This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 3989.49 3491.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DELS-MVS89.71 4889.68 5089.74 4693.75 5296.22 3693.76 3885.84 5182.53 7785.05 4378.96 6884.24 5784.25 7694.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4396.92 1891.31 6189.61 3195.16 584.55 4689.91 2991.45 2190.15 3595.12 1194.81 792.90 15397.58 13
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2896.87 1995.19 2791.76 1592.17 2686.58 3481.79 5185.85 5090.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2491.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS92.05 3193.74 2290.08 4294.96 4097.06 1393.11 4487.71 4390.71 3680.78 6992.40 2291.03 2287.68 5394.32 2894.48 1396.21 2396.16 41
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2791.43 2595.53 794.41 1495.53 5797.47 15
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3195.88 4293.73 3989.00 3389.89 4290.31 1481.28 5788.85 3891.45 2292.88 5194.24 1596.00 2796.76 29
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3296.50 3594.70 3187.83 4290.49 3889.92 1774.68 9189.35 3590.66 3194.02 3194.14 1795.67 4796.85 27
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
SD-MVS94.53 1095.22 893.73 1495.69 3597.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030490.88 3991.35 3790.34 4093.91 5096.79 2394.49 3386.54 4886.57 5582.85 5581.68 5489.70 3287.57 5594.64 2193.93 2196.67 1196.15 42
CANet91.33 3791.46 3591.18 3595.01 3996.71 2493.77 3787.39 4587.72 5087.26 3081.77 5289.73 3187.32 5994.43 2693.86 2296.31 1896.02 44
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2092.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3396.59 3095.09 2890.45 2993.42 1683.01 5494.68 1090.74 2588.74 4294.75 1993.78 2493.82 13497.63 12
DPM-MVS91.72 3491.48 3492.00 3095.53 3695.75 4595.94 1591.07 2091.20 3385.58 3981.63 5590.74 2588.40 4693.40 4293.75 2595.45 6193.85 82
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4295.74 4693.82 3685.36 5589.28 4387.81 2774.34 9487.40 4788.56 4493.07 4793.74 2696.53 1295.71 48
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3697.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs89.36 5189.92 4688.70 5991.38 7895.92 4191.81 5682.61 9890.37 3982.73 5782.09 4979.28 8588.30 4791.17 7593.59 2895.36 6497.04 25
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3792.24 1293.89 3593.50 3095.88 3196.73 30
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3092.52 1193.94 3393.49 3295.87 3397.10 23
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4888.20 3188.82 3989.11 3893.75 3893.43 3395.75 4396.83 28
DROMVSNet89.96 4790.77 4389.01 5590.54 9095.15 5591.34 6081.43 10685.27 6183.08 5382.83 4687.22 4890.97 2994.79 1893.38 3496.73 896.71 32
IS_MVSNet86.18 7688.18 6083.85 10591.02 8294.72 6587.48 11182.46 9981.05 9570.28 11776.98 7782.20 6876.65 14493.97 3293.38 3495.18 7394.97 59
CS-MVS90.34 4290.58 4490.07 4393.11 5995.82 4490.57 6483.62 7687.07 5385.35 4082.98 4583.47 6091.37 2694.94 1393.37 3696.37 1496.41 37
CDPH-MVS91.14 3892.01 3290.11 4196.18 2896.18 3794.89 3088.80 3788.76 4677.88 8589.18 3087.71 4687.29 6093.13 4693.31 3795.62 5095.84 46
ETV-MVS89.22 5289.76 4988.60 6191.60 7694.61 6689.48 8083.46 8585.20 6381.58 6282.75 4782.59 6588.80 4094.57 2393.28 3896.68 995.31 56
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2891.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
UA-Net86.07 7787.78 6684.06 10292.85 6595.11 5787.73 10884.38 6573.22 15273.18 10579.99 6289.22 3671.47 17293.22 4593.03 4094.76 9190.69 141
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4391.69 2093.62 4193.03 4095.83 3796.41 37
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4595.63 4791.81 5686.38 4987.53 5181.29 6487.96 3285.43 5287.69 5293.90 3492.93 4296.33 1695.69 49
CSCG92.76 2593.16 2792.29 2896.30 2797.74 794.67 3288.98 3592.46 2289.73 1986.67 3692.15 1788.69 4392.26 5992.92 4395.40 6297.89 10
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7296.00 3993.43 4087.94 4092.53 2186.27 3893.57 1591.94 1891.44 2493.29 4492.89 4496.78 797.15 21
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3391.91 1693.64 4092.78 4595.69 4597.09 24
test250685.20 8684.11 9886.47 7691.84 7395.28 5189.18 8384.49 6382.59 7575.34 9474.66 9258.07 18681.68 9193.76 3692.71 4696.28 2191.71 127
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7395.28 5189.18 8384.49 6382.59 7573.49 10366.12 13769.28 13581.68 9193.76 3692.71 4696.28 2191.58 134
test111184.86 9184.21 9785.61 8391.75 7595.14 5688.63 9884.57 6281.88 8571.21 11265.66 14368.51 13981.19 9593.74 3992.68 4896.31 1891.86 124
CS-MVS-test90.29 4390.96 3989.51 5193.18 5895.87 4389.18 8383.72 7588.32 4884.82 4584.89 4185.23 5390.25 3394.04 2992.66 4995.94 2995.69 49
train_agg92.87 2493.53 2592.09 2996.88 1895.38 4995.94 1590.59 2790.65 3783.65 5194.31 1391.87 1990.30 3293.38 4392.42 5095.17 7496.73 30
MAR-MVS88.39 6088.44 5788.33 6694.90 4195.06 5890.51 6583.59 7985.27 6179.07 7777.13 7682.89 6487.70 5192.19 6292.32 5194.23 11894.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 8994.42 6791.82 5584.69 6084.05 6982.08 6176.57 7979.00 8685.49 7192.35 5792.29 5295.55 5594.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
QAPM89.49 5089.58 5189.38 5294.73 4495.94 4092.35 4885.00 5885.69 6080.03 7376.97 7887.81 4587.87 5092.18 6392.10 5396.33 1696.40 39
Vis-MVSNetpermissive84.38 9986.68 7881.70 12687.65 12394.89 6188.14 10480.90 11074.48 13868.23 12977.53 7580.72 7369.98 17692.68 5391.90 5495.33 6794.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet89.60 4989.91 4789.24 5496.45 2693.61 7992.95 4688.03 3985.74 5983.36 5287.29 3583.05 6380.98 9892.22 6091.85 5593.69 13995.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14690.46 9492.71 9484.84 14782.00 10280.93 9762.44 16276.29 8182.32 6765.54 19292.29 5891.66 5694.49 10891.47 136
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3396.55 3194.47 3489.49 3291.71 3085.26 4191.52 2484.48 5690.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS87.94 6688.05 6287.81 6891.46 7795.00 6088.67 9582.81 9082.53 7780.81 6880.04 6180.20 7687.48 5692.58 5591.61 5895.63 4994.36 72
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6495.40 4888.56 10183.45 8679.55 10882.26 5874.49 9384.03 5879.24 12892.97 5091.53 5995.15 7696.65 33
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4695.06 5891.02 6383.49 8282.50 7982.24 6067.62 13285.48 5185.56 7091.19 7491.30 6095.67 4794.75 64
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 6389.08 8883.81 7284.91 6686.38 3679.14 6578.11 9282.66 8493.05 4891.10 6195.86 3494.86 62
CANet_DTU85.43 8387.72 6982.76 11690.95 8593.01 9089.99 7075.46 16682.67 7464.91 14783.14 4480.09 7780.68 10292.03 6591.03 6394.57 10392.08 119
gg-mvs-nofinetune75.64 18577.26 16473.76 18987.92 11892.20 10287.32 11464.67 20751.92 21335.35 21746.44 20577.05 9971.97 16992.64 5491.02 6495.34 6689.53 150
FMVSNet283.87 10083.73 10284.05 10384.20 16289.95 12589.70 7480.21 11979.17 11274.89 9565.91 13877.49 9679.75 12090.87 8691.00 6595.52 5891.71 127
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5794.05 7490.43 6684.65 6190.16 4084.52 4790.14 2883.80 5987.99 4992.50 5690.92 6694.74 9294.70 66
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10194.22 7089.96 7183.93 7185.08 6480.91 6675.81 8477.88 9586.08 6791.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS87.56 6985.80 8589.62 4993.90 5194.09 7394.12 3588.18 3875.40 13277.30 8876.41 8077.93 9488.79 4192.20 6190.82 6895.40 6293.72 86
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GBi-Net84.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
test184.51 9584.80 9184.17 9984.20 16289.95 12589.70 7480.37 11481.17 9175.50 9069.63 11779.69 8279.75 12090.73 8990.72 6995.52 5891.71 127
FMVSNet181.64 12280.61 12782.84 11582.36 18789.20 14688.67 9579.58 12870.79 16372.63 11058.95 18172.26 12379.34 12690.73 8990.72 6994.47 10991.62 132
UGNet85.90 8088.23 5983.18 11288.96 11194.10 7287.52 11083.60 7881.66 8877.90 8480.76 5983.19 6266.70 18991.13 8090.71 7294.39 11496.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline184.54 9484.43 9584.67 9090.62 8791.16 11088.63 9883.75 7479.78 10571.16 11375.14 8874.10 11077.84 13791.56 6890.67 7396.04 2688.58 155
CLD-MVS88.66 5588.52 5688.82 5791.37 7994.22 7092.82 4782.08 10188.27 4985.14 4281.86 5078.53 9085.93 6991.17 7590.61 7495.55 5595.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_Test86.93 7287.24 7186.56 7590.10 10293.47 8190.31 6780.12 12083.55 7178.12 8179.58 6479.80 8085.45 7290.17 9690.59 7595.29 6993.53 89
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6693.66 7893.35 4185.22 5785.77 5874.03 10086.60 3776.29 10186.62 6591.20 7390.58 7695.29 6995.75 47
FMVSNet384.44 9784.64 9384.21 9884.32 16190.13 12389.85 7380.37 11481.17 9175.50 9069.63 11779.69 8279.62 12389.72 10290.52 7795.59 5391.58 134
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9194.41 6887.24 11782.32 10081.79 8773.60 10278.57 7082.41 6682.07 8991.23 7190.39 7895.14 7795.48 54
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11089.85 13089.34 8180.70 11183.04 7378.08 8376.19 8279.00 8682.42 8789.67 10390.30 7993.63 14295.12 57
OMC-MVS90.23 4590.40 4590.03 4493.45 5595.29 5091.89 5486.34 5093.25 1984.94 4481.72 5386.65 4988.90 3991.69 6790.27 8094.65 9893.95 80
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3095.19 5492.98 4591.40 1789.08 4588.65 2278.35 7181.44 7091.30 2890.81 8890.21 8194.72 9493.59 88
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21092.62 9990.29 6880.38 11382.16 8273.01 10883.41 4371.10 12787.05 6287.77 12490.17 8295.62 5091.82 125
MVSTER86.03 7886.12 8085.93 8088.62 11389.93 12889.33 8279.91 12581.87 8681.35 6381.07 5874.91 10680.66 10392.13 6490.10 8395.68 4692.80 101
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10793.13 8692.16 5082.65 9682.30 8180.75 7068.30 12880.41 7485.01 7390.56 9490.07 8494.70 9694.01 79
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8193.55 8080.90 17881.35 10776.56 12480.87 6764.81 15169.97 13168.87 17985.64 15490.06 8595.36 6494.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5692.19 10391.43 5986.74 4786.02 5782.85 5575.63 8575.14 10488.41 4590.68 9289.99 8694.59 10192.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+85.33 8485.08 9085.63 8289.69 10493.42 8389.90 7280.31 11879.32 10972.48 11173.52 10074.03 11186.55 6690.99 8389.98 8794.83 8794.27 77
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8691.62 10787.66 10983.61 7779.75 10674.37 9878.69 6971.21 12678.91 12991.23 7189.96 8894.96 8294.69 68
HQP-MVS89.13 5389.58 5188.60 6193.53 5493.67 7793.29 4287.58 4488.53 4775.50 9087.60 3380.32 7587.07 6190.66 9389.95 8994.62 10096.35 40
Anonymous20240521182.75 10889.58 10592.97 9189.04 9184.13 6978.72 11457.18 18676.64 10083.13 8289.55 10589.92 9093.38 14794.28 76
CDS-MVSNet81.63 12382.09 11181.09 13587.21 12890.28 11987.46 11380.33 11769.06 17270.66 11471.30 10873.87 11267.99 18289.58 10489.87 9192.87 15490.69 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11791.87 10588.10 10577.70 14978.10 11873.04 10769.13 12368.51 13986.66 6490.49 9589.85 9294.67 9792.88 98
gm-plane-assit70.29 19870.65 20069.88 19885.03 15378.50 20858.41 21565.47 20350.39 21540.88 21349.60 20150.11 20975.14 15391.43 7089.78 9394.32 11684.73 184
ACMP83.90 888.32 6188.06 6188.62 6092.18 7093.98 7591.28 6285.24 5686.69 5481.23 6585.62 3875.13 10587.01 6389.83 10089.77 9494.79 8895.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121184.42 9883.02 10486.05 7988.85 11292.70 9588.92 9483.40 8779.99 10378.31 8055.83 19078.92 8883.33 8089.06 11189.76 9593.50 14494.90 60
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6793.92 7692.21 4985.57 5491.73 2973.72 10191.75 2373.22 12087.64 5491.49 6989.71 9693.73 13791.82 125
CPTT-MVS91.39 3690.95 4091.91 3195.06 3895.24 5395.02 2988.98 3591.02 3486.71 3384.89 4188.58 4291.60 2190.82 8789.67 9794.08 12196.45 35
thisisatest053085.15 8885.86 8384.33 9589.19 10992.57 10087.22 11880.11 12182.15 8374.41 9778.15 7273.80 11479.90 11690.99 8389.58 9895.13 7893.75 85
tttt051785.11 8985.81 8484.30 9689.24 10792.68 9687.12 12280.11 12181.98 8474.31 9978.08 7373.57 11679.90 11691.01 8189.58 9895.11 8093.77 84
tfpn200view982.86 10781.46 11584.48 9290.30 9993.09 8789.05 9082.71 9275.14 13369.56 12065.72 14063.13 15580.38 10991.15 7789.51 10094.91 8492.50 115
thres40082.68 11081.15 12084.47 9390.52 9192.89 9288.95 9382.71 9274.33 14069.22 12565.31 14562.61 16180.63 10490.96 8589.50 10194.79 8892.45 117
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9593.47 8188.66 9773.11 17483.34 7282.26 5871.79 10678.39 9183.14 8191.00 8289.47 10295.28 7193.06 94
thres20082.77 10981.25 11984.54 9190.38 9693.05 8889.13 8782.67 9474.40 13969.53 12265.69 14263.03 15880.63 10491.15 7789.42 10394.88 8592.04 121
DU-MVS81.20 12680.30 13082.25 12184.98 15590.94 11285.70 13683.58 8075.74 12964.21 14965.30 14659.60 17980.22 11086.89 13389.31 10494.77 9094.29 73
TranMVSNet+NR-MVSNet80.52 12979.84 13881.33 13284.92 15790.39 11785.53 14184.22 6874.27 14160.68 17864.93 15059.96 17477.48 13986.75 13889.28 10595.12 7993.29 90
thres100view90082.55 11281.01 12484.34 9490.30 9992.27 10189.04 9182.77 9175.14 13369.56 12065.72 14063.13 15579.62 12389.97 9989.26 10694.73 9391.61 133
GeoE84.62 9383.98 10085.35 8689.34 10692.83 9388.34 10278.95 13579.29 11077.16 8968.10 12974.56 10783.40 7989.31 10989.23 10794.92 8394.57 70
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4792.63 9791.50 5887.19 4689.16 4486.87 3275.51 8680.87 7289.98 3690.01 9889.20 10894.41 11390.45 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 14891.30 10885.70 13684.25 6675.89 12864.21 14966.95 13464.65 15180.22 11087.07 13089.18 10995.27 7294.29 73
LS3D85.96 7984.37 9687.81 6894.13 4893.27 8590.26 6989.00 3384.91 6672.84 10971.74 10772.47 12287.45 5789.53 10689.09 11093.20 14989.60 149
diffmvspermissive86.52 7486.76 7786.23 7788.31 11692.63 9789.58 7781.61 10586.14 5680.26 7179.00 6777.27 9783.58 7788.94 11289.06 11194.05 12394.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)81.22 12581.08 12181.39 13085.35 14791.76 10684.93 14582.88 8976.13 12765.02 14664.94 14963.09 15775.17 15287.71 12589.04 11294.97 8194.88 61
thres600view782.53 11381.02 12284.28 9790.61 8893.05 8888.57 10082.67 9474.12 14368.56 12865.09 14862.13 16680.40 10891.15 7789.02 11394.88 8592.59 109
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6394.85 6292.00 5184.84 5991.68 3180.05 7279.77 6384.56 5588.17 4890.11 9789.00 11495.30 6892.57 111
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D79.24 14676.47 17282.48 11985.66 14390.97 11186.08 13381.63 10464.48 19268.94 12754.47 19257.65 18878.83 13085.20 16488.91 11593.72 13893.60 87
NR-MVSNet80.25 13279.98 13680.56 14185.20 15090.94 11285.65 13883.58 8075.74 12961.36 17365.30 14656.75 19372.38 16888.46 11888.80 11695.16 7593.87 81
anonymousdsp77.94 15979.00 14576.71 17179.03 19987.83 16079.58 18372.87 17565.80 18758.86 18765.82 13962.48 16375.99 14786.77 13788.66 11793.92 12895.68 51
CNLPA88.40 5887.00 7390.03 4493.73 5394.28 6989.56 7885.81 5291.87 2887.55 2869.53 12181.49 6989.23 3789.45 10788.59 11894.31 11793.82 83
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6296.02 3893.22 4390.00 3082.44 8080.02 7477.96 7485.16 5487.36 5888.54 11688.54 11994.72 9495.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IterMVS-LS83.28 10682.95 10683.65 10688.39 11588.63 15586.80 12678.64 14076.56 12473.43 10472.52 10575.35 10380.81 10086.43 14688.51 12093.84 13392.66 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9391.22 10985.62 13984.23 6770.29 16862.21 16369.04 12564.05 15384.48 7587.57 12688.45 12194.01 12592.54 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8092.01 10489.55 7979.15 13479.87 10470.29 11652.51 19872.56 12181.39 9388.87 11488.17 12290.15 18292.37 118
GA-MVS79.52 14179.71 14179.30 15085.68 14290.36 11884.55 14978.44 14170.47 16757.87 18868.52 12761.38 16776.21 14689.40 10887.89 12393.04 15289.96 148
thisisatest051579.76 13880.59 12878.80 15484.40 16088.91 15379.48 18476.94 15572.29 15667.33 13267.82 13165.99 14670.80 17488.50 11787.84 12493.86 13292.75 104
pm-mvs178.51 15677.75 16179.40 14984.83 15889.30 14383.55 15879.38 13162.64 19663.68 15458.73 18364.68 15070.78 17589.79 10187.84 12494.17 12091.28 138
HyFIR lowres test81.62 12479.45 14484.14 10191.00 8393.38 8488.27 10378.19 14376.28 12670.18 11848.78 20273.69 11583.52 7887.05 13187.83 12693.68 14089.15 152
EG-PatchMatch MVS76.40 17675.47 18577.48 16585.86 14090.22 12182.45 16473.96 17259.64 20559.60 18252.75 19762.20 16568.44 18188.23 12087.50 12794.55 10487.78 165
MSDG83.87 10081.02 12287.19 7392.17 7189.80 13289.15 8685.72 5380.61 10079.24 7666.66 13568.75 13882.69 8387.95 12387.44 12894.19 11985.92 178
LTVRE_ROB74.41 1675.78 18474.72 19077.02 16985.88 13889.22 14582.44 16577.17 15250.57 21445.45 20865.44 14452.29 20781.25 9485.50 15787.42 12989.94 18492.62 107
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal77.46 16474.86 18980.49 14286.34 13688.92 15284.33 15281.26 10861.39 20061.70 17051.99 19953.66 20574.84 15588.63 11587.38 13094.50 10692.08 119
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10390.62 11486.21 13183.48 8473.88 14565.75 14066.38 13665.30 14984.63 7485.90 15187.25 13193.45 14591.13 139
Baseline_NR-MVSNet79.84 13678.37 15381.55 12984.98 15586.66 16985.06 14383.49 8275.57 13163.31 15658.22 18560.97 16978.00 13586.89 13387.13 13294.47 10993.15 92
WR-MVS76.63 17078.02 15875.02 18384.14 16589.76 13478.34 19180.64 11269.56 16952.32 19761.26 16361.24 16860.66 19784.45 17287.07 13393.99 12692.77 102
baseline84.89 9086.06 8283.52 11087.25 12789.67 13787.76 10775.68 16584.92 6578.40 7980.10 6080.98 7180.20 11286.69 14087.05 13491.86 16492.99 95
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9889.52 14084.36 15181.82 10380.87 9979.29 7574.04 9562.85 16086.05 6888.40 11987.04 13592.04 16186.77 171
baseline282.80 10882.86 10782.73 11787.68 12290.50 11684.92 14678.93 13678.07 11973.06 10675.08 8969.77 13277.31 14088.90 11386.94 13694.50 10690.74 140
TransMVSNet (Re)76.57 17175.16 18878.22 16285.60 14487.24 16582.46 16381.23 10959.80 20459.05 18657.07 18759.14 18366.60 19088.09 12186.82 13794.37 11587.95 164
PEN-MVS76.02 18076.07 17675.95 17883.17 17587.97 15979.65 18280.07 12466.57 18251.45 19960.94 16755.47 19866.81 18882.72 18286.80 13894.59 10192.03 122
v2v48279.84 13678.07 15681.90 12483.75 16790.21 12287.17 11979.85 12670.65 16465.93 13961.93 16160.07 17380.82 9985.25 16086.71 13993.88 13191.70 131
v7n77.22 16576.23 17578.38 16181.89 19089.10 15082.24 16976.36 15965.96 18661.21 17556.56 18855.79 19775.07 15486.55 14286.68 14093.52 14392.95 97
MIMVSNet74.69 18975.60 18473.62 19076.02 20885.31 18181.21 17767.43 19671.02 16159.07 18554.48 19164.07 15266.14 19186.52 14486.64 14191.83 16581.17 196
v1079.62 13978.19 15481.28 13383.73 16889.69 13687.27 11676.86 15670.50 16665.46 14160.58 17160.47 17180.44 10786.91 13286.63 14293.93 12792.55 112
v114479.38 14577.83 15981.18 13483.62 16990.23 12087.15 12178.35 14269.13 17164.02 15260.20 17359.41 18080.14 11486.78 13686.57 14393.81 13592.53 114
V4279.59 14078.43 15180.94 13682.79 18389.71 13586.66 12776.73 15871.38 15967.42 13161.01 16662.30 16478.39 13285.56 15686.48 14493.65 14192.60 108
v119278.94 14977.33 16380.82 13783.25 17389.90 12986.91 12477.72 14868.63 17562.61 16159.17 17857.53 18980.62 10686.89 13386.47 14593.79 13692.75 104
Fast-Effi-MVS+-dtu79.95 13480.69 12679.08 15186.36 13589.14 14885.85 13472.28 17772.85 15559.32 18370.43 11568.42 14177.57 13886.14 14886.44 14693.11 15191.39 137
EPNet_dtu81.98 11683.82 10179.83 14894.10 4985.97 17387.29 11584.08 7080.61 10059.96 18081.62 5677.19 9862.91 19687.21 12886.38 14790.66 17887.77 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet76.36 17776.41 17376.32 17582.73 18488.64 15479.39 18579.62 12767.21 17853.70 19360.72 16955.22 19967.91 18483.52 17886.34 14894.55 10493.19 91
PS-CasMVS75.90 18275.86 18175.96 17782.59 18588.46 15779.23 18879.56 12966.00 18552.77 19559.48 17754.35 20367.14 18783.37 17986.23 14994.47 10993.10 93
v879.90 13578.39 15281.66 12783.97 16689.81 13187.16 12077.40 15171.49 15867.71 13061.24 16462.49 16279.83 11985.48 15886.17 15093.89 13092.02 123
DTE-MVSNet75.14 18775.44 18674.80 18583.18 17487.19 16678.25 19380.11 12166.05 18448.31 20460.88 16854.67 20064.54 19382.57 18486.17 15094.43 11290.53 145
v14419278.81 15077.22 16580.67 13982.95 17889.79 13386.40 12977.42 15068.26 17763.13 15759.50 17658.13 18580.08 11585.93 15086.08 15294.06 12292.83 100
v124078.15 15776.53 17180.04 14582.85 18289.48 14285.61 14076.77 15767.05 17961.18 17658.37 18456.16 19679.89 11886.11 14986.08 15293.92 12892.47 116
v192192078.57 15576.99 16880.41 14482.93 17989.63 13986.38 13077.14 15368.31 17661.80 16958.89 18256.79 19280.19 11386.50 14586.05 15494.02 12492.76 103
FC-MVSNet-test76.53 17381.62 11470.58 19784.99 15485.73 17674.81 19978.85 13877.00 12339.13 21575.90 8373.50 11754.08 20486.54 14385.99 15591.65 16686.68 172
FMVSNet575.50 18676.07 17674.83 18476.16 20681.19 20181.34 17370.21 18673.20 15361.59 17158.97 18068.33 14268.50 18085.87 15285.85 15691.18 17579.11 202
WR-MVS_H75.84 18376.93 16974.57 18882.86 18189.50 14178.34 19179.36 13266.90 18052.51 19660.20 17359.71 17659.73 19883.61 17785.77 15794.65 9892.84 99
MS-PatchMatch81.79 12081.44 11682.19 12390.35 9789.29 14488.08 10675.36 16777.60 12069.00 12664.37 15478.87 8977.14 14388.03 12285.70 15893.19 15086.24 175
PMMVS81.65 12184.05 9978.86 15378.56 20182.63 19583.10 15967.22 19781.39 8970.11 11984.91 4079.74 8182.12 8887.31 12785.70 15892.03 16286.67 174
Effi-MVS+-dtu82.05 11581.76 11282.38 12087.72 12090.56 11586.90 12578.05 14573.85 14666.85 13471.29 10971.90 12482.00 9086.64 14185.48 16092.76 15592.58 110
pmmvs674.83 18872.89 19577.09 16782.11 18887.50 16380.88 17976.97 15452.79 21261.91 16846.66 20460.49 17069.28 17886.74 13985.46 16191.39 16990.56 144
pmmvs576.93 16776.33 17477.62 16481.97 18988.40 15881.32 17474.35 17065.42 19061.42 17263.07 15757.95 18773.23 16685.60 15585.35 16293.41 14688.55 156
TDRefinement79.05 14877.05 16781.39 13088.45 11489.00 15186.92 12382.65 9674.21 14264.41 14859.17 17859.16 18274.52 15885.23 16185.09 16391.37 17087.51 167
USDC80.69 12879.89 13781.62 12886.48 13489.11 14986.53 12878.86 13781.15 9463.48 15572.98 10259.12 18481.16 9687.10 12985.01 16493.23 14884.77 183
CR-MVSNet78.71 15278.86 14678.55 15885.85 14185.15 18282.30 16768.23 19374.71 13665.37 14364.39 15369.59 13477.18 14185.10 16684.87 16592.34 15988.21 159
PatchT76.42 17477.81 16074.80 18578.46 20284.30 18771.82 20565.03 20673.89 14465.37 14361.58 16266.70 14477.18 14185.10 16684.87 16590.94 17788.21 159
TAMVS76.42 17477.16 16675.56 17983.05 17685.55 17980.58 18071.43 18065.40 19161.04 17767.27 13369.22 13767.99 18284.88 16884.78 16789.28 18783.01 189
COLMAP_ROBcopyleft76.78 1580.50 13078.49 14982.85 11490.96 8489.65 13886.20 13283.40 8777.15 12266.54 13562.27 15965.62 14877.89 13685.23 16184.70 16892.11 16084.83 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14878.59 15476.84 17080.62 14083.61 17089.16 14783.65 15779.24 13369.38 17069.34 12459.88 17560.41 17275.19 15183.81 17684.63 16992.70 15690.63 143
IterMVS-SCA-FT79.41 14480.20 13278.49 15985.88 13886.26 17183.95 15471.94 17873.55 15061.94 16670.48 11470.50 12875.23 15085.81 15384.61 17091.99 16390.18 147
pmmvs479.99 13378.08 15582.22 12283.04 17787.16 16784.95 14478.80 13978.64 11574.53 9664.61 15259.41 18079.45 12584.13 17484.54 17192.53 15788.08 161
test0.0.03 176.03 17978.51 14873.12 19387.47 12485.13 18476.32 19678.05 14573.19 15450.98 20270.64 11169.28 13555.53 20085.33 15984.38 17290.39 18081.63 194
GG-mvs-BLEND57.56 20982.61 10928.34 2160.22 22490.10 12479.37 1860.14 22279.56 1070.40 22571.25 11083.40 610.30 22286.27 14783.87 17389.59 18583.83 185
CVMVSNet76.70 16978.46 15074.64 18783.34 17284.48 18681.83 17174.58 16868.88 17351.23 20169.77 11670.05 13067.49 18584.27 17383.81 17489.38 18687.96 163
IterMVS78.79 15179.71 14177.71 16385.26 14985.91 17484.54 15069.84 18973.38 15161.25 17470.53 11370.35 12974.43 15985.21 16383.80 17590.95 17688.77 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap76.73 16873.95 19279.96 14685.16 15285.64 17882.34 16678.19 14370.63 16562.06 16560.69 17049.61 21080.81 10085.12 16583.69 17691.22 17482.27 191
test-mter77.79 16080.02 13575.18 18281.18 19582.85 19380.52 18162.03 21173.62 14962.16 16473.55 9973.83 11373.81 16184.67 16983.34 17791.37 17088.31 158
CHOSEN 280x42080.28 13181.66 11378.67 15782.92 18079.24 20785.36 14266.79 19978.11 11770.32 11575.03 9079.87 7881.09 9789.07 11083.16 17885.54 20487.17 168
testgi71.92 19674.20 19169.27 19984.58 15983.06 19073.40 20274.39 16964.04 19446.17 20768.90 12657.15 19148.89 20884.07 17583.08 17988.18 19279.09 203
test-LLR79.47 14379.84 13879.03 15287.47 12482.40 19881.24 17578.05 14573.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
TESTMET0.1,177.78 16179.84 13875.38 18180.86 19682.40 19881.24 17562.72 21073.72 14762.69 15973.76 9774.42 10873.49 16384.61 17082.99 18091.25 17287.01 169
pmmvs-eth3d74.32 19171.96 19777.08 16877.33 20482.71 19478.41 19076.02 16366.65 18165.98 13854.23 19449.02 21273.14 16782.37 18682.69 18291.61 16786.05 177
MIMVSNet165.00 20466.24 20563.55 20658.41 21780.01 20569.00 20874.03 17155.81 21041.88 21236.81 21349.48 21147.89 20981.32 18982.40 18390.08 18377.88 204
Anonymous2023120670.80 19770.59 20171.04 19681.60 19282.49 19774.64 20075.87 16464.17 19349.27 20344.85 20853.59 20654.68 20383.07 18082.34 18490.17 18183.65 186
SixPastTwentyTwo76.02 18075.72 18276.36 17483.38 17187.54 16275.50 19876.22 16065.50 18957.05 18970.64 11153.97 20474.54 15780.96 19082.12 18591.44 16889.35 151
RPMNet77.07 16677.63 16276.42 17385.56 14585.15 18281.37 17265.27 20474.71 13660.29 17963.71 15666.59 14573.64 16282.71 18382.12 18592.38 15888.39 157
test20.0368.31 20170.05 20266.28 20482.41 18680.84 20267.35 20976.11 16258.44 20740.80 21453.77 19554.54 20142.28 21183.07 18081.96 18788.73 19077.76 205
RPSCF83.46 10483.36 10383.59 10887.75 11987.35 16484.82 14879.46 13083.84 7078.12 8182.69 4879.87 7882.60 8682.47 18581.13 18888.78 18986.13 176
PM-MVS74.17 19273.10 19375.41 18076.07 20782.53 19677.56 19471.69 17971.04 16061.92 16761.23 16547.30 21374.82 15681.78 18879.80 18990.42 17988.05 162
CostFormer80.94 12780.21 13181.79 12587.69 12188.58 15687.47 11270.66 18380.02 10277.88 8573.03 10171.40 12578.24 13379.96 19479.63 19088.82 18888.84 153
CMPMVSbinary56.49 1773.84 19371.73 19976.31 17685.20 15085.67 17775.80 19773.23 17362.26 19765.40 14253.40 19659.70 17771.77 17180.25 19379.56 19186.45 20181.28 195
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep1379.14 14779.49 14378.74 15685.40 14686.89 16884.32 15370.29 18578.85 11369.42 12375.37 8773.29 11975.64 14980.61 19179.48 19287.36 19581.91 192
SCA79.51 14280.15 13378.75 15586.58 13387.70 16183.07 16068.53 19281.31 9066.40 13673.83 9675.38 10279.30 12780.49 19279.39 19388.63 19182.96 190
tpm76.30 17876.05 17876.59 17286.97 13083.01 19283.83 15567.06 19871.83 15763.87 15369.56 12062.88 15973.41 16579.79 19578.59 19484.41 20686.68 172
EU-MVSNet69.98 19972.30 19667.28 20275.67 20979.39 20673.12 20369.94 18863.59 19542.80 21162.93 15856.71 19455.07 20279.13 19978.55 19587.06 19885.82 179
EPMVS77.53 16378.07 15676.90 17086.89 13184.91 18582.18 17066.64 20081.00 9664.11 15172.75 10469.68 13374.42 16079.36 19778.13 19687.14 19780.68 199
dps78.02 15875.94 18080.44 14386.06 13786.62 17082.58 16269.98 18775.14 13377.76 8769.08 12459.93 17578.47 13179.47 19677.96 19787.78 19383.40 187
PatchmatchNetpermissive78.67 15378.85 14778.46 16086.85 13286.03 17283.77 15668.11 19580.88 9866.19 13772.90 10373.40 11878.06 13479.25 19877.71 19887.75 19481.75 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view73.21 19472.91 19473.56 19180.01 19784.28 18878.62 18966.43 20168.64 17459.12 18460.39 17259.69 17869.81 17778.82 20077.43 19987.36 19581.11 197
ADS-MVSNet74.53 19075.69 18373.17 19281.57 19380.71 20379.27 18763.03 20979.27 11159.94 18167.86 13068.32 14371.08 17377.33 20276.83 20084.12 20979.53 200
pmmvs361.89 20761.74 20962.06 20764.30 21370.83 21464.22 21152.14 21548.78 21644.47 20941.67 21141.70 21863.03 19476.06 20576.02 20184.18 20877.14 206
MDA-MVSNet-bldmvs66.22 20364.49 20668.24 20061.67 21482.11 20070.07 20776.16 16159.14 20647.94 20554.35 19335.82 22067.33 18664.94 21375.68 20286.30 20279.36 201
tpmrst76.55 17275.99 17977.20 16687.32 12683.05 19182.86 16165.62 20278.61 11667.22 13369.19 12265.71 14775.87 14876.75 20475.33 20384.31 20783.28 188
tpm cat177.78 16175.28 18780.70 13887.14 12985.84 17585.81 13570.40 18477.44 12178.80 7863.72 15564.01 15476.55 14575.60 20675.21 20485.51 20585.12 180
MVS-HIRNet68.83 20066.39 20471.68 19577.58 20375.52 21066.45 21065.05 20562.16 19862.84 15844.76 20956.60 19571.96 17078.04 20175.06 20586.18 20372.56 209
ambc61.92 20870.98 21273.54 21263.64 21360.06 20252.23 19838.44 21219.17 22357.12 19982.33 18775.03 20683.21 21084.89 181
pmnet_mix0271.95 19571.83 19872.10 19481.40 19480.63 20473.78 20172.85 17670.90 16254.89 19162.17 16057.42 19062.92 19576.80 20373.98 20786.74 20080.87 198
N_pmnet66.85 20266.63 20367.11 20378.73 20074.66 21170.53 20671.07 18166.46 18346.54 20651.68 20051.91 20855.48 20174.68 20772.38 20880.29 21274.65 208
Gipumacopyleft49.17 21147.05 21451.65 21059.67 21648.39 21841.98 21963.47 20855.64 21133.33 21914.90 21713.78 22441.34 21269.31 21072.30 20970.11 21555.00 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet59.28 20861.47 21056.73 20961.66 21568.29 21559.57 21454.91 21260.83 20134.38 21844.66 21043.65 21549.90 20771.66 20971.56 21079.94 21369.67 210
new-patchmatchnet63.80 20563.31 20764.37 20576.49 20575.99 20963.73 21270.99 18257.27 20843.08 21045.86 20643.80 21445.13 21073.20 20870.68 21186.80 19976.34 207
FPMVS63.63 20660.08 21167.78 20180.01 19771.50 21372.88 20469.41 19161.82 19953.11 19445.12 20742.11 21750.86 20666.69 21163.84 21280.41 21169.46 211
PMVScopyleft50.48 1855.81 21051.93 21260.33 20872.90 21149.34 21748.78 21669.51 19043.49 21754.25 19236.26 21441.04 21939.71 21365.07 21260.70 21376.85 21467.58 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 21344.74 21538.10 21146.97 22052.32 21640.63 22048.08 21635.51 2187.36 22426.86 21624.64 22216.72 21855.24 21659.03 21468.85 21659.59 215
MVEpermissive30.17 1930.88 21533.52 21627.80 21723.78 22239.16 22018.69 22446.90 21721.88 22115.39 22114.37 2197.31 22724.41 21741.63 21856.22 21537.64 22254.07 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt32.73 21543.96 22121.15 22326.71 2218.99 22065.67 18851.39 20056.01 18942.64 21611.76 21956.60 21550.81 21653.55 219
test_method41.78 21248.10 21334.42 21410.74 22319.78 22444.64 21817.73 21959.83 20338.67 21635.82 21554.41 20234.94 21462.87 21443.13 21759.81 21760.82 214
E-PMN31.40 21426.80 21736.78 21251.39 21929.96 22120.20 22254.17 21325.93 22012.75 22214.73 2188.58 22634.10 21627.36 21937.83 21848.07 22043.18 218
EMVS30.49 21625.44 21836.39 21351.47 21829.89 22220.17 22354.00 21426.49 21912.02 22313.94 2208.84 22534.37 21525.04 22034.37 21946.29 22139.53 219
testmvs1.03 2171.63 2190.34 2180.09 2250.35 2250.61 2260.16 2211.49 2220.10 2263.15 2210.15 2280.86 2211.32 2211.18 2200.20 2233.76 221
test1230.87 2181.40 2200.25 2190.03 2260.25 2260.35 2270.08 2231.21 2230.05 2272.84 2220.03 2290.89 2200.43 2221.16 2210.13 2243.87 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def56.08 190
9.1492.16 16
SR-MVS96.58 2590.99 2192.40 13
our_test_381.81 19183.96 18976.61 195
MTAPA92.97 291.03 22
MTMP93.14 190.21 29
Patchmatch-RL test8.55 225
XVS93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
X-MVStestdata93.11 5996.70 2591.91 5283.95 4888.82 3995.79 40
mPP-MVS97.06 1288.08 44
NP-MVS87.47 52
Patchmtry85.54 18082.30 16768.23 19365.37 143
DeepMVS_CXcopyleft48.31 21948.03 21726.08 21856.42 20925.77 22047.51 20331.31 22151.30 20548.49 21753.61 21861.52 213