This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7799.77 53
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8999.76 58
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 89
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 23
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7799.74 69
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6899.73 73
MTAPA98.09 1599.97 7
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6899.76 58
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 53
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP98.46 1199.96 12
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 11099.66 103
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 69
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 116
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8999.75 65
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13599.82 24
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5899.77 53
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 106
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 11099.69 93
SR-MVS99.67 1398.25 1499.94 25
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6899.73 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 8099.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 129
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 122
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7499.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10392.04 9898.48 12388.03 12498.39 6299.91 3194.03 18499.33 2399.23 1799.81 1699.25 153
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8399.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 87
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 133
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11799.76 58
mPP-MVS99.53 3099.89 34
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11299.71 6899.76 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7899.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11799.58 116
abl_698.09 4099.33 4299.22 9398.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 8099.41 142
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 8099.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 99
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8396.28 14097.47 3999.58 894.70 5998.99 3399.85 4097.24 11499.55 1099.34 997.73 19899.56 122
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11599.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11598.11 8699.40 16699.28 150
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 69
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 110
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9299.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13999.07 164
9.1499.79 45
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 8099.57 121
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9199.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10699.52 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7598.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12297.45 11799.57 13998.89 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9399.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15499.17 157
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12599.58 116
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7599.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 116
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 103
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8298.88 5198.99 2999.74 4499.86 15
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12293.39 8399.35 2894.40 6798.79 4499.59 5394.24 18198.04 10798.29 7799.73 5199.80 31
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8699.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9999.64 11099.36 147
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14493.75 7799.26 4093.38 8693.73 14499.35 5696.47 13698.96 4298.46 6199.77 3399.90 3
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10198.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7996.61 15795.43 16797.74 19697.93 190
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 39
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8399.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10299.48 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU96.64 9899.08 3993.81 12497.10 8299.42 6698.85 5690.01 13499.31 3179.98 17599.78 299.10 6097.42 11198.35 8698.05 8999.47 15699.53 126
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 31
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8998.82 5498.87 3899.81 1699.89 6
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 133
GG-mvs-BLEND69.11 20898.13 7835.26 2133.49 22298.20 15494.89 1642.38 21998.42 1265.82 22396.37 11398.60 645.97 21898.75 6197.98 9199.01 18298.61 175
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18399.48 137
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9493.22 8898.82 9791.40 10996.94 9698.56 6695.70 15399.14 3399.41 699.79 2599.75 65
EPNet_dtu96.30 10598.53 6293.70 12898.97 5098.24 15297.36 10894.23 6798.85 9079.18 17999.19 1998.47 6794.09 18397.89 11698.21 8098.39 18998.85 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 8099.09 3599.42 599.83 899.80 31
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9997.85 9899.68 8999.15 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT94.89 13497.87 8991.42 16794.86 13897.70 16997.24 11484.88 18398.93 8375.74 19194.26 14098.25 7096.69 12798.52 7997.68 10599.10 18199.73 73
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9699.06 3899.52 199.82 1099.79 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet94.65 13997.04 11991.88 16295.68 11598.99 10395.89 14579.03 20399.15 5285.81 13996.96 9598.21 7297.10 11694.48 19694.24 19097.74 19697.21 196
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13192.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 31
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12198.92 3499.78 2899.90 3
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11897.27 11286.97 16899.09 6389.83 11893.51 14797.78 7596.18 14297.53 13595.71 16499.35 16998.41 180
IterMVS94.81 13697.71 9291.42 16794.83 13997.63 17697.38 10785.08 18098.93 8375.67 19294.02 14197.64 7696.66 13098.45 8297.60 10898.90 18499.72 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11197.94 8793.89 12293.60 15498.67 12596.62 13290.30 13398.76 10788.62 12095.57 13097.63 7794.48 17797.97 11197.48 11599.71 6899.52 129
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16198.59 7598.55 5799.29 17399.84 19
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10395.86 14690.82 12298.38 12792.54 10096.66 10497.33 7995.75 15197.75 12498.34 7299.60 12599.40 145
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9399.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9799.14 161
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10493.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14298.96 10697.46 10691.75 10397.86 15290.07 11596.02 11897.25 8296.21 14098.04 10798.38 6799.60 12599.65 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA94.95 13297.44 10292.04 15495.55 12199.16 9696.26 14179.30 20099.02 7485.73 14098.18 6797.13 8397.69 10496.03 17794.91 18197.69 19997.65 192
HyFIR lowres test95.99 11296.56 12895.32 10497.99 6799.65 1796.54 13388.86 14998.44 12589.77 11984.14 20197.05 8499.03 5298.55 7798.19 8299.73 5199.86 15
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12297.80 9593.05 9398.76 10794.39 6899.07 3197.03 8598.55 7798.31 8897.61 10799.43 16199.21 156
baseline97.45 7298.70 5995.99 9495.89 10599.36 7598.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9498.60 7398.60 5599.42 16399.86 15
Vis-MVSNetpermissive96.16 10998.22 7493.75 12595.33 12999.70 1197.27 11290.85 12198.30 13185.51 14295.72 12796.45 8793.69 19098.70 6499.00 2899.84 599.69 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive94.70 13797.08 11791.92 15995.53 12298.85 11095.77 14779.54 19898.95 7985.98 13798.52 5596.45 8797.39 11295.32 18594.09 19197.32 20297.38 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+-dtu95.38 12598.20 7592.09 15393.91 14698.87 10997.35 10985.01 18299.08 6581.09 16798.10 6996.36 9095.62 15698.43 8597.03 12699.55 14499.50 135
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8997.06 12494.09 6898.72 11195.14 5298.47 5896.29 9198.43 8198.65 6697.44 11899.45 15898.94 167
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14898.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9698.44 6299.76 3599.87 12
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12693.23 8699.17 5192.60 9898.75 4896.19 9398.17 8498.19 9496.10 15399.72 5899.77 53
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8798.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10299.78 45
tpmrst93.86 15695.88 14691.50 16695.69 11498.62 12895.64 15079.41 19998.80 10083.76 15095.63 12896.13 9597.25 11392.92 20092.31 19997.27 20396.74 201
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12793.23 8699.15 5292.56 9998.74 4996.12 9698.17 8498.21 9296.10 15399.73 5199.78 45
MDTV_nov1_ep1395.57 11997.48 9993.35 13995.43 12698.97 10597.19 11783.72 18998.92 8587.91 12697.75 7996.12 9697.88 10096.84 15695.64 16597.96 19498.10 186
EPMVS95.05 13096.86 12492.94 14495.84 10798.96 10696.68 12979.87 19699.05 7190.15 11497.12 9395.99 9897.49 10995.17 18894.75 18697.59 20096.96 200
GBi-Net96.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
test196.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
FMVSNet397.02 8398.12 7995.73 10093.59 15597.98 15898.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10698.61 7098.62 5399.61 11799.65 106
gg-mvs-nofinetune90.85 19194.14 17087.02 19794.89 13799.25 8998.64 6276.29 21188.24 21257.50 21679.93 20795.45 10295.18 17098.77 5898.07 8899.62 11599.24 154
CHOSEN 1792x268896.41 10296.99 12095.74 9998.01 6699.72 697.70 10090.78 12499.13 6090.03 11687.35 19195.36 10398.33 8398.59 7598.91 3699.59 13199.87 12
FMVSNet296.64 9897.50 9795.63 10293.81 14997.98 15898.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9798.63 6898.80 4699.68 8999.67 99
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8898.05 10697.91 9599.74 4499.73 73
thisisatest051594.61 14196.89 12291.95 15892.00 17298.47 13892.01 19390.73 12698.18 13683.96 14594.51 13795.13 10693.38 19197.38 13994.74 18799.61 11799.79 39
tpm cat194.06 14994.90 15793.06 14295.42 12898.52 13696.64 13180.67 19297.82 15492.63 9793.39 14995.00 10796.06 14691.36 20691.58 20596.98 20696.66 203
MVS-HIRNet92.51 17795.97 14388.48 19493.73 15298.37 14790.33 19975.36 21398.32 13077.78 18589.15 17694.87 10895.14 17197.62 13296.39 14398.51 18697.11 197
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10897.65 10191.68 10598.00 14397.01 3197.72 8194.83 10998.85 6598.44 8498.86 3999.41 16499.52 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 14597.59 9690.87 17991.74 18098.70 12494.68 17378.73 20597.98 14483.71 15197.71 8294.81 11096.96 12097.97 11197.92 9399.40 16698.04 187
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18397.15 11889.19 14799.08 6588.23 12294.97 13294.73 11197.84 10297.86 11898.26 7899.60 12599.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR95.50 12297.32 10993.37 13795.49 12498.74 12096.44 13890.82 12298.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
TESTMET0.1,194.95 13297.32 10992.20 15192.62 16098.74 12096.44 13886.67 17198.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
Anonymous2023121197.10 8197.06 11897.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16394.58 11498.90 6197.72 12698.10 8799.71 6899.75 65
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13593.55 14594.41 11598.88 6498.04 10798.24 7999.75 3999.76 58
test-mter94.86 13597.32 10992.00 15692.41 16598.82 11196.18 14386.35 17598.05 14182.28 16196.48 11194.39 11695.46 16398.17 9596.20 14999.32 17199.13 162
Effi-MVS+-dtu95.74 11798.04 8293.06 14293.92 14599.16 9697.90 9288.16 16099.07 7082.02 16398.02 7394.32 11796.74 12698.53 7897.56 10999.61 11799.62 113
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14496.53 13593.42 8299.04 7393.02 9298.03 7294.32 11797.47 11097.93 11397.77 10399.75 3999.88 10
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 8099.42 141
baseline296.36 10497.82 9094.65 11194.60 14199.09 9996.45 13789.63 14298.36 12991.29 11197.60 8494.13 12096.37 13798.45 8297.70 10499.54 14899.41 142
PatchT93.96 15397.36 10690.00 18694.76 14098.65 12690.11 20178.57 20697.96 14780.42 17196.07 11794.10 12196.85 12398.10 9797.49 11399.26 17599.15 158
RPMNet94.66 13897.16 11591.75 16394.98 13598.59 13197.00 12578.37 20797.98 14483.78 14896.27 11494.09 12296.91 12197.36 14096.73 13299.48 15499.09 163
FMVSNet595.42 12396.47 13594.20 11792.26 16895.99 20495.66 14987.15 16797.87 15193.46 8596.68 10393.79 12397.52 10797.10 15197.21 12499.11 18096.62 204
GeoE95.98 11497.24 11494.51 11395.02 13499.38 7198.02 9187.86 16398.37 12887.86 12792.99 15793.54 12498.56 7698.61 7097.92 9399.73 5199.85 18
MDTV_nov1_ep13_2view92.44 17995.66 14988.68 19291.05 19897.92 16292.17 19279.64 19798.83 9576.20 18991.45 16093.51 12595.04 17295.68 18393.70 19497.96 19498.53 177
CR-MVSNet94.57 14497.34 10791.33 17094.90 13698.59 13197.15 11879.14 20197.98 14480.42 17196.59 10993.50 12696.85 12398.10 9797.49 11399.50 15399.15 158
CVMVSNet95.33 12797.09 11693.27 14095.23 13098.39 14695.49 15392.58 9597.71 15883.00 15794.44 13993.28 12793.92 18797.79 12098.54 5999.41 16499.45 139
FMVSNet195.77 11696.41 14095.03 10693.42 15697.86 16597.11 12189.89 13798.53 12092.00 10589.17 17593.23 12898.15 8798.07 10298.34 7299.61 11799.69 93
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9993.71 7998.47 12495.75 4298.78 4593.20 12998.91 6098.52 7998.44 6299.81 1699.53 126
dps94.63 14095.31 15593.84 12395.53 12298.71 12396.54 13380.12 19597.81 15697.21 2896.98 9492.37 13096.34 13992.46 20391.77 20397.26 20497.08 198
testgi95.67 11897.48 9993.56 13195.07 13399.00 10195.33 15788.47 15598.80 10086.90 13397.30 8792.33 13195.97 14897.66 12897.91 9599.60 12599.38 146
N_pmnet92.21 18794.60 16489.42 19191.88 17597.38 19289.15 20589.74 14197.89 15073.75 19887.94 18892.23 13293.85 18896.10 17593.20 19698.15 19397.43 194
IB-MVS93.96 1595.02 13196.44 13893.36 13897.05 8399.28 8790.43 19893.39 8398.02 14296.02 3994.92 13492.07 13383.52 20795.38 18495.82 16199.72 5899.59 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13798.63 6392.10 9798.68 11295.96 4199.23 1891.79 13496.87 12298.76 5997.37 12299.57 13999.68 98
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9893.22 8898.98 7892.64 9694.97 13291.71 13598.93 5798.62 6998.52 6099.82 1099.72 84
TAMVS95.53 12196.50 13494.39 11693.86 14899.03 10096.67 13089.55 14497.33 16690.64 11393.02 15691.58 13696.21 14097.72 12697.43 11999.43 16199.36 147
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13799.16 4397.66 12899.05 2499.76 3599.90 3
anonymousdsp93.12 16595.86 14789.93 18891.09 19798.25 15195.12 15885.08 18097.44 16273.30 19990.89 16490.78 13895.25 16997.91 11495.96 15999.71 6899.82 24
ET-MVSNet_ETH3D96.17 10896.99 12095.21 10588.53 20598.54 13498.28 7892.61 9498.85 9093.60 8399.06 3290.39 13998.63 7395.98 17996.68 13499.61 11799.41 142
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
pmnet_mix0292.44 17994.68 16289.83 18992.46 16497.65 17589.92 20390.49 13098.76 10773.05 20291.78 15890.08 14294.86 17594.53 19591.94 20298.21 19298.01 189
pmmvs495.09 12995.90 14594.14 11892.29 16797.70 16995.45 15490.31 13198.60 11490.70 11293.25 15089.90 14396.67 12997.13 14995.42 16899.44 16099.28 150
pm-mvs194.27 14695.57 15092.75 14592.58 16198.13 15694.87 16690.71 12796.70 18383.78 14889.94 17189.85 14494.96 17497.58 13397.07 12599.61 11799.72 84
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 8098.06 9093.22 8899.43 2192.30 10296.90 9889.83 14598.55 7798.00 11098.14 8399.64 11099.70 89
test_part195.56 12095.38 15295.78 9696.07 9998.16 15597.57 10290.78 12497.43 16393.04 9189.12 17889.41 14697.93 9596.38 16597.38 12199.29 17399.78 45
Effi-MVS+95.81 11597.31 11294.06 12095.09 13299.35 7897.24 11488.22 15898.54 11985.38 14398.52 5588.68 14798.70 6898.32 8797.93 9299.74 4499.84 19
GA-MVS93.93 15496.31 14191.16 17493.61 15398.79 11295.39 15690.69 12898.25 13473.28 20096.15 11688.42 14894.39 17997.76 12395.35 16999.58 13599.45 139
EU-MVSNet92.80 17194.76 16190.51 18191.88 17596.74 20192.48 19188.69 15296.21 18979.00 18091.51 15987.82 14991.83 19995.87 18196.27 14699.21 17698.92 171
pmmvs691.90 18992.53 19691.17 17391.81 17897.63 17693.23 18688.37 15793.43 20880.61 16977.32 20987.47 15094.12 18296.58 15995.72 16398.88 18599.53 126
UniMVSNet_NR-MVSNet94.59 14295.47 15193.55 13291.85 17797.89 16495.03 15992.00 9997.33 16686.12 13593.19 15187.29 15196.60 13296.12 17496.70 13399.72 5899.80 31
Fast-Effi-MVS+95.38 12596.52 13194.05 12194.15 14499.14 9897.24 11486.79 16998.53 12087.62 12994.51 13787.06 15298.76 6698.60 7398.04 9099.72 5899.77 53
CLD-MVS96.74 9296.51 13297.01 6896.71 8698.62 12898.73 6094.38 6498.94 8294.46 6497.33 8587.03 15398.07 9097.20 14796.87 13099.72 5899.54 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS96.37 10396.58 12796.13 8997.31 7798.44 14198.45 6895.22 5098.86 8888.58 12198.33 6487.00 15497.67 10597.23 14596.56 13999.56 14299.62 113
thres100view90096.72 9396.47 13597.00 6996.31 9299.52 5398.28 7894.01 6997.35 16494.52 6195.90 12186.93 15599.09 4998.07 10297.87 9799.81 1699.63 112
tfpn200view996.75 9196.51 13297.03 6496.31 9299.67 1298.41 6993.99 7197.35 16494.52 6195.90 12186.93 15599.14 4498.26 8997.80 10199.82 1099.70 89
thres20096.76 9096.53 13097.03 6496.31 9299.67 1298.37 7293.99 7197.68 15994.49 6395.83 12486.77 15799.18 4098.26 8997.82 10099.82 1099.66 103
ACMM96.26 996.67 9796.69 12696.66 7597.29 7898.46 13996.48 13695.09 5199.21 4693.19 8898.78 4586.73 15898.17 8497.84 11996.32 14599.74 4499.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train96.23 10696.89 12295.46 10397.32 7598.77 11598.81 5893.60 8098.58 11685.52 14199.08 3086.67 15997.83 10397.87 11797.51 11199.69 8099.73 73
ACMP96.25 1096.62 10096.72 12596.50 8396.96 8498.75 11997.80 9594.30 6698.85 9093.12 8998.78 4586.61 16097.23 11597.73 12596.61 13799.62 11599.71 87
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
new_pmnet90.45 19592.84 19487.66 19588.96 20496.16 20388.71 20684.66 18497.56 16071.91 20685.60 19986.58 16193.28 19296.07 17693.54 19598.46 18794.39 208
OPM-MVS96.22 10795.85 14896.65 7697.75 6898.54 13499.00 5095.53 4796.88 17789.88 11795.95 12086.46 16298.07 9097.65 13096.63 13699.67 9798.83 174
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16398.92 5899.22 2798.84 4199.76 3599.56 122
thres40096.71 9496.45 13797.02 6696.28 9599.63 2598.41 6994.00 7097.82 15494.42 6695.74 12586.26 16499.18 4098.20 9397.79 10299.81 1699.70 89
UniMVSNet (Re)94.58 14395.34 15393.71 12792.25 16998.08 15794.97 16191.29 11897.03 17587.94 12593.97 14386.25 16596.07 14596.27 17195.97 15899.72 5899.79 39
CostFormer94.25 14894.88 15893.51 13495.43 12698.34 14996.21 14280.64 19397.94 14894.01 7298.30 6586.20 16697.52 10792.71 20192.69 19797.23 20598.02 188
thres600view796.69 9596.43 13997.00 6996.28 9599.67 1298.41 6993.99 7197.85 15394.29 6995.96 11985.91 16799.19 3898.26 8997.63 10699.82 1099.73 73
SixPastTwentyTwo93.44 16195.32 15491.24 17292.11 17098.40 14592.77 18988.64 15498.09 14077.83 18493.51 14785.74 16896.52 13596.91 15494.89 18499.59 13199.73 73
TSAR-MVS + COLMAP96.79 8996.55 12997.06 6297.70 7098.46 13999.07 4596.23 4499.38 2391.32 11098.80 4385.61 16998.69 7097.64 13196.92 12999.37 16899.06 165
ACMH+95.51 1395.40 12496.00 14294.70 11096.33 9098.79 11296.79 12891.32 11498.77 10687.18 13195.60 12985.46 17096.97 11997.15 14896.59 13899.59 13199.65 106
test20.0390.65 19493.71 18287.09 19690.44 20196.24 20289.74 20485.46 17995.59 20172.99 20390.68 16685.33 17184.41 20695.94 18095.10 17799.52 15197.06 199
tmp_tt82.25 20597.73 6988.71 21380.18 21368.65 21699.15 5286.98 13299.47 985.31 17268.35 21487.51 20883.81 21091.64 213
WR-MVS_H93.54 15994.67 16392.22 14991.95 17397.91 16394.58 17788.75 15196.64 18483.88 14790.66 16785.13 17394.40 17896.54 16195.91 16099.73 5199.89 6
WR-MVS93.43 16294.48 16692.21 15091.52 18997.69 17194.66 17589.98 13596.86 17883.43 15290.12 16985.03 17493.94 18696.02 17895.82 16199.71 6899.82 24
CMPMVSbinary70.31 1890.74 19291.06 20090.36 18497.32 7597.43 18992.97 18887.82 16493.50 20775.34 19583.27 20384.90 17592.19 19892.64 20291.21 20696.50 20994.46 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 19393.93 17886.92 19890.21 20396.79 19990.30 20086.61 17396.05 19469.25 20788.46 18384.86 17685.86 20597.11 15096.47 14299.30 17297.80 191
v1092.79 17294.06 17491.31 17191.78 17997.29 19594.87 16686.10 17696.97 17679.82 17688.16 18584.56 17795.63 15596.33 16995.31 17099.65 10699.80 31
v114492.81 17094.03 17591.40 16991.68 18197.60 18094.73 17088.40 15696.71 18278.48 18288.14 18684.46 17895.45 16496.31 17095.22 17399.65 10699.76 58
Baseline_NR-MVSNet93.87 15593.98 17793.75 12591.66 18297.02 19695.53 15291.52 11197.16 17287.77 12887.93 18983.69 17996.35 13895.10 19097.23 12399.68 8999.73 73
ACMH95.42 1495.27 12895.96 14494.45 11596.83 8598.78 11494.72 17191.67 10698.95 7986.82 13496.42 11283.67 18097.00 11897.48 13796.68 13499.69 8099.76 58
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)93.45 16094.08 17392.72 14692.83 15897.62 17994.94 16291.54 11095.65 20083.06 15688.93 17983.53 18194.25 18097.41 13897.03 12699.67 9798.40 183
pmmvs592.71 17694.27 16990.90 17891.42 19197.74 16893.23 18686.66 17295.99 19678.96 18191.45 16083.44 18295.55 15897.30 14395.05 17899.58 13598.93 168
V4293.05 16693.90 18092.04 15491.91 17497.66 17394.91 16389.91 13696.85 17980.58 17089.66 17283.43 18395.37 16595.03 19294.90 18299.59 13199.78 45
EG-PatchMatch MVS92.45 17893.92 17990.72 18092.56 16298.43 14394.88 16584.54 18597.18 16979.55 17786.12 19883.23 18493.15 19497.22 14696.00 15599.67 9799.27 152
tpm92.38 18394.79 16089.56 19094.30 14397.50 18694.24 18378.97 20497.72 15774.93 19697.97 7482.91 18596.60 13293.65 19994.81 18598.33 19098.98 166
v192192092.36 18593.57 18490.94 17791.39 19297.39 19194.70 17287.63 16596.60 18576.63 18886.98 19482.89 18695.75 15196.26 17295.14 17699.55 14499.73 73
v892.87 16893.87 18191.72 16592.05 17197.50 18694.79 16988.20 15996.85 17980.11 17490.01 17082.86 18795.48 16195.15 18994.90 18299.66 10299.80 31
v119292.43 18193.61 18391.05 17591.53 18897.43 18994.61 17687.99 16196.60 18576.72 18787.11 19382.74 18895.85 15096.35 16895.30 17199.60 12599.74 69
v14419292.38 18393.55 18691.00 17691.44 19097.47 18894.27 18187.41 16696.52 18778.03 18387.50 19082.65 18995.32 16695.82 18295.15 17599.55 14499.78 45
TranMVSNet+NR-MVSNet93.67 15894.14 17093.13 14191.28 19697.58 18195.60 15191.97 10097.06 17384.05 14490.64 16882.22 19096.17 14394.94 19396.78 13199.69 8099.78 45
CP-MVSNet93.25 16394.00 17692.38 14891.65 18497.56 18394.38 18089.20 14696.05 19483.16 15589.51 17381.97 19196.16 14496.43 16396.56 13999.71 6899.89 6
v124091.99 18893.33 18990.44 18291.29 19497.30 19494.25 18286.79 16996.43 18875.49 19486.34 19781.85 19295.29 16796.42 16495.22 17399.52 15199.73 73
tfpnnormal93.85 15794.12 17293.54 13393.22 15798.24 15295.45 15491.96 10194.61 20383.91 14690.74 16581.75 19397.04 11797.49 13696.16 15199.68 8999.84 19
v2v48292.77 17393.52 18791.90 16191.59 18797.63 17694.57 17890.31 13196.80 18179.22 17888.74 18181.55 19496.04 14795.26 18694.97 18099.66 10299.69 93
DU-MVS93.98 15294.44 16793.44 13591.66 18297.77 16695.03 15991.57 10897.17 17086.12 13593.13 15381.13 19596.60 13295.10 19097.01 12899.67 9799.80 31
USDC94.26 14794.83 15993.59 13096.02 10098.44 14197.84 9388.65 15398.86 8882.73 16094.02 14180.56 19696.76 12597.28 14496.15 15299.55 14498.50 178
NR-MVSNet94.01 15094.51 16593.44 13592.56 16297.77 16695.67 14891.57 10897.17 17085.84 13893.13 15380.53 19795.29 16797.01 15296.17 15099.69 8099.75 65
TinyColmap94.00 15194.35 16893.60 12995.89 10598.26 15097.49 10588.82 15098.56 11883.21 15491.28 16280.48 19896.68 12897.34 14196.26 14899.53 15098.24 184
gm-plane-assit89.44 19892.82 19585.49 20191.37 19395.34 20779.55 21582.12 19091.68 21164.79 21387.98 18780.26 19995.66 15498.51 8197.56 10999.45 15898.41 180
v14892.36 18592.88 19291.75 16391.63 18597.66 17392.64 19090.55 12996.09 19283.34 15388.19 18480.00 20092.74 19593.98 19894.58 18899.58 13599.69 93
test_method87.27 20291.58 19882.25 20575.65 21687.52 21586.81 20972.60 21497.51 16173.20 20185.07 20079.97 20188.69 20297.31 14295.24 17296.53 20898.41 180
PS-CasMVS92.72 17493.36 18891.98 15791.62 18697.52 18594.13 18488.98 14895.94 19781.51 16687.35 19179.95 20295.91 14996.37 16696.49 14199.70 7799.89 6
TDRefinement93.04 16793.57 18492.41 14796.58 8798.77 11597.78 9791.96 10198.12 13980.84 16889.13 17779.87 20387.78 20396.44 16294.50 18999.54 14898.15 185
DeepMVS_CXcopyleft96.85 19887.43 20889.27 14598.30 13175.55 19395.05 13179.47 20492.62 19789.48 20795.18 21295.96 205
LTVRE_ROB93.20 1692.84 16994.92 15690.43 18392.83 15898.63 12797.08 12387.87 16297.91 14968.42 20993.54 14679.46 20596.62 13197.55 13497.40 12099.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS92.72 17493.20 19092.15 15291.29 19497.31 19394.67 17489.81 13896.19 19081.83 16488.58 18279.06 20695.61 15795.21 18796.27 14699.72 5899.82 24
MIMVSNet188.61 19990.68 20186.19 20081.56 21295.30 20887.78 20785.98 17794.19 20672.30 20578.84 20878.90 20790.06 20096.59 15895.47 16699.46 15795.49 206
v7n91.61 19092.95 19190.04 18590.56 20097.69 17193.74 18585.59 17895.89 19876.95 18686.60 19678.60 20893.76 18997.01 15294.99 17999.65 10699.87 12
DTE-MVSNet92.42 18292.85 19391.91 16090.87 19996.97 19794.53 17989.81 13895.86 19981.59 16588.83 18077.88 20995.01 17394.34 19796.35 14499.64 11099.73 73
pmmvs388.19 20091.27 19984.60 20385.60 20993.66 21085.68 21081.13 19192.36 21063.66 21589.51 17377.10 21093.22 19396.37 16692.40 19898.30 19197.46 193
UniMVSNet_ETH3D93.15 16492.33 19794.11 11993.91 14698.61 13094.81 16890.98 11997.06 17387.51 13082.27 20576.33 21197.87 10194.79 19497.47 11699.56 14299.81 29
FPMVS83.82 20484.61 20682.90 20490.39 20290.71 21290.85 19784.10 18895.47 20265.15 21183.44 20274.46 21275.48 20981.63 21079.42 21291.42 21487.14 212
PMVScopyleft72.60 1776.39 20777.66 21074.92 20881.04 21369.37 22068.47 21780.54 19485.39 21365.07 21273.52 21072.91 21365.67 21580.35 21276.81 21388.71 21585.25 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs-eth3d89.81 19689.65 20390.00 18686.94 20795.38 20691.08 19486.39 17494.57 20482.27 16283.03 20464.94 21493.96 18596.57 16093.82 19399.35 16999.24 154
new-patchmatchnet86.12 20387.30 20584.74 20286.92 20895.19 20983.57 21284.42 18792.67 20965.66 21080.32 20664.72 21589.41 20192.33 20589.21 20798.43 18896.69 202
MDA-MVSNet-bldmvs87.84 20189.22 20486.23 19981.74 21196.77 20083.74 21189.57 14394.50 20572.83 20496.64 10564.47 21692.71 19681.43 21192.28 20096.81 20798.47 179
PM-MVS89.55 19790.30 20288.67 19387.06 20695.60 20590.88 19684.51 18696.14 19175.75 19086.89 19563.47 21794.64 17696.85 15593.89 19299.17 17999.29 149
Gipumacopyleft81.40 20581.78 20780.96 20783.21 21085.61 21679.73 21476.25 21297.33 16664.21 21455.32 21355.55 21886.04 20492.43 20492.20 20196.32 21093.99 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 20679.47 20974.70 20976.00 21588.37 21474.22 21676.34 21078.31 21454.13 21769.96 21152.50 21970.14 21384.83 20988.71 20897.35 20193.58 210
EMVS68.12 21068.11 21268.14 21175.51 21771.76 21855.38 22077.20 20977.78 21537.79 22053.59 21443.61 22074.72 21067.05 21576.70 21488.27 21786.24 213
E-PMN68.30 20968.43 21168.15 21074.70 21871.56 21955.64 21977.24 20877.48 21639.46 21951.95 21641.68 22173.28 21170.65 21479.51 21188.61 21686.20 214
MVEpermissive67.97 1965.53 21167.43 21363.31 21259.33 21974.20 21753.09 22170.43 21566.27 21743.13 21845.98 21730.62 22270.65 21279.34 21386.30 20983.25 21889.33 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc80.99 20880.04 21490.84 21190.91 19596.09 19274.18 19762.81 21230.59 22382.44 20896.25 17391.77 20395.91 21198.56 176
testmvs31.24 21240.15 21420.86 21412.61 22017.99 22125.16 22213.30 21748.42 21824.82 22153.07 21530.13 22428.47 21642.73 21637.65 21520.79 21951.04 216
test12326.75 21334.25 21518.01 2157.93 22117.18 22224.85 22312.36 21844.83 21916.52 22241.80 21818.10 22528.29 21733.08 21734.79 21618.10 22049.95 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def69.05 208
our_test_392.30 16697.58 18190.09 202
Patchmatch-RL test66.86 218
NP-MVS98.57 117
Patchmtry98.59 13197.15 11879.14 20180.42 171