This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4699.74 5199.90 7
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 5199.70 8599.77 58
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 5199.79 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9699.76 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3899.85 1099.70 94
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6396.62 3399.16 2399.98 299.12 4999.63 399.19 2199.78 3499.83 29
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6699.35 1699.97 899.55 1399.63 398.66 5899.70 8599.74 75
MTAPA98.09 1599.97 8
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7799.76 63
APDe-MVScopyleft99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 58
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5399.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP98.46 1099.96 12
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7699.64 11799.66 108
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 5097.79 2099.15 2499.96 1299.59 999.54 1198.86 4699.78 3499.74 75
PHI-MVS99.08 2299.43 1998.67 2899.15 4599.59 4599.11 4297.35 3999.14 6397.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 124
XVS97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVStestdata97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7293.81 8498.46 6499.95 1799.59 999.49 1399.21 2099.68 9699.75 71
SD-MVS99.25 1299.50 1298.96 2098.79 5299.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 25
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3799.46 6699.44 2798.13 2699.65 592.30 10998.91 4299.95 1799.05 5599.42 1798.95 3999.58 14399.82 30
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6799.77 58
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8299.46 6699.03 4894.59 6199.09 7097.19 2999.73 399.95 1799.39 2698.95 4798.69 5799.75 4699.65 111
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5398.32 1298.58 5799.95 1799.60 799.28 2698.20 8899.64 11799.69 98
SR-MVS99.67 1398.25 1499.94 25
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8395.62 4598.97 3799.94 2599.54 1499.51 1298.79 5599.71 7799.73 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8899.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 6199.73 5999.52 136
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7798.87 5498.24 1799.14 6398.73 599.11 2899.92 2898.92 6299.22 2898.84 5099.76 4199.56 130
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9797.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2999.37 8299.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TPM-MVS99.57 2698.90 11798.79 5896.52 3798.62 5699.91 3197.56 11499.44 16899.28 157
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
UA-Net97.13 8699.14 3894.78 11597.21 8099.38 7997.56 11092.04 10398.48 12988.03 13298.39 6799.91 3194.03 19299.33 2499.23 1899.81 2299.25 161
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 9199.51 2098.31 999.28 3896.57 3599.10 3099.90 3399.71 299.19 3198.35 7799.82 1699.71 92
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7999.43 2898.21 1999.36 3097.66 2397.79 8299.90 3399.45 2299.17 3298.43 7199.77 3999.51 141
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3299.49 6399.09 4498.07 2999.37 2798.47 897.79 8299.89 3599.50 1698.93 4999.45 499.61 12599.76 63
mPP-MVS99.53 3099.89 35
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3999.64 2699.20 3697.75 3798.82 10495.24 5498.85 4599.87 3799.17 4598.74 6797.50 11999.71 7799.76 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3998.28 3599.36 3999.35 8699.48 2397.96 3398.83 10293.86 8398.70 5499.86 3899.44 2399.08 3998.38 7499.61 12599.58 124
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 3099.34 8899.06 4694.61 5899.65 597.49 2496.75 10599.86 3899.44 2398.78 6299.30 1199.81 2299.67 104
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5199.33 9196.28 14897.47 3899.58 994.70 6498.99 3699.85 4097.24 12299.55 1099.34 997.73 20699.56 130
DPM-MVS98.31 4998.53 6498.05 3998.76 5498.77 12499.13 4098.07 2999.10 6994.27 7796.70 10799.84 4198.70 7497.90 12198.11 9399.40 17599.28 157
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 12095.27 5399.11 2899.82 4299.67 499.33 2499.19 2199.73 5999.74 75
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3996.73 10699.80 4399.33 3098.79 6199.29 1399.75 4699.64 115
OMC-MVS98.84 3299.01 5098.65 2999.39 3699.23 10199.22 3596.70 4199.40 2497.77 2197.89 8199.80 4399.21 3899.02 4398.65 5999.57 14799.07 172
9.1499.79 45
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3599.61 3898.14 9094.81 5399.31 3495.00 5999.51 999.79 4599.00 5998.94 4898.83 5199.69 8899.57 129
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3499.24 10099.06 4697.96 3399.31 3499.16 197.90 8099.79 4599.36 2898.71 6998.12 9299.65 11399.52 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5599.36 8398.94 5298.14 2598.59 12293.62 8996.61 11199.76 4899.03 5797.77 12897.45 12499.57 14798.89 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA99.03 2799.05 4499.01 1999.27 4399.22 10299.03 4897.98 3299.34 3299.00 498.25 7199.71 4999.31 3398.80 6098.82 5399.48 16299.17 165
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3799.53 5598.51 6795.52 4799.27 4094.85 6199.56 899.69 5099.04 5699.36 2098.88 4499.60 13399.58 124
CDPH-MVS98.41 4599.10 4097.61 5099.32 4299.36 8399.49 2196.15 4498.82 10491.82 11398.41 6599.66 5199.10 5198.93 4998.97 3799.75 4699.58 124
EC-MVSNet98.22 5199.44 1796.79 7595.62 12399.56 5199.01 5092.22 10099.17 5594.51 6999.41 1399.62 5299.49 1899.16 3499.26 1499.91 299.94 1
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11599.61 5399.40 2598.87 5799.49 399.85 1099.66 108
CANet98.46 4499.16 3797.64 4998.48 5899.64 2699.35 3194.71 5699.53 1495.17 5597.63 8899.59 5498.38 8898.88 5698.99 3699.74 5199.86 21
UGNet97.66 6699.07 4396.01 9997.19 8199.65 2297.09 13093.39 8799.35 3194.40 7498.79 4799.59 5494.24 18998.04 11398.29 8499.73 5999.80 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9499.38 3098.16 2199.02 8198.55 798.71 5399.57 5699.58 1299.09 3797.84 10699.64 11799.36 154
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9497.49 7299.76 696.02 15293.75 8199.26 4293.38 9393.73 15199.35 5796.47 14498.96 4698.46 6799.77 3999.90 7
RPSCF97.61 6798.16 8096.96 7498.10 6399.00 10998.84 5693.76 7999.45 2094.78 6399.39 1599.31 5898.53 8596.61 16695.43 17597.74 20497.93 198
ETV-MVS98.05 5599.25 3396.65 8095.61 12499.61 3898.26 8593.52 8598.90 9393.74 8899.32 1799.20 5998.90 6599.21 2998.72 5699.87 899.79 45
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4799.33 9199.15 3997.13 4099.34 3293.20 9497.75 8499.19 6099.20 3998.66 7198.13 9199.66 10999.48 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test98.58 4299.42 2097.60 5198.52 5799.91 198.60 6494.60 6099.37 2794.62 6599.40 1499.16 6199.39 2699.36 2098.85 4999.90 399.92 3
FA-MVS(training)96.52 10998.29 7194.45 12195.88 11299.52 5897.66 10881.47 19898.94 8893.79 8795.54 13799.11 6298.29 9098.89 5496.49 14899.63 12299.52 136
CANet_DTU96.64 10599.08 4193.81 13197.10 8399.42 7598.85 5590.01 14099.31 3479.98 18399.78 299.10 6397.42 11998.35 9298.05 9699.47 16499.53 133
MVS_030498.14 5499.03 4897.10 6398.05 6699.63 2999.27 3494.33 6899.63 793.06 9797.32 9299.05 6498.09 9798.82 5998.87 4599.81 2299.89 12
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3299.42 7598.91 5394.61 5898.87 9492.24 11194.61 14399.05 6499.10 5198.64 7399.05 2999.74 5199.51 141
CS-MVS98.56 4399.32 2897.68 4798.28 6299.89 298.71 6194.53 6399.41 2395.43 4999.05 3598.66 6699.19 4099.21 2999.07 2699.93 199.94 1
GG-mvs-BLEND69.11 21798.13 8135.26 2213.49 23198.20 16394.89 1722.38 22798.42 1325.82 23296.37 11898.60 675.97 22798.75 6697.98 9899.01 19098.61 183
CHOSEN 280x42097.99 5799.24 3496.53 8598.34 6099.61 3898.36 7989.80 14699.27 4095.08 5899.81 198.58 6898.64 7899.02 4398.92 4198.93 19199.48 145
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10695.99 10899.62 3397.82 10193.22 9398.82 10491.40 11696.94 10198.56 6995.70 16199.14 3599.41 699.79 3199.75 71
EPNet_dtu96.30 11398.53 6493.70 13598.97 4998.24 16197.36 11594.23 7098.85 9779.18 18799.19 2198.47 7094.09 19197.89 12298.21 8798.39 19798.85 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 5998.86 5596.68 7896.02 10599.72 1298.35 8093.37 8998.75 11794.01 7896.88 10498.40 7198.48 8699.09 3799.42 599.83 1599.80 37
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 5099.45 6899.28 3395.43 4899.48 1991.80 11494.83 14298.36 7298.90 6598.09 10597.85 10599.68 9699.15 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT94.89 14297.87 9391.42 17494.86 14597.70 17797.24 12284.88 19098.93 9075.74 19994.26 14798.25 7396.69 13598.52 8597.68 11299.10 18999.73 79
DELS-MVS98.19 5298.77 5997.52 5298.29 6199.71 1599.12 4194.58 6298.80 10795.38 5296.24 12098.24 7497.92 10399.06 4099.52 199.82 1699.79 45
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet94.65 14797.04 12591.88 16995.68 12198.99 11195.89 15379.03 21199.15 6085.81 14796.96 10098.21 7597.10 12494.48 20494.24 19897.74 20497.21 204
EIA-MVS97.70 6598.78 5896.44 9095.72 11899.65 2298.14 9093.72 8298.30 13892.31 10898.63 5597.90 7698.97 6098.92 5198.30 8399.78 3499.80 37
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7799.49 1897.78 12798.92 4199.78 3499.90 7
MS-PatchMatch95.99 12197.26 11894.51 11997.46 7398.76 12797.27 11986.97 17599.09 7089.83 12693.51 15597.78 7896.18 15097.53 14395.71 17299.35 17898.41 188
IterMVS94.81 14497.71 9891.42 17494.83 14697.63 18497.38 11485.08 18798.93 9075.67 20094.02 14897.64 7996.66 13898.45 8897.60 11598.90 19299.72 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11997.94 9193.89 12993.60 16198.67 13496.62 14090.30 13998.76 11488.62 12895.57 13697.63 8094.48 18597.97 11797.48 12299.71 7799.52 136
EPNet98.05 5598.86 5597.10 6399.02 4899.43 7398.47 7094.73 5599.05 7895.62 4598.93 4097.62 8195.48 16998.59 8198.55 6399.29 18299.84 25
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 196.69 10298.12 8295.01 11395.49 13198.99 11195.86 15490.82 12998.38 13392.54 10696.66 10997.33 8295.75 15997.75 13098.34 7999.60 13399.40 152
MSDG98.27 5098.29 7198.24 3699.20 4499.22 10299.20 3697.82 3599.37 2794.43 7295.90 12697.31 8399.12 4998.76 6498.35 7799.67 10499.14 169
EPP-MVSNet97.75 6398.71 6096.63 8395.68 12199.56 5197.51 11193.10 9699.22 4794.99 6097.18 9797.30 8498.65 7798.83 5898.93 4099.84 1299.92 3
CDS-MVSNet96.59 10898.02 8794.92 11494.45 14998.96 11497.46 11391.75 10897.86 15990.07 12396.02 12397.25 8596.21 14898.04 11398.38 7499.60 13399.65 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA94.95 14097.44 10892.04 16195.55 12899.16 10496.26 14979.30 20899.02 8185.73 14898.18 7297.13 8697.69 11196.03 18594.91 18997.69 20797.65 200
HyFIR lowres test95.99 12196.56 13695.32 11097.99 6899.65 2296.54 14188.86 15598.44 13189.77 12784.14 21097.05 8799.03 5798.55 8398.19 8999.73 5999.86 21
PMMVS97.52 7098.39 6896.51 8795.82 11598.73 13197.80 10293.05 9798.76 11494.39 7599.07 3397.03 8898.55 8398.31 9497.61 11499.43 17099.21 164
baseline97.45 7398.70 6195.99 10095.89 11099.36 8398.29 8291.37 12099.21 5092.99 9998.40 6696.87 8997.96 10298.60 7998.60 6299.42 17299.86 21
Vis-MVSNetpermissive96.16 11798.22 7793.75 13295.33 13699.70 1797.27 11990.85 12898.30 13885.51 15095.72 13296.45 9093.69 19898.70 7099.00 3599.84 1299.69 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive94.70 14597.08 12391.92 16695.53 12998.85 11995.77 15579.54 20698.95 8685.98 14598.52 5896.45 9097.39 12095.32 19394.09 19997.32 21097.38 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5699.65 2299.45 2598.15 2399.51 1792.80 10195.74 13096.44 9299.46 2199.37 1999.50 299.78 3499.81 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+-dtu95.38 13398.20 7892.09 16093.91 15398.87 11897.35 11685.01 18999.08 7281.09 17598.10 7496.36 9395.62 16498.43 9197.03 13299.55 15299.50 143
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4699.25 9897.06 13294.09 7198.72 11895.14 5798.47 6396.29 9498.43 8798.65 7297.44 12599.45 16698.94 175
DCV-MVSNet97.56 6998.36 6996.62 8496.44 9398.36 15798.37 7791.73 10999.11 6894.80 6298.36 6896.28 9598.60 8198.12 10298.44 6999.76 4199.87 18
thisisatest053097.23 8298.25 7396.05 9695.60 12699.59 4596.96 13493.23 9199.17 5592.60 10498.75 5196.19 9698.17 9198.19 10096.10 16199.72 6799.77 58
MVS_Test97.30 7898.54 6395.87 10195.74 11799.28 9598.19 8891.40 11999.18 5491.59 11598.17 7396.18 9798.63 7998.61 7698.55 6399.66 10999.78 51
tpmrst93.86 16495.88 15591.50 17395.69 12098.62 13795.64 15879.41 20798.80 10783.76 15895.63 13496.13 9897.25 12192.92 20892.31 20797.27 21196.74 209
tttt051797.23 8298.24 7696.04 9795.60 12699.60 4396.94 13593.23 9199.15 6092.56 10598.74 5296.12 9998.17 9198.21 9896.10 16199.73 5999.78 51
MDTV_nov1_ep1395.57 12897.48 10593.35 14695.43 13398.97 11397.19 12583.72 19698.92 9287.91 13497.75 8496.12 9997.88 10796.84 16595.64 17397.96 20298.10 194
EPMVS95.05 13896.86 13092.94 15195.84 11398.96 11496.68 13779.87 20499.05 7890.15 12297.12 9895.99 10197.49 11795.17 19694.75 19497.59 20896.96 208
GBi-Net96.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
test196.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
FMVSNet397.02 9098.12 8295.73 10593.59 16297.98 16698.34 8191.32 12198.80 10793.92 8097.21 9495.94 10297.63 11398.61 7698.62 6099.61 12599.65 111
gg-mvs-nofinetune90.85 19994.14 17887.02 20494.89 14499.25 9898.64 6276.29 21988.24 22057.50 22479.93 21695.45 10595.18 17898.77 6398.07 9599.62 12399.24 162
CHOSEN 1792x268896.41 11096.99 12695.74 10498.01 6799.72 1297.70 10790.78 13199.13 6790.03 12487.35 20095.36 10698.33 8998.59 8198.91 4399.59 13999.87 18
casdiffmvs_mvgpermissive97.27 7997.97 9096.46 8995.83 11499.51 6198.42 7393.32 9098.34 13692.38 10795.64 13395.35 10798.91 6398.73 6898.45 6899.86 999.80 37
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet296.64 10597.50 10395.63 10793.81 15697.98 16698.09 9390.87 12798.99 8493.48 9193.17 16095.25 10897.89 10498.63 7498.80 5499.68 9699.67 104
DI_MVS_plusplus_trai96.90 9497.49 10496.21 9395.61 12499.40 7898.72 6092.11 10199.14 6392.98 10093.08 16395.14 10998.13 9598.05 11297.91 10299.74 5199.73 79
thisisatest051594.61 14996.89 12891.95 16592.00 18098.47 14792.01 20190.73 13298.18 14383.96 15394.51 14495.13 11093.38 19997.38 14794.74 19599.61 12599.79 45
tpm cat194.06 15794.90 16593.06 14995.42 13598.52 14596.64 13980.67 20097.82 16192.63 10393.39 15795.00 11196.06 15491.36 21591.58 21396.98 21496.66 211
MVS-HIRNet92.51 18595.97 15288.48 20193.73 15998.37 15690.33 20775.36 22198.32 13777.78 19389.15 18694.87 11295.14 17997.62 13996.39 15198.51 19497.11 205
MAR-MVS97.71 6498.04 8597.32 5699.35 4198.91 11697.65 10991.68 11098.00 15097.01 3197.72 8694.83 11398.85 7198.44 9098.86 4699.41 17399.52 136
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 15397.59 10290.87 18691.74 18898.70 13394.68 18178.73 21397.98 15183.71 15997.71 8794.81 11496.96 12897.97 11797.92 10099.40 17598.04 195
IterMVS-LS96.12 11897.48 10594.53 11895.19 13897.56 19197.15 12689.19 15399.08 7288.23 13094.97 13994.73 11597.84 10997.86 12498.26 8599.60 13399.88 16
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR95.50 13097.32 11493.37 14495.49 13198.74 12996.44 14690.82 12998.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
TESTMET0.1,194.95 14097.32 11492.20 15892.62 16898.74 12996.44 14686.67 17898.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
Anonymous2023121197.10 8797.06 12497.14 6296.32 9599.52 5898.16 8993.76 7998.84 10195.98 4190.92 17394.58 11898.90 6597.72 13298.10 9499.71 7799.75 71
Anonymous20240521197.40 11096.45 9299.54 5498.08 9693.79 7898.24 14293.55 15294.41 11998.88 7098.04 11398.24 8699.75 4699.76 63
test-mter94.86 14397.32 11492.00 16392.41 17398.82 12096.18 15186.35 18298.05 14882.28 16996.48 11694.39 12095.46 17198.17 10196.20 15799.32 18099.13 170
Effi-MVS+-dtu95.74 12698.04 8593.06 14993.92 15299.16 10497.90 9988.16 16699.07 7782.02 17198.02 7894.32 12196.74 13498.53 8497.56 11699.61 12599.62 119
FC-MVSNet-train97.04 8997.91 9296.03 9896.00 10798.41 15396.53 14393.42 8699.04 8093.02 9898.03 7794.32 12197.47 11897.93 11997.77 11099.75 4699.88 16
LS3D97.79 6098.25 7397.26 6098.40 5999.63 2999.53 1898.63 199.25 4488.13 13196.93 10294.14 12399.19 4099.14 3599.23 1899.69 8899.42 149
baseline296.36 11297.82 9494.65 11794.60 14899.09 10796.45 14589.63 14898.36 13591.29 11897.60 8994.13 12496.37 14598.45 8897.70 11199.54 15699.41 150
PatchT93.96 16197.36 11190.00 19394.76 14798.65 13590.11 20978.57 21497.96 15480.42 17996.07 12294.10 12596.85 13198.10 10397.49 12099.26 18399.15 166
RPMNet94.66 14697.16 12091.75 17094.98 14298.59 14097.00 13378.37 21597.98 15183.78 15696.27 11994.09 12696.91 12997.36 14896.73 13899.48 16299.09 171
FMVSNet595.42 13196.47 14494.20 12492.26 17695.99 21295.66 15787.15 17497.87 15893.46 9296.68 10893.79 12797.52 11597.10 15997.21 13099.11 18896.62 212
GeoE95.98 12397.24 11994.51 11995.02 14199.38 7998.02 9887.86 17098.37 13487.86 13592.99 16593.54 12898.56 8298.61 7697.92 10099.73 5999.85 24
MDTV_nov1_ep13_2view92.44 18795.66 15888.68 19991.05 20697.92 17092.17 20079.64 20598.83 10276.20 19791.45 17093.51 12995.04 18095.68 19193.70 20297.96 20298.53 185
CR-MVSNet94.57 15297.34 11291.33 17794.90 14398.59 14097.15 12679.14 20997.98 15180.42 17996.59 11493.50 13096.85 13198.10 10397.49 12099.50 16199.15 166
CVMVSNet95.33 13597.09 12193.27 14795.23 13798.39 15595.49 16192.58 9997.71 16583.00 16594.44 14693.28 13193.92 19597.79 12698.54 6599.41 17399.45 147
FMVSNet195.77 12596.41 14995.03 11293.42 16497.86 17397.11 12989.89 14398.53 12792.00 11289.17 18593.23 13298.15 9498.07 10898.34 7999.61 12599.69 98
baseline197.58 6898.05 8497.02 6996.21 10199.45 6897.71 10693.71 8398.47 13095.75 4498.78 4893.20 13398.91 6398.52 8598.44 6999.81 2299.53 133
dps94.63 14895.31 16393.84 13095.53 12998.71 13296.54 14180.12 20397.81 16397.21 2896.98 9992.37 13496.34 14792.46 21191.77 21197.26 21297.08 206
testgi95.67 12797.48 10593.56 13895.07 14099.00 10995.33 16588.47 16198.80 10786.90 14197.30 9392.33 13595.97 15697.66 13497.91 10299.60 13399.38 153
N_pmnet92.21 19594.60 17289.42 19891.88 18397.38 20089.15 21389.74 14797.89 15773.75 20687.94 19792.23 13693.85 19696.10 18393.20 20498.15 20197.43 202
IB-MVS93.96 1595.02 13996.44 14793.36 14597.05 8499.28 9590.43 20693.39 8798.02 14996.02 4094.92 14192.07 13783.52 21595.38 19295.82 16999.72 6799.59 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER97.16 8497.71 9896.52 8695.97 10998.48 14698.63 6392.10 10298.68 11995.96 4299.23 2091.79 13896.87 13098.76 6497.37 12899.57 14799.68 103
casdiffmvspermissive96.93 9397.43 10996.34 9195.70 11999.50 6297.75 10593.22 9398.98 8592.64 10294.97 13991.71 13998.93 6198.62 7598.52 6699.82 1699.72 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS95.53 12996.50 14294.39 12393.86 15599.03 10896.67 13889.55 15097.33 17390.64 12093.02 16491.58 14096.21 14897.72 13297.43 12699.43 17099.36 154
sasdasda97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
canonicalmvs97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
MGCFI-Net97.26 8197.79 9796.64 8296.17 10499.43 7398.14 9091.52 11799.23 4595.16 5698.48 6090.87 14399.07 5497.59 14099.02 3499.76 4199.91 6
anonymousdsp93.12 17395.86 15689.93 19591.09 20598.25 16095.12 16685.08 18797.44 17073.30 20790.89 17490.78 14495.25 17797.91 12095.96 16799.71 7799.82 30
ET-MVSNet_ETH3D96.17 11696.99 12695.21 11188.53 21498.54 14398.28 8392.61 9898.85 9793.60 9099.06 3490.39 14598.63 7995.98 18796.68 14099.61 12599.41 150
PVSNet_BlendedMVS97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
PVSNet_Blended97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
pmnet_mix0292.44 18794.68 17089.83 19692.46 17297.65 18389.92 21190.49 13698.76 11473.05 21091.78 16890.08 14894.86 18394.53 20391.94 21098.21 20098.01 197
pmmvs495.09 13795.90 15494.14 12592.29 17597.70 17795.45 16290.31 13798.60 12190.70 11993.25 15889.90 14996.67 13797.13 15795.42 17699.44 16899.28 157
pm-mvs194.27 15495.57 15992.75 15292.58 16998.13 16494.87 17490.71 13396.70 19083.78 15689.94 18189.85 15094.96 18297.58 14197.07 13199.61 12599.72 89
diffmvspermissive96.83 9597.33 11396.25 9295.76 11699.34 8898.06 9793.22 9399.43 2292.30 10996.90 10389.83 15198.55 8398.00 11698.14 9099.64 11799.70 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ECVR-MVScopyleft97.27 7997.09 12197.48 5396.95 8699.79 498.48 6894.42 6599.17 5596.28 3893.54 15389.39 15298.89 6899.03 4199.09 2499.88 499.61 122
test111197.09 8896.83 13197.39 5496.92 8899.81 398.44 7294.45 6499.17 5595.85 4392.10 16788.97 15398.78 7299.02 4399.11 2399.88 499.63 117
Effi-MVS+95.81 12497.31 11794.06 12795.09 13999.35 8697.24 12288.22 16498.54 12685.38 15198.52 5888.68 15498.70 7498.32 9397.93 9999.74 5199.84 25
GA-MVS93.93 16296.31 15091.16 18193.61 16098.79 12195.39 16490.69 13498.25 14173.28 20896.15 12188.42 15594.39 18797.76 12995.35 17799.58 14399.45 147
dmvs_re96.02 12096.49 14395.47 10893.49 16399.26 9797.25 12193.82 7797.51 16890.43 12197.52 9087.93 15698.12 9696.86 16396.59 14499.73 5999.76 63
EU-MVSNet92.80 17994.76 16990.51 18891.88 18396.74 20992.48 19988.69 15896.21 19779.00 18891.51 16987.82 15791.83 20795.87 18996.27 15499.21 18498.92 179
pmmvs691.90 19792.53 20491.17 18091.81 18697.63 18493.23 19488.37 16393.43 21680.61 17777.32 21887.47 15894.12 19096.58 16895.72 17198.88 19399.53 133
UniMVSNet_NR-MVSNet94.59 15095.47 16093.55 13991.85 18597.89 17295.03 16792.00 10497.33 17386.12 14393.19 15987.29 15996.60 14096.12 18296.70 13999.72 6799.80 37
Fast-Effi-MVS+95.38 13396.52 13994.05 12894.15 15199.14 10697.24 12286.79 17698.53 12787.62 13794.51 14487.06 16098.76 7398.60 7998.04 9799.72 6799.77 58
CLD-MVS96.74 9996.51 14097.01 7196.71 9098.62 13798.73 5994.38 6798.94 8894.46 7197.33 9187.03 16198.07 9897.20 15596.87 13699.72 6799.54 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS96.37 11196.58 13596.13 9597.31 7898.44 15098.45 7195.22 4998.86 9588.58 12998.33 6987.00 16297.67 11297.23 15396.56 14699.56 15099.62 119
thres100view90096.72 10096.47 14497.00 7296.31 9699.52 5898.28 8394.01 7297.35 17194.52 6795.90 12686.93 16399.09 5398.07 10897.87 10499.81 2299.63 117
tfpn200view996.75 9896.51 14097.03 6796.31 9699.67 1898.41 7493.99 7497.35 17194.52 6795.90 12686.93 16399.14 4898.26 9597.80 10899.82 1699.70 94
thres20096.76 9796.53 13897.03 6796.31 9699.67 1898.37 7793.99 7497.68 16694.49 7095.83 12986.77 16599.18 4398.26 9597.82 10799.82 1699.66 108
ACMM96.26 996.67 10496.69 13396.66 7997.29 7998.46 14896.48 14495.09 5099.21 5093.19 9598.78 4886.73 16698.17 9197.84 12596.32 15399.74 5199.49 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train96.23 11496.89 12895.46 10997.32 7698.77 12498.81 5793.60 8498.58 12385.52 14999.08 3286.67 16797.83 11097.87 12397.51 11899.69 8899.73 79
ACMP96.25 1096.62 10796.72 13296.50 8896.96 8598.75 12897.80 10294.30 6998.85 9793.12 9698.78 4886.61 16897.23 12397.73 13196.61 14399.62 12399.71 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
new_pmnet90.45 20392.84 20287.66 20288.96 21296.16 21188.71 21484.66 19197.56 16771.91 21485.60 20886.58 16993.28 20096.07 18493.54 20398.46 19594.39 216
OPM-MVS96.22 11595.85 15796.65 8097.75 6998.54 14399.00 5195.53 4696.88 18489.88 12595.95 12586.46 17098.07 9897.65 13796.63 14299.67 10498.83 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40096.71 10196.45 14697.02 6996.28 9999.63 2998.41 7494.00 7397.82 16194.42 7395.74 13086.26 17199.18 4398.20 9997.79 10999.81 2299.70 94
UniMVSNet (Re)94.58 15195.34 16193.71 13492.25 17798.08 16594.97 16991.29 12597.03 18287.94 13393.97 15086.25 17296.07 15396.27 17995.97 16699.72 6799.79 45
CostFormer94.25 15694.88 16693.51 14195.43 13398.34 15896.21 15080.64 20197.94 15594.01 7898.30 7086.20 17397.52 11592.71 20992.69 20597.23 21398.02 196
thres600view796.69 10296.43 14897.00 7296.28 9999.67 1898.41 7493.99 7497.85 16094.29 7695.96 12485.91 17499.19 4098.26 9597.63 11399.82 1699.73 79
SixPastTwentyTwo93.44 16995.32 16291.24 17992.11 17898.40 15492.77 19788.64 16098.09 14777.83 19293.51 15585.74 17596.52 14396.91 16294.89 19299.59 13999.73 79
TSAR-MVS + COLMAP96.79 9696.55 13797.06 6597.70 7198.46 14899.07 4596.23 4399.38 2591.32 11798.80 4685.61 17698.69 7697.64 13896.92 13599.37 17799.06 173
ACMH+95.51 1395.40 13296.00 15194.70 11696.33 9498.79 12196.79 13691.32 12198.77 11387.18 13995.60 13585.46 17796.97 12797.15 15696.59 14499.59 13999.65 111
test20.0390.65 20293.71 19087.09 20390.44 20996.24 21089.74 21285.46 18695.59 20972.99 21190.68 17685.33 17884.41 21495.94 18895.10 18599.52 15997.06 207
tmp_tt82.25 21297.73 7088.71 22180.18 22168.65 22499.15 6086.98 14099.47 1085.31 17968.35 22287.51 21783.81 21991.64 221
WR-MVS_H93.54 16794.67 17192.22 15691.95 18197.91 17194.58 18588.75 15796.64 19183.88 15590.66 17785.13 18094.40 18696.54 17095.91 16899.73 5999.89 12
WR-MVS93.43 17094.48 17492.21 15791.52 19797.69 17994.66 18389.98 14196.86 18583.43 16090.12 17985.03 18193.94 19496.02 18695.82 16999.71 7799.82 30
CMPMVSbinary70.31 1890.74 20091.06 20890.36 19197.32 7697.43 19792.97 19687.82 17193.50 21575.34 20383.27 21284.90 18292.19 20692.64 21091.21 21496.50 21794.46 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 20193.93 18686.92 20590.21 21196.79 20790.30 20886.61 18096.05 20269.25 21588.46 19284.86 18385.86 21397.11 15896.47 15099.30 18197.80 199
v1092.79 18094.06 18291.31 17891.78 18797.29 20394.87 17486.10 18396.97 18379.82 18488.16 19484.56 18495.63 16396.33 17795.31 17899.65 11399.80 37
v114492.81 17894.03 18391.40 17691.68 18997.60 18894.73 17888.40 16296.71 18978.48 19088.14 19584.46 18595.45 17296.31 17895.22 18199.65 11399.76 63
Baseline_NR-MVSNet93.87 16393.98 18593.75 13291.66 19097.02 20495.53 16091.52 11797.16 17987.77 13687.93 19883.69 18696.35 14695.10 19897.23 12999.68 9699.73 79
ACMH95.42 1495.27 13695.96 15394.45 12196.83 8998.78 12394.72 17991.67 11198.95 8686.82 14296.42 11783.67 18797.00 12697.48 14596.68 14099.69 8899.76 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)93.45 16894.08 18192.72 15392.83 16697.62 18794.94 17091.54 11695.65 20883.06 16488.93 18883.53 18894.25 18897.41 14697.03 13299.67 10498.40 191
pmmvs592.71 18494.27 17790.90 18591.42 19997.74 17693.23 19486.66 17995.99 20478.96 18991.45 17083.44 18995.55 16697.30 15195.05 18699.58 14398.93 176
V4293.05 17493.90 18892.04 16191.91 18297.66 18194.91 17189.91 14296.85 18680.58 17889.66 18283.43 19095.37 17395.03 20094.90 19099.59 13999.78 51
EG-PatchMatch MVS92.45 18693.92 18790.72 18792.56 17098.43 15294.88 17384.54 19297.18 17679.55 18586.12 20783.23 19193.15 20297.22 15496.00 16399.67 10499.27 160
WB-MVS81.36 21489.93 21171.35 21788.65 21387.85 22371.46 22588.12 16796.23 19632.21 22992.61 16683.00 19256.27 22491.92 21489.43 21591.39 22388.49 220
tpm92.38 19194.79 16889.56 19794.30 15097.50 19494.24 19178.97 21297.72 16474.93 20497.97 7982.91 19396.60 14093.65 20794.81 19398.33 19898.98 174
v192192092.36 19393.57 19290.94 18491.39 20097.39 19994.70 18087.63 17296.60 19276.63 19686.98 20382.89 19495.75 15996.26 18095.14 18499.55 15299.73 79
v892.87 17693.87 18991.72 17292.05 17997.50 19494.79 17788.20 16596.85 18680.11 18290.01 18082.86 19595.48 16995.15 19794.90 19099.66 10999.80 37
v119292.43 18993.61 19191.05 18291.53 19697.43 19794.61 18487.99 16896.60 19276.72 19587.11 20282.74 19695.85 15896.35 17695.30 17999.60 13399.74 75
v14419292.38 19193.55 19491.00 18391.44 19897.47 19694.27 18987.41 17396.52 19478.03 19187.50 19982.65 19795.32 17495.82 19095.15 18399.55 15299.78 51
TranMVSNet+NR-MVSNet93.67 16694.14 17893.13 14891.28 20497.58 18995.60 15991.97 10597.06 18084.05 15290.64 17882.22 19896.17 15194.94 20196.78 13799.69 8899.78 51
CP-MVSNet93.25 17194.00 18492.38 15591.65 19297.56 19194.38 18889.20 15296.05 20283.16 16389.51 18381.97 19996.16 15296.43 17296.56 14699.71 7799.89 12
v124091.99 19693.33 19790.44 18991.29 20297.30 20294.25 19086.79 17696.43 19575.49 20286.34 20681.85 20095.29 17596.42 17395.22 18199.52 15999.73 79
tfpnnormal93.85 16594.12 18093.54 14093.22 16598.24 16195.45 16291.96 10694.61 21183.91 15490.74 17581.75 20197.04 12597.49 14496.16 15999.68 9699.84 25
v2v48292.77 18193.52 19591.90 16891.59 19597.63 18494.57 18690.31 13796.80 18879.22 18688.74 19081.55 20296.04 15595.26 19494.97 18899.66 10999.69 98
DU-MVS93.98 16094.44 17593.44 14291.66 19097.77 17495.03 16791.57 11497.17 17786.12 14393.13 16181.13 20396.60 14095.10 19897.01 13499.67 10499.80 37
test250697.16 8496.68 13497.73 4696.95 8699.79 498.48 6894.42 6599.17 5597.74 2299.15 2480.93 20498.89 6899.03 4199.09 2499.88 499.62 119
USDC94.26 15594.83 16793.59 13796.02 10598.44 15097.84 10088.65 15998.86 9582.73 16894.02 14880.56 20596.76 13397.28 15296.15 16099.55 15298.50 186
NR-MVSNet94.01 15894.51 17393.44 14292.56 17097.77 17495.67 15691.57 11497.17 17785.84 14693.13 16180.53 20695.29 17597.01 16096.17 15899.69 8899.75 71
TinyColmap94.00 15994.35 17693.60 13695.89 11098.26 15997.49 11288.82 15698.56 12583.21 16291.28 17280.48 20796.68 13697.34 14996.26 15699.53 15898.24 192
gm-plane-assit89.44 20692.82 20385.49 20891.37 20195.34 21579.55 22382.12 19791.68 21964.79 22187.98 19680.26 20895.66 16298.51 8797.56 11699.45 16698.41 188
v14892.36 19392.88 20091.75 17091.63 19397.66 18192.64 19890.55 13596.09 20083.34 16188.19 19380.00 20992.74 20393.98 20694.58 19699.58 14399.69 98
test_method87.27 21091.58 20682.25 21275.65 22587.52 22486.81 21772.60 22297.51 16873.20 20985.07 20979.97 21088.69 21097.31 15095.24 18096.53 21698.41 188
PS-CasMVS92.72 18293.36 19691.98 16491.62 19497.52 19394.13 19288.98 15495.94 20581.51 17487.35 20079.95 21195.91 15796.37 17496.49 14899.70 8599.89 12
TDRefinement93.04 17593.57 19292.41 15496.58 9198.77 12497.78 10491.96 10698.12 14680.84 17689.13 18779.87 21287.78 21196.44 17194.50 19799.54 15698.15 193
DeepMVS_CXcopyleft96.85 20687.43 21689.27 15198.30 13875.55 20195.05 13879.47 21392.62 20589.48 21695.18 22095.96 213
LTVRE_ROB93.20 1692.84 17794.92 16490.43 19092.83 16698.63 13697.08 13187.87 16997.91 15668.42 21793.54 15379.46 21496.62 13997.55 14297.40 12799.74 5199.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS92.72 18293.20 19892.15 15991.29 20297.31 20194.67 18289.81 14496.19 19881.83 17288.58 19179.06 21595.61 16595.21 19596.27 15499.72 6799.82 30
MIMVSNet188.61 20790.68 20986.19 20781.56 22195.30 21687.78 21585.98 18494.19 21472.30 21378.84 21778.90 21690.06 20896.59 16795.47 17499.46 16595.49 214
v7n91.61 19892.95 19990.04 19290.56 20897.69 17993.74 19385.59 18595.89 20676.95 19486.60 20578.60 21793.76 19797.01 16094.99 18799.65 11399.87 18
DTE-MVSNet92.42 19092.85 20191.91 16790.87 20796.97 20594.53 18789.81 14495.86 20781.59 17388.83 18977.88 21895.01 18194.34 20596.35 15299.64 11799.73 79
pmmvs388.19 20891.27 20784.60 21085.60 21893.66 21885.68 21881.13 19992.36 21863.66 22389.51 18377.10 21993.22 20196.37 17492.40 20698.30 19997.46 201
UniMVSNet_ETH3D93.15 17292.33 20594.11 12693.91 15398.61 13994.81 17690.98 12697.06 18087.51 13882.27 21476.33 22097.87 10894.79 20297.47 12399.56 15099.81 35
FPMVS83.82 21284.61 21582.90 21190.39 21090.71 22090.85 20584.10 19595.47 21065.15 21983.44 21174.46 22175.48 21781.63 21979.42 22191.42 22287.14 221
PMVScopyleft72.60 1776.39 21677.66 21974.92 21581.04 22269.37 22968.47 22680.54 20285.39 22165.07 22073.52 21972.91 22265.67 22380.35 22176.81 22288.71 22485.25 224
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs-eth3d89.81 20489.65 21290.00 19386.94 21695.38 21491.08 20286.39 18194.57 21282.27 17083.03 21364.94 22393.96 19396.57 16993.82 20199.35 17899.24 162
new-patchmatchnet86.12 21187.30 21484.74 20986.92 21795.19 21783.57 22084.42 19492.67 21765.66 21880.32 21564.72 22489.41 20992.33 21389.21 21698.43 19696.69 210
MDA-MVSNet-bldmvs87.84 20989.22 21386.23 20681.74 22096.77 20883.74 21989.57 14994.50 21372.83 21296.64 11064.47 22592.71 20481.43 22092.28 20896.81 21598.47 187
PM-MVS89.55 20590.30 21088.67 20087.06 21595.60 21390.88 20484.51 19396.14 19975.75 19886.89 20463.47 22694.64 18496.85 16493.89 20099.17 18799.29 156
Gipumacopyleft81.40 21381.78 21680.96 21483.21 21985.61 22579.73 22276.25 22097.33 17364.21 22255.32 22255.55 22786.04 21292.43 21292.20 20996.32 21893.99 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 21579.47 21874.70 21676.00 22488.37 22274.22 22476.34 21878.31 22254.13 22569.96 22052.50 22870.14 22184.83 21888.71 21797.35 20993.58 218
EMVS68.12 21968.11 22168.14 21975.51 22671.76 22755.38 22977.20 21777.78 22337.79 22853.59 22343.61 22974.72 21867.05 22476.70 22388.27 22686.24 222
E-PMN68.30 21868.43 22068.15 21874.70 22771.56 22855.64 22877.24 21677.48 22439.46 22751.95 22541.68 23073.28 21970.65 22379.51 22088.61 22586.20 223
MVEpermissive67.97 1965.53 22067.43 22263.31 22059.33 22874.20 22653.09 23070.43 22366.27 22543.13 22645.98 22630.62 23170.65 22079.34 22286.30 21883.25 22789.33 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc80.99 21780.04 22390.84 21990.91 20396.09 20074.18 20562.81 22130.59 23282.44 21696.25 18191.77 21195.91 21998.56 184
testmvs31.24 22140.15 22320.86 22212.61 22917.99 23025.16 23113.30 22548.42 22624.82 23053.07 22430.13 23328.47 22542.73 22537.65 22420.79 22851.04 225
test12326.75 22234.25 22418.01 2237.93 23017.18 23124.85 23212.36 22644.83 22716.52 23141.80 22718.10 23428.29 22633.08 22634.79 22518.10 22949.95 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def69.05 216
our_test_392.30 17497.58 18990.09 210
Patchmatch-RL test66.86 227
NP-MVS98.57 124
Patchmtry98.59 14097.15 12679.14 20980.42 179