This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 599.56 5799.10 899.81 24
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4199.78 3499.85 2999.36 299.94 5798.84 8899.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16099.76 4099.75 11399.13 1299.92 8399.07 5599.92 1199.85 16
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21399.52 9197.18 21599.60 8899.79 9098.79 5099.95 4698.83 9199.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 19899.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17299.68 5799.63 17698.91 3999.94 5798.58 12999.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28199.91 397.67 16799.59 9199.75 11395.90 17499.73 18999.53 699.02 17299.86 13
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 5899.77 3699.49 22798.21 9999.95 4698.46 14699.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18699.94 198.73 5699.11 19799.89 1095.50 18799.94 5799.50 1099.97 399.89 2
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11399.63 7799.84 3898.73 6299.96 1998.55 13799.83 7499.81 43
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11199.66 6899.68 15098.96 2899.96 1998.62 12099.87 4099.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 11899.48 11399.74 11998.29 9699.96 1997.93 19099.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11399.50 10999.75 11398.78 5199.97 1198.57 13199.89 3399.83 31
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20799.59 4397.55 17798.70 26599.89 1095.83 17699.90 10998.10 17599.90 2399.08 202
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12299.55 10099.64 17098.91 3999.96 1998.72 10699.90 2399.82 38
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15199.48 14598.05 12899.76 4099.86 2398.82 4799.93 7298.82 9599.91 1699.84 20
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 10999.68 5799.69 14399.06 1699.96 1998.69 11199.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11199.67 2297.83 14699.68 5799.69 14399.06 1699.96 1998.39 15099.87 4099.84 20
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 10999.67 6399.69 14398.95 3199.96 1998.69 11199.87 4099.84 20
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9099.65 3297.84 14599.71 5099.80 7899.12 1399.97 1198.33 15899.87 4099.83 31
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13499.63 7799.68 15098.52 7799.95 4698.38 15299.86 5199.81 43
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10299.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15199.93 297.66 16899.71 5099.86 2397.73 11699.96 1999.47 1799.82 8099.79 57
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9599.37 23199.10 899.81 2499.80 7898.94 3499.96 1998.93 6899.86 5199.81 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 7099.50 12499.10 899.86 1299.82 4998.94 34
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14199.74 11998.81 4899.94 5798.79 9799.86 5199.84 20
X-MVStestdata96.55 29395.45 30899.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14164.01 37198.81 4899.94 5798.79 9799.86 5199.84 20
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11199.82 2299.81 6298.60 7299.96 1998.46 14699.88 3699.79 57
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34499.71 5099.78 9798.06 10899.90 10998.84 8899.91 1699.74 78
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11599.41 12999.80 7898.37 9199.96 1998.99 6199.96 599.72 91
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1299.91 199.81 6299.20 799.96 1998.91 7199.85 5899.79 57
IU-MVS99.84 3399.88 899.32 25898.30 9299.84 1498.86 8399.85 5899.89 2
test_241102_ONE99.84 3399.90 299.48 14599.07 1499.91 199.74 11999.20 799.76 178
test_0728_SECOND99.91 299.84 3399.89 499.57 9599.51 10499.96 1998.93 6899.86 5199.88 7
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12399.53 10399.63 17698.93 3899.97 1198.74 10299.91 1699.83 31
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6299.79 2999.83 4299.28 499.97 1198.48 14299.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 17498.62 14196.99 32199.82 3891.58 35899.72 3599.44 19496.61 26199.66 6899.89 1095.92 17299.82 15597.46 23699.10 16499.57 143
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3699.63 7799.95 295.82 17799.94 5799.37 2399.97 399.73 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.81 4199.88 899.49 13298.97 3299.65 7399.81 6299.09 14
test_part299.81 4199.83 1799.77 36
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23299.63 7799.69 14397.27 12999.96 1997.82 19999.84 6599.81 43
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9599.54 7497.82 15199.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21799.40 21298.79 5299.52 10699.62 18298.91 3999.90 10998.64 11899.75 10299.82 38
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 19899.51 10498.73 5699.88 599.84 3898.72 6399.96 1998.16 17299.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 1999.90 399.83 4298.98 2699.93 7299.59 299.95 699.86 13
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 1999.89 499.82 4999.01 1999.92 8399.56 599.95 699.85 16
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7099.86 1299.87 2094.77 21699.84 13999.19 4299.41 14199.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17299.54 7497.29 20599.41 12999.59 19298.42 8799.93 7298.19 16799.69 11599.73 85
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1699.88 599.85 2999.18 1099.96 1999.22 3999.92 1199.90 1
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30299.85 698.82 4799.65 7399.74 11998.51 7899.80 16498.83 9199.89 3399.64 124
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17499.50 12497.03 23299.04 21399.88 1597.39 12299.92 8398.66 11699.90 2399.87 12
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.53 7599.95 4698.61 12399.81 8399.77 67
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.75 5998.61 12399.81 8399.77 67
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25599.53 8599.00 2399.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
save fliter99.76 5499.59 7399.14 25599.40 21299.00 23
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9099.44 19499.01 1999.87 1199.80 7898.97 2799.91 9499.44 2199.92 1199.83 31
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9099.49 13299.02 1699.88 599.80 7899.00 2599.94 5799.45 1999.92 1199.84 20
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8599.79 2999.82 4998.86 4399.95 4698.62 12099.81 8399.78 65
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 21999.91 397.42 19599.67 6399.37 26497.53 11999.88 12298.98 6297.29 25598.42 319
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31799.91 396.74 25099.67 6399.49 22797.53 11999.88 12298.98 6299.85 5899.60 134
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32099.55 6797.25 20999.47 11499.77 10497.82 11399.87 12596.93 27099.90 2399.54 147
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9399.74 4499.79 9098.53 7599.95 4698.55 13799.78 9499.79 57
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10399.73 4699.79 9098.68 6699.96 1998.44 14899.77 9799.79 57
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16599.51 10498.68 6099.27 16399.53 21498.64 7199.96 1998.44 14899.80 8799.79 57
新几何199.75 5499.75 6499.59 7399.54 7496.76 24999.29 15899.64 17098.43 8499.94 5796.92 27299.66 12399.72 91
test22299.75 6499.49 9198.91 30599.49 13296.42 27899.34 15099.65 16398.28 9799.69 11599.72 91
testdata99.54 9699.75 6498.95 15999.51 10497.07 22799.43 12299.70 13598.87 4299.94 5797.76 20499.64 12699.72 91
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25399.41 20696.60 26399.60 8899.55 20598.83 4699.90 10997.48 23399.83 7499.78 65
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13099.50 12497.16 21799.77 3699.82 4998.78 5199.94 5797.56 22699.86 5199.80 53
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
旧先验199.74 7299.59 7399.54 7499.69 14398.47 8199.68 12099.73 85
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22499.48 14596.82 24899.25 17099.65 16398.38 8999.93 7297.53 22999.67 12299.73 85
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15499.52 9199.11 799.88 599.91 599.43 197.70 35398.72 10699.93 1099.77 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22499.57 5196.40 28099.42 12599.68 15098.75 5999.80 16497.98 18699.72 10999.44 174
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18699.38 22297.70 16299.28 16099.28 28798.34 9399.85 13496.96 26799.45 13899.69 103
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7799.69 5299.38 19199.51 10497.45 18999.61 8499.75 11398.51 7899.91 9497.45 23899.83 7499.71 98
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7799.83 1799.56 10299.47 16397.45 18999.78 3499.82 4999.18 1099.91 9498.79 9799.89 3399.81 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7599.73 7799.33 10799.47 16397.46 18699.12 19599.66 16298.67 6999.91 9497.70 21399.69 11599.71 98
IS-MVSNet99.05 10398.87 10799.57 9299.73 7799.32 10899.75 3199.20 28398.02 13299.56 9699.86 2396.54 15299.67 21198.09 17699.13 16099.73 85
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7797.28 25798.32 34799.60 4097.86 14199.50 10999.57 19996.75 14699.86 12898.56 13499.70 11499.54 147
9.1499.10 7299.72 8299.40 18299.51 10497.53 18299.64 7699.78 9798.84 4599.91 9497.63 21799.82 80
testtj99.12 8898.87 10799.86 2199.72 8299.79 3399.44 15999.51 10497.29 20599.59 9199.74 11998.15 10599.96 1996.74 27899.69 11599.81 43
thres100view90097.76 23997.45 24698.69 22799.72 8297.86 24199.59 8398.74 33097.93 13799.26 16898.62 33591.75 29699.83 14893.22 33598.18 21498.37 325
thres600view797.86 22397.51 23998.92 18999.72 8297.95 23699.59 8398.74 33097.94 13699.27 16398.62 33591.75 29699.86 12893.73 33098.19 21398.96 220
DELS-MVS99.48 2099.42 1499.65 7599.72 8299.40 10499.05 27299.66 2799.14 699.57 9599.80 7898.46 8299.94 5799.57 499.84 6599.60 134
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8299.47 9598.95 30099.85 698.82 4799.54 10199.73 12698.51 7899.74 18298.91 7199.88 3699.77 67
ZD-MVS99.71 8899.79 3399.61 3596.84 24599.56 9699.54 21098.58 7399.96 1996.93 27099.75 102
Anonymous2023121197.88 21997.54 23698.90 19599.71 8898.53 19999.48 14699.57 5194.16 33198.81 24899.68 15093.23 25899.42 25198.84 8894.42 31798.76 237
Regformer-199.53 1299.47 1099.72 6499.71 8899.44 9999.49 14099.46 17398.95 3599.83 1999.76 10899.01 1999.93 7299.17 4599.87 4099.80 53
Regformer-299.54 1099.47 1099.75 5499.71 8899.52 8899.49 14099.49 13298.94 3699.83 1999.76 10899.01 1999.94 5799.15 4899.87 4099.80 53
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 8897.74 24599.12 25799.54 7498.44 7799.42 12599.71 13194.20 23899.92 8398.54 13998.90 18199.00 214
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 8898.88 16899.80 1999.44 19497.91 13999.36 14499.78 9795.49 18899.43 25097.91 19199.11 16199.62 130
PatchMatch-RL98.84 13398.62 14199.52 10899.71 8899.28 11499.06 27099.77 997.74 15999.50 10999.53 21495.41 18999.84 13997.17 25699.64 12699.44 174
hse-mvs397.70 25497.28 27298.97 18199.70 9597.27 25899.36 19899.45 18598.94 3699.66 6899.64 17094.93 20499.99 199.48 1584.36 35499.65 117
XVG-OURS98.73 14298.68 13098.88 20199.70 9597.73 24698.92 30399.55 6798.52 6899.45 11799.84 3895.27 19599.91 9498.08 18098.84 18499.00 214
TAPA-MVS97.07 1597.74 24697.34 26698.94 18599.70 9597.53 25199.25 23599.51 10491.90 34699.30 15599.63 17698.78 5199.64 22188.09 35799.87 4099.65 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640098.70 14398.35 15999.73 6199.69 9899.60 7099.16 24999.45 18595.42 31399.27 16399.60 18997.39 12299.91 9495.36 31199.83 7499.70 100
tfpn200view997.72 24997.38 25998.72 22599.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.37 325
thres40097.77 23897.38 25998.92 18999.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.96 220
Test_1112_low_res98.89 11898.66 13499.57 9299.69 9898.95 15999.03 27899.47 16396.98 23499.15 19199.23 29496.77 14599.89 11798.83 9198.78 18899.86 13
1112_ss98.98 11298.77 12199.59 8799.68 10299.02 14699.25 23599.48 14597.23 21299.13 19399.58 19596.93 14099.90 10998.87 7898.78 18899.84 20
TEST999.67 10399.65 6299.05 27299.41 20696.22 29198.95 22799.49 22798.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10399.65 6299.05 27299.41 20696.28 28498.95 22799.49 22798.76 5699.91 9497.63 21799.72 10999.75 73
test_899.67 10399.61 6899.03 27899.41 20696.28 28498.93 23199.48 23398.76 5699.91 94
agg_prior199.01 11098.76 12399.76 5399.67 10399.62 6698.99 28899.40 21296.26 28798.87 24099.49 22798.77 5499.91 9497.69 21499.72 10999.75 73
agg_prior99.67 10399.62 6699.40 21298.87 24099.91 94
test_prior399.21 7099.05 7799.68 6899.67 10399.48 9398.96 29699.56 5798.34 8799.01 21699.52 21798.68 6699.83 14897.96 18799.74 10599.74 78
test_prior99.68 6899.67 10399.48 9399.56 5799.83 14899.74 78
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10398.61 19499.07 26799.33 24899.00 2399.82 2299.81 6299.06 1699.84 13999.09 5399.42 14099.65 117
OMC-MVS99.08 9999.04 8099.20 15799.67 10398.22 22199.28 21999.52 9198.07 12399.66 6899.81 6297.79 11499.78 17297.79 20199.81 8399.60 134
Anonymous2024052998.09 19097.68 22299.34 13399.66 11298.44 21199.40 18299.43 20293.67 33599.22 17699.89 1090.23 31999.93 7299.26 3798.33 20499.66 113
tttt051798.42 15998.14 17199.28 14999.66 11298.38 21599.74 3496.85 36197.68 16499.79 2999.74 11991.39 30699.89 11798.83 9199.56 13399.57 143
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11297.89 23898.43 34199.71 1398.88 4299.62 8199.76 10896.63 14999.70 20599.46 1899.99 199.66 113
baseline99.15 7999.02 8599.53 10299.66 11299.14 13399.72 3599.48 14598.35 8699.42 12599.84 3896.07 16599.79 16799.51 999.14 15999.67 110
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11299.01 14899.24 23799.52 9196.85 24499.27 16399.48 23398.25 9899.91 9497.76 20499.62 12999.65 117
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs99.13 8298.98 9399.56 9499.65 11799.16 12899.56 10299.50 12498.33 9099.41 12999.86 2395.92 17299.83 14899.45 1999.16 15699.70 100
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11799.06 14399.81 1599.33 24897.43 19399.60 8899.88 1597.14 13199.84 13999.13 4998.94 17699.69 103
thres20097.61 26497.28 27298.62 23099.64 11998.03 22899.26 23398.74 33097.68 16499.09 20598.32 34491.66 30299.81 15992.88 33998.22 21098.03 339
test1299.75 5499.64 11999.61 6899.29 27099.21 17998.38 8999.89 11799.74 10599.74 78
ab-mvs98.86 12298.63 13699.54 9699.64 11999.19 12399.44 15999.54 7497.77 15499.30 15599.81 6294.20 23899.93 7299.17 4598.82 18599.49 163
DPM-MVS98.95 11598.71 12799.66 7199.63 12299.55 8098.64 33099.10 29497.93 13799.42 12599.55 20598.67 6999.80 16495.80 30099.68 12099.61 132
thisisatest053098.35 16698.03 18399.31 13999.63 12298.56 19699.54 11496.75 36397.53 18299.73 4699.65 16391.25 30999.89 11798.62 12099.56 13399.48 164
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12299.59 7399.36 19899.46 17399.07 1499.79 2999.82 4998.85 4499.92 8398.68 11399.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4099.29 4799.80 4399.62 12899.55 8099.50 13099.70 1598.79 5299.77 3699.96 197.45 12199.96 1998.92 7099.90 2399.89 2
CNVR-MVS99.42 4099.30 4399.78 4899.62 12899.71 4999.26 23399.52 9198.82 4799.39 13699.71 13198.96 2899.85 13498.59 12899.80 8799.77 67
WTY-MVS99.06 10198.88 10699.61 8599.62 12899.16 12899.37 19499.56 5798.04 12999.53 10399.62 18296.84 14199.94 5798.85 8598.49 20199.72 91
sss99.17 7699.05 7799.53 10299.62 12898.97 15399.36 19899.62 3397.83 14699.67 6399.65 16397.37 12699.95 4699.19 4299.19 15599.68 107
GeoE98.85 13098.62 14199.53 10299.61 13299.08 14099.80 1999.51 10497.10 22599.31 15399.78 9795.23 19999.77 17498.21 16599.03 17099.75 73
diffmvs99.14 8099.02 8599.51 11099.61 13298.96 15799.28 21999.49 13298.46 7399.72 4999.71 13196.50 15399.88 12299.31 3199.11 16199.67 110
NCCC99.34 5399.19 6499.79 4699.61 13299.65 6299.30 21399.48 14598.86 4399.21 17999.63 17698.72 6399.90 10998.25 16399.63 12899.80 53
PCF-MVS97.08 1497.66 26197.06 28299.47 11799.61 13299.09 13998.04 35499.25 27591.24 34998.51 28599.70 13594.55 22899.91 9492.76 34299.85 5899.42 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13699.16 12899.41 17499.71 1398.98 2999.45 11799.78 9799.19 999.54 23599.28 3499.84 6599.63 128
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32099.60 13691.75 35798.61 33199.44 19499.35 199.83 1999.85 2998.70 6599.81 15999.02 5999.91 1699.81 43
test_part197.75 24397.24 27699.29 14699.59 13899.63 6599.65 5999.49 13296.17 29598.44 29099.69 14389.80 32399.47 23898.68 11393.66 32798.78 231
IterMVS-LS98.46 15698.42 15598.58 23599.59 13898.00 23099.37 19499.43 20296.94 24099.07 20799.59 19297.87 11199.03 31398.32 16095.62 29498.71 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 22997.77 21298.02 28699.58 14096.27 30599.02 28199.48 14597.22 21398.71 25999.70 13592.75 26899.13 30097.46 23696.00 28298.67 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 8098.99 9099.59 8799.58 14099.41 10299.16 24999.44 19498.45 7499.19 18599.49 22798.08 10799.89 11797.73 20899.75 10299.48 164
Anonymous20240521198.30 17097.98 18899.26 15199.57 14298.16 22399.41 17498.55 34296.03 30799.19 18599.74 11991.87 29399.92 8399.16 4798.29 20999.70 100
IterMVS-SCA-FT97.82 23297.75 21698.06 28399.57 14296.36 30299.02 28199.49 13297.18 21598.71 25999.72 13092.72 27199.14 29797.44 23995.86 28898.67 267
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14298.94 16298.97 29599.46 17398.92 4099.71 5099.24 29399.01 1999.98 699.35 2499.66 12398.97 218
MG-MVS99.13 8299.02 8599.45 12099.57 14298.63 19199.07 26799.34 24198.99 2699.61 8499.82 4997.98 11099.87 12597.00 26399.80 8799.85 16
OPU-MVS99.64 8099.56 14699.72 4799.60 7799.70 13599.27 599.42 25198.24 16499.80 8799.79 57
DROMVSNet99.44 3199.39 1899.58 9099.56 14699.49 9199.88 199.58 4998.38 8199.73 4699.69 14398.20 10099.70 20599.64 199.82 8099.54 147
PHI-MVS99.30 5899.17 6699.70 6799.56 14699.52 8899.58 9099.80 897.12 22199.62 8199.73 12698.58 7399.90 10998.61 12399.91 1699.68 107
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14699.54 8299.18 24799.70 1598.18 10799.35 14799.63 17696.32 15999.90 10997.48 23399.77 9799.55 145
ET-MVSNet_ETH3D96.49 29595.64 30699.05 17099.53 15098.82 17798.84 31197.51 35897.63 17084.77 36099.21 29892.09 29098.91 33198.98 6292.21 34199.41 178
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15098.91 16699.02 28199.45 18598.80 5199.71 5099.26 29198.94 3499.98 699.34 2899.23 15298.98 217
LFMVS97.90 21897.35 26399.54 9699.52 15299.01 14899.39 18698.24 34697.10 22599.65 7399.79 9084.79 35499.91 9499.28 3498.38 20399.69 103
VNet99.11 9398.90 10399.73 6199.52 15299.56 7899.41 17499.39 21699.01 1999.74 4499.78 9795.56 18599.92 8399.52 798.18 21499.72 91
DVP-MVS++.99.59 399.50 899.88 699.51 15499.88 899.87 599.51 10498.99 2699.88 599.81 6299.27 599.96 1998.85 8599.80 8799.81 43
MSC_two_6792asdad99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
No_MVS99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15499.60 7099.23 23899.44 19497.04 23099.39 13699.67 15698.30 9599.92 8397.27 24599.69 11599.64 124
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15499.28 11499.52 12099.47 16396.11 30299.01 21699.34 27396.20 16399.84 13997.88 19398.82 18599.39 180
MVSFormer99.17 7699.12 7099.29 14699.51 15498.94 16299.88 199.46 17397.55 17799.80 2799.65 16397.39 12299.28 27699.03 5799.85 5899.65 117
lupinMVS99.13 8299.01 8999.46 11999.51 15498.94 16299.05 27299.16 28897.86 14199.80 2799.56 20297.39 12299.86 12898.94 6699.85 5899.58 142
GBi-Net97.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
test197.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
FMVSNet297.72 24997.36 26198.80 21899.51 15498.84 17399.45 15599.42 20496.49 26998.86 24599.29 28590.26 31698.98 32096.44 28896.56 26898.58 303
thisisatest051598.14 18597.79 20799.19 15899.50 16498.50 20698.61 33196.82 36296.95 23899.54 10199.43 24591.66 30299.86 12898.08 18099.51 13799.22 191
baseline198.31 16897.95 19399.38 13199.50 16498.74 18299.59 8398.93 31198.41 7899.14 19299.60 18994.59 22599.79 16798.48 14293.29 33199.61 132
hse-mvs297.50 27297.14 27998.59 23299.49 16697.05 27199.28 21999.22 27998.94 3699.66 6899.42 24894.93 20499.65 21899.48 1583.80 35699.08 202
EIA-MVS99.18 7499.09 7499.45 12099.49 16699.18 12599.67 4899.53 8597.66 16899.40 13499.44 24298.10 10699.81 15998.94 6699.62 12999.35 182
test_yl98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
VDDNet97.55 26697.02 28399.16 16199.49 16698.12 22799.38 19199.30 26595.35 31499.68 5799.90 782.62 35899.93 7299.31 3198.13 21999.42 176
MVS_Test99.10 9698.97 9499.48 11499.49 16699.14 13399.67 4899.34 24197.31 20399.58 9399.76 10897.65 11899.82 15598.87 7899.07 16799.46 171
BH-untuned98.42 15998.36 15798.59 23299.49 16696.70 29099.27 22499.13 29297.24 21198.80 25099.38 26195.75 17999.74 18297.07 26199.16 15699.33 186
AUN-MVS96.88 28896.31 29398.59 23299.48 17397.04 27499.27 22499.22 27997.44 19298.51 28599.41 25291.97 29199.66 21497.71 21183.83 35599.07 207
VDD-MVS97.73 24797.35 26398.88 20199.47 17497.12 26499.34 20798.85 32298.19 10499.67 6399.85 2982.98 35699.92 8399.49 1498.32 20899.60 134
ETV-MVS99.26 6699.21 6299.40 12899.46 17599.30 11299.56 10299.52 9198.52 6899.44 12199.27 29098.41 8899.86 12899.10 5299.59 13299.04 210
CS-MVS-test99.30 5899.25 5799.45 12099.46 17599.23 12099.80 1999.57 5198.28 9399.53 10399.44 24298.16 10499.79 16799.38 2299.61 13199.34 184
Effi-MVS+98.81 13498.59 14799.48 11499.46 17599.12 13798.08 35399.50 12497.50 18599.38 13999.41 25296.37 15899.81 15999.11 5198.54 19899.51 159
jason99.13 8299.03 8299.45 12099.46 17598.87 16999.12 25799.26 27398.03 13199.79 2999.65 16397.02 13699.85 13499.02 5999.90 2399.65 117
jason: jason.
TAMVS99.12 8899.08 7599.24 15499.46 17598.55 19799.51 12499.46 17398.09 11899.45 11799.82 4998.34 9399.51 23698.70 10898.93 17799.67 110
ACMH+97.24 1097.92 21697.78 21098.32 26699.46 17596.68 29299.56 10299.54 7498.41 7897.79 32099.87 2090.18 32099.66 21498.05 18497.18 25998.62 289
MIMVSNet97.73 24797.45 24698.57 23699.45 18197.50 25299.02 28198.98 30696.11 30299.41 12999.14 30490.28 31598.74 33595.74 30198.93 17799.47 169
CS-MVS99.34 5399.31 3999.43 12699.44 18299.47 9599.68 4599.56 5798.41 7899.62 8199.41 25298.35 9299.76 17899.52 799.76 10099.05 209
alignmvs98.81 13498.56 14999.58 9099.43 18399.42 10199.51 12498.96 30998.61 6399.35 14798.92 32594.78 21399.77 17499.35 2498.11 22099.54 147
canonicalmvs99.02 10798.86 11199.51 11099.42 18499.32 10899.80 1999.48 14598.63 6199.31 15398.81 32897.09 13399.75 18199.27 3697.90 22499.47 169
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18499.08 14099.62 7099.36 23297.39 19899.28 16099.68 15096.44 15699.92 8398.37 15498.22 21099.40 179
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18498.73 18399.45 15599.46 17398.11 11599.46 11699.77 10498.01 10999.37 25898.70 10898.92 17999.66 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 6899.14 6899.59 8799.41 18799.16 12899.35 20499.57 5198.82 4799.51 10899.61 18696.46 15499.95 4699.59 299.98 299.65 117
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18796.99 27899.52 12099.49 13298.11 11599.24 17199.34 27396.96 13999.79 16797.95 18999.45 13899.02 213
BH-RMVSNet98.41 16198.08 17899.40 12899.41 18798.83 17699.30 21398.77 32697.70 16298.94 22999.65 16392.91 26699.74 18296.52 28699.55 13599.64 124
ACMM97.58 598.37 16598.34 16098.48 24699.41 18797.10 26599.56 10299.45 18598.53 6799.04 21399.85 2993.00 26299.71 19998.74 10297.45 24798.64 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18997.99 18798.44 25599.41 18796.96 28299.60 7799.56 5798.09 11898.15 30699.91 590.87 31399.70 20598.88 7497.45 24798.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 28096.81 28698.87 20599.40 19297.46 25399.51 12499.53 8595.86 30998.54 28499.77 10482.44 35999.66 21498.68 11397.52 23999.50 162
PAPR98.63 15198.34 16099.51 11099.40 19299.03 14598.80 31599.36 23296.33 28199.00 22199.12 30898.46 8299.84 13995.23 31399.37 14699.66 113
API-MVS99.04 10499.03 8299.06 16899.40 19299.31 11199.55 11199.56 5798.54 6699.33 15199.39 26098.76 5699.78 17296.98 26599.78 9498.07 336
FMVSNet398.03 19997.76 21598.84 21299.39 19598.98 15099.40 18299.38 22296.67 25599.07 20799.28 28792.93 26398.98 32097.10 25896.65 26598.56 305
GA-MVS97.85 22497.47 24399.00 17799.38 19697.99 23198.57 33499.15 28997.04 23098.90 23599.30 28389.83 32299.38 25596.70 28198.33 20499.62 130
mvs_anonymous99.03 10698.99 9099.16 16199.38 19698.52 20399.51 12499.38 22297.79 15299.38 13999.81 6297.30 12799.45 24199.35 2498.99 17499.51 159
ACMP97.20 1198.06 19397.94 19598.45 25299.37 19897.01 27699.44 15999.49 13297.54 18098.45 28999.79 9091.95 29299.72 19397.91 19197.49 24598.62 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 12298.63 13699.54 9699.37 19899.66 5999.45 15599.54 7496.61 26199.01 21699.40 25697.09 13399.86 12897.68 21699.53 13699.10 197
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 26297.50 24098.13 28099.36 20096.45 29999.42 17299.48 14597.76 15597.87 31699.45 24191.09 31098.81 33494.53 32198.52 19999.13 196
EI-MVSNet98.67 14798.67 13198.68 22899.35 20197.97 23299.50 13099.38 22296.93 24199.20 18299.83 4297.87 11199.36 26298.38 15297.56 23698.71 247
CVMVSNet98.57 15398.67 13198.30 26899.35 20195.59 31799.50 13099.55 6798.60 6499.39 13699.83 4294.48 23099.45 24198.75 10198.56 19799.85 16
BH-w/o98.00 20697.89 20298.32 26699.35 20196.20 30799.01 28698.90 31896.42 27898.38 29499.00 31895.26 19799.72 19396.06 29498.61 19199.03 211
MVSTER98.49 15498.32 16299.00 17799.35 20199.02 14699.54 11499.38 22297.41 19699.20 18299.73 12693.86 25099.36 26298.87 7897.56 23698.62 289
miper_lstm_enhance98.00 20697.91 19798.28 27299.34 20597.43 25498.88 30799.36 23296.48 27398.80 25099.55 20595.98 16798.91 33197.27 24595.50 29898.51 308
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20696.91 28499.57 9599.30 26598.47 7199.41 12998.99 31996.78 14399.74 18298.73 10499.38 14298.74 243
CANet_DTU98.97 11498.87 10799.25 15299.33 20698.42 21499.08 26699.30 26599.16 599.43 12299.75 11395.27 19599.97 1198.56 13499.95 699.36 181
mvs-test198.86 12298.84 11398.89 19899.33 20697.77 24499.44 15999.30 26598.47 7199.10 20099.43 24596.78 14399.95 4698.73 10499.02 17298.96 220
ADS-MVSNet298.02 20198.07 18197.87 29699.33 20695.19 32999.23 23899.08 29796.24 28999.10 20099.67 15694.11 24298.93 33096.81 27599.05 16899.48 164
ADS-MVSNet98.20 17798.08 17898.56 23899.33 20696.48 29899.23 23899.15 28996.24 28999.10 20099.67 15694.11 24299.71 19996.81 27599.05 16899.48 164
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20697.05 27199.58 9099.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
LGP-MVS_train98.49 24499.33 20697.05 27199.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
FMVSNet196.84 28996.36 29298.29 26999.32 21397.26 26099.43 16599.48 14595.11 31798.55 28399.32 28083.95 35598.98 32095.81 29996.26 27798.62 289
PVSNet_094.43 1996.09 30495.47 30797.94 29199.31 21494.34 34297.81 35699.70 1597.12 22197.46 32498.75 33289.71 32499.79 16797.69 21481.69 35899.68 107
cl_fuxian98.12 18898.04 18298.38 26199.30 21597.69 25098.81 31499.33 24896.67 25598.83 24699.34 27397.11 13298.99 31997.58 22195.34 30098.48 310
SCA98.19 17898.16 16998.27 27399.30 21595.55 31899.07 26798.97 30797.57 17599.43 12299.57 19992.72 27199.74 18297.58 22199.20 15499.52 153
LCM-MVSNet-Re97.83 22998.15 17096.87 32699.30 21592.25 35699.59 8398.26 34597.43 19396.20 34299.13 30596.27 16198.73 33698.17 17198.99 17499.64 124
MVS-HIRNet95.75 30795.16 31197.51 31199.30 21593.69 34898.88 30795.78 36685.09 35898.78 25392.65 36191.29 30899.37 25894.85 31899.85 5899.46 171
HQP_MVS98.27 17398.22 16898.44 25599.29 21996.97 28099.39 18699.47 16398.97 3299.11 19799.61 18692.71 27399.69 20997.78 20297.63 22998.67 267
plane_prior799.29 21997.03 275
ITE_SJBPF98.08 28199.29 21996.37 30198.92 31398.34 8798.83 24699.75 11391.09 31099.62 22795.82 29897.40 25298.25 330
DeepMVS_CXcopyleft93.34 33899.29 21982.27 36499.22 27985.15 35796.33 34199.05 31390.97 31299.73 18993.57 33297.77 22798.01 340
CLD-MVS98.16 18298.10 17498.33 26499.29 21996.82 28798.75 32099.44 19497.83 14699.13 19399.55 20592.92 26499.67 21198.32 16097.69 22898.48 310
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 22496.98 27992.71 273
PMMVS98.80 13798.62 14199.34 13399.27 22498.70 18598.76 31999.31 26197.34 20099.21 17999.07 31097.20 13099.82 15598.56 13498.87 18299.52 153
eth_miper_zixun_eth98.05 19897.96 19198.33 26499.26 22697.38 25598.56 33699.31 26196.65 25798.88 23899.52 21796.58 15099.12 30497.39 24295.53 29798.47 312
D2MVS98.41 16198.50 15198.15 27999.26 22696.62 29499.40 18299.61 3597.71 16198.98 22399.36 26796.04 16699.67 21198.70 10897.41 25198.15 334
plane_prior199.26 226
XXY-MVS98.38 16498.09 17799.24 15499.26 22699.32 10899.56 10299.55 6797.45 18998.71 25999.83 4293.23 25899.63 22698.88 7496.32 27698.76 237
cl-mvsnet____98.01 20497.84 20598.55 24099.25 23097.97 23298.71 32499.34 24196.47 27598.59 28299.54 21095.65 18499.21 29197.21 24995.77 28998.46 316
cl-mvsnet198.01 20497.85 20498.48 24699.24 23197.95 23698.71 32499.35 23796.50 26898.60 28199.54 21095.72 18199.03 31397.21 24995.77 28998.46 316
miper_ehance_all_eth98.18 18098.10 17498.41 25799.23 23297.72 24798.72 32399.31 26196.60 26398.88 23899.29 28597.29 12899.13 30097.60 21995.99 28398.38 324
RRT_test8_iter0597.72 24997.60 23098.08 28199.23 23296.08 30999.63 6499.49 13297.54 18098.94 22999.81 6287.99 34399.35 26699.21 4196.51 27198.81 228
NP-MVS99.23 23296.92 28399.40 256
LTVRE_ROB97.16 1298.02 20197.90 19898.40 25999.23 23296.80 28899.70 3899.60 4097.12 22198.18 30599.70 13591.73 29899.72 19398.39 15097.45 24798.68 260
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 29096.52 29097.59 30899.22 23694.92 33599.04 27799.59 4396.49 26998.43 29198.99 31980.48 36299.39 25397.15 25799.27 15098.47 312
UGNet98.87 11998.69 12999.40 12899.22 23698.72 18499.44 15999.68 1999.24 399.18 18899.42 24892.74 27099.96 1999.34 2899.94 999.53 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 22797.44 25199.01 17599.21 23898.94 16299.48 14699.57 5198.38 8199.28 16099.73 12688.89 33299.39 25399.19 4293.27 33298.71 247
IB-MVS95.67 1896.22 29995.44 30998.57 23699.21 23896.70 29098.65 32997.74 35696.71 25297.27 32898.54 33886.03 35099.92 8398.47 14586.30 35299.10 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 22797.47 24398.98 17999.20 24099.22 12299.64 6299.61 3596.32 28298.27 30299.70 13593.35 25799.44 24695.69 30295.40 29998.27 328
QAPM98.67 14798.30 16499.80 4399.20 24099.67 5799.77 2799.72 1194.74 32598.73 25799.90 795.78 17899.98 696.96 26799.88 3699.76 72
HQP-NCC99.19 24298.98 29298.24 9798.66 268
ACMP_Plane99.19 24298.98 29298.24 9798.66 268
HQP-MVS98.02 20197.90 19898.37 26299.19 24296.83 28598.98 29299.39 21698.24 9798.66 26899.40 25692.47 28299.64 22197.19 25397.58 23498.64 279
Patchmatch-test97.93 21397.65 22598.77 22199.18 24597.07 26999.03 27899.14 29196.16 29798.74 25699.57 19994.56 22799.72 19393.36 33499.11 16199.52 153
FIs98.78 13898.63 13699.23 15699.18 24599.54 8299.83 1299.59 4398.28 9398.79 25299.81 6296.75 14699.37 25899.08 5496.38 27498.78 231
baseline297.87 22197.55 23398.82 21499.18 24598.02 22999.41 17496.58 36596.97 23596.51 33999.17 30093.43 25599.57 23197.71 21199.03 17098.86 225
CR-MVSNet98.17 18197.93 19698.87 20599.18 24598.49 20799.22 24399.33 24896.96 23699.56 9699.38 26194.33 23499.00 31894.83 31998.58 19499.14 194
RPMNet96.72 29195.90 30199.19 15899.18 24598.49 20799.22 24399.52 9188.72 35599.56 9697.38 35194.08 24499.95 4686.87 36198.58 19499.14 194
LS3D99.27 6499.12 7099.74 5999.18 24599.75 4399.56 10299.57 5198.45 7499.49 11299.85 2997.77 11599.94 5798.33 15899.84 6599.52 153
tpm cat197.39 27897.36 26197.50 31299.17 25193.73 34699.43 16599.31 26191.27 34898.71 25999.08 30994.31 23699.77 17496.41 29098.50 20099.00 214
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25199.68 5499.81 1599.51 10499.20 498.72 25899.89 1095.68 18299.97 1198.86 8399.86 5199.81 43
VPA-MVSNet98.29 17197.95 19399.30 14399.16 25399.54 8299.50 13099.58 4998.27 9699.35 14799.37 26492.53 28099.65 21899.35 2494.46 31598.72 245
tpmrst98.33 16798.48 15297.90 29599.16 25394.78 33799.31 21199.11 29397.27 20799.45 11799.59 19295.33 19399.84 13998.48 14298.61 19199.09 201
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25395.32 32699.27 22498.92 31397.37 19999.37 14199.58 19594.90 20799.70 20597.43 24099.21 15399.54 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 27797.34 26697.74 30499.15 25694.36 34199.45 15598.94 31093.45 34098.90 23599.44 24291.35 30799.59 23097.31 24398.07 22199.29 188
CostFormer97.72 24997.73 21897.71 30599.15 25694.02 34499.54 11499.02 30394.67 32699.04 21399.35 27092.35 28899.77 17498.50 14197.94 22399.34 184
TransMVSNet (Re)97.15 28496.58 28898.86 20899.12 25898.85 17299.49 14098.91 31695.48 31297.16 33299.80 7893.38 25699.11 30594.16 32791.73 34298.62 289
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 25899.66 5999.84 999.74 1099.09 1198.92 23299.90 795.94 17199.98 698.95 6599.92 1199.79 57
XVG-ACMP-BASELINE97.83 22997.71 22098.20 27599.11 26096.33 30399.41 17499.52 9198.06 12799.05 21299.50 22489.64 32699.73 18997.73 20897.38 25398.53 306
FMVSNet596.43 29796.19 29597.15 31799.11 26095.89 31299.32 20999.52 9194.47 33098.34 29899.07 31087.54 34797.07 35792.61 34395.72 29298.47 312
MDTV_nov1_ep1398.32 16299.11 26094.44 34099.27 22498.74 33097.51 18499.40 13499.62 18294.78 21399.76 17897.59 22098.81 187
Patchmtry97.75 24397.40 25798.81 21699.10 26398.87 16999.11 26399.33 24894.83 32398.81 24899.38 26194.33 23499.02 31596.10 29395.57 29598.53 306
dp97.75 24397.80 20697.59 30899.10 26393.71 34799.32 20998.88 32096.48 27399.08 20699.55 20592.67 27699.82 15596.52 28698.58 19499.24 190
cl-mvsnet297.85 22497.64 22798.48 24699.09 26597.87 23998.60 33399.33 24897.11 22498.87 24099.22 29592.38 28799.17 29598.21 16595.99 28398.42 319
Baseline_NR-MVSNet97.76 23997.45 24698.68 22899.09 26598.29 21799.41 17498.85 32295.65 31198.63 27699.67 15694.82 21099.10 30798.07 18392.89 33698.64 279
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26799.45 9899.86 899.60 4098.23 10098.70 26599.82 4996.80 14299.22 28699.07 5596.38 27498.79 230
USDC97.34 27997.20 27797.75 30399.07 26895.20 32898.51 33899.04 30297.99 13398.31 29999.86 2389.02 33099.55 23495.67 30497.36 25498.49 309
TinyColmap97.12 28596.89 28597.83 29999.07 26895.52 32198.57 33498.74 33097.58 17497.81 31999.79 9088.16 34199.56 23295.10 31497.21 25798.39 323
pm-mvs197.68 25797.28 27298.88 20199.06 27098.62 19299.50 13099.45 18596.32 28297.87 31699.79 9092.47 28299.35 26697.54 22893.54 32998.67 267
TR-MVS97.76 23997.41 25698.82 21499.06 27097.87 23998.87 30998.56 34196.63 26098.68 26799.22 29592.49 28199.65 21895.40 30997.79 22698.95 223
PAPM97.59 26597.09 28199.07 16799.06 27098.26 22098.30 34899.10 29494.88 32298.08 30899.34 27396.27 16199.64 22189.87 35198.92 17999.31 187
nrg03098.64 15098.42 15599.28 14999.05 27399.69 5299.81 1599.46 17398.04 12999.01 21699.82 4996.69 14899.38 25599.34 2894.59 31498.78 231
tpmvs97.98 20898.02 18597.84 29899.04 27494.73 33899.31 21199.20 28396.10 30698.76 25599.42 24894.94 20399.81 15996.97 26698.45 20298.97 218
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27499.53 8599.82 1399.72 1194.56 32898.08 30899.88 1594.73 21999.98 697.47 23599.76 10099.06 208
DWT-MVSNet_test97.53 26897.40 25797.93 29299.03 27694.86 33699.57 9598.63 33996.59 26598.36 29698.79 32989.32 32899.74 18298.14 17498.16 21899.20 193
WR-MVS_H98.13 18697.87 20398.90 19599.02 27798.84 17399.70 3899.59 4397.27 20798.40 29399.19 29995.53 18699.23 28398.34 15793.78 32698.61 298
tpm97.67 26097.55 23398.03 28499.02 27795.01 33299.43 16598.54 34396.44 27699.12 19599.34 27391.83 29599.60 22997.75 20696.46 27299.48 164
UniMVSNet (Re)98.29 17198.00 18699.13 16499.00 27999.36 10699.49 14099.51 10497.95 13598.97 22599.13 30596.30 16099.38 25598.36 15693.34 33098.66 275
v1097.85 22497.52 23798.86 20898.99 28098.67 18799.75 3199.41 20695.70 31098.98 22399.41 25294.75 21899.23 28396.01 29694.63 31398.67 267
PS-CasMVS97.93 21397.59 23298.95 18498.99 28099.06 14399.68 4599.52 9197.13 21998.31 29999.68 15092.44 28699.05 31098.51 14094.08 32398.75 239
PatchT97.03 28796.44 29198.79 21998.99 28098.34 21699.16 24999.07 29992.13 34599.52 10697.31 35494.54 22998.98 32088.54 35598.73 19099.03 211
V4298.06 19397.79 20798.86 20898.98 28398.84 17399.69 4099.34 24196.53 26799.30 15599.37 26494.67 22299.32 27197.57 22594.66 31298.42 319
LF4IMVS97.52 26997.46 24597.70 30698.98 28395.55 31899.29 21798.82 32598.07 12398.66 26899.64 17089.97 32199.61 22897.01 26296.68 26497.94 346
CP-MVSNet98.09 19097.78 21099.01 17598.97 28599.24 11999.67 4899.46 17397.25 20998.48 28899.64 17093.79 25199.06 30998.63 11994.10 32298.74 243
miper_enhance_ethall98.16 18298.08 17898.41 25798.96 28697.72 24798.45 34099.32 25896.95 23898.97 22599.17 30097.06 13599.22 28697.86 19595.99 28398.29 327
v897.95 21297.63 22898.93 18798.95 28798.81 17999.80 1999.41 20696.03 30799.10 20099.42 24894.92 20699.30 27496.94 26994.08 32398.66 275
TESTMET0.1,197.55 26697.27 27598.40 25998.93 28896.53 29698.67 32697.61 35796.96 23698.64 27599.28 28788.63 33699.45 24197.30 24499.38 14299.21 192
UniMVSNet_NR-MVSNet98.22 17497.97 18998.96 18298.92 28998.98 15099.48 14699.53 8597.76 15598.71 25999.46 24096.43 15799.22 28698.57 13192.87 33798.69 255
v2v48298.06 19397.77 21298.92 18998.90 29098.82 17799.57 9599.36 23296.65 25799.19 18599.35 27094.20 23899.25 28197.72 21094.97 30898.69 255
131498.68 14698.54 15099.11 16598.89 29198.65 18999.27 22499.49 13296.89 24297.99 31399.56 20297.72 11799.83 14897.74 20799.27 15098.84 227
OPM-MVS98.19 17898.10 17498.45 25298.88 29297.07 26999.28 21999.38 22298.57 6599.22 17699.81 6292.12 28999.66 21498.08 18097.54 23898.61 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 23497.44 25198.91 19398.88 29298.68 18699.51 12499.34 24196.18 29499.20 18299.34 27394.03 24599.36 26295.32 31295.18 30398.69 255
RRT_MVS98.60 15298.44 15399.05 17098.88 29299.14 13399.49 14099.38 22297.76 15599.29 15899.86 2395.38 19099.36 26298.81 9697.16 26098.64 279
EPMVS97.82 23297.65 22598.35 26398.88 29295.98 31099.49 14094.71 36997.57 17599.26 16899.48 23392.46 28599.71 19997.87 19499.08 16699.35 182
v114497.98 20897.69 22198.85 21198.87 29698.66 18899.54 11499.35 23796.27 28699.23 17599.35 27094.67 22299.23 28396.73 27995.16 30498.68 260
DU-MVS98.08 19297.79 20798.96 18298.87 29698.98 15099.41 17499.45 18597.87 14098.71 25999.50 22494.82 21099.22 28698.57 13192.87 33798.68 260
NR-MVSNet97.97 21197.61 22999.02 17498.87 29699.26 11799.47 15199.42 20497.63 17097.08 33499.50 22495.07 20299.13 30097.86 19593.59 32898.68 260
WR-MVS98.06 19397.73 21899.06 16898.86 29999.25 11899.19 24699.35 23797.30 20498.66 26899.43 24593.94 24799.21 29198.58 12994.28 31998.71 247
v124097.69 25597.32 26998.79 21998.85 30098.43 21299.48 14699.36 23296.11 30299.27 16399.36 26793.76 25399.24 28294.46 32295.23 30298.70 251
test_040296.64 29296.24 29497.85 29798.85 30096.43 30099.44 15999.26 27393.52 33796.98 33699.52 21788.52 33799.20 29392.58 34497.50 24297.93 347
v14419297.92 21697.60 23098.87 20598.83 30298.65 18999.55 11199.34 24196.20 29299.32 15299.40 25694.36 23399.26 28096.37 29195.03 30798.70 251
v192192097.80 23697.45 24698.84 21298.80 30398.53 19999.52 12099.34 24196.15 29999.24 17199.47 23693.98 24699.29 27595.40 30995.13 30598.69 255
gg-mvs-nofinetune96.17 30295.32 31098.73 22398.79 30498.14 22599.38 19194.09 37091.07 35198.07 31191.04 36489.62 32799.35 26696.75 27799.09 16598.68 260
test-LLR98.06 19397.90 19898.55 24098.79 30497.10 26598.67 32697.75 35497.34 20098.61 27998.85 32694.45 23199.45 24197.25 24799.38 14299.10 197
test-mter97.49 27597.13 28098.55 24098.79 30497.10 26598.67 32697.75 35496.65 25798.61 27998.85 32688.23 34099.45 24197.25 24799.38 14299.10 197
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30798.53 19999.78 2599.54 7498.07 12399.00 22199.76 10899.01 1999.37 25899.13 4997.23 25698.81 228
MVS97.28 28196.55 28999.48 11498.78 30798.95 15999.27 22499.39 21683.53 35998.08 30899.54 21096.97 13899.87 12594.23 32599.16 15699.63 128
TranMVSNet+NR-MVSNet97.93 21397.66 22498.76 22298.78 30798.62 19299.65 5999.49 13297.76 15598.49 28799.60 18994.23 23798.97 32798.00 18592.90 33598.70 251
PEN-MVS97.76 23997.44 25198.72 22598.77 31098.54 19899.78 2599.51 10497.06 22998.29 30199.64 17092.63 27798.89 33398.09 17693.16 33398.72 245
v7n97.87 22197.52 23798.92 18998.76 31198.58 19599.84 999.46 17396.20 29298.91 23399.70 13594.89 20899.44 24696.03 29593.89 32598.75 239
v14897.79 23797.55 23398.50 24398.74 31297.72 24799.54 11499.33 24896.26 28798.90 23599.51 22194.68 22199.14 29797.83 19893.15 33498.63 287
JIA-IIPM97.50 27297.02 28398.93 18798.73 31397.80 24399.30 21398.97 30791.73 34798.91 23394.86 35995.10 20199.71 19997.58 22197.98 22299.28 189
Gipumacopyleft90.99 32690.15 32993.51 33798.73 31390.12 36093.98 36299.45 18579.32 36192.28 35694.91 35869.61 36497.98 34787.42 35895.67 29392.45 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 20898.03 18397.81 30198.72 31596.65 29399.66 5299.66 2798.09 11898.35 29799.82 4995.25 19898.01 34697.41 24195.30 30198.78 231
K. test v397.10 28696.79 28798.01 28798.72 31596.33 30399.87 597.05 36097.59 17296.16 34399.80 7888.71 33399.04 31196.69 28296.55 26998.65 277
OurMVSNet-221017-097.88 21997.77 21298.19 27698.71 31796.53 29699.88 199.00 30497.79 15298.78 25399.94 391.68 29999.35 26697.21 24996.99 26398.69 255
test_djsdf98.67 14798.57 14898.98 17998.70 31898.91 16699.88 199.46 17397.55 17799.22 17699.88 1595.73 18099.28 27699.03 5797.62 23198.75 239
pmmvs696.53 29496.09 29797.82 30098.69 31995.47 32299.37 19499.47 16393.46 33997.41 32599.78 9787.06 34899.33 27096.92 27292.70 33998.65 277
lessismore_v097.79 30298.69 31995.44 32494.75 36895.71 34799.87 2088.69 33499.32 27195.89 29794.93 31098.62 289
mvs_tets98.40 16398.23 16798.91 19398.67 32198.51 20599.66 5299.53 8598.19 10498.65 27499.81 6292.75 26899.44 24699.31 3197.48 24698.77 235
SixPastTwentyTwo97.50 27297.33 26898.03 28498.65 32296.23 30699.77 2798.68 33897.14 21897.90 31599.93 490.45 31499.18 29497.00 26396.43 27398.67 267
UnsupCasMVSNet_eth96.44 29696.12 29697.40 31498.65 32295.65 31599.36 19899.51 10497.13 21996.04 34598.99 31988.40 33898.17 34296.71 28090.27 34598.40 322
DTE-MVSNet97.51 27197.19 27898.46 25198.63 32498.13 22699.84 999.48 14596.68 25497.97 31499.67 15692.92 26498.56 33796.88 27492.60 34098.70 251
our_test_397.65 26297.68 22297.55 31098.62 32594.97 33398.84 31199.30 26596.83 24798.19 30499.34 27397.01 13799.02 31595.00 31796.01 28198.64 279
ppachtmachnet_test97.49 27597.45 24697.61 30798.62 32595.24 32798.80 31599.46 17396.11 30298.22 30399.62 18296.45 15598.97 32793.77 32995.97 28698.61 298
pmmvs498.13 18697.90 19898.81 21698.61 32798.87 16998.99 28899.21 28296.44 27699.06 21199.58 19595.90 17499.11 30597.18 25596.11 28098.46 316
jajsoiax98.43 15898.28 16598.88 20198.60 32898.43 21299.82 1399.53 8598.19 10498.63 27699.80 7893.22 26099.44 24699.22 3997.50 24298.77 235
cascas97.69 25597.43 25498.48 24698.60 32897.30 25698.18 35299.39 21692.96 34398.41 29298.78 33193.77 25299.27 27998.16 17298.61 19198.86 225
pmmvs597.52 26997.30 27198.16 27898.57 33096.73 28999.27 22498.90 31896.14 30098.37 29599.53 21491.54 30599.14 29797.51 23195.87 28798.63 287
GG-mvs-BLEND98.45 25298.55 33198.16 22399.43 16593.68 37197.23 32998.46 33989.30 32999.22 28695.43 30898.22 21097.98 344
gm-plane-assit98.54 33292.96 35394.65 32799.15 30399.64 22197.56 226
anonymousdsp98.44 15798.28 16598.94 18598.50 33398.96 15799.77 2799.50 12497.07 22798.87 24099.77 10494.76 21799.28 27698.66 11697.60 23298.57 304
N_pmnet94.95 31595.83 30392.31 34098.47 33479.33 36799.12 25792.81 37493.87 33397.68 32199.13 30593.87 24999.01 31791.38 34696.19 27898.59 302
MS-PatchMatch97.24 28397.32 26996.99 32198.45 33593.51 35198.82 31399.32 25897.41 19698.13 30799.30 28388.99 33199.56 23295.68 30399.80 8797.90 349
test0.0.03 197.71 25397.42 25598.56 23898.41 33697.82 24298.78 31798.63 33997.34 20098.05 31298.98 32294.45 23198.98 32095.04 31697.15 26198.89 224
EPNet_dtu98.03 19997.96 19198.23 27498.27 33795.54 32099.23 23898.75 32799.02 1697.82 31899.71 13196.11 16499.48 23793.04 33899.65 12599.69 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd98.16 18297.97 18998.73 22398.26 33898.28 21997.99 35598.01 35197.68 16499.10 20099.63 17695.68 18299.15 29698.78 10096.55 26998.75 239
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 29398.24 33997.27 25899.15 25399.33 24893.80 33480.09 36699.03 31588.31 33997.86 35093.49 33394.36 31898.62 289
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28798.16 34097.21 26399.11 26399.24 27793.49 33880.73 36598.98 32293.02 26198.18 34194.22 32694.45 31698.64 279
new_pmnet96.38 29896.03 29897.41 31398.13 34195.16 33199.05 27299.20 28393.94 33297.39 32698.79 32991.61 30499.04 31190.43 34995.77 28998.05 338
YYNet195.36 31194.51 31797.92 29397.89 34297.10 26599.10 26599.23 27893.26 34180.77 36499.04 31492.81 26798.02 34594.30 32394.18 32198.64 279
DSMNet-mixed97.25 28297.35 26396.95 32497.84 34393.61 35099.57 9596.63 36496.13 30198.87 24098.61 33794.59 22597.70 35395.08 31598.86 18399.55 145
EG-PatchMatch MVS95.97 30595.69 30596.81 32797.78 34492.79 35499.16 24998.93 31196.16 29794.08 35299.22 29582.72 35799.47 23895.67 30497.50 24298.17 333
Anonymous2024052196.20 30195.89 30297.13 31997.72 34594.96 33499.79 2499.29 27093.01 34297.20 33199.03 31589.69 32598.36 34091.16 34796.13 27998.07 336
MVP-Stereo97.81 23497.75 21697.99 28997.53 34696.60 29598.96 29698.85 32297.22 21397.23 32999.36 26795.28 19499.46 24095.51 30699.78 9497.92 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 30395.96 30096.63 32997.44 34795.45 32399.51 12499.38 22296.55 26696.16 34399.25 29293.76 25396.17 36287.35 35994.22 32098.27 328
UnsupCasMVSNet_bld93.53 32392.51 32696.58 33197.38 34893.82 34598.24 34999.48 14591.10 35093.10 35596.66 35574.89 36398.37 33994.03 32887.71 35097.56 353
MIMVSNet195.51 30895.04 31296.92 32597.38 34895.60 31699.52 12099.50 12493.65 33696.97 33799.17 30085.28 35396.56 36188.36 35695.55 29698.60 301
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33297.38 34893.17 35299.06 27098.75 32786.58 35694.84 35198.26 34581.53 36099.32 27189.01 35397.87 22596.76 355
Anonymous2023120696.22 29996.03 29896.79 32897.31 35194.14 34399.63 6499.08 29796.17 29597.04 33599.06 31293.94 24797.76 35286.96 36095.06 30698.47 312
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34197.24 35280.01 36698.52 33799.48 14589.01 35391.99 35799.67 15685.67 35299.13 30095.44 30797.03 26296.39 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 12298.71 12799.30 14397.20 35398.18 22299.62 7098.91 31699.28 298.63 27699.81 6295.96 16899.99 199.24 3899.72 10999.73 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
miper_refine_blended94.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
DIV-MVS_2432*160095.00 31394.34 31896.96 32397.07 35695.39 32599.56 10299.44 19495.11 31797.13 33397.32 35391.86 29497.27 35690.35 35081.23 35998.23 332
CL-MVSNet_2432*160094.49 31893.97 32196.08 33396.16 35793.67 34998.33 34699.38 22295.13 31597.33 32798.15 34692.69 27596.57 36088.67 35479.87 36097.99 343
test_method91.10 32591.36 32890.31 34495.85 35873.72 37294.89 36199.25 27568.39 36595.82 34699.02 31780.50 36198.95 32993.64 33194.89 31198.25 330
Patchmatch-RL test95.84 30695.81 30495.95 33495.61 35990.57 35998.24 34998.39 34495.10 31995.20 34898.67 33494.78 21397.77 35196.28 29290.02 34699.51 159
PM-MVS92.96 32492.23 32795.14 33695.61 35989.98 36199.37 19498.21 34794.80 32495.04 35097.69 34865.06 36597.90 34994.30 32389.98 34797.54 354
pmmvs-eth3d95.34 31294.73 31497.15 31795.53 36195.94 31199.35 20499.10 29495.13 31593.55 35397.54 34988.15 34297.91 34894.58 32089.69 34897.61 351
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36292.41 35599.18 24799.28 27294.55 32993.49 35497.37 35287.86 34697.01 35891.57 34588.36 34997.61 351
pmmvs394.09 32293.25 32596.60 33094.76 36394.49 33998.92 30398.18 34989.66 35296.48 34098.06 34786.28 34997.33 35589.68 35287.20 35197.97 345
ambc93.06 33992.68 36482.36 36398.47 33998.73 33595.09 34997.41 35055.55 36899.10 30796.42 28991.32 34397.71 350
EMVS80.02 33279.22 33582.43 35091.19 36576.40 36997.55 35992.49 37566.36 36883.01 36391.27 36364.63 36685.79 36965.82 36860.65 36685.08 365
E-PMN80.61 33179.88 33482.81 34890.75 36676.38 37097.69 35795.76 36766.44 36783.52 36192.25 36262.54 36787.16 36868.53 36761.40 36584.89 366
PMMVS286.87 32785.37 33191.35 34390.21 36783.80 36298.89 30697.45 35983.13 36091.67 35895.03 35748.49 37094.70 36485.86 36277.62 36195.54 358
TDRefinement95.42 31094.57 31697.97 29089.83 36896.11 30899.48 14698.75 32796.74 25096.68 33899.88 1588.65 33599.71 19998.37 15482.74 35798.09 335
LCM-MVSNet86.80 32885.22 33291.53 34287.81 36980.96 36598.23 35198.99 30571.05 36390.13 35996.51 35648.45 37196.88 35990.51 34885.30 35396.76 355
FPMVS84.93 32985.65 33082.75 34986.77 37063.39 37498.35 34398.92 31374.11 36283.39 36298.98 32250.85 36992.40 36684.54 36394.97 30892.46 360
wuyk23d40.18 33641.29 34136.84 35286.18 37149.12 37679.73 36522.81 37727.64 37025.46 37328.45 37221.98 37548.89 37155.80 36923.56 37112.51 369
MVEpermissive76.82 2176.91 33474.31 33884.70 34685.38 37276.05 37196.88 36093.17 37267.39 36671.28 36889.01 36621.66 37787.69 36771.74 36672.29 36490.35 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33374.86 33784.62 34775.88 37377.61 36897.63 35893.15 37388.81 35464.27 36989.29 36536.51 37283.93 37075.89 36552.31 36792.33 362
PMVScopyleft70.75 2275.98 33574.97 33679.01 35170.98 37455.18 37593.37 36398.21 34765.08 36961.78 37093.83 36021.74 37692.53 36578.59 36491.12 34489.34 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 33081.52 33386.66 34566.61 37568.44 37392.79 36497.92 35268.96 36480.04 36799.85 2985.77 35196.15 36397.86 19543.89 36895.39 359
test12339.01 33842.50 34028.53 35339.17 37620.91 37798.75 32019.17 37819.83 37238.57 37166.67 36833.16 37315.42 37237.50 37129.66 37049.26 367
testmvs39.17 33743.78 33925.37 35436.04 37716.84 37898.36 34226.56 37620.06 37138.51 37267.32 36729.64 37415.30 37337.59 37039.90 36943.98 368
eth-test20.00 378
eth-test0.00 378
uanet_test0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.64 33932.85 3420.00 3550.00 3780.00 3790.00 36699.51 1040.00 3730.00 37499.56 20296.58 1500.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.27 34111.03 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 37399.01 190.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.30 34011.06 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.58 1950.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145298.18 10799.84 1499.70 13599.31 398.52 33898.30 16299.80 8799.81 43
test_241102_TWO99.48 14599.08 1299.88 599.81 6298.94 3499.96 1998.91 7199.84 6599.88 7
test_0728_THIRD98.99 2699.81 2499.80 7899.09 1499.96 1998.85 8599.90 2399.88 7
GSMVS99.52 153
sam_mvs194.86 20999.52 153
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post199.23 23865.14 37094.18 24199.71 19997.58 221
test_post65.99 36994.65 22499.73 189
patchmatchnet-post98.70 33394.79 21299.74 182
MTMP99.54 11498.88 320
test9_res97.49 23299.72 10999.75 73
agg_prior297.21 24999.73 10899.75 73
test_prior499.56 7898.99 288
test_prior298.96 29698.34 8799.01 21699.52 21798.68 6697.96 18799.74 105
旧先验298.96 29696.70 25399.47 11499.94 5798.19 167
新几何299.01 286
无先验98.99 28899.51 10496.89 24299.93 7297.53 22999.72 91
原ACMM298.95 300
testdata299.95 4696.67 283
segment_acmp98.96 28
testdata198.85 31098.32 91
plane_prior599.47 16399.69 20997.78 20297.63 22998.67 267
plane_prior499.61 186
plane_prior397.00 27798.69 5999.11 197
plane_prior299.39 18698.97 32
plane_prior96.97 28099.21 24598.45 7497.60 232
n20.00 379
nn0.00 379
door-mid98.05 350
test1199.35 237
door97.92 352
HQP5-MVS96.83 285
BP-MVS97.19 253
HQP4-MVS98.66 26899.64 22198.64 279
HQP3-MVS99.39 21697.58 234
HQP2-MVS92.47 282
MDTV_nov1_ep13_2view95.18 33099.35 20496.84 24599.58 9395.19 20097.82 19999.46 171
ACMMP++_ref97.19 258
ACMMP++97.43 250
Test By Simon98.75 59