.21 14769.43 19267.30 19277.47 18069.78 190
GG-mvs-BLEND46.86 20867.51 14822.75 2130.05 22476.21 14864.69 1830.04 22161.90 1190.09 22555.57 13271.32 750.08 22070.54 18467.19 19371.58 20269.86 189
dps64.00 16362.99 17965.18 14773.29 14872.07 17068.98 16253.07 17657.74 14458.41 9555.55 13347.74 19560.89 12769.53 19167.14 19476.44 18771.19 186
PM-MVS60.48 18560.94 19359.94 17458.85 20566.83 18964.27 18651.39 18655.03 16548.03 15350.00 17740.79 20958.26 13869.20 19367.13 19578.84 17677.60 157
MDTV_nov1_ep13_2view60.16 18660.51 19459.75 17565.39 19169.05 18168.00 16548.29 20051.99 18245.95 16748.01 18349.64 19053.39 17068.83 19466.52 19677.47 18069.55 191
PatchmatchNetpermissive64.21 16264.65 17063.69 15871.29 17068.66 18269.63 15851.70 18563.04 11053.77 12059.83 10758.34 13460.23 13068.54 19566.06 19775.56 19068.08 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 20253.01 20553.79 19743.67 21667.95 18559.69 19957.92 15943.69 20232.41 19641.47 19527.89 21952.38 17456.97 21265.99 19876.68 18567.13 195
EU-MVSNet54.63 19858.69 19649.90 20256.99 20862.70 20456.41 20450.64 19145.95 20123.14 20850.42 17446.51 19836.63 19965.51 20064.85 19975.57 18974.91 175
tpm62.41 17263.15 17861.55 16772.24 15763.79 19871.31 15346.12 20657.82 14155.33 11059.90 10654.74 15153.63 16967.24 19864.29 20070.65 20574.25 180
tpm cat165.41 15363.81 17667.28 13275.61 12672.88 16775.32 11052.85 17762.97 11163.66 7953.24 15353.29 16961.83 11865.54 19964.14 20174.43 19574.60 176
pmmvs347.65 20549.08 21045.99 20544.61 21454.79 21250.04 20931.95 21633.91 21329.90 19730.37 20833.53 21546.31 18363.50 20363.67 20273.14 20063.77 202
tpmrst62.00 17662.35 18761.58 16671.62 16464.14 19569.07 16148.22 20262.21 11753.93 11858.26 12055.30 14855.81 15963.22 20462.62 20370.85 20470.70 187
EPMVS60.00 18761.97 18857.71 18468.46 18463.17 20264.54 18448.23 20163.30 10844.72 17260.19 10256.05 14550.85 17665.27 20262.02 20469.44 20763.81 201
Gipumacopyleft36.38 21135.80 21337.07 20945.76 21333.90 21729.81 21748.47 19939.91 20918.02 2168.00 2208.14 22425.14 20859.29 20961.02 20555.19 21540.31 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0255.30 19757.01 20153.30 19964.14 19559.09 20758.39 20250.24 19353.47 17538.68 18649.75 17845.86 20040.14 19665.38 20160.22 20668.19 20965.33 198
ADS-MVSNet55.94 19658.01 19753.54 19862.48 19958.48 20859.12 20146.20 20559.65 13542.88 17852.34 16653.31 16846.31 18362.00 20660.02 20764.23 21260.24 208
MVS-HIRNet54.41 19952.10 20657.11 18758.99 20456.10 21149.68 21149.10 19546.18 20052.15 13133.18 20746.11 19956.10 15563.19 20559.70 20876.64 18660.25 207
FPMVS51.87 20350.00 20854.07 19566.83 18857.25 20960.25 19850.91 18750.25 18934.36 19336.04 20432.02 21641.49 19158.98 21056.07 20970.56 20659.36 209
N_pmnet47.35 20650.13 20744.11 20759.98 20351.64 21351.86 20844.80 20749.58 19220.76 21340.65 19740.05 21129.64 20559.84 20855.15 21057.63 21354.00 211
new-patchmatchnet46.97 20749.47 20944.05 20862.82 19756.55 21045.35 21452.01 18242.47 20517.04 21735.73 20535.21 21321.84 21561.27 20754.83 21165.26 21160.26 206
PMVScopyleft39.38 1846.06 20943.30 21149.28 20362.93 19638.75 21641.88 21553.50 17233.33 21635.46 19228.90 21131.01 21733.04 20358.61 21154.63 21268.86 20857.88 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21042.64 21233.44 21037.54 21945.00 21536.60 21632.72 21540.27 20812.72 21829.89 20928.90 21824.78 21053.17 21352.90 21356.31 21448.34 212
MVEpermissive19.12 1920.47 21623.27 21617.20 21612.66 22225.41 21910.52 22334.14 21414.79 2216.53 2238.79 2194.68 22516.64 21729.49 21741.63 21422.73 22138.11 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 21229.75 21420.76 21428.00 22030.93 21823.10 21929.18 21723.14 2181.46 22418.23 21616.54 2215.08 21840.22 21441.40 21537.76 21637.79 215
tmp_tt14.50 21714.68 2217.17 22310.46 2242.21 22037.73 21128.71 20025.26 21316.98 2204.37 21931.49 21629.77 21626.56 220
E-PMN21.77 21418.24 21725.89 21140.22 21719.58 22012.46 22239.87 21018.68 2206.71 2219.57 2174.31 22722.36 21419.89 21927.28 21733.73 21828.34 217
EMVS20.98 21517.15 21825.44 21239.51 21819.37 22112.66 22139.59 21119.10 2196.62 2229.27 2184.40 22622.43 21317.99 22024.40 21831.81 21925.53 218
test_method22.26 21325.94 21517.95 2153.24 2237.17 22323.83 2187.27 21937.35 21220.44 21421.87 21539.16 21218.67 21634.56 21520.84 21934.28 21720.64 219
testmvs0.09 2170.15 2190.02 2180.01 2250.02 2250.05 2260.01 2220.11 2220.01 2260.26 2220.01 2280.06 2220.10 2210.10 2200.01 2230.43 221
test1230.09 2170.14 2200.02 2180.00 2260.02 2250.02 2270.01 2220.09 2230.00 2270.30 2210.00 2290.08 2200.03 2220.09 2210.01 2230.45 220
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def46.24 164
9.1486.88 16
SR-MVS88.99 3373.57 2487.54 14
our_test_367.93 18570.99 17366.89 171
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 225
XVS86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVStestdata86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
mPP-MVS89.90 2481.29 41
NP-MVS80.10 44
Patchmtry65.80 19265.97 17852.74 17852.65 127
DeepMVS_CXcopyleft18.74 22218.55 2208.02 21826.96 2177.33 22023.81 21413.05 22325.99 20625.17 21822.45 22236.25 216