This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 23899.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19699.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31299.91 397.67 19199.59 10999.75 13895.90 17399.73 20299.53 3299.02 18299.86 33
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18699.94 6999.50 3699.97 799.89 20
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20298.70 28299.89 3095.83 17599.90 11698.10 19499.90 3999.08 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24699.67 6499.62 4199.43 799.99 299.91 2087.29 363100.00 199.92 1299.92 2499.98 2
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19299.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 30995.45 32799.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40098.81 4499.94 6998.79 12399.86 6299.84 40
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37099.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22399.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 193
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
dcpmvs_299.23 7499.58 798.16 29099.83 3994.68 35099.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25899.74 4499.49 14399.32 1499.99 299.95 385.32 37099.97 2199.82 1699.84 7799.96 7
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 18598.62 14696.99 33899.82 4291.58 37799.72 4999.44 20196.61 28599.66 8399.89 3095.92 17199.82 16897.46 25699.10 17499.57 156
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22499.72 103
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22599.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13199.54 3098.26 22499.72 103
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3199.99 1
patch_mono-299.26 6899.62 598.16 29099.81 4694.59 35299.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
test_part299.81 4699.83 1699.77 51
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25699.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16899.69 1999.85 6999.48 178
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21799.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 22999.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33199.85 698.82 6599.65 8999.74 14398.51 7899.80 17998.83 11899.89 4899.64 136
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25699.04 23199.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
save fliter99.76 6599.59 7099.14 28699.40 22099.00 43
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18299.65 2399.78 10499.41 195
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
PVSNet_BlendedMVS98.86 12798.80 12299.03 18099.76 6598.79 18499.28 25399.91 397.42 21999.67 7899.37 28097.53 11399.88 13198.98 9097.29 27698.42 336
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34799.91 396.74 27399.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35099.55 7797.25 23299.47 13199.77 12997.82 10799.87 13696.93 28899.90 3999.54 161
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
新几何199.75 5899.75 7399.59 7099.54 8596.76 27299.29 17999.64 19298.43 8399.94 6996.92 29099.66 12899.72 103
test22299.75 7399.49 8798.91 33599.49 14396.42 30199.34 17099.65 18698.28 9299.69 12399.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25099.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28499.41 21296.60 28799.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24099.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250696.81 30696.65 30397.29 33299.74 8092.21 37599.60 9585.06 40499.13 2299.77 5199.93 987.82 36199.85 14599.38 4899.38 14999.80 70
test111198.04 21098.11 18697.83 31399.74 8093.82 36099.58 10995.40 39399.12 2599.65 8999.93 990.73 32899.84 15199.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21098.05 19598.00 30299.74 8094.37 35599.59 10194.98 39499.13 2299.66 8399.93 990.67 32999.84 15199.40 4799.38 14999.80 70
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
SD-MVS99.41 4799.52 1199.05 17899.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 37898.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30399.42 14399.68 17498.75 5599.80 17997.98 20599.72 11899.44 191
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18799.28 18099.28 30498.34 8999.85 14596.96 28599.45 14599.69 115
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21499.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21199.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22598.09 19599.13 17099.73 97
PVSNet96.02 1798.85 13498.84 11998.89 20799.73 8797.28 26798.32 37799.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
9.1499.10 7599.72 9199.40 21599.51 11597.53 20699.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
thres100view90097.76 25497.45 25998.69 23799.72 9197.86 25099.59 10198.74 35197.93 16299.26 18898.62 35791.75 30999.83 16293.22 35798.18 23198.37 342
thres600view797.86 23897.51 25298.92 19899.72 9197.95 24499.59 10198.74 35197.94 16199.27 18498.62 35791.75 30999.86 13993.73 35298.19 23098.96 238
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30499.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 32999.85 698.82 6599.54 11999.73 14998.51 7899.74 19698.91 9999.88 5199.77 82
ZD-MVS99.71 9699.79 3099.61 4896.84 26999.56 11499.54 23198.58 7299.96 3096.93 28899.75 112
Anonymous2023121197.88 23497.54 24998.90 20499.71 9698.53 20499.48 17899.57 6494.16 35698.81 26599.68 17493.23 26999.42 26598.84 11594.42 33998.76 253
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20799.71 9697.74 25399.12 28999.54 8598.44 9999.42 14399.71 15494.20 24499.92 9598.54 16298.90 19099.00 232
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18799.43 26497.91 20999.11 17199.62 142
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30299.77 997.74 18499.50 12699.53 23595.41 18899.84 15197.17 27599.64 13199.44 191
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
h-mvs3397.70 26797.28 28698.97 19099.70 10197.27 26899.36 23099.45 19398.94 5499.66 8399.64 19294.93 20399.99 499.48 4184.36 38399.65 129
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38199.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
XVG-OURS98.73 14898.68 13498.88 20999.70 10197.73 25498.92 33399.55 7798.52 9199.45 13499.84 6495.27 19499.91 10598.08 19998.84 19499.00 232
TAPA-MVS97.07 1597.74 26097.34 27998.94 19499.70 10197.53 26199.25 26899.51 11591.90 37299.30 17699.63 19898.78 4899.64 23688.09 38299.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26099.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2499.90 17
tfpn200view997.72 26397.38 27298.72 23599.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.37 342
thres40097.77 25397.38 27298.92 19899.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.96 238
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 30999.47 17396.98 25899.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26899.48 15597.23 23599.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
test_vis1_rt95.81 32495.65 32496.32 35199.67 11191.35 37899.49 17496.74 38898.25 11795.24 36698.10 37174.96 38599.90 11699.53 3298.85 19397.70 371
TEST999.67 11199.65 5799.05 30499.41 21296.22 31398.95 24499.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30499.41 21296.28 30798.95 24499.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
test_899.67 11199.61 6799.03 30999.41 21296.28 30798.93 24899.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 25899.91 105
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16299.74 92
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 29999.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22799.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18797.79 22099.81 9399.60 146
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21799.40 21599.43 20793.67 36099.22 19599.89 3090.23 33599.93 8499.26 6798.33 21899.66 125
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22199.74 4496.85 38597.68 18999.79 4299.74 14391.39 32099.89 12698.83 11899.56 13899.57 156
CHOSEN 280x42099.12 9499.13 7299.08 17399.66 11997.89 24798.43 37199.71 1398.88 5999.62 10099.76 13596.63 14599.70 21899.46 4499.99 199.66 125
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17399.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18299.51 3599.14 16999.67 122
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27099.52 10196.85 26899.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16299.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21799.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
thres20097.61 27797.28 28698.62 24099.64 12798.03 23699.26 26698.74 35197.68 18999.09 22298.32 36691.66 31599.81 17392.88 36198.22 22698.03 358
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24499.93 8499.17 7498.82 19699.49 177
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36099.10 30797.93 16299.42 14399.55 22698.67 6699.80 17995.80 31999.68 12699.61 144
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38797.53 20699.73 6299.65 18691.25 32399.89 12698.62 14399.56 13899.48 178
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26699.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21399.72 103
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33199.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 24899.31 17499.78 12195.23 19899.77 18998.21 18699.03 18099.75 88
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
PCF-MVS97.08 1497.66 27497.06 29699.47 12099.61 14099.09 13698.04 38499.25 28791.24 37598.51 30299.70 15894.55 23299.91 10592.76 36499.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25099.28 6399.84 7799.63 140
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33699.60 14591.75 37698.61 36199.44 20199.35 1299.83 3499.85 5498.70 6399.81 17399.02 8799.91 3199.81 61
tt080597.97 22497.77 22598.57 24699.59 14796.61 30799.45 18899.08 31098.21 12498.88 25599.80 10388.66 34999.70 21898.58 15297.72 24499.39 198
IterMVS-LS98.46 16698.42 16498.58 24599.59 14798.00 23899.37 22699.43 20796.94 26499.07 22499.59 21297.87 10599.03 33198.32 18195.62 31598.71 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 24497.77 22598.02 29999.58 14996.27 31899.02 31299.48 15597.22 23698.71 27699.70 15892.75 28099.13 31797.46 25696.00 30398.67 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28199.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 22999.41 20798.55 36396.03 32899.19 20499.74 14391.87 30699.92 9599.16 7598.29 22399.70 113
IterMVS-SCA-FT97.82 24797.75 23098.06 29699.57 15196.36 31599.02 31299.49 14397.18 23898.71 27699.72 15392.72 28399.14 31497.44 25895.86 30998.67 284
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32599.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 236
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 29999.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28199.80 9799.85 36
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26598.24 18599.80 9799.79 74
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21899.64 2499.82 9099.54 161
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24499.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 27999.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
dmvs_re98.08 20298.16 17997.85 31099.55 15994.67 35199.70 5298.92 32898.15 13399.06 22899.35 28693.67 26499.25 29797.77 22497.25 27899.64 136
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 28999.58 11099.59 21295.39 18999.90 11697.78 22199.49 14399.28 208
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33499.62 10099.70 15893.82 25999.93 8497.35 26299.46 14499.32 205
test_vis1_n97.92 23097.44 26499.34 13699.53 16298.08 23499.74 4499.49 14399.15 20100.00 199.94 679.51 38499.98 1399.88 1499.76 11099.97 4
APD_test195.87 32296.49 30694.00 35799.53 16284.01 38599.54 13999.32 26795.91 33097.99 32799.85 5485.49 36999.88 13191.96 36798.84 19498.12 353
ET-MVSNet_ETH3D96.49 31195.64 32599.05 17899.53 16298.82 18198.84 34197.51 38297.63 19484.77 38799.21 31692.09 30298.91 34998.98 9092.21 36499.41 195
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31299.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 235
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2499.98 2
LFMVS97.90 23397.35 27699.54 9799.52 16699.01 14899.39 21998.24 36997.10 24899.65 8999.79 11584.79 37299.91 10599.28 6398.38 21599.69 115
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18499.92 9599.52 3498.18 23199.72 103
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32399.01 23499.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20299.80 4099.65 18697.39 11699.28 29299.03 8599.85 6999.65 129
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30499.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
GBi-Net97.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
test197.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
FMVSNet297.72 26397.36 27498.80 22999.51 16998.84 17799.45 18899.42 20996.49 29398.86 26299.29 30290.26 33298.98 33896.44 30696.56 29198.58 321
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36196.82 38696.95 26299.54 11999.43 26391.66 31599.86 13998.08 19999.51 14299.22 211
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22899.79 18298.48 16593.29 35499.61 144
iter_conf_final98.71 14998.61 15298.99 18699.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 20999.38 26899.30 6197.52 25698.64 296
hse-mvs297.50 28497.14 29298.59 24299.49 18097.05 28399.28 25399.22 29298.94 5499.66 8399.42 26594.93 20399.65 23399.48 4183.80 38599.08 221
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19299.40 15299.44 26198.10 9999.81 17398.94 9499.62 13499.35 201
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
VDDNet97.55 27997.02 29799.16 16799.49 18098.12 23399.38 22499.30 27595.35 33699.68 7499.90 2682.62 38099.93 8499.31 5898.13 23599.42 193
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22799.58 11099.76 13597.65 11299.82 16898.87 10599.07 17799.46 186
BH-untuned98.42 16998.36 16798.59 24299.49 18096.70 30299.27 25899.13 30597.24 23498.80 26799.38 27795.75 17899.74 19697.07 27999.16 16599.33 204
AUN-MVS96.88 30496.31 31098.59 24299.48 18897.04 28699.27 25899.22 29297.44 21698.51 30299.41 26991.97 30499.66 22897.71 23283.83 38499.07 226
VDD-MVS97.73 26197.35 27698.88 20999.47 18997.12 27699.34 23898.85 34098.19 12799.67 7899.85 5482.98 37899.92 9599.49 4098.32 22299.60 146
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 228
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38399.50 13597.50 20999.38 15899.41 26996.37 15699.81 17399.11 7898.54 21099.51 173
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 28999.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25198.70 13298.93 18699.67 122
ACMH+97.24 1097.92 23097.78 22398.32 27899.46 19096.68 30499.56 12299.54 8598.41 10097.79 33699.87 4490.18 33699.66 22898.05 20397.18 28298.62 307
MIMVSNet97.73 26197.45 25998.57 24699.45 19597.50 26299.02 31298.98 32196.11 32399.41 14799.14 32290.28 33198.74 35695.74 32098.93 18699.47 184
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvs297.25 29597.30 28497.09 33799.43 19793.31 36899.73 4798.87 33898.83 6499.28 18099.80 10384.45 37399.66 22897.88 21197.45 26698.30 344
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34694.78 21499.77 18999.35 5198.11 23699.54 161
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35197.09 12999.75 19599.27 6697.90 24099.47 184
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22299.28 18099.68 17496.44 15499.92 9598.37 17598.22 22699.40 197
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27398.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24199.41 20296.99 29099.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18297.95 20799.45 14599.02 231
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18798.94 24699.65 18692.91 27899.74 19696.52 30499.55 14099.64 136
ACMM97.58 598.37 17698.34 16998.48 25799.41 20297.10 27799.56 12299.45 19398.53 9099.04 23199.85 5493.00 27499.71 21298.74 12797.45 26698.64 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 19997.99 20198.44 26699.41 20296.96 29499.60 9599.56 6998.09 14398.15 32099.91 2090.87 32799.70 21898.88 10297.45 26698.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 29296.81 30098.87 21399.40 20797.46 26399.51 15699.53 9695.86 33198.54 30199.77 12982.44 38199.66 22898.68 13797.52 25699.50 176
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34599.36 24096.33 30499.00 23899.12 32698.46 8199.84 15195.23 33499.37 15699.66 125
API-MVS99.04 10899.03 8699.06 17699.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18796.98 28399.78 10498.07 355
FMVSNet398.03 21297.76 22998.84 22199.39 21098.98 15099.40 21599.38 23196.67 27899.07 22499.28 30492.93 27598.98 33897.10 27696.65 28898.56 323
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
GA-MVS97.85 23997.47 25699.00 18499.38 21197.99 23998.57 36499.15 30297.04 25598.90 25299.30 30089.83 33899.38 26896.70 29898.33 21899.62 142
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25599.35 5198.99 18399.51 173
testing397.28 29396.76 30298.82 22499.37 21498.07 23599.45 18899.36 24097.56 20197.89 33198.95 34283.70 37698.82 35296.03 31398.56 20899.58 154
ACMP97.20 1198.06 20497.94 20898.45 26399.37 21497.01 28899.44 19499.49 14397.54 20598.45 30699.79 11591.95 30599.72 20697.91 20997.49 26398.62 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28599.01 23499.40 27297.09 12999.86 13997.68 23699.53 14199.10 216
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 27597.50 25398.13 29499.36 21796.45 31299.42 20599.48 15597.76 18097.87 33299.45 26091.09 32498.81 35394.53 34298.52 21199.13 215
EI-MVSNet98.67 15598.67 13598.68 23899.35 21897.97 24099.50 16399.38 23196.93 26599.20 20199.83 6897.87 10599.36 27798.38 17397.56 25398.71 263
CVMVSNet98.57 16198.67 13598.30 28099.35 21895.59 33099.50 16399.55 7798.60 8599.39 15599.83 6894.48 23599.45 25598.75 12698.56 20899.85 36
BH-w/o98.00 21997.89 21598.32 27899.35 21896.20 32099.01 31798.90 33496.42 30198.38 30999.00 33695.26 19699.72 20696.06 31298.61 20299.03 229
MVSTER98.49 16398.32 17199.00 18499.35 21899.02 14699.54 13999.38 23197.41 22099.20 20199.73 14993.86 25899.36 27798.87 10597.56 25398.62 307
miper_lstm_enhance98.00 21997.91 21098.28 28499.34 22297.43 26498.88 33799.36 24096.48 29698.80 26799.55 22695.98 16698.91 34997.27 26595.50 31998.51 326
iter_conf0598.55 16298.44 16298.87 21399.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26599.38 26899.30 6197.48 26498.63 304
Effi-MVS+-dtu98.78 14298.89 11298.47 26199.33 22496.91 29699.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19698.73 12999.38 14998.74 258
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22099.08 29899.30 27599.16 1999.43 14099.75 13895.27 19499.97 2198.56 15899.95 1699.36 200
ADS-MVSNet298.02 21498.07 19497.87 30999.33 22495.19 34299.23 27199.08 31096.24 31199.10 21999.67 18094.11 24898.93 34896.81 29399.05 17899.48 178
ADS-MVSNet98.20 18898.08 19198.56 24999.33 22496.48 31199.23 27199.15 30296.24 31199.10 21999.67 18094.11 24899.71 21296.81 29399.05 17899.48 178
LPG-MVS_test98.22 18598.13 18498.49 25599.33 22497.05 28399.58 10999.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
LGP-MVS_train98.49 25599.33 22497.05 28399.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
FMVSNet196.84 30596.36 30998.29 28199.32 23097.26 27099.43 19899.48 15595.11 34098.55 30099.32 29783.95 37598.98 33895.81 31896.26 29898.62 307
PVSNet_094.43 1996.09 32095.47 32697.94 30599.31 23194.34 35797.81 38599.70 1597.12 24497.46 34098.75 35489.71 33999.79 18297.69 23581.69 38799.68 119
c3_l98.12 19898.04 19698.38 27399.30 23297.69 25998.81 34499.33 25796.67 27898.83 26399.34 29097.11 12898.99 33797.58 24195.34 32198.48 328
SCA98.19 18998.16 17998.27 28599.30 23295.55 33199.07 29998.97 32297.57 19999.43 14099.57 22092.72 28399.74 19697.58 24199.20 16399.52 167
LCM-MVSNet-Re97.83 24498.15 18196.87 34499.30 23292.25 37499.59 10198.26 36797.43 21796.20 36099.13 32396.27 15998.73 35798.17 19198.99 18399.64 136
MVS-HIRNet95.75 32595.16 33097.51 32699.30 23293.69 36498.88 33795.78 39185.09 38698.78 27092.65 38991.29 32299.37 27394.85 33999.85 6999.46 186
HQP_MVS98.27 18498.22 17798.44 26699.29 23696.97 29299.39 21999.47 17398.97 5199.11 21699.61 20792.71 28599.69 22397.78 22197.63 24698.67 284
plane_prior799.29 23697.03 287
ITE_SJBPF98.08 29599.29 23696.37 31498.92 32898.34 10898.83 26399.75 13891.09 32499.62 24295.82 31797.40 27298.25 348
DeepMVS_CXcopyleft93.34 36099.29 23682.27 38899.22 29285.15 38596.33 35999.05 33190.97 32699.73 20293.57 35497.77 24398.01 359
CLD-MVS98.16 19398.10 18798.33 27699.29 23696.82 29998.75 35099.44 20197.83 17299.13 21299.55 22692.92 27699.67 22598.32 18197.69 24598.48 328
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 24196.98 29192.71 285
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 34999.31 27197.34 22499.21 19899.07 32897.20 12599.82 16898.56 15898.87 19199.52 167
eth_miper_zixun_eth98.05 20997.96 20498.33 27699.26 24397.38 26598.56 36699.31 27196.65 28098.88 25599.52 23896.58 14799.12 32197.39 26195.53 31898.47 330
D2MVS98.41 17198.50 16098.15 29399.26 24396.62 30699.40 21599.61 4897.71 18698.98 24099.36 28396.04 16499.67 22598.70 13297.41 27198.15 352
plane_prior199.26 243
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21498.71 27699.83 6893.23 26999.63 24198.88 10296.32 29798.76 253
cl____98.01 21797.84 21898.55 25199.25 24797.97 24098.71 35499.34 25096.47 29898.59 29999.54 23195.65 18399.21 30997.21 26895.77 31098.46 333
DIV-MVS_self_test98.01 21797.85 21798.48 25799.24 24897.95 24498.71 35499.35 24696.50 29298.60 29899.54 23195.72 18099.03 33197.21 26895.77 31098.46 333
miper_ehance_all_eth98.18 19198.10 18798.41 26999.23 24997.72 25598.72 35399.31 27196.60 28798.88 25599.29 30297.29 12399.13 31797.60 23995.99 30498.38 341
NP-MVS99.23 24996.92 29599.40 272
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27199.23 24996.80 30099.70 5299.60 5497.12 24498.18 31999.70 15891.73 31199.72 20698.39 17297.45 26698.68 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28299.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 24297.44 26499.01 18299.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34699.39 26799.19 7193.27 35598.71 263
IB-MVS95.67 1896.22 31595.44 32898.57 24699.21 25396.70 30298.65 35997.74 37996.71 27597.27 34698.54 36086.03 36699.92 9598.47 16886.30 38199.10 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 24297.47 25698.98 18899.20 25599.22 11999.64 7899.61 4896.32 30598.27 31699.70 15893.35 26899.44 26095.69 32295.40 32098.27 346
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35098.73 27499.90 2695.78 17799.98 1396.96 28599.88 5199.76 87
HQP-NCC99.19 25798.98 32298.24 11898.66 285
ACMP_Plane99.19 25798.98 32298.24 11898.66 285
HQP-MVS98.02 21497.90 21198.37 27499.19 25796.83 29798.98 32299.39 22398.24 11898.66 28599.40 27292.47 29499.64 23697.19 27297.58 25198.64 296
Patchmatch-test97.93 22797.65 23998.77 23299.18 26097.07 28199.03 30999.14 30496.16 31898.74 27399.57 22094.56 23099.72 20693.36 35699.11 17199.52 167
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 26999.81 9096.75 14299.37 27399.08 8296.38 29598.78 248
baseline297.87 23697.55 24698.82 22499.18 26098.02 23799.41 20796.58 39096.97 25996.51 35799.17 31893.43 26699.57 24697.71 23299.03 18098.86 242
CR-MVSNet98.17 19297.93 20998.87 21399.18 26098.49 21299.22 27599.33 25796.96 26099.56 11499.38 27794.33 24099.00 33694.83 34098.58 20599.14 213
RPMNet96.72 30795.90 31999.19 16499.18 26098.49 21299.22 27599.52 10188.72 38399.56 11497.38 37794.08 25099.95 5986.87 38798.58 20599.14 213
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
tpm cat197.39 29097.36 27497.50 32799.17 26693.73 36299.43 19899.31 27191.27 37498.71 27699.08 32794.31 24299.77 18996.41 30898.50 21299.00 232
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27599.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29299.65 23399.35 5194.46 33798.72 261
tpmrst98.33 17898.48 16197.90 30899.16 26894.78 34899.31 24399.11 30697.27 23099.45 13499.59 21295.33 19299.84 15198.48 16598.61 20299.09 220
PatchmatchNetpermissive98.31 17998.36 16798.19 28899.16 26895.32 33999.27 25898.92 32897.37 22399.37 16099.58 21694.90 20699.70 21897.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 28997.34 27997.74 31999.15 27194.36 35699.45 18898.94 32593.45 36598.90 25299.44 26191.35 32199.59 24597.31 26398.07 23799.29 207
CostFormer97.72 26397.73 23297.71 32099.15 27194.02 35999.54 13999.02 31794.67 35199.04 23199.35 28692.35 30099.77 18998.50 16497.94 23999.34 203
TransMVSNet (Re)97.15 29896.58 30498.86 21799.12 27398.85 17699.49 17498.91 33295.48 33597.16 35099.80 10393.38 26799.11 32294.16 34991.73 36598.62 307
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27399.66 5399.84 1399.74 1099.09 3298.92 24999.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28799.11 27596.33 31699.41 20799.52 10198.06 15299.05 23099.50 24489.64 34199.73 20297.73 22997.38 27498.53 324
FMVSNet596.43 31396.19 31297.15 33399.11 27595.89 32599.32 24199.52 10194.47 35598.34 31299.07 32887.54 36297.07 38292.61 36595.72 31398.47 330
MDTV_nov1_ep1398.32 17199.11 27594.44 35499.27 25898.74 35197.51 20899.40 15299.62 20394.78 21499.76 19397.59 24098.81 198
dmvs_testset95.02 33196.12 31391.72 36599.10 27880.43 39399.58 10997.87 37697.47 21095.22 36798.82 35093.99 25295.18 39088.09 38294.91 33299.56 158
Patchmtry97.75 25897.40 27198.81 22799.10 27898.87 17299.11 29599.33 25794.83 34898.81 26599.38 27794.33 24099.02 33396.10 31195.57 31698.53 324
dp97.75 25897.80 21997.59 32499.10 27893.71 36399.32 24198.88 33696.48 29699.08 22399.55 22692.67 28899.82 16896.52 30498.58 20599.24 210
cl2297.85 23997.64 24198.48 25799.09 28197.87 24898.60 36399.33 25797.11 24798.87 25899.22 31392.38 29999.17 31398.21 18695.99 30498.42 336
Baseline_NR-MVSNet97.76 25497.45 25998.68 23899.09 28198.29 22399.41 20798.85 34095.65 33398.63 29399.67 18094.82 20999.10 32498.07 20292.89 35998.64 296
FC-MVSNet-test98.75 14598.62 14699.15 17099.08 28399.45 9399.86 1299.60 5498.23 12198.70 28299.82 7696.80 13999.22 30499.07 8396.38 29598.79 247
mvsmamba98.92 12098.87 11499.08 17399.07 28499.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28399.38 4897.40 27298.73 260
USDC97.34 29197.20 29097.75 31899.07 28495.20 34198.51 36899.04 31697.99 15898.31 31399.86 4989.02 34499.55 24995.67 32497.36 27598.49 327
TinyColmap97.12 29996.89 29997.83 31399.07 28495.52 33498.57 36498.74 35197.58 19897.81 33599.79 11588.16 35699.56 24795.10 33597.21 28098.39 340
pm-mvs197.68 27097.28 28698.88 20999.06 28798.62 19699.50 16399.45 19396.32 30597.87 33299.79 11592.47 29499.35 28097.54 24893.54 35298.67 284
TR-MVS97.76 25497.41 27098.82 22499.06 28797.87 24898.87 33998.56 36296.63 28498.68 28499.22 31392.49 29399.65 23395.40 33097.79 24298.95 240
PAPM97.59 27897.09 29599.07 17599.06 28798.26 22598.30 37899.10 30794.88 34698.08 32299.34 29096.27 15999.64 23689.87 37598.92 18899.31 206
nrg03098.64 15898.42 16499.28 15499.05 29099.69 4799.81 2099.46 18298.04 15499.01 23499.82 7696.69 14499.38 26899.34 5594.59 33698.78 248
tpmvs97.98 22198.02 19997.84 31299.04 29194.73 34999.31 24399.20 29696.10 32798.76 27299.42 26594.94 20299.81 17396.97 28498.45 21498.97 236
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29199.53 8299.82 1799.72 1194.56 35398.08 32299.88 3694.73 22099.98 1397.47 25599.76 11099.06 227
WR-MVS_H98.13 19697.87 21698.90 20499.02 29398.84 17799.70 5299.59 5797.27 23098.40 30899.19 31795.53 18599.23 30198.34 17893.78 35098.61 316
tpm97.67 27397.55 24698.03 29799.02 29395.01 34599.43 19898.54 36496.44 29999.12 21499.34 29091.83 30899.60 24497.75 22796.46 29399.48 178
Syy-MVS97.09 30197.14 29296.95 34199.00 29592.73 37299.29 24999.39 22397.06 25297.41 34198.15 36893.92 25698.68 35891.71 36898.34 21699.45 189
myMVS_eth3d96.89 30396.37 30898.43 26899.00 29597.16 27499.29 24999.39 22397.06 25297.41 34198.15 36883.46 37798.68 35895.27 33398.34 21699.45 189
UniMVSNet (Re)98.29 18298.00 20099.13 17199.00 29599.36 10299.49 17499.51 11597.95 16098.97 24299.13 32396.30 15899.38 26898.36 17793.34 35398.66 292
v1097.85 23997.52 25098.86 21798.99 29898.67 19199.75 4199.41 21295.70 33298.98 24099.41 26994.75 21999.23 30196.01 31594.63 33598.67 284
PS-CasMVS97.93 22797.59 24598.95 19398.99 29899.06 14299.68 6199.52 10197.13 24298.31 31399.68 17492.44 29899.05 32898.51 16394.08 34598.75 255
PatchT97.03 30296.44 30798.79 23098.99 29898.34 22299.16 28199.07 31392.13 37199.52 12397.31 38094.54 23398.98 33888.54 38098.73 20199.03 229
V4298.06 20497.79 22098.86 21798.98 30198.84 17799.69 5599.34 25096.53 29199.30 17699.37 28094.67 22599.32 28697.57 24594.66 33498.42 336
LF4IMVS97.52 28197.46 25897.70 32198.98 30195.55 33199.29 24998.82 34398.07 14898.66 28599.64 19289.97 33799.61 24397.01 28096.68 28797.94 365
CP-MVSNet98.09 20097.78 22399.01 18298.97 30399.24 11799.67 6499.46 18297.25 23298.48 30599.64 19293.79 26099.06 32798.63 14294.10 34498.74 258
miper_enhance_ethall98.16 19398.08 19198.41 26998.96 30497.72 25598.45 37099.32 26796.95 26298.97 24299.17 31897.06 13199.22 30497.86 21495.99 30498.29 345
v897.95 22697.63 24298.93 19698.95 30598.81 18399.80 2599.41 21296.03 32899.10 21999.42 26594.92 20599.30 29096.94 28794.08 34598.66 292
TESTMET0.1,197.55 27997.27 28998.40 27198.93 30696.53 30998.67 35697.61 38096.96 26098.64 29299.28 30488.63 35199.45 25597.30 26499.38 14999.21 212
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19198.92 30798.98 15099.48 17899.53 9697.76 18098.71 27699.46 25996.43 15599.22 30498.57 15592.87 36098.69 272
RRT_MVS98.70 15098.66 13898.83 22398.90 30898.45 21699.89 299.28 28197.76 18098.94 24699.92 1496.98 13499.25 29799.28 6397.00 28598.80 246
v2v48298.06 20497.77 22598.92 19898.90 30898.82 18199.57 11699.36 24096.65 28099.19 20499.35 28694.20 24499.25 29797.72 23194.97 32998.69 272
131498.68 15498.54 15899.11 17298.89 31098.65 19399.27 25899.49 14396.89 26697.99 32799.56 22397.72 11199.83 16297.74 22899.27 16098.84 244
bld_raw_dy_0_6498.69 15298.58 15498.99 18698.88 31198.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 28999.09 8097.27 27798.71 263
OPM-MVS98.19 18998.10 18798.45 26398.88 31197.07 28199.28 25399.38 23198.57 8699.22 19599.81 9092.12 30199.66 22898.08 19997.54 25598.61 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 24997.44 26498.91 20298.88 31198.68 19099.51 15699.34 25096.18 31699.20 20199.34 29094.03 25199.36 27795.32 33295.18 32498.69 272
EPMVS97.82 24797.65 23998.35 27598.88 31195.98 32399.49 17494.71 39697.57 19999.26 18899.48 25292.46 29799.71 21297.87 21399.08 17699.35 201
v114497.98 22197.69 23598.85 22098.87 31598.66 19299.54 13999.35 24696.27 30999.23 19499.35 28694.67 22599.23 30196.73 29695.16 32598.68 277
DU-MVS98.08 20297.79 22098.96 19198.87 31598.98 15099.41 20799.45 19397.87 16698.71 27699.50 24494.82 20999.22 30498.57 15592.87 36098.68 277
NR-MVSNet97.97 22497.61 24399.02 18198.87 31599.26 11599.47 18499.42 20997.63 19497.08 35299.50 24495.07 20199.13 31797.86 21493.59 35198.68 277
WR-MVS98.06 20497.73 23299.06 17698.86 31899.25 11699.19 27899.35 24697.30 22898.66 28599.43 26393.94 25499.21 30998.58 15294.28 34198.71 263
v124097.69 26897.32 28298.79 23098.85 31998.43 21899.48 17899.36 24096.11 32399.27 18499.36 28393.76 26299.24 30094.46 34395.23 32398.70 268
test_040296.64 30896.24 31197.85 31098.85 31996.43 31399.44 19499.26 28593.52 36296.98 35499.52 23888.52 35299.20 31192.58 36697.50 26097.93 366
v14419297.92 23097.60 24498.87 21398.83 32198.65 19399.55 13499.34 25096.20 31499.32 17299.40 27294.36 23999.26 29696.37 30995.03 32898.70 268
v192192097.80 25197.45 25998.84 22198.80 32298.53 20499.52 14899.34 25096.15 32099.24 19099.47 25593.98 25399.29 29195.40 33095.13 32698.69 272
gg-mvs-nofinetune96.17 31895.32 32998.73 23498.79 32398.14 23199.38 22494.09 39791.07 37798.07 32591.04 39389.62 34299.35 28096.75 29599.09 17598.68 277
test-LLR98.06 20497.90 21198.55 25198.79 32397.10 27798.67 35697.75 37797.34 22498.61 29698.85 34894.45 23799.45 25597.25 26699.38 14999.10 216
test-mter97.49 28797.13 29498.55 25198.79 32397.10 27798.67 35697.75 37796.65 28098.61 29698.85 34888.23 35599.45 25597.25 26699.38 14999.10 216
PS-MVSNAJss98.92 12098.92 10698.90 20498.78 32698.53 20499.78 3299.54 8598.07 14899.00 23899.76 13599.01 1899.37 27399.13 7697.23 27998.81 245
MVS97.28 29396.55 30599.48 11798.78 32698.95 16299.27 25899.39 22383.53 38798.08 32299.54 23196.97 13599.87 13694.23 34799.16 16599.63 140
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23398.78 32698.62 19699.65 7599.49 14397.76 18098.49 30499.60 21094.23 24398.97 34598.00 20492.90 35898.70 268
PEN-MVS97.76 25497.44 26498.72 23598.77 32998.54 20399.78 3299.51 11597.06 25298.29 31599.64 19292.63 28998.89 35198.09 19593.16 35698.72 261
v7n97.87 23697.52 25098.92 19898.76 33098.58 20099.84 1399.46 18296.20 31498.91 25099.70 15894.89 20799.44 26096.03 31393.89 34898.75 255
v14897.79 25297.55 24698.50 25498.74 33197.72 25599.54 13999.33 25796.26 31098.90 25299.51 24194.68 22499.14 31497.83 21793.15 35798.63 304
JIA-IIPM97.50 28497.02 29798.93 19698.73 33297.80 25299.30 24598.97 32291.73 37398.91 25094.86 38795.10 20099.71 21297.58 24197.98 23899.28 208
Gipumacopyleft90.99 35090.15 35593.51 35998.73 33290.12 38093.98 39199.45 19379.32 38992.28 38194.91 38669.61 38797.98 37287.42 38495.67 31492.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 22198.03 19797.81 31698.72 33496.65 30599.66 6999.66 2898.09 14398.35 31199.82 7695.25 19798.01 37197.41 26095.30 32298.78 248
K. test v397.10 30096.79 30198.01 30098.72 33496.33 31699.87 997.05 38497.59 19696.16 36199.80 10388.71 34799.04 32996.69 29996.55 29298.65 294
OurMVSNet-221017-097.88 23497.77 22598.19 28898.71 33696.53 30999.88 499.00 31997.79 17798.78 27099.94 691.68 31299.35 28097.21 26896.99 28698.69 272
test_djsdf98.67 15598.57 15598.98 18898.70 33798.91 16999.88 499.46 18297.55 20299.22 19599.88 3695.73 17999.28 29299.03 8597.62 24898.75 255
pmmvs696.53 31096.09 31597.82 31598.69 33895.47 33599.37 22699.47 17393.46 36497.41 34199.78 12187.06 36499.33 28396.92 29092.70 36298.65 294
lessismore_v097.79 31798.69 33895.44 33794.75 39595.71 36599.87 4488.69 34899.32 28695.89 31694.93 33198.62 307
mvs_tets98.40 17498.23 17698.91 20298.67 34098.51 21099.66 6999.53 9698.19 12798.65 29199.81 9092.75 28099.44 26099.31 5897.48 26498.77 251
SixPastTwentyTwo97.50 28497.33 28198.03 29798.65 34196.23 31999.77 3498.68 35997.14 24197.90 33099.93 990.45 33099.18 31297.00 28196.43 29498.67 284
UnsupCasMVSNet_eth96.44 31296.12 31397.40 32998.65 34195.65 32899.36 23099.51 11597.13 24296.04 36398.99 33788.40 35398.17 36796.71 29790.27 37398.40 339
DTE-MVSNet97.51 28397.19 29198.46 26298.63 34398.13 23299.84 1399.48 15596.68 27797.97 32999.67 18092.92 27698.56 36096.88 29292.60 36398.70 268
our_test_397.65 27597.68 23697.55 32598.62 34494.97 34698.84 34199.30 27596.83 27198.19 31899.34 29097.01 13399.02 33395.00 33896.01 30298.64 296
ppachtmachnet_test97.49 28797.45 25997.61 32398.62 34495.24 34098.80 34599.46 18296.11 32398.22 31799.62 20396.45 15398.97 34593.77 35195.97 30798.61 316
pmmvs498.13 19697.90 21198.81 22798.61 34698.87 17298.99 31999.21 29596.44 29999.06 22899.58 21695.90 17399.11 32297.18 27496.11 30198.46 333
jajsoiax98.43 16898.28 17498.88 20998.60 34798.43 21899.82 1799.53 9698.19 12798.63 29399.80 10393.22 27199.44 26099.22 6997.50 26098.77 251
cascas97.69 26897.43 26898.48 25798.60 34797.30 26698.18 38299.39 22392.96 36898.41 30798.78 35393.77 26199.27 29598.16 19298.61 20298.86 242
pmmvs597.52 28197.30 28498.16 29098.57 34996.73 30199.27 25898.90 33496.14 32198.37 31099.53 23591.54 31899.14 31497.51 25095.87 30898.63 304
GG-mvs-BLEND98.45 26398.55 35098.16 22999.43 19893.68 39897.23 34798.46 36189.30 34399.22 30495.43 32998.22 22697.98 363
gm-plane-assit98.54 35192.96 37094.65 35299.15 32199.64 23697.56 246
anonymousdsp98.44 16798.28 17498.94 19498.50 35298.96 15799.77 3499.50 13597.07 25098.87 25899.77 12994.76 21899.28 29298.66 13997.60 24998.57 322
N_pmnet94.95 33495.83 32192.31 36398.47 35379.33 39599.12 28992.81 40193.87 35897.68 33799.13 32393.87 25799.01 33591.38 37096.19 29998.59 320
MS-PatchMatch97.24 29797.32 28296.99 33898.45 35493.51 36798.82 34399.32 26797.41 22098.13 32199.30 30088.99 34599.56 24795.68 32399.80 9797.90 368
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35599.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
test0.0.03 197.71 26697.42 26998.56 24998.41 35697.82 25198.78 34798.63 36097.34 22498.05 32698.98 33994.45 23798.98 33895.04 33797.15 28398.89 241
EPNet_dtu98.03 21297.96 20498.23 28698.27 35795.54 33399.23 27198.75 34899.02 3897.82 33499.71 15496.11 16299.48 25293.04 36099.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 33393.98 34097.92 30698.24 35897.27 26899.15 28499.33 25793.80 35980.09 39499.03 33388.31 35497.86 37593.49 35594.36 34098.62 307
MDA-MVSNet_test_wron95.45 32794.60 33498.01 30098.16 35997.21 27399.11 29599.24 28993.49 36380.73 39398.98 33993.02 27398.18 36694.22 34894.45 33898.64 296
new_pmnet96.38 31496.03 31697.41 32898.13 36095.16 34499.05 30499.20 29693.94 35797.39 34498.79 35291.61 31799.04 32990.43 37395.77 31098.05 357
EGC-MVSNET82.80 35777.86 36397.62 32297.91 36196.12 32199.33 24099.28 2818.40 40125.05 40299.27 30784.11 37499.33 28389.20 37798.22 22697.42 376
YYNet195.36 32994.51 33697.92 30697.89 36297.10 27799.10 29799.23 29093.26 36680.77 39299.04 33292.81 27998.02 37094.30 34494.18 34398.64 296
DSMNet-mixed97.25 29597.35 27696.95 34197.84 36393.61 36699.57 11696.63 38996.13 32298.87 25898.61 35994.59 22897.70 37895.08 33698.86 19299.55 159
testf190.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
APD_test290.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
EG-PatchMatch MVS95.97 32195.69 32396.81 34597.78 36492.79 37199.16 28198.93 32696.16 31894.08 37499.22 31382.72 37999.47 25395.67 32497.50 26098.17 351
Anonymous2024052196.20 31795.89 32097.13 33597.72 36794.96 34799.79 3199.29 27993.01 36797.20 34999.03 33389.69 34098.36 36491.16 37196.13 30098.07 355
MVP-Stereo97.81 24997.75 23097.99 30397.53 36896.60 30898.96 32698.85 34097.22 23697.23 34799.36 28395.28 19399.46 25495.51 32699.78 10497.92 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 31995.96 31896.63 34797.44 36995.45 33699.51 15699.38 23196.55 29096.16 36199.25 31093.76 26296.17 38787.35 38594.22 34298.27 346
UnsupCasMVSNet_bld93.53 34392.51 34896.58 34997.38 37093.82 36098.24 37999.48 15591.10 37693.10 37896.66 38274.89 38698.37 36394.03 35087.71 37997.56 374
MIMVSNet195.51 32695.04 33196.92 34397.38 37095.60 32999.52 14899.50 13593.65 36196.97 35599.17 31885.28 37196.56 38688.36 38195.55 31798.60 319
OpenMVS_ROBcopyleft92.34 2094.38 33993.70 34596.41 35097.38 37093.17 36999.06 30298.75 34886.58 38494.84 37298.26 36781.53 38299.32 28689.01 37897.87 24196.76 379
Anonymous2023120696.22 31596.03 31696.79 34697.31 37394.14 35899.63 8299.08 31096.17 31797.04 35399.06 33093.94 25497.76 37786.96 38695.06 32798.47 330
CMPMVSbinary69.68 2394.13 34094.90 33291.84 36497.24 37480.01 39498.52 36799.48 15589.01 38191.99 38299.67 18085.67 36899.13 31795.44 32897.03 28496.39 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 12798.71 13199.30 14897.20 37598.18 22899.62 8898.91 33299.28 1698.63 29399.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
miper_refine_blended94.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
KD-MVS_self_test95.00 33294.34 33796.96 34097.07 37895.39 33899.56 12299.44 20195.11 34097.13 35197.32 37991.86 30797.27 38190.35 37481.23 38898.23 350
test_fmvs392.10 34791.77 35093.08 36196.19 37986.25 38399.82 1798.62 36196.65 28095.19 36996.90 38155.05 39695.93 38996.63 30390.92 37197.06 378
CL-MVSNet_self_test94.49 33793.97 34196.08 35296.16 38093.67 36598.33 37699.38 23195.13 33897.33 34598.15 36892.69 28796.57 38588.67 37979.87 38997.99 362
test_method91.10 34991.36 35190.31 36995.85 38173.72 40294.89 39099.25 28768.39 39395.82 36499.02 33580.50 38398.95 34793.64 35394.89 33398.25 348
mvsany_test393.77 34293.45 34694.74 35695.78 38288.01 38299.64 7898.25 36898.28 11394.31 37397.97 37368.89 38898.51 36297.50 25190.37 37297.71 369
Patchmatch-RL test95.84 32395.81 32295.95 35395.61 38390.57 37998.24 37998.39 36695.10 34295.20 36898.67 35694.78 21497.77 37696.28 31090.02 37499.51 173
PM-MVS92.96 34592.23 34995.14 35595.61 38389.98 38199.37 22698.21 37094.80 34995.04 37197.69 37465.06 38997.90 37494.30 34489.98 37597.54 375
pmmvs-eth3d95.34 33094.73 33397.15 33395.53 38595.94 32499.35 23599.10 30795.13 33893.55 37697.54 37588.15 35797.91 37394.58 34189.69 37697.61 372
test_f91.90 34891.26 35293.84 35895.52 38685.92 38499.69 5598.53 36595.31 33793.87 37596.37 38455.33 39598.27 36595.70 32190.98 37097.32 377
WB-MVS93.10 34494.10 33890.12 37095.51 38781.88 39099.73 4799.27 28495.05 34393.09 37998.91 34794.70 22391.89 39476.62 39394.02 34796.58 381
new-patchmatchnet94.48 33894.08 33995.67 35495.08 38892.41 37399.18 27999.28 28194.55 35493.49 37797.37 37887.86 36097.01 38391.57 36988.36 37797.61 372
SSC-MVS92.73 34693.73 34289.72 37195.02 38981.38 39199.76 3799.23 29094.87 34792.80 38098.93 34394.71 22291.37 39574.49 39593.80 34996.42 382
pmmvs394.09 34193.25 34796.60 34894.76 39094.49 35398.92 33398.18 37289.66 37896.48 35898.06 37286.28 36597.33 38089.68 37687.20 38097.97 364
test_vis3_rt87.04 35385.81 35690.73 36893.99 39181.96 38999.76 3790.23 40392.81 36981.35 39191.56 39140.06 40099.07 32694.27 34688.23 37891.15 391
ambc93.06 36292.68 39282.36 38798.47 36998.73 35695.09 37097.41 37655.55 39499.10 32496.42 30791.32 36697.71 369
EMVS80.02 36079.22 36282.43 37991.19 39376.40 39797.55 38892.49 40266.36 39683.01 39091.27 39264.63 39085.79 39865.82 39860.65 39585.08 394
E-PMN80.61 35979.88 36182.81 37790.75 39476.38 39897.69 38695.76 39266.44 39583.52 38892.25 39062.54 39187.16 39768.53 39761.40 39484.89 395
PMMVS286.87 35485.37 35891.35 36790.21 39583.80 38698.89 33697.45 38383.13 38891.67 38595.03 38548.49 39894.70 39185.86 39077.62 39095.54 386
TDRefinement95.42 32894.57 33597.97 30489.83 39696.11 32299.48 17898.75 34896.74 27396.68 35699.88 3688.65 35099.71 21298.37 17582.74 38698.09 354
LCM-MVSNet86.80 35585.22 35991.53 36687.81 39780.96 39298.23 38198.99 32071.05 39190.13 38696.51 38348.45 39996.88 38490.51 37285.30 38296.76 379
FPMVS84.93 35685.65 35782.75 37886.77 39863.39 40498.35 37398.92 32874.11 39083.39 38998.98 33950.85 39792.40 39384.54 39194.97 32992.46 388
wuyk23d40.18 36441.29 36936.84 38186.18 39949.12 40679.73 39422.81 40627.64 39825.46 40128.45 40121.98 40448.89 40055.80 39923.56 40012.51 398
MVEpermissive76.82 2176.91 36274.31 36684.70 37585.38 40076.05 39996.88 38993.17 39967.39 39471.28 39689.01 39521.66 40687.69 39671.74 39672.29 39390.35 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 36174.86 36584.62 37675.88 40177.61 39697.63 38793.15 40088.81 38264.27 39789.29 39436.51 40183.93 39975.89 39452.31 39692.33 390
PMVScopyleft70.75 2275.98 36374.97 36479.01 38070.98 40255.18 40593.37 39298.21 37065.08 39761.78 39893.83 38821.74 40592.53 39278.59 39291.12 36989.34 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 35781.52 36086.66 37466.61 40368.44 40392.79 39397.92 37468.96 39280.04 39599.85 5485.77 36796.15 38897.86 21443.89 39795.39 387
test12339.01 36642.50 36828.53 38239.17 40420.91 40798.75 35019.17 40719.83 40038.57 39966.67 39733.16 40215.42 40137.50 40129.66 39949.26 396
testmvs39.17 36543.78 36725.37 38336.04 40516.84 40898.36 37226.56 40520.06 39938.51 40067.32 39629.64 40315.30 40237.59 40039.90 39843.98 397
test_blank0.13 3700.17 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4031.57 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.64 36732.85 3700.00 3840.00 4060.00 4090.00 39599.51 1150.00 4020.00 40399.56 22396.58 1470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.27 36911.03 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 40399.01 180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.30 36811.06 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.58 2160.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
WAC-MVS97.16 27495.47 327
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36198.30 18399.80 9799.81 61
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
GSMVS99.52 167
sam_mvs194.86 20899.52 167
sam_mvs94.72 221
MTGPAbinary99.47 173
test_post199.23 27165.14 39994.18 24799.71 21297.58 241
test_post65.99 39894.65 22799.73 202
patchmatchnet-post98.70 35594.79 21399.74 196
MTMP99.54 13998.88 336
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26899.73 11799.75 88
test_prior499.56 7598.99 319
test_prior298.96 32698.34 10899.01 23499.52 23898.68 6497.96 20699.74 115
旧先验298.96 32696.70 27699.47 13199.94 6998.19 188
新几何299.01 317
无先验98.99 31999.51 11596.89 26699.93 8497.53 24999.72 103
原ACMM298.95 329
testdata299.95 5996.67 300
segment_acmp98.96 24
testdata198.85 34098.32 111
plane_prior599.47 17399.69 22397.78 22197.63 24698.67 284
plane_prior499.61 207
plane_prior397.00 28998.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior96.97 29299.21 27798.45 9697.60 249
n20.00 408
nn0.00 408
door-mid98.05 373
test1199.35 246
door97.92 374
HQP5-MVS96.83 297
BP-MVS97.19 272
HQP4-MVS98.66 28599.64 23698.64 296
HQP3-MVS99.39 22397.58 251
HQP2-MVS92.47 294
MDTV_nov1_ep13_2view95.18 34399.35 23596.84 26999.58 11095.19 19997.82 21899.46 186
ACMMP++_ref97.19 281
ACMMP++97.43 270
Test By Simon98.75 55