This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4499.74 4999.90 6
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 56
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9399.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 4999.70 8299.77 56
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5299.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3699.85 1099.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 4999.79 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6499.77 56
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 43
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6196.62 3399.16 2399.98 299.12 4899.63 399.19 2199.78 3499.83 27
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS99.25 1299.50 1298.96 2098.79 5199.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5099.33 8996.28 14497.47 3899.58 994.70 6198.99 3699.85 3997.24 11899.55 1099.34 997.73 20299.56 127
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6399.35 1699.97 899.55 1399.63 398.66 5699.70 8299.74 72
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3699.46 6699.44 2798.13 2699.65 592.30 10698.91 4299.95 1799.05 5399.42 1798.95 3799.58 14099.82 28
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2899.37 8099.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 4897.79 2099.15 2499.96 1299.59 999.54 1198.86 4499.78 3499.74 72
DROMVSNet98.22 5199.44 1796.79 7595.62 12099.56 5199.01 5092.22 9999.17 5394.51 6699.41 1399.62 5199.49 1899.16 3499.26 1499.91 299.94 1
PHI-MVS99.08 2299.43 1998.67 2899.15 4499.59 4599.11 4297.35 3999.14 6197.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 121
CS-MVS-test98.58 4299.42 2097.60 5198.52 5699.91 198.60 6394.60 6099.37 2794.62 6299.40 1499.16 6099.39 2699.36 2098.85 4799.90 399.92 3
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3699.53 5598.51 6695.52 4799.27 4094.85 5899.56 899.69 4999.04 5499.36 2098.88 4299.60 13099.58 121
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9597.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7093.81 8198.46 6199.95 1799.59 999.49 1399.21 2099.68 9399.75 68
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8195.62 4498.97 3799.94 2599.54 1499.51 1298.79 5399.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8199.46 6699.03 4894.59 6199.09 6897.19 2999.73 399.95 1799.39 2698.95 4798.69 5599.75 4499.65 108
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3499.61 3898.14 8894.81 5399.31 3495.00 5699.51 999.79 4499.00 5798.94 4898.83 4999.69 8599.57 126
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 11895.27 5199.11 2899.82 4199.67 499.33 2499.19 2199.73 5799.74 72
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7598.87 5498.24 1799.14 6198.73 599.11 2899.92 2898.92 6099.22 2898.84 4899.76 4199.56 127
CS-MVS98.56 4399.32 2897.68 4798.28 6199.89 298.71 6094.53 6399.41 2395.43 4899.05 3598.66 6599.19 4099.21 2999.07 2699.93 199.94 1
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7499.64 11499.66 105
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8699.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 5999.73 5799.52 133
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 8999.51 2098.31 999.28 3896.57 3599.10 3099.90 3299.71 299.19 3198.35 7599.82 1699.71 89
ETV-MVS98.05 5599.25 3396.65 7995.61 12199.61 3898.26 8493.52 8498.90 9193.74 8599.32 1799.20 5898.90 6399.21 2998.72 5499.87 899.79 43
CHOSEN 280x42097.99 5799.24 3496.53 8398.34 5999.61 3898.36 7889.80 14399.27 4095.08 5599.81 198.58 6798.64 7699.02 4398.92 3998.93 18799.48 142
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3199.49 6399.09 4498.07 2999.37 2798.47 897.79 7999.89 3499.50 1698.93 4999.45 499.61 12299.76 61
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5198.32 1298.58 5699.95 1799.60 799.28 2698.20 8699.64 11499.69 95
CANet98.46 4499.16 3797.64 4998.48 5799.64 2699.35 3194.71 5699.53 1495.17 5397.63 8599.59 5398.38 8698.88 5698.99 3499.74 4999.86 19
UA-Net97.13 8499.14 3894.78 11297.21 7999.38 7797.56 10792.04 10298.48 12788.03 12898.39 6499.91 3194.03 18899.33 2499.23 1899.81 2299.25 157
train_agg98.73 3599.11 3998.28 3599.36 3899.35 8499.48 2397.96 3398.83 10093.86 8098.70 5499.86 3799.44 2399.08 3998.38 7299.61 12299.58 121
CDPH-MVS98.41 4599.10 4097.61 5099.32 4199.36 8199.49 2196.15 4498.82 10291.82 11098.41 6299.66 5099.10 5098.93 4998.97 3599.75 4499.58 121
CANet_DTU96.64 10399.08 4193.81 12897.10 8299.42 7398.85 5590.01 13799.31 3479.98 17999.78 299.10 6297.42 11598.35 9298.05 9499.47 16199.53 130
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7799.43 2898.21 1999.36 3097.66 2397.79 7999.90 3299.45 2299.17 3298.43 6999.77 3999.51 138
UGNet97.66 6699.07 4396.01 9797.19 8099.65 2297.09 12693.39 8699.35 3194.40 7198.79 4799.59 5394.24 18598.04 11398.29 8299.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA99.03 2799.05 4499.01 1999.27 4299.22 9999.03 4897.98 3299.34 3299.00 498.25 6899.71 4899.31 3398.80 6098.82 5199.48 15999.17 161
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 2999.34 8699.06 4694.61 5899.65 597.49 2496.75 10199.86 3799.44 2398.78 6299.30 1199.81 2299.67 101
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11199.61 5299.40 2598.87 5799.49 399.85 1099.66 105
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3896.73 10299.80 4299.33 3098.79 6199.29 1399.75 4499.64 112
MVS_030498.14 5499.03 4897.10 6398.05 6599.63 2999.27 3494.33 6899.63 793.06 9497.32 8899.05 6398.09 9498.82 5998.87 4399.81 2299.89 10
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3899.64 2699.20 3697.75 3798.82 10295.24 5298.85 4599.87 3699.17 4598.74 6797.50 11799.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.84 3299.01 5098.65 2999.39 3599.23 9899.22 3596.70 4199.40 2497.77 2197.89 7899.80 4299.21 3899.02 4398.65 5799.57 14499.07 168
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9299.38 3098.16 2199.02 7998.55 798.71 5399.57 5599.58 1299.09 3797.84 10499.64 11499.36 151
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3399.24 9799.06 4697.96 3399.31 3499.16 197.90 7799.79 4499.36 2898.71 6998.12 9099.65 11099.52 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7699.49 1897.78 12798.92 3999.78 3499.90 6
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10495.99 10599.62 3397.82 9893.22 9298.82 10291.40 11396.94 9798.56 6895.70 15799.14 3599.41 699.79 3199.75 68
EPNet98.05 5598.86 5597.10 6399.02 4799.43 7298.47 6994.73 5599.05 7695.62 4498.93 4097.62 8095.48 16598.59 8198.55 6199.29 17899.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 5998.86 5596.68 7796.02 10299.72 1298.35 7993.37 8898.75 11594.01 7596.88 10098.40 7098.48 8499.09 3799.42 599.83 1599.80 35
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4699.33 8999.15 3997.13 4099.34 3293.20 9197.75 8199.19 5999.20 3998.66 7198.13 8999.66 10699.48 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS97.70 6598.78 5896.44 8895.72 11599.65 2298.14 8893.72 8198.30 13692.31 10598.63 5597.90 7598.97 5898.92 5198.30 8199.78 3499.80 35
DELS-MVS98.19 5298.77 5997.52 5298.29 6099.71 1599.12 4194.58 6298.80 10595.38 5096.24 11698.24 7397.92 10099.06 4099.52 199.82 1699.79 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPP-MVSNet97.75 6398.71 6096.63 8195.68 11899.56 5197.51 10893.10 9599.22 4694.99 5797.18 9397.30 8398.65 7598.83 5898.93 3899.84 1299.92 3
baseline97.45 7398.70 6195.99 9895.89 10799.36 8198.29 8191.37 11799.21 4892.99 9698.40 6396.87 8897.96 9998.60 7998.60 6099.42 16899.86 19
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5599.65 2299.45 2598.15 2399.51 1792.80 9895.74 12696.44 9199.46 2199.37 1999.50 299.78 3499.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_Test97.30 7798.54 6395.87 9995.74 11499.28 9398.19 8691.40 11699.18 5291.59 11298.17 7096.18 9698.63 7798.61 7698.55 6199.66 10699.78 49
DPM-MVS98.31 4998.53 6498.05 3998.76 5398.77 12099.13 4098.07 2999.10 6794.27 7496.70 10399.84 4098.70 7297.90 12198.11 9199.40 17199.28 154
EPNet_dtu96.30 11198.53 6493.70 13298.97 4898.24 15797.36 11294.23 7098.85 9579.18 18399.19 2198.47 6994.09 18797.89 12298.21 8598.39 19398.85 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9297.49 7199.76 696.02 14893.75 8099.26 4293.38 9093.73 14799.35 5696.47 14098.96 4698.46 6599.77 3999.90 6
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3199.42 7398.91 5394.61 5898.87 9292.24 10894.61 13999.05 6399.10 5098.64 7399.05 2999.74 4999.51 138
PMMVS97.52 7098.39 6896.51 8595.82 11298.73 12797.80 9993.05 9698.76 11294.39 7299.07 3397.03 8798.55 8198.31 9497.61 11299.43 16699.21 160
DCV-MVSNet97.56 6998.36 6996.62 8296.44 9298.36 15398.37 7691.73 10899.11 6694.80 5998.36 6596.28 9498.60 7998.12 10298.44 6799.76 4199.87 16
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5499.36 8198.94 5298.14 2598.59 12093.62 8696.61 10799.76 4799.03 5597.77 12897.45 12299.57 14498.89 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FA-MVS(training)96.52 10798.29 7194.45 11895.88 10999.52 5897.66 10581.47 19498.94 8693.79 8495.54 13399.11 6198.29 8898.89 5496.49 14599.63 11999.52 133
MSDG98.27 5098.29 7198.24 3699.20 4399.22 9999.20 3697.82 3599.37 2794.43 6995.90 12297.31 8299.12 4898.76 6498.35 7599.67 10199.14 165
thisisatest053097.23 8098.25 7396.05 9495.60 12399.59 4596.96 13093.23 9099.17 5392.60 10198.75 5196.19 9598.17 8998.19 10096.10 15899.72 6499.77 56
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4599.25 9597.06 12894.09 7198.72 11695.14 5498.47 6096.29 9398.43 8598.65 7297.44 12399.45 16398.94 171
LS3D97.79 6098.25 7397.26 6098.40 5899.63 2999.53 1898.63 199.25 4488.13 12796.93 9894.14 12299.19 4099.14 3599.23 1899.69 8599.42 146
tttt051797.23 8098.24 7696.04 9595.60 12399.60 4396.94 13193.23 9099.15 5892.56 10298.74 5296.12 9898.17 8998.21 9896.10 15899.73 5799.78 49
Vis-MVSNetpermissive96.16 11598.22 7793.75 12995.33 13399.70 1797.27 11690.85 12598.30 13685.51 14695.72 12896.45 8993.69 19498.70 7099.00 3399.84 1299.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+-dtu95.38 13098.20 7892.09 15793.91 15098.87 11497.35 11385.01 18599.08 7081.09 17198.10 7196.36 9295.62 16098.43 9197.03 13099.55 14999.50 140
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 4999.45 6899.28 3395.43 4899.48 1991.80 11194.83 13898.36 7198.90 6398.09 10597.85 10399.68 9399.15 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF97.61 6798.16 8096.96 7498.10 6299.00 10698.84 5693.76 7899.45 2094.78 6099.39 1599.31 5798.53 8396.61 16395.43 17297.74 20097.93 194
GG-mvs-BLEND69.11 21398.13 8135.26 2173.49 22698.20 15994.89 1682.38 22398.42 1305.82 22796.37 11498.60 665.97 22298.75 6697.98 9699.01 18698.61 179
test0.0.03 196.69 10098.12 8295.01 11095.49 12898.99 10895.86 15090.82 12698.38 13192.54 10396.66 10597.33 8195.75 15597.75 13098.34 7799.60 13099.40 149
FMVSNet397.02 8898.12 8295.73 10393.59 15997.98 16298.34 8091.32 11898.80 10593.92 7797.21 9095.94 10197.63 11098.61 7698.62 5899.61 12299.65 108
baseline197.58 6898.05 8497.02 6996.21 10099.45 6897.71 10393.71 8298.47 12895.75 4398.78 4893.20 13298.91 6198.52 8598.44 6799.81 2299.53 130
Effi-MVS+-dtu95.74 12398.04 8593.06 14693.92 14999.16 10197.90 9688.16 16399.07 7582.02 16798.02 7594.32 12096.74 13098.53 8497.56 11499.61 12299.62 116
MAR-MVS97.71 6498.04 8597.32 5699.35 4098.91 11397.65 10691.68 10998.00 14897.01 3197.72 8394.83 11298.85 6998.44 9098.86 4499.41 16999.52 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDS-MVSNet96.59 10698.02 8794.92 11194.45 14698.96 11197.46 11091.75 10797.86 15790.07 11996.02 11997.25 8496.21 14498.04 11398.38 7299.60 13099.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GBi-Net96.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
test196.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
casdiffmvs_mvgpermissive97.27 7897.97 9096.46 8795.83 11199.51 6198.42 7293.32 8998.34 13492.38 10495.64 12995.35 10698.91 6198.73 6898.45 6699.86 999.80 35
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FC-MVSNet-test96.07 11797.94 9193.89 12693.60 15898.67 13096.62 13690.30 13698.76 11288.62 12495.57 13297.63 7994.48 18197.97 11797.48 12099.71 7499.52 133
FC-MVSNet-train97.04 8797.91 9296.03 9696.00 10498.41 14996.53 13993.42 8599.04 7893.02 9598.03 7494.32 12097.47 11497.93 11997.77 10899.75 4499.88 14
IterMVS-SCA-FT94.89 13997.87 9391.42 17194.86 14297.70 17397.24 11884.88 18698.93 8875.74 19594.26 14398.25 7296.69 13198.52 8597.68 11099.10 18599.73 76
baseline296.36 11097.82 9494.65 11494.60 14599.09 10496.45 14189.63 14598.36 13391.29 11597.60 8694.13 12396.37 14198.45 8897.70 10999.54 15399.41 147
canonicalmvs97.31 7697.81 9596.72 7696.20 10199.45 6898.21 8591.60 11199.22 4695.39 4998.48 5990.95 14099.16 4697.66 13499.05 2999.76 4199.90 6
MVSTER97.16 8297.71 9696.52 8495.97 10698.48 14298.63 6292.10 10198.68 11795.96 4199.23 2091.79 13796.87 12698.76 6497.37 12699.57 14499.68 100
PVSNet_BlendedMVS97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
PVSNet_Blended97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
IterMVS94.81 14197.71 9691.42 17194.83 14397.63 18097.38 11185.08 18398.93 8875.67 19694.02 14497.64 7896.66 13498.45 8897.60 11398.90 18899.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet94.49 15097.59 10090.87 18391.74 18498.70 12994.68 17778.73 20997.98 14983.71 15597.71 8494.81 11396.96 12497.97 11797.92 9899.40 17198.04 191
FMVSNet296.64 10397.50 10195.63 10593.81 15397.98 16298.09 9090.87 12498.99 8293.48 8893.17 15695.25 10797.89 10198.63 7498.80 5299.68 9399.67 101
DI_MVS_plusplus_trai96.90 9297.49 10296.21 9195.61 12199.40 7698.72 5992.11 10099.14 6192.98 9793.08 15995.14 10898.13 9398.05 11297.91 10099.74 4999.73 76
testgi95.67 12497.48 10393.56 13595.07 13799.00 10695.33 16188.47 15898.80 10586.90 13797.30 8992.33 13495.97 15297.66 13497.91 10099.60 13099.38 150
MDTV_nov1_ep1395.57 12597.48 10393.35 14395.43 13098.97 11097.19 12183.72 19298.92 9087.91 13097.75 8196.12 9897.88 10496.84 16295.64 17097.96 19898.10 190
IterMVS-LS96.12 11697.48 10394.53 11595.19 13597.56 18797.15 12289.19 15099.08 7088.23 12694.97 13594.73 11497.84 10697.86 12498.26 8399.60 13099.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA94.95 13797.44 10692.04 15895.55 12599.16 10196.26 14579.30 20499.02 7985.73 14498.18 6997.13 8597.69 10896.03 18294.91 18697.69 20397.65 196
casdiffmvspermissive96.93 9197.43 10796.34 8995.70 11699.50 6297.75 10293.22 9298.98 8392.64 9994.97 13591.71 13898.93 5998.62 7598.52 6499.82 1699.72 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521197.40 10896.45 9199.54 5498.08 9393.79 7798.24 14093.55 14894.41 11898.88 6898.04 11398.24 8499.75 4499.76 61
PatchT93.96 15897.36 10990.00 19094.76 14498.65 13190.11 20578.57 21097.96 15280.42 17596.07 11894.10 12496.85 12798.10 10397.49 11899.26 17999.15 162
CR-MVSNet94.57 14997.34 11091.33 17494.90 14098.59 13697.15 12279.14 20597.98 14980.42 17596.59 11093.50 12996.85 12798.10 10397.49 11899.50 15899.15 162
diffmvspermissive96.83 9397.33 11196.25 9095.76 11399.34 8698.06 9493.22 9299.43 2292.30 10696.90 9989.83 14898.55 8198.00 11698.14 8899.64 11499.70 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-LLR95.50 12797.32 11293.37 14195.49 12898.74 12596.44 14290.82 12698.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
TESTMET0.1,194.95 13797.32 11292.20 15592.62 16498.74 12596.44 14286.67 17498.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
test-mter94.86 14097.32 11292.00 16092.41 16998.82 11696.18 14786.35 17898.05 14682.28 16596.48 11294.39 11995.46 16798.17 10196.20 15499.32 17699.13 166
Effi-MVS+95.81 12197.31 11594.06 12495.09 13699.35 8497.24 11888.22 16198.54 12485.38 14798.52 5788.68 15198.70 7298.32 9397.93 9799.74 4999.84 23
MS-PatchMatch95.99 11897.26 11694.51 11697.46 7298.76 12397.27 11686.97 17199.09 6889.83 12293.51 15197.78 7796.18 14697.53 14195.71 16999.35 17498.41 184
GeoE95.98 12097.24 11794.51 11695.02 13899.38 7798.02 9587.86 16698.37 13287.86 13192.99 16193.54 12798.56 8098.61 7697.92 9899.73 5799.85 22
RPMNet94.66 14397.16 11891.75 16794.98 13998.59 13697.00 12978.37 21197.98 14983.78 15296.27 11594.09 12596.91 12597.36 14696.73 13699.48 15999.09 167
ECVR-MVScopyleft97.27 7897.09 11997.48 5396.95 8599.79 498.48 6794.42 6599.17 5396.28 3793.54 14989.39 14998.89 6699.03 4199.09 2499.88 499.61 119
CVMVSNet95.33 13297.09 11993.27 14495.23 13498.39 15195.49 15792.58 9897.71 16383.00 16194.44 14293.28 13093.92 19197.79 12698.54 6399.41 16999.45 144
PatchmatchNetpermissive94.70 14297.08 12191.92 16395.53 12698.85 11595.77 15179.54 20298.95 8485.98 14198.52 5796.45 8997.39 11695.32 19094.09 19697.32 20697.38 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023121197.10 8597.06 12297.14 6296.32 9499.52 5898.16 8793.76 7898.84 9995.98 4090.92 16894.58 11798.90 6397.72 13298.10 9299.71 7499.75 68
ADS-MVSNet94.65 14497.04 12391.88 16695.68 11898.99 10895.89 14979.03 20799.15 5885.81 14396.96 9698.21 7497.10 12094.48 20194.24 19597.74 20097.21 200
ET-MVSNet_ETH3D96.17 11496.99 12495.21 10888.53 20998.54 13998.28 8292.61 9798.85 9593.60 8799.06 3490.39 14298.63 7795.98 18496.68 13899.61 12299.41 147
CHOSEN 1792x268896.41 10896.99 12495.74 10298.01 6699.72 1297.70 10490.78 12899.13 6590.03 12087.35 19595.36 10598.33 8798.59 8198.91 4199.59 13699.87 16
thisisatest051594.61 14696.89 12691.95 16292.00 17698.47 14392.01 19790.73 12998.18 14183.96 14994.51 14095.13 10993.38 19597.38 14594.74 19299.61 12299.79 43
LGP-MVS_train96.23 11296.89 12695.46 10697.32 7598.77 12098.81 5793.60 8398.58 12185.52 14599.08 3286.67 16397.83 10797.87 12397.51 11699.69 8599.73 76
EPMVS95.05 13596.86 12892.94 14895.84 11098.96 11196.68 13379.87 20099.05 7690.15 11897.12 9495.99 10097.49 11395.17 19394.75 19197.59 20496.96 204
test111197.09 8696.83 12997.39 5496.92 8799.81 398.44 7194.45 6499.17 5395.85 4292.10 16288.97 15098.78 7099.02 4399.11 2399.88 499.63 114
ACMP96.25 1096.62 10596.72 13096.50 8696.96 8498.75 12497.80 9994.30 6998.85 9593.12 9398.78 4886.61 16497.23 11997.73 13196.61 14199.62 12099.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM96.26 996.67 10296.69 13196.66 7897.29 7898.46 14496.48 14095.09 5099.21 4893.19 9298.78 4886.73 16298.17 8997.84 12596.32 15099.74 4999.49 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250697.16 8296.68 13297.73 4696.95 8599.79 498.48 6794.42 6599.17 5397.74 2299.15 2480.93 19998.89 6699.03 4199.09 2499.88 499.62 116
HQP-MVS96.37 10996.58 13396.13 9397.31 7798.44 14698.45 7095.22 4998.86 9388.58 12598.33 6687.00 15897.67 10997.23 15196.56 14399.56 14799.62 116
HyFIR lowres test95.99 11896.56 13495.32 10797.99 6799.65 2296.54 13788.86 15298.44 12989.77 12384.14 20597.05 8699.03 5598.55 8398.19 8799.73 5799.86 19
TSAR-MVS + COLMAP96.79 9496.55 13597.06 6597.70 7098.46 14499.07 4596.23 4399.38 2591.32 11498.80 4685.61 17298.69 7497.64 13796.92 13399.37 17399.06 169
thres20096.76 9596.53 13697.03 6796.31 9599.67 1898.37 7693.99 7497.68 16494.49 6795.83 12586.77 16199.18 4398.26 9597.82 10599.82 1699.66 105
Fast-Effi-MVS+95.38 13096.52 13794.05 12594.15 14899.14 10397.24 11886.79 17298.53 12587.62 13394.51 14087.06 15698.76 7198.60 7998.04 9599.72 6499.77 56
tfpn200view996.75 9696.51 13897.03 6796.31 9599.67 1898.41 7393.99 7497.35 16894.52 6495.90 12286.93 15999.14 4798.26 9597.80 10699.82 1699.70 91
CLD-MVS96.74 9796.51 13897.01 7196.71 8998.62 13398.73 5894.38 6798.94 8694.46 6897.33 8787.03 15798.07 9597.20 15396.87 13499.72 6499.54 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.53 12696.50 14094.39 12093.86 15299.03 10596.67 13489.55 14797.33 17090.64 11793.02 16091.58 13996.21 14497.72 13297.43 12499.43 16699.36 151
thres100view90096.72 9896.47 14197.00 7296.31 9599.52 5898.28 8294.01 7297.35 16894.52 6495.90 12286.93 15999.09 5298.07 10897.87 10299.81 2299.63 114
FMVSNet595.42 12896.47 14194.20 12192.26 17295.99 20895.66 15387.15 17097.87 15693.46 8996.68 10493.79 12697.52 11197.10 15797.21 12899.11 18496.62 208
thres40096.71 9996.45 14397.02 6996.28 9899.63 2998.41 7394.00 7397.82 15994.42 7095.74 12686.26 16799.18 4398.20 9997.79 10799.81 2299.70 91
IB-MVS93.96 1595.02 13696.44 14493.36 14297.05 8399.28 9390.43 20293.39 8698.02 14796.02 3994.92 13792.07 13683.52 21195.38 18995.82 16699.72 6499.59 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.69 10096.43 14597.00 7296.28 9899.67 1898.41 7393.99 7497.85 15894.29 7395.96 12085.91 17099.19 4098.26 9597.63 11199.82 1699.73 76
FMVSNet195.77 12296.41 14695.03 10993.42 16097.86 16997.11 12589.89 14098.53 12592.00 10989.17 18093.23 13198.15 9298.07 10898.34 7799.61 12299.69 95
GA-MVS93.93 15996.31 14791.16 17893.61 15798.79 11795.39 16090.69 13198.25 13973.28 20496.15 11788.42 15294.39 18397.76 12995.35 17499.58 14099.45 144
ACMH+95.51 1395.40 12996.00 14894.70 11396.33 9398.79 11796.79 13291.32 11898.77 11187.18 13595.60 13185.46 17396.97 12397.15 15496.59 14299.59 13699.65 108
MVS-HIRNet92.51 18295.97 14988.48 19893.73 15698.37 15290.33 20375.36 21798.32 13577.78 18989.15 18194.87 11195.14 17597.62 13896.39 14898.51 19097.11 201
ACMH95.42 1495.27 13395.96 15094.45 11896.83 8898.78 11994.72 17591.67 11098.95 8486.82 13896.42 11383.67 18397.00 12297.48 14396.68 13899.69 8599.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 13495.90 15194.14 12292.29 17197.70 17395.45 15890.31 13498.60 11990.70 11693.25 15489.90 14696.67 13397.13 15595.42 17399.44 16599.28 154
tpmrst93.86 16195.88 15291.50 17095.69 11798.62 13395.64 15479.41 20398.80 10583.76 15495.63 13096.13 9797.25 11792.92 20592.31 20497.27 20796.74 205
anonymousdsp93.12 17095.86 15389.93 19291.09 20198.25 15695.12 16285.08 18397.44 16773.30 20390.89 16990.78 14195.25 17397.91 12095.96 16499.71 7499.82 28
OPM-MVS96.22 11395.85 15496.65 7997.75 6898.54 13999.00 5195.53 4696.88 18189.88 12195.95 12186.46 16698.07 9597.65 13696.63 14099.67 10198.83 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MDTV_nov1_ep13_2view92.44 18495.66 15588.68 19691.05 20297.92 16692.17 19679.64 20198.83 10076.20 19391.45 16593.51 12895.04 17695.68 18893.70 19997.96 19898.53 181
pm-mvs194.27 15195.57 15692.75 14992.58 16598.13 16094.87 17090.71 13096.70 18783.78 15289.94 17689.85 14794.96 17897.58 13997.07 12999.61 12299.72 86
UniMVSNet_NR-MVSNet94.59 14795.47 15793.55 13691.85 18197.89 16895.03 16392.00 10397.33 17086.12 13993.19 15587.29 15596.60 13696.12 17996.70 13799.72 6499.80 35
UniMVSNet (Re)94.58 14895.34 15893.71 13192.25 17398.08 16194.97 16591.29 12297.03 17987.94 12993.97 14686.25 16896.07 14996.27 17695.97 16399.72 6499.79 43
SixPastTwentyTwo93.44 16695.32 15991.24 17692.11 17498.40 15092.77 19388.64 15798.09 14577.83 18893.51 15185.74 17196.52 13996.91 16094.89 18999.59 13699.73 76
dps94.63 14595.31 16093.84 12795.53 12698.71 12896.54 13780.12 19997.81 16197.21 2896.98 9592.37 13396.34 14392.46 20891.77 20897.26 20897.08 202
LTVRE_ROB93.20 1692.84 17494.92 16190.43 18792.83 16298.63 13297.08 12787.87 16597.91 15468.42 21393.54 14979.46 20996.62 13597.55 14097.40 12599.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm cat194.06 15494.90 16293.06 14695.42 13298.52 14196.64 13580.67 19697.82 15992.63 10093.39 15395.00 11096.06 15091.36 21191.58 21096.98 21096.66 207
CostFormer94.25 15394.88 16393.51 13895.43 13098.34 15496.21 14680.64 19797.94 15394.01 7598.30 6786.20 16997.52 11192.71 20692.69 20297.23 20998.02 192
USDC94.26 15294.83 16493.59 13496.02 10298.44 14697.84 9788.65 15698.86 9382.73 16494.02 14480.56 20096.76 12997.28 15096.15 15799.55 14998.50 182
tpm92.38 18894.79 16589.56 19494.30 14797.50 19094.24 18778.97 20897.72 16274.93 20097.97 7682.91 18896.60 13693.65 20494.81 19098.33 19498.98 170
EU-MVSNet92.80 17694.76 16690.51 18591.88 17996.74 20592.48 19588.69 15596.21 19379.00 18491.51 16487.82 15391.83 20395.87 18696.27 15199.21 18098.92 175
pmnet_mix0292.44 18494.68 16789.83 19392.46 16897.65 17989.92 20790.49 13398.76 11273.05 20691.78 16390.08 14594.86 17994.53 20091.94 20798.21 19698.01 193
WR-MVS_H93.54 16494.67 16892.22 15391.95 17797.91 16794.58 18188.75 15496.64 18883.88 15190.66 17285.13 17694.40 18296.54 16795.91 16599.73 5799.89 10
N_pmnet92.21 19294.60 16989.42 19591.88 17997.38 19689.15 20989.74 14497.89 15573.75 20287.94 19292.23 13593.85 19296.10 18093.20 20198.15 19797.43 198
NR-MVSNet94.01 15594.51 17093.44 13992.56 16697.77 17095.67 15291.57 11297.17 17485.84 14293.13 15780.53 20195.29 17197.01 15896.17 15599.69 8599.75 68
WR-MVS93.43 16794.48 17192.21 15491.52 19397.69 17594.66 17989.98 13896.86 18283.43 15690.12 17485.03 17793.94 19096.02 18395.82 16699.71 7499.82 28
DU-MVS93.98 15794.44 17293.44 13991.66 18697.77 17095.03 16391.57 11297.17 17486.12 13993.13 15781.13 19896.60 13695.10 19597.01 13299.67 10199.80 35
TinyColmap94.00 15694.35 17393.60 13395.89 10798.26 15597.49 10988.82 15398.56 12383.21 15891.28 16780.48 20296.68 13297.34 14796.26 15399.53 15598.24 188
pmmvs592.71 18194.27 17490.90 18291.42 19597.74 17293.23 19086.66 17595.99 20078.96 18591.45 16583.44 18595.55 16297.30 14995.05 18399.58 14098.93 172
gg-mvs-nofinetune90.85 19694.14 17587.02 20194.89 14199.25 9598.64 6176.29 21588.24 21657.50 22079.93 21195.45 10495.18 17498.77 6398.07 9399.62 12099.24 158
TranMVSNet+NR-MVSNet93.67 16394.14 17593.13 14591.28 20097.58 18595.60 15591.97 10497.06 17784.05 14890.64 17382.22 19396.17 14794.94 19896.78 13599.69 8599.78 49
tfpnnormal93.85 16294.12 17793.54 13793.22 16198.24 15795.45 15891.96 10594.61 20783.91 15090.74 17081.75 19697.04 12197.49 14296.16 15699.68 9399.84 23
TransMVSNet (Re)93.45 16594.08 17892.72 15092.83 16297.62 18394.94 16691.54 11495.65 20483.06 16088.93 18383.53 18494.25 18497.41 14497.03 13099.67 10198.40 187
v1092.79 17794.06 17991.31 17591.78 18397.29 19994.87 17086.10 17996.97 18079.82 18088.16 18984.56 18095.63 15996.33 17495.31 17599.65 11099.80 35
v114492.81 17594.03 18091.40 17391.68 18597.60 18494.73 17488.40 15996.71 18678.48 18688.14 19084.46 18195.45 16896.31 17595.22 17899.65 11099.76 61
CP-MVSNet93.25 16894.00 18192.38 15291.65 18897.56 18794.38 18489.20 14996.05 19883.16 15989.51 17881.97 19496.16 14896.43 16996.56 14399.71 7499.89 10
Baseline_NR-MVSNet93.87 16093.98 18293.75 12991.66 18697.02 20095.53 15691.52 11597.16 17687.77 13287.93 19383.69 18296.35 14295.10 19597.23 12799.68 9399.73 76
Anonymous2023120690.70 19893.93 18386.92 20290.21 20796.79 20390.30 20486.61 17696.05 19869.25 21188.46 18784.86 17985.86 20997.11 15696.47 14799.30 17797.80 195
EG-PatchMatch MVS92.45 18393.92 18490.72 18492.56 16698.43 14894.88 16984.54 18897.18 17379.55 18186.12 20283.23 18793.15 19897.22 15296.00 16099.67 10199.27 156
V4293.05 17193.90 18592.04 15891.91 17897.66 17794.91 16789.91 13996.85 18380.58 17489.66 17783.43 18695.37 16995.03 19794.90 18799.59 13699.78 49
v892.87 17393.87 18691.72 16992.05 17597.50 19094.79 17388.20 16296.85 18380.11 17890.01 17582.86 19095.48 16595.15 19494.90 18799.66 10699.80 35
test20.0390.65 19993.71 18787.09 20090.44 20596.24 20689.74 20885.46 18295.59 20572.99 20790.68 17185.33 17484.41 21095.94 18595.10 18299.52 15697.06 203
v119292.43 18693.61 18891.05 17991.53 19297.43 19394.61 18087.99 16496.60 18976.72 19187.11 19782.74 19195.85 15496.35 17395.30 17699.60 13099.74 72
v192192092.36 19093.57 18990.94 18191.39 19697.39 19594.70 17687.63 16896.60 18976.63 19286.98 19882.89 18995.75 15596.26 17795.14 18199.55 14999.73 76
TDRefinement93.04 17293.57 18992.41 15196.58 9098.77 12097.78 10191.96 10598.12 14480.84 17289.13 18279.87 20787.78 20796.44 16894.50 19499.54 15398.15 189
v14419292.38 18893.55 19191.00 18091.44 19497.47 19294.27 18587.41 16996.52 19178.03 18787.50 19482.65 19295.32 17095.82 18795.15 18099.55 14999.78 49
v2v48292.77 17893.52 19291.90 16591.59 19197.63 18094.57 18290.31 13496.80 18579.22 18288.74 18581.55 19796.04 15195.26 19194.97 18599.66 10699.69 95
PS-CasMVS92.72 17993.36 19391.98 16191.62 19097.52 18994.13 18888.98 15195.94 20181.51 17087.35 19579.95 20695.91 15396.37 17196.49 14599.70 8299.89 10
v124091.99 19393.33 19490.44 18691.29 19897.30 19894.25 18686.79 17296.43 19275.49 19886.34 20181.85 19595.29 17196.42 17095.22 17899.52 15699.73 76
PEN-MVS92.72 17993.20 19592.15 15691.29 19897.31 19794.67 17889.81 14196.19 19481.83 16888.58 18679.06 21095.61 16195.21 19296.27 15199.72 6499.82 28
v7n91.61 19592.95 19690.04 18990.56 20497.69 17593.74 18985.59 18195.89 20276.95 19086.60 20078.60 21293.76 19397.01 15894.99 18499.65 11099.87 16
v14892.36 19092.88 19791.75 16791.63 18997.66 17792.64 19490.55 13296.09 19683.34 15788.19 18880.00 20492.74 19993.98 20394.58 19399.58 14099.69 95
DTE-MVSNet92.42 18792.85 19891.91 16490.87 20396.97 20194.53 18389.81 14195.86 20381.59 16988.83 18477.88 21395.01 17794.34 20296.35 14999.64 11499.73 76
new_pmnet90.45 20092.84 19987.66 19988.96 20896.16 20788.71 21084.66 18797.56 16571.91 21085.60 20386.58 16593.28 19696.07 18193.54 20098.46 19194.39 212
gm-plane-assit89.44 20392.82 20085.49 20591.37 19795.34 21179.55 21982.12 19391.68 21564.79 21787.98 19180.26 20395.66 15898.51 8797.56 11499.45 16398.41 184
pmmvs691.90 19492.53 20191.17 17791.81 18297.63 18093.23 19088.37 16093.43 21280.61 17377.32 21387.47 15494.12 18696.58 16595.72 16898.88 18999.53 130
UniMVSNet_ETH3D93.15 16992.33 20294.11 12393.91 15098.61 13594.81 17290.98 12397.06 17787.51 13482.27 20976.33 21597.87 10594.79 19997.47 12199.56 14799.81 33
test_method87.27 20791.58 20382.25 20975.65 22087.52 21986.81 21372.60 21897.51 16673.20 20585.07 20479.97 20588.69 20697.31 14895.24 17796.53 21298.41 184
pmmvs388.19 20591.27 20484.60 20785.60 21393.66 21485.68 21481.13 19592.36 21463.66 21989.51 17877.10 21493.22 19796.37 17192.40 20398.30 19597.46 197
CMPMVSbinary70.31 1890.74 19791.06 20590.36 18897.32 7597.43 19392.97 19287.82 16793.50 21175.34 19983.27 20784.90 17892.19 20292.64 20791.21 21196.50 21394.46 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet188.61 20490.68 20686.19 20481.56 21695.30 21287.78 21185.98 18094.19 21072.30 20978.84 21278.90 21190.06 20496.59 16495.47 17199.46 16295.49 210
PM-MVS89.55 20290.30 20788.67 19787.06 21095.60 20990.88 20084.51 18996.14 19575.75 19486.89 19963.47 22194.64 18096.85 16193.89 19799.17 18399.29 153
pmmvs-eth3d89.81 20189.65 20890.00 19086.94 21195.38 21091.08 19886.39 17794.57 20882.27 16683.03 20864.94 21893.96 18996.57 16693.82 19899.35 17499.24 158
MDA-MVSNet-bldmvs87.84 20689.22 20986.23 20381.74 21596.77 20483.74 21589.57 14694.50 20972.83 20896.64 10664.47 22092.71 20081.43 21692.28 20596.81 21198.47 183
new-patchmatchnet86.12 20887.30 21084.74 20686.92 21295.19 21383.57 21684.42 19092.67 21365.66 21480.32 21064.72 21989.41 20592.33 21089.21 21298.43 19296.69 206
FPMVS83.82 20984.61 21182.90 20890.39 20690.71 21690.85 20184.10 19195.47 20665.15 21583.44 20674.46 21675.48 21381.63 21579.42 21791.42 21887.14 216
Gipumacopyleft81.40 21081.78 21280.96 21183.21 21485.61 22079.73 21876.25 21697.33 17064.21 21855.32 21755.55 22286.04 20892.43 20992.20 20696.32 21493.99 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc80.99 21380.04 21890.84 21590.91 19996.09 19674.18 20162.81 21630.59 22782.44 21296.25 17891.77 20895.91 21598.56 180
PMMVS277.26 21179.47 21474.70 21376.00 21988.37 21874.22 22076.34 21478.31 21854.13 22169.96 21552.50 22370.14 21784.83 21488.71 21397.35 20593.58 214
PMVScopyleft72.60 1776.39 21277.66 21574.92 21281.04 21769.37 22468.47 22180.54 19885.39 21765.07 21673.52 21472.91 21765.67 21980.35 21776.81 21888.71 21985.25 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN68.30 21468.43 21668.15 21474.70 22271.56 22355.64 22377.24 21277.48 22039.46 22351.95 22041.68 22573.28 21570.65 21979.51 21688.61 22086.20 218
EMVS68.12 21568.11 21768.14 21575.51 22171.76 22255.38 22477.20 21377.78 21937.79 22453.59 21843.61 22474.72 21467.05 22076.70 21988.27 22186.24 217
MVEpermissive67.97 1965.53 21667.43 21863.31 21659.33 22374.20 22153.09 22570.43 21966.27 22143.13 22245.98 22130.62 22670.65 21679.34 21886.30 21483.25 22289.33 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21740.15 21920.86 21812.61 22417.99 22525.16 22613.30 22148.42 22224.82 22553.07 21930.13 22828.47 22042.73 22137.65 22020.79 22351.04 220
test12326.75 21834.25 22018.01 2197.93 22517.18 22624.85 22712.36 22244.83 22316.52 22641.80 22218.10 22928.29 22133.08 22234.79 22118.10 22449.95 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def69.05 212
9.1499.79 44
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17097.58 18590.09 206
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 222
tmp_tt82.25 20997.73 6988.71 21780.18 21768.65 22099.15 5886.98 13699.47 1085.31 17568.35 21887.51 21383.81 21591.64 217
XVS97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
X-MVStestdata97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
mPP-MVS99.53 2999.89 34
NP-MVS98.57 122
Patchmtry98.59 13697.15 12279.14 20580.42 175
DeepMVS_CXcopyleft96.85 20287.43 21289.27 14898.30 13675.55 19795.05 13479.47 20892.62 20189.48 21295.18 21695.96 209