This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS++99.41 499.64 199.14 899.69 899.75 799.64 898.33 699.67 498.10 1499.66 499.99 199.33 3299.62 598.86 4599.74 4999.90 6
SED-MVS99.44 399.58 499.28 399.69 899.76 499.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3999.61 698.83 5099.70 8399.77 56
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 499.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 3099.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3399.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1399.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3599.56 1098.96 3799.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 799.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3799.34 2399.05 3099.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2099.71 398.12 2999.14 6296.62 3699.16 2599.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6499.35 1599.97 899.55 1499.63 398.66 5799.70 8399.74 72
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2199.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
MTAPA98.09 1699.97 8
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
APDe-MVS99.49 199.64 199.32 299.74 499.74 999.75 198.34 499.56 1198.72 799.57 799.97 899.53 1799.65 299.25 1599.84 1199.77 56
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2699.96 1399.59 1099.73 199.07 2899.88 399.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP98.46 1199.96 13
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6399.59 1798.34 499.26 4396.55 3999.10 3399.96 1399.36 3099.25 2898.37 7599.64 11699.66 106
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2699.96 1399.59 1099.54 1298.86 4599.78 3399.74 72
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3498.89 5699.39 799.79 3099.58 122
XVS97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
X-MVStestdata97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
X-MVS98.93 3099.37 2398.42 3399.67 1499.62 3399.60 1698.15 2599.08 7293.81 8398.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2699.95 1899.61 699.17 3399.06 2999.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6599.44 2898.13 2899.65 592.30 10798.91 4499.95 1899.05 5499.42 1898.95 3899.58 14199.82 28
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2699.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
TSAR-MVS + GP.98.66 4099.36 2497.85 4797.16 8299.46 6599.03 4994.59 6399.09 7097.19 3199.73 399.95 1899.39 2998.95 4998.69 5699.75 4499.65 109
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2698.20 8799.64 11699.69 96
SR-MVS99.67 1498.25 1599.94 26
MP-MVScopyleft99.07 2499.36 2498.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1699.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8699.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1899.42 1898.61 6099.73 5799.52 135
SF-MVS99.18 1799.32 2899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 3099.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
APD-MVScopyleft99.25 1399.38 2299.09 1299.69 899.58 4999.56 1898.32 898.85 9697.87 2198.91 4499.92 2999.30 3799.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8099.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 2099.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net97.13 8599.14 3994.78 11597.21 8099.38 7797.56 10992.04 10498.48 12988.03 13098.39 6699.91 3294.03 19099.33 2499.23 1899.81 2199.25 159
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 8999.51 2198.31 999.28 3896.57 3899.10 3399.90 3399.71 299.19 3298.35 7699.82 1599.71 90
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7799.43 2998.21 2199.36 2997.66 2597.79 8199.90 3399.45 2599.17 3398.43 7099.77 3899.51 139
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6299.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1898.93 5199.45 499.61 12399.76 61
mPP-MVS99.53 3199.89 35
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2699.20 3797.75 3998.82 10395.24 5498.85 4799.87 3799.17 4698.74 6897.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8499.48 2497.96 3598.83 10193.86 8298.70 5699.86 3899.44 2699.08 4198.38 7399.61 12399.58 122
abl_698.09 4199.33 4399.22 9998.79 6194.96 5598.52 12897.00 3497.30 9199.86 3898.76 7299.69 8699.41 148
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8699.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2698.78 6399.30 1199.81 2199.67 102
DeepPCF-MVS97.74 398.34 4699.46 1397.04 6798.82 5399.33 8996.28 14697.47 4099.58 994.70 6398.99 3899.85 4197.24 12099.55 1199.34 997.73 20499.56 128
DPM-MVS98.31 4898.53 6598.05 4298.76 5698.77 12199.13 4198.07 3199.10 6994.27 7596.70 10699.84 4298.70 7497.90 12198.11 9299.40 17299.28 156
PGM-MVS98.86 3299.35 2798.29 3699.77 199.63 2999.67 595.63 4798.66 11995.27 5399.11 3099.82 4399.67 499.33 2499.19 2199.73 5799.74 72
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6399.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3298.79 6299.29 1399.75 4499.64 113
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9899.22 3696.70 4399.40 2397.77 2397.89 8099.80 4499.21 4099.02 4598.65 5899.57 14599.07 170
9.1499.79 46
MVS_111021_HR98.59 4299.36 2497.68 5099.42 3699.61 3898.14 9094.81 5699.31 3495.00 5899.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9799.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 3098.71 6998.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.50 698.18 5298.35 7197.99 4498.65 5799.36 8198.94 5498.14 2798.59 12193.62 8796.61 11099.76 4999.03 5697.77 12897.45 12399.57 14598.89 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 9999.03 4997.98 3499.34 3199.00 498.25 7099.71 5099.31 3598.80 6198.82 5299.48 16099.17 163
MVS_111021_LR98.67 3899.41 2197.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6099.56 899.69 5199.04 5599.36 2198.88 4399.60 13199.58 122
CDPH-MVS98.41 4499.10 4197.61 5299.32 4499.36 8199.49 2296.15 4698.82 10391.82 11298.41 6499.66 5299.10 5198.93 5198.97 3699.75 4499.58 122
DROMVSNet98.22 5099.44 1796.79 7695.62 12099.56 5299.01 5192.22 10099.17 5494.51 6799.41 1399.62 5399.49 2099.16 3599.26 1499.91 299.94 1
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6799.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2898.87 5899.49 399.85 999.66 106
CANet98.46 4399.16 3897.64 5198.48 5999.64 2699.35 3294.71 5999.53 1495.17 5597.63 8799.59 5598.38 8898.88 5798.99 3599.74 4999.86 19
UGNet97.66 6899.07 4496.01 9997.19 8199.65 2197.09 12893.39 8799.35 3094.40 7298.79 4999.59 5594.24 18798.04 11398.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9299.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 153
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7299.76 496.02 15093.75 8199.26 4393.38 9193.73 14899.35 5896.47 14298.96 4898.46 6799.77 3899.90 6
RPSCF97.61 6998.16 8096.96 7598.10 6399.00 10798.84 5993.76 7999.45 2094.78 6299.39 1499.31 5998.53 8596.61 16395.43 17397.74 20297.93 196
ETV-MVS98.05 5699.25 3496.65 8195.61 12199.61 3898.26 8693.52 8598.90 9293.74 8699.32 1699.20 6098.90 6499.21 3198.72 5599.87 899.79 42
TAPA-MVS97.53 598.41 4498.84 5897.91 4699.08 4999.33 8999.15 4097.13 4299.34 3193.20 9297.75 8399.19 6199.20 4198.66 7198.13 9099.66 10899.48 143
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU96.64 10499.08 4293.81 13097.10 8399.42 7298.85 5890.01 14099.31 3479.98 18199.78 299.10 6297.42 11798.35 9298.05 9599.47 16299.53 132
MVS_030498.14 5399.03 4997.10 6498.05 6699.63 2999.27 3594.33 6999.63 793.06 9597.32 9099.05 6398.09 9598.82 6098.87 4499.81 2199.89 10
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5699.52 3399.42 7298.91 5594.61 6198.87 9392.24 10994.61 14099.05 6399.10 5198.64 7399.05 3099.74 4999.51 139
CS-MVS-test98.09 5599.32 2896.67 7995.48 13099.61 3899.01 5192.22 10099.32 3393.89 8199.30 1798.77 6599.49 2099.16 3599.16 2499.92 199.91 5
CS-MVS98.00 5899.32 2896.46 8995.42 13399.67 1698.56 6893.16 9599.40 2392.22 11099.19 2298.64 6699.55 1499.27 2799.17 2399.88 399.92 2
GG-mvs-BLEND69.11 21498.13 8135.26 2193.49 22898.20 16094.89 1702.38 22598.42 1325.82 22996.37 11798.60 675.97 22498.75 6797.98 9799.01 18898.61 181
CHOSEN 280x42097.99 5999.24 3596.53 8598.34 6199.61 3898.36 8089.80 14699.27 4095.08 5799.81 198.58 6898.64 7899.02 4598.92 4098.93 18999.48 143
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10799.62 3397.82 10093.22 9298.82 10391.40 11596.94 10098.56 6995.70 15999.14 3799.41 699.79 3099.75 68
EPNet_dtu96.30 11198.53 6593.70 13498.97 5198.24 15897.36 11494.23 7198.85 9679.18 18599.19 2298.47 7094.09 18997.89 12298.21 8698.39 19598.85 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 6198.86 5696.68 7896.02 10499.72 1098.35 8193.37 8998.75 11694.01 7696.88 10398.40 7198.48 8699.09 3999.42 599.83 1499.80 35
COLMAP_ROBcopyleft96.15 1297.78 6398.17 7997.32 5798.84 5299.45 6799.28 3495.43 5099.48 1991.80 11394.83 13998.36 7298.90 6498.09 10597.85 10499.68 9599.15 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT94.89 14097.87 9291.42 17394.86 14497.70 17597.24 12084.88 18998.93 8975.74 19794.26 14498.25 7396.69 13398.52 8597.68 11199.10 18799.73 76
DELS-MVS98.19 5198.77 6097.52 5398.29 6299.71 1399.12 4294.58 6498.80 10695.38 5296.24 11998.24 7497.92 10299.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet94.65 14597.04 12391.88 16895.68 11898.99 10995.89 15179.03 20999.15 5985.81 14596.96 9998.21 7597.10 12294.48 20294.24 19697.74 20297.21 202
EIA-MVS97.70 6798.78 5996.44 9095.72 11599.65 2198.14 9093.72 8298.30 13792.31 10698.63 5797.90 7698.97 5998.92 5398.30 8299.78 3399.80 35
CSCG98.90 3198.93 5498.85 2699.75 399.72 1099.49 2296.58 4499.38 2598.05 1798.97 3997.87 7799.49 2097.78 12798.92 4099.78 3399.90 6
MS-PatchMatch95.99 11897.26 11694.51 11997.46 7398.76 12497.27 11886.97 17499.09 7089.83 12493.51 15297.78 7896.18 14897.53 14195.71 17099.35 17598.41 186
IterMVS94.81 14297.71 9591.42 17394.83 14597.63 18297.38 11385.08 18698.93 8975.67 19894.02 14597.64 7996.66 13698.45 8897.60 11498.90 19099.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11797.94 9093.89 12893.60 16098.67 13196.62 13890.30 13998.76 11388.62 12695.57 13497.63 8094.48 18397.97 11797.48 12199.71 7499.52 135
EPNet98.05 5698.86 5697.10 6499.02 5099.43 7198.47 7294.73 5899.05 7895.62 4798.93 4297.62 8195.48 16798.59 8198.55 6399.29 17999.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 196.69 10198.12 8295.01 11395.49 12898.99 10995.86 15290.82 12898.38 13392.54 10596.66 10897.33 8295.75 15797.75 13098.34 7899.60 13199.40 151
MSDG98.27 4998.29 7298.24 3899.20 4699.22 9999.20 3797.82 3799.37 2794.43 7095.90 12597.31 8399.12 4998.76 6598.35 7699.67 10399.14 167
EPP-MVSNet97.75 6598.71 6196.63 8395.68 11899.56 5297.51 11093.10 9699.22 4794.99 5997.18 9697.30 8498.65 7798.83 5998.93 3999.84 1199.92 2
CDS-MVSNet96.59 10798.02 8794.92 11494.45 14898.96 11297.46 11291.75 10997.86 15890.07 12196.02 12297.25 8596.21 14698.04 11398.38 7399.60 13199.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA94.95 13897.44 10592.04 16095.55 12599.16 10296.26 14779.30 20699.02 8185.73 14698.18 7197.13 8697.69 11096.03 18394.91 18797.69 20597.65 198
HyFIR lowres test95.99 11896.56 13495.32 11097.99 6899.65 2196.54 13988.86 15598.44 13189.77 12584.14 20797.05 8799.03 5698.55 8398.19 8899.73 5799.86 19
PMMVS97.52 7298.39 6996.51 8795.82 11298.73 12897.80 10193.05 9798.76 11394.39 7399.07 3697.03 8898.55 8398.31 9497.61 11399.43 16799.21 162
baseline97.45 7598.70 6295.99 10095.89 10999.36 8198.29 8391.37 11999.21 4992.99 9898.40 6596.87 8997.96 10098.60 7998.60 6199.42 16999.86 19
Vis-MVSNetpermissive96.16 11598.22 7793.75 13195.33 13599.70 1597.27 11890.85 12798.30 13785.51 14895.72 13196.45 9093.69 19698.70 7099.00 3499.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive94.70 14397.08 12191.92 16595.53 12698.85 11695.77 15379.54 20498.95 8685.98 14398.52 5996.45 9097.39 11895.32 19194.09 19797.32 20897.38 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepC-MVS97.63 498.33 4798.57 6398.04 4398.62 5899.65 2199.45 2698.15 2599.51 1792.80 10095.74 12996.44 9299.46 2499.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+-dtu95.38 13198.20 7892.09 15993.91 15298.87 11597.35 11585.01 18899.08 7281.09 17398.10 7396.36 9395.62 16298.43 9197.03 13299.55 15099.50 141
PatchMatch-RL97.77 6498.25 7397.21 6299.11 4899.25 9597.06 13094.09 7298.72 11795.14 5698.47 6296.29 9498.43 8798.65 7297.44 12499.45 16498.94 173
DCV-MVSNet97.56 7198.36 7096.62 8496.44 9398.36 15498.37 7891.73 11099.11 6894.80 6198.36 6796.28 9598.60 8198.12 10298.44 6899.76 4099.87 16
thisisatest053097.23 8198.25 7396.05 9695.60 12399.59 4696.96 13293.23 9099.17 5492.60 10398.75 5396.19 9698.17 9098.19 10096.10 15999.72 6499.77 56
MVS_Test97.30 7998.54 6495.87 10195.74 11499.28 9398.19 8891.40 11899.18 5391.59 11498.17 7296.18 9798.63 7998.61 7698.55 6399.66 10899.78 48
tpmrst93.86 16295.88 15291.50 17295.69 11798.62 13495.64 15679.41 20598.80 10683.76 15695.63 13296.13 9897.25 11992.92 20692.31 20597.27 20996.74 207
tttt051797.23 8198.24 7696.04 9795.60 12399.60 4496.94 13393.23 9099.15 5992.56 10498.74 5496.12 9998.17 9098.21 9896.10 15999.73 5799.78 48
MDTV_nov1_ep1395.57 12597.48 10293.35 14595.43 13198.97 11197.19 12383.72 19598.92 9187.91 13297.75 8396.12 9997.88 10696.84 16295.64 17197.96 20098.10 192
EPMVS95.05 13696.86 12892.94 15095.84 11198.96 11296.68 13579.87 20299.05 7890.15 12097.12 9795.99 10197.49 11595.17 19494.75 19297.59 20696.96 206
GBi-Net96.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
test196.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
FMVSNet397.02 8998.12 8295.73 10693.59 16197.98 16498.34 8291.32 12098.80 10693.92 7897.21 9395.94 10297.63 11298.61 7698.62 5999.61 12399.65 109
gg-mvs-nofinetune90.85 19794.14 17687.02 20394.89 14399.25 9598.64 6476.29 21788.24 21857.50 22279.93 21395.45 10595.18 17698.77 6498.07 9499.62 12199.24 160
CHOSEN 1792x268896.41 10896.99 12495.74 10598.01 6799.72 1097.70 10690.78 13099.13 6790.03 12287.35 19795.36 10698.33 8998.59 8198.91 4299.59 13799.87 16
FMVSNet296.64 10497.50 10095.63 10893.81 15597.98 16498.09 9290.87 12698.99 8493.48 8993.17 15795.25 10797.89 10398.63 7498.80 5399.68 9599.67 102
DI_MVS_plusplus_trai96.90 9397.49 10196.21 9395.61 12199.40 7698.72 6392.11 10299.14 6292.98 9993.08 16095.14 10898.13 9498.05 11297.91 10199.74 4999.73 76
thisisatest051594.61 14796.89 12691.95 16492.00 17898.47 14492.01 19990.73 13298.18 14283.96 15194.51 14195.13 10993.38 19797.38 14594.74 19399.61 12399.79 42
tpm cat194.06 15594.90 16393.06 14895.42 13398.52 14296.64 13780.67 19897.82 16092.63 10293.39 15495.00 11096.06 15291.36 21291.58 21196.98 21296.66 209
MVS-HIRNet92.51 18395.97 14988.48 20093.73 15898.37 15390.33 20575.36 21998.32 13677.78 19189.15 18294.87 11195.14 17797.62 13896.39 14998.51 19297.11 203
MAR-MVS97.71 6698.04 8597.32 5799.35 4298.91 11497.65 10791.68 11198.00 14997.01 3397.72 8594.83 11298.85 7098.44 9098.86 4599.41 17099.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 15197.59 9990.87 18591.74 18698.70 13094.68 17978.73 21197.98 15083.71 15797.71 8694.81 11396.96 12697.97 11797.92 9999.40 17298.04 193
IterMVS-LS96.12 11697.48 10294.53 11895.19 13797.56 18997.15 12489.19 15399.08 7288.23 12894.97 13694.73 11497.84 10897.86 12498.26 8499.60 13199.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR95.50 12897.32 11293.37 14395.49 12898.74 12696.44 14490.82 12898.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
TESTMET0.1,194.95 13897.32 11292.20 15792.62 16698.74 12696.44 14486.67 17798.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
Anonymous2023121197.10 8697.06 12297.14 6396.32 9599.52 5998.16 8993.76 7998.84 10095.98 4390.92 16994.58 11798.90 6497.72 13298.10 9399.71 7499.75 68
Anonymous20240521197.40 10796.45 9299.54 5598.08 9593.79 7898.24 14193.55 14994.41 11898.88 6998.04 11398.24 8599.75 4499.76 61
test-mter94.86 14197.32 11292.00 16292.41 17198.82 11796.18 14986.35 18198.05 14782.28 16796.48 11594.39 11995.46 16998.17 10196.20 15599.32 17799.13 168
Effi-MVS+-dtu95.74 12398.04 8593.06 14893.92 15199.16 10297.90 9888.16 16699.07 7782.02 16998.02 7794.32 12096.74 13298.53 8497.56 11599.61 12399.62 117
FC-MVSNet-train97.04 8897.91 9196.03 9896.00 10698.41 15096.53 14193.42 8699.04 8093.02 9798.03 7694.32 12097.47 11697.93 11997.77 10999.75 4499.88 14
LS3D97.79 6298.25 7397.26 6198.40 6099.63 2999.53 1998.63 199.25 4588.13 12996.93 10194.14 12299.19 4299.14 3799.23 1899.69 8699.42 147
baseline296.36 11097.82 9394.65 11794.60 14799.09 10596.45 14389.63 14898.36 13591.29 11797.60 8894.13 12396.37 14398.45 8897.70 11099.54 15499.41 148
PatchT93.96 15997.36 10990.00 19294.76 14698.65 13290.11 20778.57 21297.96 15380.42 17796.07 12194.10 12496.85 12998.10 10397.49 11999.26 18199.15 164
RPMNet94.66 14497.16 11891.75 16994.98 14198.59 13797.00 13178.37 21397.98 15083.78 15496.27 11894.09 12596.91 12797.36 14696.73 13899.48 16099.09 169
FMVSNet595.42 12996.47 14194.20 12392.26 17495.99 21095.66 15587.15 17397.87 15793.46 9096.68 10793.79 12697.52 11397.10 15797.21 13099.11 18696.62 210
GeoE95.98 12097.24 11794.51 11995.02 14099.38 7798.02 9787.86 16998.37 13487.86 13392.99 16293.54 12798.56 8298.61 7697.92 9999.73 5799.85 22
MDTV_nov1_ep13_2view92.44 18595.66 15588.68 19891.05 20497.92 16892.17 19879.64 20398.83 10176.20 19591.45 16693.51 12895.04 17895.68 18993.70 20097.96 20098.53 183
CR-MVSNet94.57 15097.34 11091.33 17694.90 14298.59 13797.15 12479.14 20797.98 15080.42 17796.59 11393.50 12996.85 12998.10 10397.49 11999.50 15999.15 164
CVMVSNet95.33 13397.09 11993.27 14695.23 13698.39 15295.49 15992.58 9997.71 16483.00 16394.44 14393.28 13093.92 19397.79 12698.54 6599.41 17099.45 145
FMVSNet195.77 12296.41 14695.03 11293.42 16297.86 17197.11 12789.89 14398.53 12692.00 11189.17 18193.23 13198.15 9398.07 10898.34 7899.61 12399.69 96
baseline197.58 7098.05 8497.02 7096.21 10199.45 6797.71 10593.71 8398.47 13095.75 4698.78 5093.20 13298.91 6398.52 8598.44 6899.81 2199.53 132
dps94.63 14695.31 16193.84 12995.53 12698.71 12996.54 13980.12 20197.81 16297.21 3096.98 9892.37 13396.34 14592.46 20991.77 20997.26 21097.08 204
testgi95.67 12497.48 10293.56 13795.07 13999.00 10795.33 16388.47 16198.80 10686.90 13997.30 9192.33 13495.97 15497.66 13497.91 10199.60 13199.38 152
N_pmnet92.21 19394.60 17089.42 19791.88 18197.38 19889.15 21189.74 14797.89 15673.75 20487.94 19492.23 13593.85 19496.10 18193.20 20298.15 19997.43 200
IB-MVS93.96 1595.02 13796.44 14493.36 14497.05 8499.28 9390.43 20493.39 8798.02 14896.02 4294.92 13892.07 13683.52 21395.38 19095.82 16799.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER97.16 8397.71 9596.52 8695.97 10898.48 14398.63 6592.10 10398.68 11895.96 4499.23 2191.79 13796.87 12898.76 6597.37 12899.57 14599.68 101
casdiffmvs96.93 9297.43 10696.34 9195.70 11699.50 6197.75 10493.22 9298.98 8592.64 10194.97 13691.71 13898.93 6098.62 7598.52 6699.82 1599.72 87
TAMVS95.53 12796.50 14094.39 12293.86 15499.03 10696.67 13689.55 15097.33 17290.64 11993.02 16191.58 13996.21 14697.72 13297.43 12599.43 16799.36 153
canonicalmvs97.31 7897.81 9496.72 7796.20 10299.45 6798.21 8791.60 11399.22 4795.39 5198.48 6190.95 14099.16 4797.66 13499.05 3099.76 4099.90 6
anonymousdsp93.12 17195.86 15389.93 19491.09 20398.25 15795.12 16485.08 18697.44 16873.30 20590.89 17090.78 14195.25 17597.91 12095.96 16599.71 7499.82 28
ET-MVSNet_ETH3D96.17 11496.99 12495.21 11188.53 21198.54 14098.28 8492.61 9898.85 9693.60 8899.06 3790.39 14298.63 7995.98 18596.68 14099.61 12399.41 148
PVSNet_BlendedMVS97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
pmnet_mix0292.44 18594.68 16889.83 19592.46 17097.65 18189.92 20990.49 13698.76 11373.05 20891.78 16490.08 14594.86 18194.53 20191.94 20898.21 19898.01 195
pmmvs495.09 13595.90 15194.14 12492.29 17397.70 17595.45 16090.31 13798.60 12090.70 11893.25 15589.90 14696.67 13597.13 15595.42 17499.44 16699.28 156
pm-mvs194.27 15295.57 15692.75 15192.58 16798.13 16294.87 17290.71 13396.70 18983.78 15489.94 17789.85 14794.96 18097.58 13997.07 13199.61 12399.72 87
diffmvs96.83 9497.33 11196.25 9295.76 11399.34 8698.06 9693.22 9299.43 2292.30 10796.90 10289.83 14898.55 8398.00 11698.14 8999.64 11699.70 92
test_part195.56 12695.38 15895.78 10296.07 10398.16 16197.57 10890.78 13097.43 16993.04 9689.12 18489.41 14997.93 10196.38 17197.38 12799.29 17999.78 48
ECVR-MVScopyleft97.27 8097.09 11997.48 5496.95 8699.79 298.48 7094.42 6699.17 5496.28 4093.54 15089.39 15098.89 6799.03 4399.09 2699.88 399.61 120
test111197.09 8796.83 12997.39 5596.92 8899.81 198.44 7494.45 6599.17 5495.85 4592.10 16388.97 15198.78 7199.02 4599.11 2599.88 399.63 115
Effi-MVS+95.81 12197.31 11594.06 12695.09 13899.35 8497.24 12088.22 16498.54 12585.38 14998.52 5988.68 15298.70 7498.32 9397.93 9899.74 4999.84 23
GA-MVS93.93 16096.31 14791.16 18093.61 15998.79 11895.39 16290.69 13498.25 14073.28 20696.15 12088.42 15394.39 18597.76 12995.35 17599.58 14199.45 145
EU-MVSNet92.80 17794.76 16790.51 18791.88 18196.74 20792.48 19788.69 15896.21 19579.00 18691.51 16587.82 15491.83 20595.87 18796.27 15299.21 18298.92 177
pmmvs691.90 19592.53 20291.17 17991.81 18497.63 18293.23 19288.37 16393.43 21480.61 17577.32 21587.47 15594.12 18896.58 16595.72 16998.88 19199.53 132
UniMVSNet_NR-MVSNet94.59 14895.47 15793.55 13891.85 18397.89 17095.03 16592.00 10597.33 17286.12 14193.19 15687.29 15696.60 13896.12 18096.70 13999.72 6499.80 35
Fast-Effi-MVS+95.38 13196.52 13794.05 12794.15 15099.14 10497.24 12086.79 17598.53 12687.62 13594.51 14187.06 15798.76 7298.60 7998.04 9699.72 6499.77 56
CLD-MVS96.74 9896.51 13897.01 7296.71 9098.62 13498.73 6294.38 6898.94 8894.46 6997.33 8987.03 15898.07 9697.20 15396.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS96.37 10996.58 13396.13 9597.31 7898.44 14798.45 7395.22 5198.86 9488.58 12798.33 6887.00 15997.67 11197.23 15196.56 14599.56 14899.62 117
thres100view90096.72 9996.47 14197.00 7396.31 9699.52 5998.28 8494.01 7397.35 17094.52 6595.90 12586.93 16099.09 5398.07 10897.87 10399.81 2199.63 115
tfpn200view996.75 9796.51 13897.03 6896.31 9699.67 1698.41 7593.99 7597.35 17094.52 6595.90 12586.93 16099.14 4898.26 9597.80 10799.82 1599.70 92
thres20096.76 9696.53 13697.03 6896.31 9699.67 1698.37 7893.99 7597.68 16594.49 6895.83 12886.77 16299.18 4498.26 9597.82 10699.82 1599.66 106
ACMM96.26 996.67 10396.69 13196.66 8097.29 7998.46 14596.48 14295.09 5299.21 4993.19 9398.78 5086.73 16398.17 9097.84 12596.32 15199.74 4999.49 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train96.23 11296.89 12695.46 10997.32 7698.77 12198.81 6093.60 8498.58 12285.52 14799.08 3586.67 16497.83 10997.87 12397.51 11799.69 8699.73 76
ACMP96.25 1096.62 10696.72 13096.50 8896.96 8598.75 12597.80 10194.30 7098.85 9693.12 9498.78 5086.61 16597.23 12197.73 13196.61 14399.62 12199.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
new_pmnet90.45 20192.84 20087.66 20188.96 21096.16 20988.71 21284.66 19097.56 16671.91 21285.60 20586.58 16693.28 19896.07 18293.54 20198.46 19394.39 214
OPM-MVS96.22 11395.85 15496.65 8197.75 6998.54 14099.00 5395.53 4896.88 18389.88 12395.95 12486.46 16798.07 9697.65 13696.63 14299.67 10398.83 180
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xxxxxxxxxxxxxcwj98.14 5397.38 10899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 3086.38 16898.92 6199.22 2998.84 4899.76 4099.56 128
thres40096.71 10096.45 14397.02 7096.28 9999.63 2998.41 7594.00 7497.82 16094.42 7195.74 12986.26 16999.18 4498.20 9997.79 10899.81 2199.70 92
UniMVSNet (Re)94.58 14995.34 15993.71 13392.25 17598.08 16394.97 16791.29 12497.03 18187.94 13193.97 14786.25 17096.07 15196.27 17795.97 16499.72 6499.79 42
CostFormer94.25 15494.88 16493.51 14095.43 13198.34 15596.21 14880.64 19997.94 15494.01 7698.30 6986.20 17197.52 11392.71 20792.69 20397.23 21198.02 194
thres600view796.69 10196.43 14597.00 7396.28 9999.67 1698.41 7593.99 7597.85 15994.29 7495.96 12385.91 17299.19 4298.26 9597.63 11299.82 1599.73 76
SixPastTwentyTwo93.44 16795.32 16091.24 17892.11 17698.40 15192.77 19588.64 16098.09 14677.83 19093.51 15285.74 17396.52 14196.91 16094.89 19099.59 13799.73 76
TSAR-MVS + COLMAP96.79 9596.55 13597.06 6697.70 7198.46 14599.07 4696.23 4599.38 2591.32 11698.80 4885.61 17498.69 7697.64 13796.92 13599.37 17499.06 171
ACMH+95.51 1395.40 13096.00 14894.70 11696.33 9498.79 11896.79 13491.32 12098.77 11287.18 13795.60 13385.46 17596.97 12597.15 15496.59 14499.59 13799.65 109
test20.0390.65 20093.71 18887.09 20290.44 20796.24 20889.74 21085.46 18595.59 20772.99 20990.68 17285.33 17684.41 21295.94 18695.10 18399.52 15797.06 205
tmp_tt82.25 21197.73 7088.71 21980.18 21968.65 22299.15 5986.98 13899.47 1085.31 17768.35 22087.51 21483.81 21691.64 219
WR-MVS_H93.54 16594.67 16992.22 15591.95 17997.91 16994.58 18388.75 15796.64 19083.88 15390.66 17385.13 17894.40 18496.54 16795.91 16699.73 5799.89 10
WR-MVS93.43 16894.48 17292.21 15691.52 19597.69 17794.66 18189.98 14196.86 18483.43 15890.12 17585.03 17993.94 19296.02 18495.82 16799.71 7499.82 28
CMPMVSbinary70.31 1890.74 19891.06 20690.36 19097.32 7697.43 19592.97 19487.82 17093.50 21375.34 20183.27 20984.90 18092.19 20492.64 20891.21 21296.50 21594.46 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 19993.93 18486.92 20490.21 20996.79 20590.30 20686.61 17996.05 20069.25 21388.46 18984.86 18185.86 21197.11 15696.47 14899.30 17897.80 197
v1092.79 17894.06 18091.31 17791.78 18597.29 20194.87 17286.10 18296.97 18279.82 18288.16 19184.56 18295.63 16196.33 17595.31 17699.65 11299.80 35
v114492.81 17694.03 18191.40 17591.68 18797.60 18694.73 17688.40 16296.71 18878.48 18888.14 19284.46 18395.45 17096.31 17695.22 17999.65 11299.76 61
Baseline_NR-MVSNet93.87 16193.98 18393.75 13191.66 18897.02 20295.53 15891.52 11797.16 17887.77 13487.93 19583.69 18496.35 14495.10 19697.23 12999.68 9599.73 76
ACMH95.42 1495.27 13495.96 15094.45 12196.83 8998.78 12094.72 17791.67 11298.95 8686.82 14096.42 11683.67 18597.00 12497.48 14396.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)93.45 16694.08 17992.72 15292.83 16497.62 18594.94 16891.54 11695.65 20683.06 16288.93 18583.53 18694.25 18697.41 14497.03 13299.67 10398.40 189
pmmvs592.71 18294.27 17590.90 18491.42 19797.74 17493.23 19286.66 17895.99 20278.96 18791.45 16683.44 18795.55 16497.30 14995.05 18499.58 14198.93 174
V4293.05 17293.90 18692.04 16091.91 18097.66 17994.91 16989.91 14296.85 18580.58 17689.66 17883.43 18895.37 17195.03 19894.90 18899.59 13799.78 48
EG-PatchMatch MVS92.45 18493.92 18590.72 18692.56 16898.43 14994.88 17184.54 19197.18 17579.55 18386.12 20483.23 18993.15 20097.22 15296.00 16199.67 10399.27 158
tpm92.38 18994.79 16689.56 19694.30 14997.50 19294.24 18978.97 21097.72 16374.93 20297.97 7882.91 19096.60 13893.65 20594.81 19198.33 19698.98 172
v192192092.36 19193.57 19090.94 18391.39 19897.39 19794.70 17887.63 17196.60 19176.63 19486.98 20082.89 19195.75 15796.26 17895.14 18299.55 15099.73 76
v892.87 17493.87 18791.72 17192.05 17797.50 19294.79 17588.20 16596.85 18580.11 18090.01 17682.86 19295.48 16795.15 19594.90 18899.66 10899.80 35
v119292.43 18793.61 18991.05 18191.53 19497.43 19594.61 18287.99 16796.60 19176.72 19387.11 19982.74 19395.85 15696.35 17495.30 17799.60 13199.74 72
v14419292.38 18993.55 19291.00 18291.44 19697.47 19494.27 18787.41 17296.52 19378.03 18987.50 19682.65 19495.32 17295.82 18895.15 18199.55 15099.78 48
TranMVSNet+NR-MVSNet93.67 16494.14 17693.13 14791.28 20297.58 18795.60 15791.97 10697.06 17984.05 15090.64 17482.22 19596.17 14994.94 19996.78 13799.69 8699.78 48
CP-MVSNet93.25 16994.00 18292.38 15491.65 19097.56 18994.38 18689.20 15296.05 20083.16 16189.51 17981.97 19696.16 15096.43 16996.56 14599.71 7499.89 10
v124091.99 19493.33 19590.44 18891.29 20097.30 20094.25 18886.79 17596.43 19475.49 20086.34 20381.85 19795.29 17396.42 17095.22 17999.52 15799.73 76
tfpnnormal93.85 16394.12 17893.54 13993.22 16398.24 15895.45 16091.96 10794.61 20983.91 15290.74 17181.75 19897.04 12397.49 14296.16 15799.68 9599.84 23
v2v48292.77 17993.52 19391.90 16791.59 19397.63 18294.57 18490.31 13796.80 18779.22 18488.74 18781.55 19996.04 15395.26 19294.97 18699.66 10899.69 96
DU-MVS93.98 15894.44 17393.44 14191.66 18897.77 17295.03 16591.57 11497.17 17686.12 14193.13 15881.13 20096.60 13895.10 19697.01 13499.67 10399.80 35
test250697.16 8396.68 13297.73 4996.95 8699.79 298.48 7094.42 6699.17 5497.74 2499.15 2680.93 20198.89 6799.03 4399.09 2699.88 399.62 117
USDC94.26 15394.83 16593.59 13696.02 10498.44 14797.84 9988.65 15998.86 9482.73 16694.02 14580.56 20296.76 13197.28 15096.15 15899.55 15098.50 184
NR-MVSNet94.01 15694.51 17193.44 14192.56 16897.77 17295.67 15491.57 11497.17 17685.84 14493.13 15880.53 20395.29 17397.01 15896.17 15699.69 8699.75 68
TinyColmap94.00 15794.35 17493.60 13595.89 10998.26 15697.49 11188.82 15698.56 12483.21 16091.28 16880.48 20496.68 13497.34 14796.26 15499.53 15698.24 190
gm-plane-assit89.44 20492.82 20185.49 20791.37 19995.34 21379.55 22182.12 19691.68 21764.79 21987.98 19380.26 20595.66 16098.51 8797.56 11599.45 16498.41 186
v14892.36 19192.88 19891.75 16991.63 19197.66 17992.64 19690.55 13596.09 19883.34 15988.19 19080.00 20692.74 20193.98 20494.58 19499.58 14199.69 96
test_method87.27 20891.58 20482.25 21175.65 22287.52 22186.81 21572.60 22097.51 16773.20 20785.07 20679.97 20788.69 20897.31 14895.24 17896.53 21498.41 186
PS-CasMVS92.72 18093.36 19491.98 16391.62 19297.52 19194.13 19088.98 15495.94 20381.51 17287.35 19779.95 20895.91 15596.37 17296.49 14799.70 8399.89 10
TDRefinement93.04 17393.57 19092.41 15396.58 9198.77 12197.78 10391.96 10798.12 14580.84 17489.13 18379.87 20987.78 20996.44 16894.50 19599.54 15498.15 191
DeepMVS_CXcopyleft96.85 20487.43 21489.27 15198.30 13775.55 19995.05 13579.47 21092.62 20389.48 21395.18 21895.96 211
LTVRE_ROB93.20 1692.84 17594.92 16290.43 18992.83 16498.63 13397.08 12987.87 16897.91 15568.42 21593.54 15079.46 21196.62 13797.55 14097.40 12699.74 4999.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS92.72 18093.20 19692.15 15891.29 20097.31 19994.67 18089.81 14496.19 19681.83 17088.58 18879.06 21295.61 16395.21 19396.27 15299.72 6499.82 28
MIMVSNet188.61 20590.68 20786.19 20681.56 21895.30 21487.78 21385.98 18394.19 21272.30 21178.84 21478.90 21390.06 20696.59 16495.47 17299.46 16395.49 212
v7n91.61 19692.95 19790.04 19190.56 20697.69 17793.74 19185.59 18495.89 20476.95 19286.60 20278.60 21493.76 19597.01 15894.99 18599.65 11299.87 16
DTE-MVSNet92.42 18892.85 19991.91 16690.87 20596.97 20394.53 18589.81 14495.86 20581.59 17188.83 18677.88 21595.01 17994.34 20396.35 15099.64 11699.73 76
pmmvs388.19 20691.27 20584.60 20985.60 21593.66 21685.68 21681.13 19792.36 21663.66 22189.51 17977.10 21693.22 19996.37 17292.40 20498.30 19797.46 199
UniMVSNet_ETH3D93.15 17092.33 20394.11 12593.91 15298.61 13694.81 17490.98 12597.06 17987.51 13682.27 21176.33 21797.87 10794.79 20097.47 12299.56 14899.81 33
FPMVS83.82 21084.61 21282.90 21090.39 20890.71 21890.85 20384.10 19495.47 20865.15 21783.44 20874.46 21875.48 21581.63 21679.42 21891.42 22087.14 218
PMVScopyleft72.60 1776.39 21377.66 21674.92 21481.04 21969.37 22668.47 22380.54 20085.39 21965.07 21873.52 21672.91 21965.67 22180.35 21876.81 21988.71 22185.25 221
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs-eth3d89.81 20289.65 20990.00 19286.94 21395.38 21291.08 20086.39 18094.57 21082.27 16883.03 21064.94 22093.96 19196.57 16693.82 19999.35 17599.24 160
new-patchmatchnet86.12 20987.30 21184.74 20886.92 21495.19 21583.57 21884.42 19392.67 21565.66 21680.32 21264.72 22189.41 20792.33 21189.21 21398.43 19496.69 208
MDA-MVSNet-bldmvs87.84 20789.22 21086.23 20581.74 21796.77 20683.74 21789.57 14994.50 21172.83 21096.64 10964.47 22292.71 20281.43 21792.28 20696.81 21398.47 185
PM-MVS89.55 20390.30 20888.67 19987.06 21295.60 21190.88 20284.51 19296.14 19775.75 19686.89 20163.47 22394.64 18296.85 16193.89 19899.17 18599.29 155
Gipumacopyleft81.40 21181.78 21380.96 21383.21 21685.61 22279.73 22076.25 21897.33 17264.21 22055.32 21955.55 22486.04 21092.43 21092.20 20796.32 21693.99 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 21279.47 21574.70 21576.00 22188.37 22074.22 22276.34 21678.31 22054.13 22369.96 21752.50 22570.14 21984.83 21588.71 21497.35 20793.58 216
EMVS68.12 21668.11 21868.14 21775.51 22371.76 22455.38 22677.20 21577.78 22137.79 22653.59 22043.61 22674.72 21667.05 22176.70 22088.27 22386.24 219
E-PMN68.30 21568.43 21768.15 21674.70 22471.56 22555.64 22577.24 21477.48 22239.46 22551.95 22241.68 22773.28 21770.65 22079.51 21788.61 22286.20 220
MVEpermissive67.97 1965.53 21767.43 21963.31 21859.33 22574.20 22353.09 22770.43 22166.27 22343.13 22445.98 22330.62 22870.65 21879.34 21986.30 21583.25 22489.33 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc80.99 21480.04 22090.84 21790.91 20196.09 19874.18 20362.81 21830.59 22982.44 21496.25 17991.77 20995.91 21798.56 182
testmvs31.24 21840.15 22020.86 22012.61 22617.99 22725.16 22813.30 22348.42 22424.82 22753.07 22130.13 23028.47 22242.73 22237.65 22120.79 22551.04 222
test12326.75 21934.25 22118.01 2217.93 22717.18 22824.85 22912.36 22444.83 22516.52 22841.80 22418.10 23128.29 22333.08 22334.79 22218.10 22649.95 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def69.05 214
our_test_392.30 17297.58 18790.09 208
Patchmatch-RL test66.86 224
NP-MVS98.57 123
Patchmtry98.59 13797.15 12479.14 20780.42 177