| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 3 | 88.44 27 | 88.09 23 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 79 | 60.01 46 | 86.19 17 | 83.93 51 | 73.19 1 | 77.08 31 | 91.21 15 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 35 | 89.22 5 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 16 | 54.26 55 | 90.06 13 | 78.42 19 | 89.02 23 | 87.69 37 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 36 | 89.70 16 | 79.85 5 | 91.48 1 | 88.19 20 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 42 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 18 |
|
| DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 22 | 79.83 7 | 83.60 63 | 61.62 23 | 84.17 42 | 86.85 6 | 63.23 46 | 73.84 65 | 90.25 32 | 57.68 29 | 89.96 14 | 74.62 43 | 89.03 22 | 87.89 26 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 66.72 4 | 75.84 45 | 74.57 54 | 79.66 9 | 82.40 76 | 59.92 48 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 160 | 89.24 51 | 42.03 199 | 89.38 19 | 64.07 118 | 86.50 56 | 89.69 2 |
|
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 60 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 12 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 36 | 85.03 34 | 66.96 5 | 77.58 27 | 90.06 36 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 57 |
|
| NCCC | | | 78.58 17 | 78.31 19 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 31 | 84.42 42 | 66.73 8 | 74.67 53 | 89.38 49 | 55.30 44 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 76 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 69 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 18 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 42 | 90.47 26 | 53.96 59 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 55 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 63 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 41 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 45 | 62.82 55 | 73.55 68 | 90.56 22 | 49.80 111 | 88.24 35 | 74.02 48 | 87.03 46 | 86.32 84 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 47 | 62.81 57 | 73.30 70 | 90.58 21 | 49.90 109 | 88.21 36 | 73.78 50 | 87.03 46 | 86.29 87 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 44 | 83.03 57 | 85.33 27 | 62.86 54 | 80.17 17 | 90.03 38 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 22 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 33 | 84.85 38 | 61.98 74 | 73.06 80 | 88.88 55 | 53.72 64 | 89.06 23 | 68.27 78 | 88.04 38 | 87.42 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 44 | 62.82 55 | 73.96 63 | 90.50 24 | 53.20 70 | 88.35 33 | 74.02 48 | 87.05 45 | 86.13 91 |
|
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 62 | 65.37 13 | 78.78 22 | 90.64 19 | 58.63 25 | 87.24 53 | 79.00 12 | 90.37 14 | 85.26 130 |
|
| XVS | | | 77.17 31 | 76.56 34 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 52 | 64.55 23 | 72.17 95 | 90.01 40 | 47.95 131 | 88.01 40 | 71.55 65 | 86.74 53 | 86.37 78 |
|
| X-MVStestdata | | | 70.21 123 | 67.28 174 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 52 | 64.55 23 | 72.17 95 | 6.49 405 | 47.95 131 | 88.01 40 | 71.55 65 | 86.74 53 | 86.37 78 |
|
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 29 | 63.56 41 | 74.29 59 | 90.03 38 | 52.56 76 | 88.53 30 | 74.79 42 | 88.34 29 | 86.63 72 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 26 | 84.96 52 | 61.41 26 | 84.03 45 | 83.82 60 | 59.34 119 | 79.37 19 | 89.76 45 | 59.84 16 | 87.62 49 | 76.69 27 | 86.74 53 | 87.68 38 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 76.77 35 | 76.06 38 | 78.88 27 | 86.14 35 | 62.73 9 | 82.55 67 | 83.74 61 | 61.71 76 | 72.45 93 | 90.34 29 | 48.48 127 | 88.13 37 | 72.32 58 | 86.85 51 | 85.78 103 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 28 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 15 | 78.70 13 | 88.32 31 | 86.79 65 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 29 | 85.44 45 | 61.04 31 | 83.84 49 | 85.16 30 | 62.88 53 | 78.10 24 | 91.26 13 | 52.51 77 | 88.39 32 | 79.34 8 | 90.52 13 | 86.78 66 |
|
| MVS_0304 | | | 78.73 16 | 78.75 15 | 78.66 30 | 80.82 101 | 57.62 83 | 85.31 30 | 81.31 113 | 70.51 2 | 74.17 60 | 91.24 14 | 54.99 47 | 89.56 17 | 82.29 2 | 88.13 34 | 88.80 7 |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 66 | 63.89 37 | 73.60 67 | 90.60 20 | 54.85 50 | 86.72 69 | 77.20 25 | 88.06 37 | 85.74 109 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 60 | 85.08 31 | 62.57 60 | 73.09 79 | 89.97 41 | 50.90 104 | 87.48 51 | 75.30 36 | 86.85 51 | 87.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 69 | 62.44 64 | 72.68 87 | 90.50 24 | 48.18 129 | 87.34 52 | 73.59 52 | 85.71 59 | 84.76 146 |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 64 | 87.85 5 | 85.03 34 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 119 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MTAPA | | | 76.90 34 | 76.42 35 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 210 | 80.97 125 | 65.13 15 | 75.77 36 | 90.88 17 | 48.63 124 | 86.66 71 | 77.23 24 | 88.17 33 | 84.81 143 |
|
| mPP-MVS | | | 76.54 36 | 75.93 40 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 91 | 62.90 52 | 71.77 99 | 90.26 31 | 46.61 155 | 86.55 75 | 71.71 63 | 85.66 60 | 84.97 139 |
|
| CDPH-MVS | | | 76.31 38 | 75.67 44 | 78.22 37 | 85.35 48 | 59.14 62 | 81.31 87 | 84.02 48 | 56.32 174 | 74.05 61 | 88.98 54 | 53.34 69 | 87.92 43 | 69.23 76 | 88.42 28 | 87.59 42 |
|
| ACMMP |  | | 76.02 43 | 75.33 46 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 41 | 63.04 49 | 69.80 123 | 89.74 46 | 45.43 168 | 87.16 57 | 72.01 60 | 82.87 84 | 85.14 132 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CANet | | | 76.46 37 | 75.93 40 | 78.06 39 | 81.29 93 | 57.53 85 | 82.35 69 | 83.31 75 | 67.78 3 | 70.09 113 | 86.34 103 | 54.92 49 | 88.90 25 | 72.68 57 | 84.55 66 | 87.76 36 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 18 | 78.03 40 | 84.96 52 | 59.52 53 | 82.93 59 | 85.39 26 | 62.15 67 | 76.41 34 | 91.51 11 | 52.47 79 | 86.78 68 | 80.66 4 | 89.64 19 | 87.80 34 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 43 | 60.61 89 | 79.05 21 | 90.30 30 | 55.54 43 | 88.32 34 | 73.48 53 | 87.03 46 | 84.83 142 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 34 | 83.87 57 | 60.37 96 | 79.89 18 | 89.38 49 | 54.97 48 | 85.58 98 | 76.12 31 | 84.94 63 | 86.33 82 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test12 | | | | | 77.76 43 | 84.52 58 | 58.41 75 | | 83.36 73 | | 72.93 83 | | 54.61 53 | 88.05 39 | | 88.12 35 | 86.81 64 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 44 | 82.88 74 | 57.83 80 | 84.99 32 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 18 | 57.96 26 | 87.09 61 | 77.08 26 | 90.18 15 | 87.87 30 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 45 | 86.67 20 | 58.36 76 | 83.22 55 | 86.93 5 | 56.91 161 | 74.91 47 | 88.19 62 | 59.15 23 | 87.68 48 | 73.67 51 | 87.45 43 | 86.57 73 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 46 | 83.96 62 | 59.60 51 | 82.95 58 | 86.50 13 | 60.78 87 | 75.27 39 | 84.83 135 | 60.76 15 | 86.56 74 | 67.86 84 | 87.87 41 | 86.06 93 |
|
| PHI-MVS | | | 75.87 44 | 75.36 45 | 77.41 46 | 80.62 107 | 55.91 113 | 84.28 39 | 85.78 20 | 56.08 180 | 73.41 69 | 86.58 95 | 50.94 103 | 88.54 29 | 70.79 68 | 89.71 17 | 87.79 35 |
|
| SR-MVS | | | 76.13 42 | 75.70 43 | 77.40 48 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 92 | 59.99 106 | 75.10 41 | 90.35 28 | 47.66 136 | 86.52 76 | 71.64 64 | 82.99 79 | 84.47 152 |
|
| TSAR-MVS + GP. | | | 74.90 50 | 74.15 58 | 77.17 49 | 82.00 81 | 58.77 72 | 81.80 79 | 78.57 164 | 58.58 132 | 74.32 58 | 84.51 145 | 55.94 41 | 87.22 54 | 67.11 94 | 84.48 68 | 85.52 115 |
|
| CS-MVS | | | 76.25 40 | 75.98 39 | 77.06 50 | 80.15 116 | 55.63 120 | 84.51 35 | 83.90 54 | 63.24 45 | 73.30 70 | 87.27 79 | 55.06 46 | 86.30 84 | 71.78 62 | 84.58 65 | 89.25 4 |
|
| DPM-MVS | | | 75.47 48 | 75.00 49 | 76.88 51 | 81.38 92 | 59.16 59 | 79.94 103 | 85.71 22 | 56.59 169 | 72.46 91 | 86.76 85 | 56.89 34 | 87.86 45 | 66.36 99 | 88.91 25 | 83.64 184 |
|
| HPM-MVS_fast | | | 74.30 61 | 73.46 66 | 76.80 52 | 84.45 60 | 59.04 66 | 83.65 52 | 81.05 122 | 60.15 103 | 70.43 109 | 89.84 43 | 41.09 215 | 85.59 97 | 67.61 88 | 82.90 83 | 85.77 106 |
|
| test_prior | | | | | 76.69 53 | 84.20 61 | 57.27 88 | | 84.88 37 | | | | | 86.43 79 | | | 86.38 76 |
|
| APD-MVS_3200maxsize | | | 74.96 49 | 74.39 56 | 76.67 54 | 82.20 78 | 58.24 77 | 83.67 51 | 83.29 76 | 58.41 135 | 73.71 66 | 90.14 33 | 45.62 161 | 85.99 88 | 69.64 72 | 82.85 85 | 85.78 103 |
|
| train_agg | | | 76.27 39 | 76.15 37 | 76.64 55 | 85.58 43 | 61.59 24 | 81.62 82 | 81.26 116 | 55.86 182 | 74.93 45 | 88.81 56 | 53.70 65 | 84.68 119 | 75.24 38 | 88.33 30 | 83.65 183 |
|
| SR-MVS-dyc-post | | | 74.57 57 | 73.90 60 | 76.58 56 | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 108 | 58.07 141 | 73.14 76 | 90.07 34 | 44.74 175 | 85.84 92 | 68.20 79 | 81.76 97 | 84.03 162 |
|
| CS-MVS-test | | | 75.62 47 | 75.31 47 | 76.56 57 | 80.63 106 | 55.13 130 | 83.88 48 | 85.22 28 | 62.05 71 | 71.49 103 | 86.03 113 | 53.83 61 | 86.36 82 | 67.74 85 | 86.91 50 | 88.19 20 |
|
| h-mvs33 | | | 72.71 76 | 71.49 85 | 76.40 58 | 81.99 82 | 59.58 52 | 76.92 167 | 76.74 203 | 60.40 93 | 74.81 49 | 85.95 117 | 45.54 164 | 85.76 94 | 70.41 70 | 70.61 239 | 83.86 171 |
|
| DP-MVS Recon | | | 72.15 89 | 70.73 101 | 76.40 58 | 86.57 24 | 57.99 79 | 81.15 89 | 82.96 82 | 57.03 158 | 66.78 178 | 85.56 125 | 44.50 178 | 88.11 38 | 51.77 217 | 80.23 113 | 83.10 198 |
|
| ETV-MVS | | | 74.46 59 | 73.84 62 | 76.33 60 | 79.27 133 | 55.24 129 | 79.22 116 | 85.00 36 | 64.97 21 | 72.65 88 | 79.46 250 | 53.65 68 | 87.87 44 | 67.45 90 | 82.91 82 | 85.89 100 |
|
| OPM-MVS | | | 74.73 53 | 74.25 57 | 76.19 61 | 80.81 102 | 59.01 67 | 82.60 66 | 83.64 63 | 63.74 39 | 72.52 90 | 87.49 74 | 47.18 146 | 85.88 91 | 69.47 74 | 80.78 102 | 83.66 182 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 74.31 60 | 73.73 63 | 76.06 62 | 81.41 90 | 56.31 102 | 84.22 40 | 84.01 49 | 64.52 25 | 69.27 131 | 86.10 110 | 45.26 172 | 87.21 55 | 68.16 81 | 80.58 106 | 84.65 147 |
|
| iter_conf05_11 | | | 71.51 97 | 70.02 115 | 75.99 63 | 79.93 120 | 51.46 187 | 77.37 152 | 78.24 178 | 54.95 209 | 72.06 97 | 82.87 175 | 29.55 326 | 88.61 28 | 67.40 91 | 87.81 42 | 87.89 26 |
|
| mvsmamba | | | 71.15 102 | 69.54 121 | 75.99 63 | 77.61 192 | 53.46 152 | 81.95 78 | 75.11 229 | 57.73 151 | 66.95 176 | 85.96 116 | 37.14 254 | 87.56 50 | 67.94 83 | 75.49 179 | 86.97 58 |
|
| bld_raw_dy_0_64 | | | 70.97 107 | 69.31 126 | 75.95 65 | 79.93 120 | 51.43 188 | 80.93 90 | 75.96 212 | 53.39 233 | 72.29 94 | 83.29 169 | 30.48 318 | 88.53 30 | 67.40 91 | 80.11 114 | 87.89 26 |
|
| Effi-MVS+-dtu | | | 69.64 138 | 67.53 163 | 75.95 65 | 76.10 224 | 62.29 15 | 80.20 100 | 76.06 211 | 59.83 111 | 65.26 212 | 77.09 286 | 41.56 207 | 84.02 131 | 60.60 151 | 71.09 235 | 81.53 224 |
|
| EPNet | | | 73.09 70 | 72.16 77 | 75.90 67 | 75.95 226 | 56.28 104 | 83.05 56 | 72.39 259 | 66.53 10 | 65.27 209 | 87.00 81 | 50.40 106 | 85.47 103 | 62.48 135 | 86.32 57 | 85.94 96 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| 3Dnovator | | 64.47 5 | 72.49 79 | 71.39 88 | 75.79 68 | 77.70 183 | 58.99 68 | 80.66 95 | 83.15 80 | 62.24 66 | 65.46 205 | 86.59 94 | 42.38 197 | 85.52 99 | 59.59 160 | 84.72 64 | 82.85 203 |
|
| LPG-MVS_test | | | 72.74 75 | 71.74 81 | 75.76 69 | 80.22 111 | 57.51 86 | 82.55 67 | 83.40 71 | 61.32 79 | 66.67 182 | 87.33 77 | 39.15 231 | 86.59 72 | 67.70 86 | 77.30 156 | 83.19 194 |
|
| LGP-MVS_train | | | | | 75.76 69 | 80.22 111 | 57.51 86 | | 83.40 71 | 61.32 79 | 66.67 182 | 87.33 77 | 39.15 231 | 86.59 72 | 67.70 86 | 77.30 156 | 83.19 194 |
|
| EC-MVSNet | | | 75.84 45 | 75.87 42 | 75.74 71 | 78.86 144 | 52.65 166 | 83.73 50 | 86.08 17 | 63.47 42 | 72.77 86 | 87.25 80 | 53.13 71 | 87.93 42 | 71.97 61 | 85.57 61 | 86.66 70 |
|
| MVS_111021_HR | | | 74.02 62 | 73.46 66 | 75.69 72 | 83.01 72 | 60.63 40 | 77.29 157 | 78.40 175 | 61.18 82 | 70.58 108 | 85.97 115 | 54.18 57 | 84.00 132 | 67.52 89 | 82.98 81 | 82.45 210 |
|
| casdiffmvs_mvg |  | | 76.14 41 | 76.30 36 | 75.66 73 | 76.46 220 | 51.83 184 | 79.67 110 | 85.08 31 | 65.02 19 | 75.84 35 | 88.58 60 | 59.42 22 | 85.08 109 | 72.75 56 | 83.93 73 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DELS-MVS | | | 74.76 52 | 74.46 55 | 75.65 74 | 77.84 179 | 52.25 176 | 75.59 194 | 84.17 46 | 63.76 38 | 73.15 75 | 82.79 176 | 59.58 20 | 86.80 67 | 67.24 93 | 86.04 58 | 87.89 26 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+ | | | 73.31 68 | 72.54 74 | 75.62 75 | 77.87 177 | 53.64 147 | 79.62 112 | 79.61 143 | 61.63 77 | 72.02 98 | 82.61 181 | 56.44 37 | 85.97 89 | 63.99 121 | 79.07 131 | 87.25 54 |
|
| MAR-MVS | | | 71.51 97 | 70.15 112 | 75.60 76 | 81.84 84 | 59.39 55 | 81.38 86 | 82.90 84 | 54.90 211 | 68.08 152 | 78.70 259 | 47.73 134 | 85.51 100 | 51.68 219 | 84.17 71 | 81.88 221 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| ACMP | | 63.53 6 | 72.30 83 | 71.20 93 | 75.59 77 | 80.28 109 | 57.54 84 | 82.74 63 | 82.84 86 | 60.58 90 | 65.24 213 | 86.18 107 | 39.25 229 | 86.03 87 | 66.95 97 | 76.79 164 | 83.22 192 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| HQP-MVS | | | 73.45 66 | 72.80 71 | 75.40 78 | 80.66 103 | 54.94 131 | 82.31 71 | 83.90 54 | 62.10 68 | 67.85 155 | 85.54 128 | 45.46 166 | 86.93 63 | 67.04 95 | 80.35 110 | 84.32 154 |
|
| PCF-MVS | | 61.88 8 | 70.95 108 | 69.49 123 | 75.35 79 | 77.63 187 | 55.71 117 | 76.04 186 | 81.81 98 | 50.30 268 | 69.66 124 | 85.40 131 | 52.51 77 | 84.89 115 | 51.82 216 | 80.24 112 | 85.45 119 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PS-MVSNAJss | | | 72.24 84 | 71.21 92 | 75.31 80 | 78.50 153 | 55.93 112 | 81.63 81 | 82.12 93 | 56.24 177 | 70.02 117 | 85.68 124 | 47.05 148 | 84.34 125 | 65.27 111 | 74.41 186 | 85.67 110 |
|
| EIA-MVS | | | 71.78 92 | 70.60 102 | 75.30 81 | 79.85 122 | 53.54 150 | 77.27 158 | 83.26 78 | 57.92 147 | 66.49 184 | 79.39 251 | 52.07 86 | 86.69 70 | 60.05 154 | 79.14 130 | 85.66 111 |
|
| CLD-MVS | | | 73.33 67 | 72.68 72 | 75.29 82 | 78.82 146 | 53.33 156 | 78.23 129 | 84.79 39 | 61.30 81 | 70.41 110 | 81.04 218 | 52.41 80 | 87.12 59 | 64.61 117 | 82.49 89 | 85.41 123 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| RRT_MVS | | | 69.42 146 | 67.49 166 | 75.21 83 | 78.01 174 | 52.56 170 | 82.23 75 | 78.15 179 | 55.84 184 | 65.65 201 | 85.07 132 | 30.86 315 | 86.83 66 | 61.56 146 | 70.00 252 | 86.24 89 |
|
| PAPM_NR | | | 72.63 77 | 71.80 80 | 75.13 84 | 81.72 85 | 53.42 154 | 79.91 105 | 83.28 77 | 59.14 121 | 66.31 189 | 85.90 118 | 51.86 89 | 86.06 85 | 57.45 169 | 80.62 104 | 85.91 98 |
|
| EI-MVSNet-Vis-set | | | 72.42 82 | 71.59 82 | 74.91 85 | 78.47 155 | 54.02 141 | 77.05 163 | 79.33 149 | 65.03 18 | 71.68 101 | 79.35 253 | 52.75 74 | 84.89 115 | 66.46 98 | 74.23 187 | 85.83 102 |
|
| MVSFormer | | | 71.50 99 | 70.38 107 | 74.88 86 | 78.76 147 | 57.15 94 | 82.79 61 | 78.48 168 | 51.26 257 | 69.49 126 | 83.22 170 | 43.99 183 | 83.24 145 | 66.06 101 | 79.37 123 | 84.23 157 |
|
| CPTT-MVS | | | 72.78 74 | 72.08 79 | 74.87 87 | 84.88 57 | 61.41 26 | 84.15 43 | 77.86 183 | 55.27 198 | 67.51 166 | 88.08 65 | 41.93 201 | 81.85 178 | 69.04 77 | 80.01 115 | 81.35 231 |
|
| iter_conf05 | | | 69.40 148 | 67.62 159 | 74.73 88 | 77.84 179 | 51.13 190 | 79.28 115 | 73.71 249 | 54.62 214 | 68.17 148 | 83.59 163 | 28.68 336 | 87.16 57 | 65.74 108 | 76.95 161 | 85.91 98 |
|
| EPP-MVSNet | | | 72.16 88 | 71.31 91 | 74.71 89 | 78.68 150 | 49.70 216 | 82.10 76 | 81.65 100 | 60.40 93 | 65.94 194 | 85.84 120 | 51.74 92 | 86.37 81 | 55.93 178 | 79.55 122 | 88.07 25 |
|
| 原ACMM1 | | | | | 74.69 90 | 85.39 47 | 59.40 54 | | 83.42 70 | 51.47 253 | 70.27 112 | 86.61 93 | 48.61 125 | 86.51 77 | 53.85 199 | 87.96 39 | 78.16 275 |
|
| ET-MVSNet_ETH3D | | | 67.96 178 | 65.72 205 | 74.68 91 | 76.67 214 | 55.62 122 | 75.11 204 | 74.74 234 | 52.91 237 | 60.03 278 | 80.12 236 | 33.68 287 | 82.64 164 | 61.86 141 | 76.34 168 | 85.78 103 |
|
| MSLP-MVS++ | | | 73.77 65 | 73.47 65 | 74.66 92 | 83.02 71 | 59.29 58 | 82.30 74 | 81.88 96 | 59.34 119 | 71.59 102 | 86.83 83 | 45.94 159 | 83.65 138 | 65.09 112 | 85.22 62 | 81.06 238 |
|
| PVSNet_Blended_VisFu | | | 71.45 100 | 70.39 106 | 74.65 93 | 82.01 80 | 58.82 71 | 79.93 104 | 80.35 135 | 55.09 203 | 65.82 200 | 82.16 196 | 49.17 118 | 82.64 164 | 60.34 152 | 78.62 139 | 82.50 209 |
|
| 114514_t | | | 70.83 110 | 69.56 120 | 74.64 94 | 86.21 31 | 54.63 136 | 82.34 70 | 81.81 98 | 48.22 293 | 63.01 246 | 85.83 121 | 40.92 216 | 87.10 60 | 57.91 166 | 79.79 116 | 82.18 215 |
|
| Vis-MVSNet |  | | 72.18 85 | 71.37 89 | 74.61 95 | 81.29 93 | 55.41 126 | 80.90 91 | 78.28 177 | 60.73 88 | 69.23 134 | 88.09 64 | 44.36 180 | 82.65 163 | 57.68 167 | 81.75 99 | 85.77 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| hse-mvs2 | | | 71.04 104 | 69.86 116 | 74.60 96 | 79.58 126 | 57.12 96 | 73.96 226 | 75.25 224 | 60.40 93 | 74.81 49 | 81.95 201 | 45.54 164 | 82.90 152 | 70.41 70 | 66.83 291 | 83.77 176 |
|
| test_djsdf | | | 69.45 145 | 67.74 155 | 74.58 97 | 74.57 251 | 54.92 133 | 82.79 61 | 78.48 168 | 51.26 257 | 65.41 206 | 83.49 167 | 38.37 238 | 83.24 145 | 66.06 101 | 69.25 268 | 85.56 114 |
|
| AUN-MVS | | | 68.45 168 | 66.41 191 | 74.57 98 | 79.53 128 | 57.08 97 | 73.93 229 | 75.23 225 | 54.44 220 | 66.69 181 | 81.85 203 | 37.10 256 | 82.89 153 | 62.07 138 | 66.84 290 | 83.75 177 |
|
| casdiffmvs |  | | 74.80 51 | 74.89 52 | 74.53 99 | 75.59 232 | 50.37 205 | 78.17 132 | 85.06 33 | 62.80 58 | 74.40 56 | 87.86 70 | 57.88 27 | 83.61 139 | 69.46 75 | 82.79 86 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EI-MVSNet-UG-set | | | 71.92 90 | 71.06 96 | 74.52 100 | 77.98 175 | 53.56 149 | 76.62 172 | 79.16 150 | 64.40 27 | 71.18 104 | 78.95 258 | 52.19 84 | 84.66 121 | 65.47 110 | 73.57 198 | 85.32 126 |
|
| API-MVS | | | 72.17 86 | 71.41 87 | 74.45 101 | 81.95 83 | 57.22 89 | 84.03 45 | 80.38 134 | 59.89 110 | 68.40 143 | 82.33 190 | 49.64 112 | 87.83 46 | 51.87 215 | 84.16 72 | 78.30 273 |
|
| PAPR | | | 71.72 95 | 70.82 99 | 74.41 102 | 81.20 97 | 51.17 189 | 79.55 113 | 83.33 74 | 55.81 186 | 66.93 177 | 84.61 141 | 50.95 102 | 86.06 85 | 55.79 181 | 79.20 128 | 86.00 94 |
|
| baseline | | | 74.61 56 | 74.70 53 | 74.34 103 | 75.70 228 | 49.99 213 | 77.54 148 | 84.63 40 | 62.73 59 | 73.98 62 | 87.79 73 | 57.67 30 | 83.82 135 | 69.49 73 | 82.74 87 | 89.20 6 |
|
| thisisatest0530 | | | 67.92 179 | 65.78 204 | 74.33 104 | 76.29 221 | 51.03 191 | 76.89 168 | 74.25 243 | 53.67 230 | 65.59 203 | 81.76 205 | 35.15 270 | 85.50 101 | 55.94 177 | 72.47 217 | 86.47 75 |
|
| tttt0517 | | | 67.83 181 | 65.66 206 | 74.33 104 | 76.69 213 | 50.82 196 | 77.86 139 | 73.99 246 | 54.54 218 | 64.64 225 | 82.53 186 | 35.06 271 | 85.50 101 | 55.71 182 | 69.91 255 | 86.67 69 |
|
| test_fmvsmconf_n | | | 73.01 71 | 72.59 73 | 74.27 106 | 71.28 302 | 55.88 114 | 78.21 131 | 75.56 218 | 54.31 222 | 74.86 48 | 87.80 72 | 54.72 51 | 80.23 216 | 78.07 21 | 78.48 140 | 86.70 67 |
|
| test_fmvsmconf0.1_n | | | 72.81 73 | 72.33 76 | 74.24 107 | 69.89 322 | 55.81 115 | 78.22 130 | 75.40 221 | 54.17 224 | 75.00 44 | 88.03 68 | 53.82 62 | 80.23 216 | 78.08 20 | 78.34 143 | 86.69 68 |
|
| test_fmvsmconf0.01_n | | | 72.17 86 | 71.50 84 | 74.16 108 | 67.96 339 | 55.58 123 | 78.06 135 | 74.67 236 | 54.19 223 | 74.54 54 | 88.23 61 | 50.35 108 | 80.24 215 | 78.07 21 | 77.46 152 | 86.65 71 |
|
| MG-MVS | | | 73.96 63 | 73.89 61 | 74.16 108 | 85.65 42 | 49.69 218 | 81.59 84 | 81.29 115 | 61.45 78 | 71.05 105 | 88.11 63 | 51.77 91 | 87.73 47 | 61.05 148 | 83.09 77 | 85.05 136 |
|
| ACMM | | 61.98 7 | 70.80 112 | 69.73 118 | 74.02 110 | 80.59 108 | 58.59 74 | 82.68 64 | 82.02 95 | 55.46 195 | 67.18 171 | 84.39 147 | 38.51 236 | 83.17 147 | 60.65 150 | 76.10 171 | 80.30 250 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| v7n | | | 69.01 155 | 67.36 171 | 73.98 111 | 72.51 280 | 52.65 166 | 78.54 126 | 81.30 114 | 60.26 102 | 62.67 250 | 81.62 207 | 43.61 185 | 84.49 122 | 57.01 171 | 68.70 277 | 84.79 144 |
|
| AdaColmap |  | | 69.99 127 | 68.66 140 | 73.97 112 | 84.94 54 | 57.83 80 | 82.63 65 | 78.71 160 | 56.28 176 | 64.34 227 | 84.14 150 | 41.57 206 | 87.06 62 | 46.45 260 | 78.88 132 | 77.02 292 |
|
| v1192 | | | 69.97 128 | 68.68 139 | 73.85 113 | 73.19 265 | 50.94 192 | 77.68 144 | 81.36 108 | 57.51 153 | 68.95 137 | 80.85 225 | 45.28 171 | 85.33 107 | 62.97 131 | 70.37 243 | 85.27 129 |
|
| FA-MVS(test-final) | | | 69.82 131 | 68.48 143 | 73.84 114 | 78.44 156 | 50.04 211 | 75.58 196 | 78.99 154 | 58.16 139 | 67.59 164 | 82.14 197 | 42.66 192 | 85.63 95 | 56.60 173 | 76.19 170 | 85.84 101 |
|
| v10 | | | 70.21 123 | 69.02 132 | 73.81 115 | 73.51 263 | 50.92 194 | 78.74 120 | 81.39 106 | 60.05 105 | 66.39 187 | 81.83 204 | 47.58 138 | 85.41 106 | 62.80 132 | 68.86 275 | 85.09 135 |
|
| QAPM | | | 70.05 125 | 68.81 136 | 73.78 116 | 76.54 218 | 53.43 153 | 83.23 54 | 83.48 67 | 52.89 238 | 65.90 196 | 86.29 104 | 41.55 208 | 86.49 78 | 51.01 222 | 78.40 142 | 81.42 225 |
|
| OMC-MVS | | | 71.40 101 | 70.60 102 | 73.78 116 | 76.60 216 | 53.15 158 | 79.74 109 | 79.78 139 | 58.37 136 | 68.75 138 | 86.45 101 | 45.43 168 | 80.60 206 | 62.58 133 | 77.73 148 | 87.58 43 |
|
| UA-Net | | | 73.13 69 | 72.93 70 | 73.76 118 | 83.58 64 | 51.66 185 | 78.75 119 | 77.66 187 | 67.75 4 | 72.61 89 | 89.42 47 | 49.82 110 | 83.29 144 | 53.61 201 | 83.14 76 | 86.32 84 |
|
| v1144 | | | 70.42 119 | 69.31 126 | 73.76 118 | 73.22 264 | 50.64 199 | 77.83 141 | 81.43 105 | 58.58 132 | 69.40 129 | 81.16 215 | 47.53 139 | 85.29 108 | 64.01 120 | 70.64 237 | 85.34 125 |
|
| VDD-MVS | | | 72.50 78 | 72.09 78 | 73.75 120 | 81.58 86 | 49.69 218 | 77.76 143 | 77.63 188 | 63.21 47 | 73.21 73 | 89.02 53 | 42.14 198 | 83.32 143 | 61.72 142 | 82.50 88 | 88.25 17 |
|
| Fast-Effi-MVS+ | | | 70.28 122 | 69.12 131 | 73.73 121 | 78.50 153 | 51.50 186 | 75.01 207 | 79.46 147 | 56.16 179 | 68.59 139 | 79.55 248 | 53.97 58 | 84.05 128 | 53.34 203 | 77.53 150 | 85.65 112 |
|
| sasdasda | | | 74.67 54 | 74.98 50 | 73.71 122 | 78.94 142 | 50.56 202 | 80.23 97 | 83.87 57 | 60.30 100 | 77.15 29 | 86.56 96 | 59.65 17 | 82.00 175 | 66.01 103 | 82.12 90 | 88.58 10 |
|
| canonicalmvs | | | 74.67 54 | 74.98 50 | 73.71 122 | 78.94 142 | 50.56 202 | 80.23 97 | 83.87 57 | 60.30 100 | 77.15 29 | 86.56 96 | 59.65 17 | 82.00 175 | 66.01 103 | 82.12 90 | 88.58 10 |
|
| HyFIR lowres test | | | 65.67 218 | 63.01 237 | 73.67 124 | 79.97 119 | 55.65 119 | 69.07 292 | 75.52 219 | 42.68 348 | 63.53 238 | 77.95 270 | 40.43 218 | 81.64 181 | 46.01 264 | 71.91 225 | 83.73 178 |
|
| jajsoiax | | | 68.25 171 | 66.45 187 | 73.66 125 | 75.62 230 | 55.49 125 | 80.82 92 | 78.51 167 | 52.33 243 | 64.33 228 | 84.11 151 | 28.28 339 | 81.81 180 | 63.48 128 | 70.62 238 | 83.67 180 |
|
| v2v482 | | | 70.50 117 | 69.45 125 | 73.66 125 | 72.62 276 | 50.03 212 | 77.58 145 | 80.51 132 | 59.90 107 | 69.52 125 | 82.14 197 | 47.53 139 | 84.88 117 | 65.07 113 | 70.17 248 | 86.09 92 |
|
| cascas | | | 65.98 214 | 63.42 231 | 73.64 127 | 77.26 202 | 52.58 169 | 72.26 254 | 77.21 196 | 48.56 287 | 61.21 270 | 74.60 318 | 32.57 306 | 85.82 93 | 50.38 227 | 76.75 165 | 82.52 208 |
|
| FE-MVS | | | 65.91 215 | 63.33 233 | 73.63 128 | 77.36 200 | 51.95 183 | 72.62 247 | 75.81 213 | 53.70 229 | 65.31 207 | 78.96 257 | 28.81 335 | 86.39 80 | 43.93 284 | 73.48 201 | 82.55 206 |
|
| mvs_tets | | | 68.18 173 | 66.36 193 | 73.63 128 | 75.61 231 | 55.35 128 | 80.77 93 | 78.56 165 | 52.48 242 | 64.27 230 | 84.10 152 | 27.45 345 | 81.84 179 | 63.45 129 | 70.56 240 | 83.69 179 |
|
| GeoE | | | 71.01 105 | 70.15 112 | 73.60 130 | 79.57 127 | 52.17 177 | 78.93 118 | 78.12 180 | 58.02 143 | 67.76 163 | 83.87 157 | 52.36 81 | 82.72 161 | 56.90 172 | 75.79 174 | 85.92 97 |
|
| anonymousdsp | | | 67.00 199 | 64.82 216 | 73.57 131 | 70.09 318 | 56.13 107 | 76.35 177 | 77.35 194 | 48.43 291 | 64.99 221 | 80.84 226 | 33.01 294 | 80.34 211 | 64.66 115 | 67.64 285 | 84.23 157 |
|
| test_fmvsm_n_1920 | | | 71.73 94 | 71.14 94 | 73.50 132 | 72.52 279 | 56.53 101 | 75.60 193 | 76.16 207 | 48.11 295 | 77.22 28 | 85.56 125 | 53.10 72 | 77.43 258 | 74.86 40 | 77.14 158 | 86.55 74 |
|
| v8 | | | 70.33 121 | 69.28 128 | 73.49 133 | 73.15 266 | 50.22 207 | 78.62 123 | 80.78 128 | 60.79 86 | 66.45 186 | 82.11 199 | 49.35 114 | 84.98 112 | 63.58 127 | 68.71 276 | 85.28 128 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 188 | 65.33 211 | 73.48 134 | 72.94 271 | 57.78 82 | 77.47 150 | 76.88 199 | 57.60 152 | 61.97 261 | 76.85 290 | 39.31 227 | 80.49 210 | 54.72 191 | 70.28 246 | 82.17 217 |
|
| alignmvs | | | 73.86 64 | 73.99 59 | 73.45 135 | 78.20 165 | 50.50 204 | 78.57 124 | 82.43 89 | 59.40 117 | 76.57 32 | 86.71 89 | 56.42 38 | 81.23 192 | 65.84 106 | 81.79 96 | 88.62 8 |
|
| lupinMVS | | | 69.57 140 | 68.28 150 | 73.44 136 | 78.76 147 | 57.15 94 | 76.57 173 | 73.29 253 | 46.19 317 | 69.49 126 | 82.18 193 | 43.99 183 | 79.23 228 | 64.66 115 | 79.37 123 | 83.93 166 |
|
| jason | | | 69.65 137 | 68.39 149 | 73.43 137 | 78.27 164 | 56.88 98 | 77.12 161 | 73.71 249 | 46.53 314 | 69.34 130 | 83.22 170 | 43.37 187 | 79.18 229 | 64.77 114 | 79.20 128 | 84.23 157 |
| jason: jason. |
| IB-MVS | | 56.42 12 | 65.40 223 | 62.73 241 | 73.40 138 | 74.89 240 | 52.78 165 | 73.09 241 | 75.13 228 | 55.69 189 | 58.48 300 | 73.73 323 | 32.86 296 | 86.32 83 | 50.63 225 | 70.11 249 | 81.10 237 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| v1921920 | | | 69.47 144 | 68.17 151 | 73.36 139 | 73.06 268 | 50.10 210 | 77.39 151 | 80.56 130 | 56.58 170 | 68.59 139 | 80.37 230 | 44.72 176 | 84.98 112 | 62.47 136 | 69.82 257 | 85.00 137 |
|
| v144192 | | | 69.71 133 | 68.51 142 | 73.33 140 | 73.10 267 | 50.13 209 | 77.54 148 | 80.64 129 | 56.65 163 | 68.57 141 | 80.55 228 | 46.87 153 | 84.96 114 | 62.98 130 | 69.66 262 | 84.89 141 |
|
| IS-MVSNet | | | 71.57 96 | 71.00 97 | 73.27 141 | 78.86 144 | 45.63 266 | 80.22 99 | 78.69 161 | 64.14 35 | 66.46 185 | 87.36 76 | 49.30 115 | 85.60 96 | 50.26 228 | 83.71 75 | 88.59 9 |
|
| VDDNet | | | 71.81 91 | 71.33 90 | 73.26 142 | 82.80 75 | 47.60 246 | 78.74 120 | 75.27 223 | 59.59 115 | 72.94 82 | 89.40 48 | 41.51 209 | 83.91 133 | 58.75 164 | 82.99 79 | 88.26 16 |
|
| v1240 | | | 69.24 152 | 67.91 154 | 73.25 143 | 73.02 270 | 49.82 214 | 77.21 159 | 80.54 131 | 56.43 172 | 68.34 145 | 80.51 229 | 43.33 188 | 84.99 110 | 62.03 140 | 69.77 260 | 84.95 140 |
|
| UGNet | | | 68.81 157 | 67.39 169 | 73.06 144 | 78.33 162 | 54.47 137 | 79.77 107 | 75.40 221 | 60.45 92 | 63.22 240 | 84.40 146 | 32.71 301 | 80.91 201 | 51.71 218 | 80.56 108 | 83.81 172 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| BH-RMVSNet | | | 68.81 157 | 67.42 168 | 72.97 145 | 80.11 117 | 52.53 171 | 74.26 221 | 76.29 206 | 58.48 134 | 68.38 144 | 84.20 148 | 42.59 193 | 83.83 134 | 46.53 259 | 75.91 172 | 82.56 205 |
|
| PS-MVSNAJ | | | 70.51 116 | 69.70 119 | 72.93 146 | 81.52 87 | 55.79 116 | 74.92 210 | 79.00 153 | 55.04 208 | 69.88 121 | 78.66 260 | 47.05 148 | 82.19 172 | 61.61 143 | 79.58 120 | 80.83 242 |
|
| XVG-OURS | | | 68.76 160 | 67.37 170 | 72.90 147 | 74.32 257 | 57.22 89 | 70.09 283 | 78.81 157 | 55.24 199 | 67.79 161 | 85.81 123 | 36.54 261 | 78.28 245 | 62.04 139 | 75.74 175 | 83.19 194 |
|
| xiu_mvs_v2_base | | | 70.52 115 | 69.75 117 | 72.84 148 | 81.21 96 | 55.63 120 | 75.11 204 | 78.92 155 | 54.92 210 | 69.96 120 | 79.68 245 | 47.00 152 | 82.09 174 | 61.60 144 | 79.37 123 | 80.81 243 |
|
| nrg030 | | | 72.96 72 | 73.01 69 | 72.84 148 | 75.41 235 | 50.24 206 | 80.02 101 | 82.89 85 | 58.36 137 | 74.44 55 | 86.73 87 | 58.90 24 | 80.83 202 | 65.84 106 | 74.46 183 | 87.44 46 |
|
| thisisatest0515 | | | 65.83 216 | 63.50 230 | 72.82 150 | 73.75 261 | 49.50 221 | 71.32 265 | 73.12 255 | 49.39 277 | 63.82 235 | 76.50 299 | 34.95 273 | 84.84 118 | 53.20 205 | 75.49 179 | 84.13 161 |
|
| XVG-OURS-SEG-HR | | | 68.81 157 | 67.47 167 | 72.82 150 | 74.40 255 | 56.87 99 | 70.59 276 | 79.04 152 | 54.77 212 | 66.99 174 | 86.01 114 | 39.57 225 | 78.21 246 | 62.54 134 | 73.33 204 | 83.37 188 |
|
| OpenMVS |  | 61.03 9 | 68.85 156 | 67.56 160 | 72.70 152 | 74.26 258 | 53.99 142 | 81.21 88 | 81.34 112 | 52.70 239 | 62.75 249 | 85.55 127 | 38.86 234 | 84.14 127 | 48.41 244 | 83.01 78 | 79.97 255 |
|
| Anonymous20240529 | | | 69.91 129 | 69.02 132 | 72.56 153 | 80.19 114 | 47.65 244 | 77.56 147 | 80.99 124 | 55.45 196 | 69.88 121 | 86.76 85 | 39.24 230 | 82.18 173 | 54.04 196 | 77.10 160 | 87.85 31 |
|
| V42 | | | 68.65 161 | 67.35 172 | 72.56 153 | 68.93 333 | 50.18 208 | 72.90 243 | 79.47 146 | 56.92 160 | 69.45 128 | 80.26 234 | 46.29 157 | 82.99 149 | 64.07 118 | 67.82 283 | 84.53 149 |
|
| dcpmvs_2 | | | 74.55 58 | 75.23 48 | 72.48 155 | 82.34 77 | 53.34 155 | 77.87 138 | 81.46 104 | 57.80 150 | 75.49 37 | 86.81 84 | 62.22 13 | 77.75 254 | 71.09 67 | 82.02 93 | 86.34 80 |
|
| xiu_mvs_v1_base_debu | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 166 | 57.19 91 | 75.28 199 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 212 | 32.79 297 | 79.02 236 | 63.81 124 | 77.31 153 | 81.22 233 |
|
| xiu_mvs_v1_base | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 166 | 57.19 91 | 75.28 199 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 212 | 32.79 297 | 79.02 236 | 63.81 124 | 77.31 153 | 81.22 233 |
|
| xiu_mvs_v1_base_debi | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 166 | 57.19 91 | 75.28 199 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 212 | 32.79 297 | 79.02 236 | 63.81 124 | 77.31 153 | 81.22 233 |
|
| MVS_Test | | | 72.45 80 | 72.46 75 | 72.42 159 | 74.88 241 | 48.50 234 | 76.28 179 | 83.14 81 | 59.40 117 | 72.46 91 | 84.68 137 | 55.66 42 | 81.12 193 | 65.98 105 | 79.66 119 | 87.63 40 |
|
| LFMVS | | | 71.78 92 | 71.59 82 | 72.32 160 | 83.40 67 | 46.38 255 | 79.75 108 | 71.08 268 | 64.18 32 | 72.80 85 | 88.64 59 | 42.58 194 | 83.72 136 | 57.41 170 | 84.49 67 | 86.86 62 |
|
| ACMH+ | | 57.40 11 | 66.12 213 | 64.06 220 | 72.30 161 | 77.79 181 | 52.83 164 | 80.39 96 | 78.03 181 | 57.30 154 | 57.47 306 | 82.55 183 | 27.68 343 | 84.17 126 | 45.54 270 | 69.78 258 | 79.90 256 |
|
| test_fmvsmvis_n_1920 | | | 70.84 109 | 70.38 107 | 72.22 162 | 71.16 303 | 55.39 127 | 75.86 189 | 72.21 261 | 49.03 282 | 73.28 72 | 86.17 108 | 51.83 90 | 77.29 261 | 75.80 32 | 78.05 145 | 83.98 165 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 149 | 68.44 147 | 71.96 163 | 70.91 306 | 53.78 145 | 78.12 133 | 62.30 336 | 49.35 278 | 73.20 74 | 86.55 98 | 51.99 87 | 76.79 271 | 74.83 41 | 68.68 278 | 85.32 126 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 141 | 68.74 138 | 71.93 164 | 72.47 281 | 53.82 144 | 78.25 128 | 62.26 337 | 49.78 274 | 73.12 78 | 86.21 106 | 52.66 75 | 76.79 271 | 75.02 39 | 68.88 273 | 85.18 131 |
|
| UniMVSNet (Re) | | | 70.63 114 | 70.20 110 | 71.89 165 | 78.55 152 | 45.29 269 | 75.94 188 | 82.92 83 | 63.68 40 | 68.16 149 | 83.59 163 | 53.89 60 | 83.49 142 | 53.97 197 | 71.12 234 | 86.89 61 |
|
| MVSTER | | | 67.16 195 | 65.58 208 | 71.88 166 | 70.37 314 | 49.70 216 | 70.25 282 | 78.45 171 | 51.52 251 | 69.16 135 | 80.37 230 | 38.45 237 | 82.50 167 | 60.19 153 | 71.46 230 | 83.44 187 |
|
| fmvsm_s_conf0.1_n | | | 69.41 147 | 68.60 141 | 71.83 167 | 71.07 304 | 52.88 163 | 77.85 140 | 62.44 334 | 49.58 276 | 72.97 81 | 86.22 105 | 51.68 93 | 76.48 278 | 75.53 34 | 70.10 250 | 86.14 90 |
|
| CHOSEN 1792x2688 | | | 65.08 228 | 62.84 239 | 71.82 168 | 81.49 89 | 56.26 105 | 66.32 309 | 74.20 244 | 40.53 359 | 63.16 243 | 78.65 261 | 41.30 210 | 77.80 253 | 45.80 266 | 74.09 188 | 81.40 228 |
|
| fmvsm_s_conf0.5_n | | | 69.58 139 | 68.84 135 | 71.79 169 | 72.31 285 | 52.90 162 | 77.90 137 | 62.43 335 | 49.97 272 | 72.85 84 | 85.90 118 | 52.21 83 | 76.49 277 | 75.75 33 | 70.26 247 | 85.97 95 |
|
| DP-MVS | | | 65.68 217 | 63.66 228 | 71.75 170 | 84.93 55 | 56.87 99 | 80.74 94 | 73.16 254 | 53.06 235 | 59.09 292 | 82.35 189 | 36.79 260 | 85.94 90 | 32.82 352 | 69.96 254 | 72.45 336 |
|
| Anonymous20231211 | | | 69.28 150 | 68.47 145 | 71.73 171 | 80.28 109 | 47.18 250 | 79.98 102 | 82.37 90 | 54.61 215 | 67.24 169 | 84.01 154 | 39.43 226 | 82.41 170 | 55.45 186 | 72.83 212 | 85.62 113 |
|
| EI-MVSNet | | | 69.27 151 | 68.44 147 | 71.73 171 | 74.47 252 | 49.39 223 | 75.20 202 | 78.45 171 | 59.60 112 | 69.16 135 | 76.51 297 | 51.29 96 | 82.50 167 | 59.86 159 | 71.45 231 | 83.30 189 |
|
| eth_miper_zixun_eth | | | 67.63 184 | 66.28 197 | 71.67 173 | 71.60 293 | 48.33 236 | 73.68 235 | 77.88 182 | 55.80 187 | 65.91 195 | 78.62 263 | 47.35 145 | 82.88 154 | 59.45 161 | 66.25 295 | 83.81 172 |
|
| MVS_111021_LR | | | 69.50 143 | 68.78 137 | 71.65 174 | 78.38 158 | 59.33 56 | 74.82 212 | 70.11 276 | 58.08 140 | 67.83 159 | 84.68 137 | 41.96 200 | 76.34 281 | 65.62 109 | 77.54 149 | 79.30 266 |
|
| PAPM | | | 67.92 179 | 66.69 184 | 71.63 175 | 78.09 170 | 49.02 226 | 77.09 162 | 81.24 118 | 51.04 260 | 60.91 272 | 83.98 155 | 47.71 135 | 84.99 110 | 40.81 307 | 79.32 126 | 80.90 241 |
|
| NR-MVSNet | | | 69.54 141 | 68.85 134 | 71.59 176 | 78.05 172 | 43.81 282 | 74.20 222 | 80.86 127 | 65.18 14 | 62.76 248 | 84.52 143 | 52.35 82 | 83.59 140 | 50.96 224 | 70.78 236 | 87.37 50 |
|
| fmvsm_l_conf0.5_n | | | 70.99 106 | 70.82 99 | 71.48 177 | 71.45 295 | 54.40 138 | 77.18 160 | 70.46 274 | 48.67 286 | 75.17 40 | 86.86 82 | 53.77 63 | 76.86 269 | 76.33 30 | 77.51 151 | 83.17 197 |
|
| diffmvs |  | | 70.69 113 | 70.43 105 | 71.46 178 | 69.45 327 | 48.95 228 | 72.93 242 | 78.46 170 | 57.27 155 | 71.69 100 | 83.97 156 | 51.48 95 | 77.92 251 | 70.70 69 | 77.95 147 | 87.53 44 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet_NR-MVSNet | | | 71.11 103 | 71.00 97 | 71.44 179 | 79.20 135 | 44.13 278 | 76.02 187 | 82.60 88 | 66.48 11 | 68.20 146 | 84.60 142 | 56.82 35 | 82.82 159 | 54.62 192 | 70.43 241 | 87.36 52 |
|
| DU-MVS | | | 70.01 126 | 69.53 122 | 71.44 179 | 78.05 172 | 44.13 278 | 75.01 207 | 81.51 103 | 64.37 28 | 68.20 146 | 84.52 143 | 49.12 121 | 82.82 159 | 54.62 192 | 70.43 241 | 87.37 50 |
|
| IterMVS-LS | | | 69.22 153 | 68.48 143 | 71.43 181 | 74.44 254 | 49.40 222 | 76.23 180 | 77.55 189 | 59.60 112 | 65.85 199 | 81.59 210 | 51.28 97 | 81.58 184 | 59.87 158 | 69.90 256 | 83.30 189 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 68.24 172 | 67.19 180 | 71.40 182 | 70.43 312 | 47.77 243 | 75.76 192 | 77.03 198 | 58.91 124 | 67.36 167 | 80.10 237 | 48.60 126 | 81.89 177 | 60.01 155 | 66.52 294 | 84.53 149 |
|
| test_yl | | | 69.69 134 | 69.13 129 | 71.36 183 | 78.37 160 | 45.74 262 | 74.71 214 | 80.20 136 | 57.91 148 | 70.01 118 | 83.83 158 | 42.44 195 | 82.87 155 | 54.97 188 | 79.72 117 | 85.48 117 |
|
| DCV-MVSNet | | | 69.69 134 | 69.13 129 | 71.36 183 | 78.37 160 | 45.74 262 | 74.71 214 | 80.20 136 | 57.91 148 | 70.01 118 | 83.83 158 | 42.44 195 | 82.87 155 | 54.97 188 | 79.72 117 | 85.48 117 |
|
| LS3D | | | 64.71 230 | 62.50 243 | 71.34 185 | 79.72 125 | 55.71 117 | 79.82 106 | 74.72 235 | 48.50 290 | 56.62 311 | 84.62 140 | 33.59 289 | 82.34 171 | 29.65 373 | 75.23 181 | 75.97 300 |
|
| TAMVS | | | 66.78 204 | 65.27 212 | 71.33 186 | 79.16 138 | 53.67 146 | 73.84 233 | 69.59 281 | 52.32 244 | 65.28 208 | 81.72 206 | 44.49 179 | 77.40 260 | 42.32 299 | 78.66 138 | 82.92 200 |
|
| BH-untuned | | | 68.27 170 | 67.29 173 | 71.21 187 | 79.74 123 | 53.22 157 | 76.06 184 | 77.46 192 | 57.19 156 | 66.10 191 | 81.61 208 | 45.37 170 | 83.50 141 | 45.42 275 | 76.68 166 | 76.91 296 |
|
| PVSNet_Blended | | | 68.59 162 | 67.72 156 | 71.19 188 | 77.03 208 | 50.57 200 | 72.51 250 | 81.52 101 | 51.91 246 | 64.22 233 | 77.77 279 | 49.13 119 | 82.87 155 | 55.82 179 | 79.58 120 | 80.14 253 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 117 | 70.27 109 | 71.18 189 | 71.30 301 | 54.09 140 | 76.89 168 | 69.87 277 | 47.90 299 | 74.37 57 | 86.49 99 | 53.07 73 | 76.69 274 | 75.41 35 | 77.11 159 | 82.76 204 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 120 | 70.10 114 | 71.17 190 | 78.64 151 | 42.97 291 | 76.53 174 | 81.16 121 | 66.95 6 | 68.53 142 | 85.42 130 | 51.61 94 | 83.07 148 | 52.32 209 | 69.70 261 | 87.46 45 |
|
| TR-MVS | | | 66.59 209 | 65.07 214 | 71.17 190 | 79.18 136 | 49.63 220 | 73.48 236 | 75.20 227 | 52.95 236 | 67.90 153 | 80.33 233 | 39.81 223 | 83.68 137 | 43.20 292 | 73.56 199 | 80.20 251 |
|
| CDS-MVSNet | | | 66.80 203 | 65.37 209 | 71.10 192 | 78.98 141 | 53.13 160 | 73.27 239 | 71.07 269 | 52.15 245 | 64.72 223 | 80.23 235 | 43.56 186 | 77.10 263 | 45.48 273 | 78.88 132 | 83.05 199 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PVSNet_BlendedMVS | | | 68.56 166 | 67.72 156 | 71.07 193 | 77.03 208 | 50.57 200 | 74.50 218 | 81.52 101 | 53.66 231 | 64.22 233 | 79.72 244 | 49.13 119 | 82.87 155 | 55.82 179 | 73.92 191 | 79.77 261 |
|
| GA-MVS | | | 65.53 220 | 63.70 227 | 71.02 194 | 70.87 307 | 48.10 238 | 70.48 278 | 74.40 239 | 56.69 162 | 64.70 224 | 76.77 291 | 33.66 288 | 81.10 194 | 55.42 187 | 70.32 245 | 83.87 170 |
|
| RPMNet | | | 61.53 266 | 58.42 280 | 70.86 195 | 69.96 320 | 52.07 179 | 65.31 321 | 81.36 108 | 43.20 344 | 59.36 288 | 70.15 349 | 35.37 268 | 85.47 103 | 36.42 336 | 64.65 307 | 75.06 310 |
|
| TAPA-MVS | | 59.36 10 | 66.60 207 | 65.20 213 | 70.81 196 | 76.63 215 | 48.75 230 | 76.52 175 | 80.04 138 | 50.64 265 | 65.24 213 | 84.93 134 | 39.15 231 | 78.54 242 | 36.77 329 | 76.88 163 | 85.14 132 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| æ–°å‡ ä½•1 | | | | | 70.76 197 | 85.66 41 | 61.13 30 | | 66.43 305 | 44.68 329 | 70.29 111 | 86.64 90 | 41.29 211 | 75.23 286 | 49.72 232 | 81.75 99 | 75.93 301 |
|
| XVG-ACMP-BASELINE | | | 64.36 236 | 62.23 246 | 70.74 198 | 72.35 283 | 52.45 174 | 70.80 275 | 78.45 171 | 53.84 228 | 59.87 281 | 81.10 217 | 16.24 380 | 79.32 227 | 55.64 185 | 71.76 226 | 80.47 246 |
|
| PLC |  | 56.13 14 | 65.09 227 | 63.21 235 | 70.72 199 | 81.04 99 | 54.87 134 | 78.57 124 | 77.47 190 | 48.51 289 | 55.71 318 | 81.89 202 | 33.71 286 | 79.71 220 | 41.66 304 | 70.37 243 | 77.58 284 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| c3_l | | | 68.33 169 | 67.56 160 | 70.62 200 | 70.87 307 | 46.21 258 | 74.47 219 | 78.80 158 | 56.22 178 | 66.19 190 | 78.53 265 | 51.88 88 | 81.40 186 | 62.08 137 | 69.04 271 | 84.25 156 |
|
| K. test v3 | | | 60.47 273 | 57.11 288 | 70.56 201 | 73.74 262 | 48.22 237 | 75.10 206 | 62.55 332 | 58.27 138 | 53.62 343 | 76.31 300 | 27.81 342 | 81.59 183 | 47.42 250 | 39.18 388 | 81.88 221 |
|
| cl22 | | | 67.47 187 | 66.45 187 | 70.54 202 | 69.85 323 | 46.49 254 | 73.85 232 | 77.35 194 | 55.07 206 | 65.51 204 | 77.92 272 | 47.64 137 | 81.10 194 | 61.58 145 | 69.32 265 | 84.01 164 |
|
| MVS | | | 67.37 188 | 66.33 194 | 70.51 203 | 75.46 234 | 50.94 192 | 73.95 227 | 81.85 97 | 41.57 354 | 62.54 254 | 78.57 264 | 47.98 130 | 85.47 103 | 52.97 206 | 82.05 92 | 75.14 309 |
|
| miper_ehance_all_eth | | | 68.03 175 | 67.24 178 | 70.40 204 | 70.54 310 | 46.21 258 | 73.98 225 | 78.68 162 | 55.07 206 | 66.05 192 | 77.80 276 | 52.16 85 | 81.31 189 | 61.53 147 | 69.32 265 | 83.67 180 |
|
| MVP-Stereo | | | 65.41 222 | 63.80 225 | 70.22 205 | 77.62 191 | 55.53 124 | 76.30 178 | 78.53 166 | 50.59 266 | 56.47 315 | 78.65 261 | 39.84 222 | 82.68 162 | 44.10 283 | 72.12 224 | 72.44 337 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EG-PatchMatch MVS | | | 64.71 230 | 62.87 238 | 70.22 205 | 77.68 184 | 53.48 151 | 77.99 136 | 78.82 156 | 53.37 234 | 56.03 317 | 77.41 284 | 24.75 363 | 84.04 129 | 46.37 261 | 73.42 203 | 73.14 328 |
|
| SixPastTwentyTwo | | | 61.65 265 | 58.80 277 | 70.20 207 | 75.80 227 | 47.22 249 | 75.59 194 | 69.68 279 | 54.61 215 | 54.11 337 | 79.26 254 | 27.07 349 | 82.96 150 | 43.27 290 | 49.79 375 | 80.41 248 |
|
| miper_enhance_ethall | | | 67.11 196 | 66.09 200 | 70.17 208 | 69.21 330 | 45.98 260 | 72.85 244 | 78.41 174 | 51.38 254 | 65.65 201 | 75.98 305 | 51.17 99 | 81.25 190 | 60.82 149 | 69.32 265 | 83.29 191 |
|
| ACMH | | 55.70 15 | 65.20 226 | 63.57 229 | 70.07 209 | 78.07 171 | 52.01 182 | 79.48 114 | 79.69 140 | 55.75 188 | 56.59 312 | 80.98 220 | 27.12 348 | 80.94 198 | 42.90 296 | 71.58 229 | 77.25 290 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_0402 | | | 63.25 247 | 61.01 262 | 69.96 210 | 80.00 118 | 54.37 139 | 76.86 170 | 72.02 263 | 54.58 217 | 58.71 295 | 80.79 227 | 35.00 272 | 84.36 124 | 26.41 384 | 64.71 306 | 71.15 354 |
|
| cl____ | | | 67.18 193 | 66.26 198 | 69.94 211 | 70.20 315 | 45.74 262 | 73.30 237 | 76.83 201 | 55.10 201 | 65.27 209 | 79.57 247 | 47.39 143 | 80.53 207 | 59.41 163 | 69.22 269 | 83.53 186 |
|
| DIV-MVS_self_test | | | 67.18 193 | 66.26 198 | 69.94 211 | 70.20 315 | 45.74 262 | 73.29 238 | 76.83 201 | 55.10 201 | 65.27 209 | 79.58 246 | 47.38 144 | 80.53 207 | 59.43 162 | 69.22 269 | 83.54 185 |
|
| lessismore_v0 | | | | | 69.91 213 | 71.42 298 | 47.80 241 | | 50.90 378 | | 50.39 359 | 75.56 309 | 27.43 346 | 81.33 188 | 45.91 265 | 34.10 394 | 80.59 245 |
|
| BH-w/o | | | 66.85 201 | 65.83 203 | 69.90 214 | 79.29 131 | 52.46 173 | 74.66 216 | 76.65 204 | 54.51 219 | 64.85 222 | 78.12 266 | 45.59 163 | 82.95 151 | 43.26 291 | 75.54 178 | 74.27 322 |
|
| baseline2 | | | 63.42 243 | 61.26 259 | 69.89 215 | 72.55 278 | 47.62 245 | 71.54 262 | 68.38 292 | 50.11 269 | 54.82 329 | 75.55 310 | 43.06 190 | 80.96 197 | 48.13 247 | 67.16 289 | 81.11 236 |
|
| MGCFI-Net | | | 72.45 80 | 73.34 68 | 69.81 216 | 77.77 182 | 43.21 288 | 75.84 191 | 81.18 119 | 59.59 115 | 75.45 38 | 86.64 90 | 57.74 28 | 77.94 249 | 63.92 122 | 81.90 95 | 88.30 15 |
|
| CNLPA | | | 65.43 221 | 64.02 221 | 69.68 217 | 78.73 149 | 58.07 78 | 77.82 142 | 70.71 272 | 51.49 252 | 61.57 268 | 83.58 165 | 38.23 241 | 70.82 306 | 43.90 285 | 70.10 250 | 80.16 252 |
|
| OurMVSNet-221017-0 | | | 61.37 269 | 58.63 279 | 69.61 218 | 72.05 288 | 48.06 239 | 73.93 229 | 72.51 258 | 47.23 309 | 54.74 330 | 80.92 222 | 21.49 373 | 81.24 191 | 48.57 243 | 56.22 357 | 79.53 263 |
|
| CANet_DTU | | | 68.18 173 | 67.71 158 | 69.59 219 | 74.83 243 | 46.24 257 | 78.66 122 | 76.85 200 | 59.60 112 | 63.45 239 | 82.09 200 | 35.25 269 | 77.41 259 | 59.88 157 | 78.76 136 | 85.14 132 |
|
| mvs_anonymous | | | 68.03 175 | 67.51 164 | 69.59 219 | 72.08 287 | 44.57 276 | 71.99 257 | 75.23 225 | 51.67 247 | 67.06 173 | 82.57 182 | 54.68 52 | 77.94 249 | 56.56 174 | 75.71 176 | 86.26 88 |
|
| F-COLMAP | | | 63.05 250 | 60.87 265 | 69.58 221 | 76.99 210 | 53.63 148 | 78.12 133 | 76.16 207 | 47.97 298 | 52.41 348 | 81.61 208 | 27.87 341 | 78.11 247 | 40.07 310 | 66.66 292 | 77.00 293 |
|
| MSDG | | | 61.81 264 | 59.23 272 | 69.55 222 | 72.64 275 | 52.63 168 | 70.45 279 | 75.81 213 | 51.38 254 | 53.70 340 | 76.11 301 | 29.52 328 | 81.08 196 | 37.70 322 | 65.79 299 | 74.93 314 |
|
| Anonymous202405211 | | | 66.84 202 | 65.99 201 | 69.40 223 | 80.19 114 | 42.21 297 | 71.11 271 | 71.31 267 | 58.80 126 | 67.90 153 | 86.39 102 | 29.83 325 | 79.65 221 | 49.60 235 | 78.78 135 | 86.33 82 |
|
| tt0805 | | | 67.77 182 | 67.24 178 | 69.34 224 | 74.87 242 | 40.08 312 | 77.36 153 | 81.37 107 | 55.31 197 | 66.33 188 | 84.65 139 | 37.35 249 | 82.55 166 | 55.65 184 | 72.28 222 | 85.39 124 |
|
| GBi-Net | | | 67.21 190 | 66.55 185 | 69.19 225 | 77.63 187 | 43.33 285 | 77.31 154 | 77.83 184 | 56.62 166 | 65.04 218 | 82.70 177 | 41.85 202 | 80.33 212 | 47.18 254 | 72.76 213 | 83.92 167 |
|
| test1 | | | 67.21 190 | 66.55 185 | 69.19 225 | 77.63 187 | 43.33 285 | 77.31 154 | 77.83 184 | 56.62 166 | 65.04 218 | 82.70 177 | 41.85 202 | 80.33 212 | 47.18 254 | 72.76 213 | 83.92 167 |
|
| FMVSNet1 | | | 66.70 205 | 65.87 202 | 69.19 225 | 77.49 196 | 43.33 285 | 77.31 154 | 77.83 184 | 56.45 171 | 64.60 226 | 82.70 177 | 38.08 243 | 80.33 212 | 46.08 263 | 72.31 221 | 83.92 167 |
|
| UniMVSNet_ETH3D | | | 67.60 185 | 67.07 182 | 69.18 228 | 77.39 199 | 42.29 295 | 74.18 223 | 75.59 217 | 60.37 96 | 66.77 179 | 86.06 112 | 37.64 245 | 78.93 241 | 52.16 211 | 73.49 200 | 86.32 84 |
|
| FIs | | | 70.82 111 | 71.43 86 | 68.98 229 | 78.33 162 | 38.14 331 | 76.96 165 | 83.59 65 | 61.02 83 | 67.33 168 | 86.73 87 | 55.07 45 | 81.64 181 | 54.61 194 | 79.22 127 | 87.14 56 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 249 | 61.23 260 | 68.92 230 | 76.57 217 | 47.80 241 | 59.92 350 | 76.39 205 | 54.35 221 | 58.67 296 | 82.46 188 | 29.44 330 | 81.49 185 | 42.12 300 | 71.14 233 | 77.46 285 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| 1314 | | | 64.61 232 | 63.21 235 | 68.80 231 | 71.87 291 | 47.46 247 | 73.95 227 | 78.39 176 | 42.88 347 | 59.97 279 | 76.60 296 | 38.11 242 | 79.39 226 | 54.84 190 | 72.32 220 | 79.55 262 |
|
| FMVSNet2 | | | 66.93 200 | 66.31 196 | 68.79 232 | 77.63 187 | 42.98 290 | 76.11 182 | 77.47 190 | 56.62 166 | 65.22 215 | 82.17 195 | 41.85 202 | 80.18 218 | 47.05 257 | 72.72 216 | 83.20 193 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 270 | 58.81 275 | 68.64 233 | 74.63 249 | 52.51 172 | 78.42 127 | 73.30 252 | 49.92 273 | 50.96 353 | 81.51 211 | 23.06 366 | 79.40 225 | 31.63 362 | 65.85 297 | 74.01 325 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CostFormer | | | 64.04 238 | 62.51 242 | 68.61 234 | 71.88 290 | 45.77 261 | 71.30 266 | 70.60 273 | 47.55 303 | 64.31 229 | 76.61 295 | 41.63 205 | 79.62 223 | 49.74 231 | 69.00 272 | 80.42 247 |
|
| FMVSNet3 | | | 66.32 212 | 65.61 207 | 68.46 235 | 76.48 219 | 42.34 294 | 74.98 209 | 77.15 197 | 55.83 185 | 65.04 218 | 81.16 215 | 39.91 220 | 80.14 219 | 47.18 254 | 72.76 213 | 82.90 202 |
|
| WR-MVS | | | 68.47 167 | 68.47 145 | 68.44 236 | 80.20 113 | 39.84 315 | 73.75 234 | 76.07 210 | 64.68 22 | 68.11 151 | 83.63 162 | 50.39 107 | 79.14 234 | 49.78 229 | 69.66 262 | 86.34 80 |
|
| ECVR-MVS |  | | 67.72 183 | 67.51 164 | 68.35 237 | 79.46 129 | 36.29 354 | 74.79 213 | 66.93 301 | 58.72 127 | 67.19 170 | 88.05 66 | 36.10 262 | 81.38 187 | 52.07 212 | 84.25 69 | 87.39 48 |
|
| D2MVS | | | 62.30 257 | 60.29 267 | 68.34 238 | 66.46 350 | 48.42 235 | 65.70 312 | 73.42 251 | 47.71 301 | 58.16 302 | 75.02 314 | 30.51 317 | 77.71 255 | 53.96 198 | 71.68 228 | 78.90 271 |
|
| VNet | | | 69.68 136 | 70.19 111 | 68.16 239 | 79.73 124 | 41.63 304 | 70.53 277 | 77.38 193 | 60.37 96 | 70.69 107 | 86.63 92 | 51.08 100 | 77.09 264 | 53.61 201 | 81.69 101 | 85.75 108 |
|
| tpm2 | | | 62.07 260 | 60.10 268 | 67.99 240 | 72.79 273 | 43.86 281 | 71.05 273 | 66.85 302 | 43.14 345 | 62.77 247 | 75.39 312 | 38.32 239 | 80.80 203 | 41.69 303 | 68.88 273 | 79.32 265 |
|
| SDMVSNet | | | 68.03 175 | 68.10 153 | 67.84 241 | 77.13 204 | 48.72 232 | 65.32 320 | 79.10 151 | 58.02 143 | 65.08 216 | 82.55 183 | 47.83 133 | 73.40 293 | 63.92 122 | 73.92 191 | 81.41 226 |
|
| pmmvs4 | | | 61.48 268 | 59.39 271 | 67.76 242 | 71.57 294 | 53.86 143 | 71.42 263 | 65.34 312 | 44.20 334 | 59.46 287 | 77.92 272 | 35.90 264 | 74.71 288 | 43.87 286 | 64.87 305 | 74.71 318 |
|
| VPA-MVSNet | | | 69.02 154 | 69.47 124 | 67.69 243 | 77.42 198 | 41.00 309 | 74.04 224 | 79.68 141 | 60.06 104 | 69.26 133 | 84.81 136 | 51.06 101 | 77.58 256 | 54.44 195 | 74.43 185 | 84.48 151 |
|
| test2506 | | | 65.33 224 | 64.61 217 | 67.50 244 | 79.46 129 | 34.19 366 | 74.43 220 | 51.92 373 | 58.72 127 | 66.75 180 | 88.05 66 | 25.99 356 | 80.92 200 | 51.94 214 | 84.25 69 | 87.39 48 |
|
| FC-MVSNet-test | | | 69.80 132 | 70.58 104 | 67.46 245 | 77.61 192 | 34.73 362 | 76.05 185 | 83.19 79 | 60.84 85 | 65.88 198 | 86.46 100 | 54.52 54 | 80.76 205 | 52.52 208 | 78.12 144 | 86.91 60 |
|
| test1111 | | | 67.21 190 | 67.14 181 | 67.42 246 | 79.24 134 | 34.76 361 | 73.89 231 | 65.65 310 | 58.71 129 | 66.96 175 | 87.95 69 | 36.09 263 | 80.53 207 | 52.03 213 | 83.79 74 | 86.97 58 |
|
| ab-mvs | | | 66.65 206 | 66.42 190 | 67.37 247 | 76.17 223 | 41.73 301 | 70.41 280 | 76.14 209 | 53.99 226 | 65.98 193 | 83.51 166 | 49.48 113 | 76.24 282 | 48.60 242 | 73.46 202 | 84.14 160 |
|
| IterMVS | | | 62.79 252 | 61.27 258 | 67.35 248 | 69.37 328 | 52.04 181 | 71.17 268 | 68.24 293 | 52.63 241 | 59.82 282 | 76.91 289 | 37.32 250 | 72.36 297 | 52.80 207 | 63.19 321 | 77.66 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| WR-MVS_H | | | 67.02 198 | 66.92 183 | 67.33 249 | 77.95 176 | 37.75 335 | 77.57 146 | 82.11 94 | 62.03 73 | 62.65 251 | 82.48 187 | 50.57 105 | 79.46 224 | 42.91 295 | 64.01 312 | 84.79 144 |
|
| PEN-MVS | | | 66.60 207 | 66.45 187 | 67.04 250 | 77.11 206 | 36.56 348 | 77.03 164 | 80.42 133 | 62.95 50 | 62.51 256 | 84.03 153 | 46.69 154 | 79.07 235 | 44.22 279 | 63.08 322 | 85.51 116 |
|
| SCA | | | 60.49 272 | 58.38 281 | 66.80 251 | 74.14 260 | 48.06 239 | 63.35 331 | 63.23 328 | 49.13 281 | 59.33 291 | 72.10 332 | 37.45 247 | 74.27 291 | 44.17 280 | 62.57 325 | 78.05 277 |
|
| thres400 | | | 63.31 244 | 62.18 247 | 66.72 252 | 76.85 211 | 39.62 318 | 71.96 259 | 69.44 284 | 56.63 164 | 62.61 252 | 79.83 240 | 37.18 251 | 79.17 230 | 31.84 358 | 73.25 206 | 81.36 229 |
|
| CP-MVSNet | | | 66.49 210 | 66.41 191 | 66.72 252 | 77.67 185 | 36.33 351 | 76.83 171 | 79.52 145 | 62.45 63 | 62.54 254 | 83.47 168 | 46.32 156 | 78.37 243 | 45.47 274 | 63.43 319 | 85.45 119 |
|
| PS-CasMVS | | | 66.42 211 | 66.32 195 | 66.70 254 | 77.60 194 | 36.30 353 | 76.94 166 | 79.61 143 | 62.36 65 | 62.43 258 | 83.66 161 | 45.69 160 | 78.37 243 | 45.35 276 | 63.26 320 | 85.42 122 |
|
| HY-MVS | | 56.14 13 | 64.55 233 | 63.89 222 | 66.55 255 | 74.73 246 | 41.02 306 | 69.96 284 | 74.43 238 | 49.29 279 | 61.66 266 | 80.92 222 | 47.43 142 | 76.68 275 | 44.91 278 | 71.69 227 | 81.94 219 |
|
| testing91 | | | 64.46 234 | 63.80 225 | 66.47 256 | 78.43 157 | 40.06 313 | 67.63 300 | 69.59 281 | 59.06 122 | 63.18 242 | 78.05 268 | 34.05 281 | 76.99 266 | 48.30 245 | 75.87 173 | 82.37 212 |
|
| thres600view7 | | | 63.30 245 | 62.27 245 | 66.41 257 | 77.18 203 | 38.87 324 | 72.35 252 | 69.11 288 | 56.98 159 | 62.37 259 | 80.96 221 | 37.01 258 | 79.00 239 | 31.43 365 | 73.05 210 | 81.36 229 |
|
| testing99 | | | 64.05 237 | 63.29 234 | 66.34 258 | 78.17 169 | 39.76 317 | 67.33 305 | 68.00 294 | 58.60 131 | 63.03 245 | 78.10 267 | 32.57 306 | 76.94 268 | 48.22 246 | 75.58 177 | 82.34 213 |
|
| DTE-MVSNet | | | 65.58 219 | 65.34 210 | 66.31 259 | 76.06 225 | 34.79 359 | 76.43 176 | 79.38 148 | 62.55 61 | 61.66 266 | 83.83 158 | 45.60 162 | 79.15 233 | 41.64 306 | 60.88 337 | 85.00 137 |
|
| pmmvs-eth3d | | | 58.81 284 | 56.31 298 | 66.30 260 | 67.61 341 | 52.42 175 | 72.30 253 | 64.76 316 | 43.55 340 | 54.94 328 | 74.19 321 | 28.95 332 | 72.60 296 | 43.31 289 | 57.21 352 | 73.88 326 |
|
| pmmvs6 | | | 63.69 241 | 62.82 240 | 66.27 261 | 70.63 309 | 39.27 322 | 73.13 240 | 75.47 220 | 52.69 240 | 59.75 285 | 82.30 191 | 39.71 224 | 77.03 265 | 47.40 251 | 64.35 311 | 82.53 207 |
|
| tfpn200view9 | | | 63.18 248 | 62.18 247 | 66.21 262 | 76.85 211 | 39.62 318 | 71.96 259 | 69.44 284 | 56.63 164 | 62.61 252 | 79.83 240 | 37.18 251 | 79.17 230 | 31.84 358 | 73.25 206 | 79.83 258 |
|
| patch_mono-2 | | | 69.85 130 | 71.09 95 | 66.16 263 | 79.11 139 | 54.80 135 | 71.97 258 | 74.31 241 | 53.50 232 | 70.90 106 | 84.17 149 | 57.63 31 | 63.31 342 | 66.17 100 | 82.02 93 | 80.38 249 |
|
| Patchmatch-RL test | | | 58.16 288 | 55.49 304 | 66.15 264 | 67.92 340 | 48.89 229 | 60.66 348 | 51.07 377 | 47.86 300 | 59.36 288 | 62.71 379 | 34.02 283 | 72.27 299 | 56.41 175 | 59.40 344 | 77.30 287 |
|
| tpm cat1 | | | 59.25 282 | 56.95 291 | 66.15 264 | 72.19 286 | 46.96 251 | 68.09 297 | 65.76 309 | 40.03 363 | 57.81 304 | 70.56 344 | 38.32 239 | 74.51 289 | 38.26 320 | 61.50 334 | 77.00 293 |
|
| ppachtmachnet_test | | | 58.06 290 | 55.38 305 | 66.10 266 | 69.51 325 | 48.99 227 | 68.01 298 | 66.13 308 | 44.50 331 | 54.05 338 | 70.74 343 | 32.09 310 | 72.34 298 | 36.68 332 | 56.71 356 | 76.99 295 |
|
| pm-mvs1 | | | 65.24 225 | 64.97 215 | 66.04 267 | 72.38 282 | 39.40 321 | 72.62 247 | 75.63 216 | 55.53 193 | 62.35 260 | 83.18 172 | 47.45 141 | 76.47 279 | 49.06 239 | 66.54 293 | 82.24 214 |
|
| CR-MVSNet | | | 59.91 276 | 57.90 286 | 65.96 268 | 69.96 320 | 52.07 179 | 65.31 321 | 63.15 329 | 42.48 349 | 59.36 288 | 74.84 315 | 35.83 265 | 70.75 307 | 45.50 272 | 64.65 307 | 75.06 310 |
|
| 1112_ss | | | 64.00 239 | 63.36 232 | 65.93 269 | 79.28 132 | 42.58 293 | 71.35 264 | 72.36 260 | 46.41 315 | 60.55 274 | 77.89 274 | 46.27 158 | 73.28 294 | 46.18 262 | 69.97 253 | 81.92 220 |
|
| thres100view900 | | | 63.28 246 | 62.41 244 | 65.89 270 | 77.31 201 | 38.66 326 | 72.65 245 | 69.11 288 | 57.07 157 | 62.45 257 | 81.03 219 | 37.01 258 | 79.17 230 | 31.84 358 | 73.25 206 | 79.83 258 |
|
| TransMVSNet (Re) | | | 64.72 229 | 64.33 219 | 65.87 271 | 75.22 237 | 38.56 327 | 74.66 216 | 75.08 233 | 58.90 125 | 61.79 264 | 82.63 180 | 51.18 98 | 78.07 248 | 43.63 288 | 55.87 358 | 80.99 240 |
|
| VPNet | | | 67.52 186 | 68.11 152 | 65.74 272 | 79.18 136 | 36.80 346 | 72.17 255 | 72.83 256 | 62.04 72 | 67.79 161 | 85.83 121 | 48.88 123 | 76.60 276 | 51.30 220 | 72.97 211 | 83.81 172 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 275 | 58.14 284 | 65.69 273 | 70.47 311 | 44.82 271 | 75.33 198 | 70.86 271 | 45.04 326 | 56.06 316 | 76.00 302 | 26.89 351 | 79.65 221 | 35.36 341 | 67.29 287 | 72.60 333 |
|
| testing11 | | | 62.81 251 | 61.90 250 | 65.54 274 | 78.38 158 | 40.76 310 | 67.59 302 | 66.78 303 | 55.48 194 | 60.13 276 | 77.11 285 | 31.67 312 | 76.79 271 | 45.53 271 | 74.45 184 | 79.06 267 |
|
| Baseline_NR-MVSNet | | | 67.05 197 | 67.56 160 | 65.50 275 | 75.65 229 | 37.70 337 | 75.42 197 | 74.65 237 | 59.90 107 | 68.14 150 | 83.15 173 | 49.12 121 | 77.20 262 | 52.23 210 | 69.78 258 | 81.60 223 |
|
| miper_lstm_enhance | | | 62.03 261 | 60.88 264 | 65.49 276 | 66.71 347 | 46.25 256 | 56.29 366 | 75.70 215 | 50.68 263 | 61.27 269 | 75.48 311 | 40.21 219 | 68.03 323 | 56.31 176 | 65.25 302 | 82.18 215 |
|
| IterMVS-SCA-FT | | | 62.49 253 | 61.52 254 | 65.40 277 | 71.99 289 | 50.80 197 | 71.15 270 | 69.63 280 | 45.71 323 | 60.61 273 | 77.93 271 | 37.45 247 | 65.99 334 | 55.67 183 | 63.50 318 | 79.42 264 |
|
| thres200 | | | 62.20 259 | 61.16 261 | 65.34 278 | 75.38 236 | 39.99 314 | 69.60 287 | 69.29 286 | 55.64 192 | 61.87 263 | 76.99 287 | 37.07 257 | 78.96 240 | 31.28 366 | 73.28 205 | 77.06 291 |
|
| MS-PatchMatch | | | 62.42 255 | 61.46 255 | 65.31 279 | 75.21 238 | 52.10 178 | 72.05 256 | 74.05 245 | 46.41 315 | 57.42 308 | 74.36 319 | 34.35 279 | 77.57 257 | 45.62 269 | 73.67 195 | 66.26 371 |
|
| testing222 | | | 62.29 258 | 61.31 257 | 65.25 280 | 77.87 177 | 38.53 328 | 68.34 295 | 66.31 307 | 56.37 173 | 63.15 244 | 77.58 282 | 28.47 337 | 76.18 284 | 37.04 327 | 76.65 167 | 81.05 239 |
|
| ambc | | | | | 65.13 281 | 63.72 364 | 37.07 343 | 47.66 384 | 78.78 159 | | 54.37 336 | 71.42 338 | 11.24 391 | 80.94 198 | 45.64 268 | 53.85 365 | 77.38 286 |
|
| tfpnnormal | | | 62.47 254 | 61.63 253 | 64.99 282 | 74.81 244 | 39.01 323 | 71.22 267 | 73.72 248 | 55.22 200 | 60.21 275 | 80.09 238 | 41.26 213 | 76.98 267 | 30.02 371 | 68.09 281 | 78.97 270 |
|
| testdata | | | | | 64.66 283 | 81.52 87 | 52.93 161 | | 65.29 313 | 46.09 318 | 73.88 64 | 87.46 75 | 38.08 243 | 66.26 333 | 53.31 204 | 78.48 140 | 74.78 317 |
|
| PatchmatchNet |  | | 59.84 277 | 58.24 282 | 64.65 284 | 73.05 269 | 46.70 253 | 69.42 289 | 62.18 338 | 47.55 303 | 58.88 294 | 71.96 334 | 34.49 277 | 69.16 316 | 42.99 294 | 63.60 316 | 78.07 276 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| sd_testset | | | 64.46 234 | 64.45 218 | 64.51 285 | 77.13 204 | 42.25 296 | 62.67 334 | 72.11 262 | 58.02 143 | 65.08 216 | 82.55 183 | 41.22 214 | 69.88 314 | 47.32 252 | 73.92 191 | 81.41 226 |
|
| AllTest | | | 57.08 296 | 54.65 309 | 64.39 286 | 71.44 296 | 49.03 224 | 69.92 285 | 67.30 296 | 45.97 320 | 47.16 367 | 79.77 242 | 17.47 376 | 67.56 325 | 33.65 346 | 59.16 345 | 76.57 297 |
|
| TestCases | | | | | 64.39 286 | 71.44 296 | 49.03 224 | | 67.30 296 | 45.97 320 | 47.16 367 | 79.77 242 | 17.47 376 | 67.56 325 | 33.65 346 | 59.16 345 | 76.57 297 |
|
| Test_1112_low_res | | | 62.32 256 | 61.77 251 | 64.00 288 | 79.08 140 | 39.53 320 | 68.17 296 | 70.17 275 | 43.25 343 | 59.03 293 | 79.90 239 | 44.08 181 | 71.24 305 | 43.79 287 | 68.42 279 | 81.25 232 |
|
| baseline1 | | | 63.81 240 | 63.87 224 | 63.62 289 | 76.29 221 | 36.36 349 | 71.78 261 | 67.29 298 | 56.05 181 | 64.23 232 | 82.95 174 | 47.11 147 | 74.41 290 | 47.30 253 | 61.85 331 | 80.10 254 |
|
| LCM-MVSNet-Re | | | 61.88 263 | 61.35 256 | 63.46 290 | 74.58 250 | 31.48 379 | 61.42 341 | 58.14 352 | 58.71 129 | 53.02 347 | 79.55 248 | 43.07 189 | 76.80 270 | 45.69 267 | 77.96 146 | 82.11 218 |
|
| CMPMVS |  | 42.80 21 | 57.81 292 | 55.97 300 | 63.32 291 | 60.98 377 | 47.38 248 | 64.66 326 | 69.50 283 | 32.06 375 | 46.83 369 | 77.80 276 | 29.50 329 | 71.36 304 | 48.68 241 | 73.75 194 | 71.21 353 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CL-MVSNet_self_test | | | 61.53 266 | 60.94 263 | 63.30 292 | 68.95 332 | 36.93 345 | 67.60 301 | 72.80 257 | 55.67 190 | 59.95 280 | 76.63 293 | 45.01 174 | 72.22 300 | 39.74 314 | 62.09 330 | 80.74 244 |
|
| JIA-IIPM | | | 51.56 330 | 47.68 344 | 63.21 293 | 64.61 359 | 50.73 198 | 47.71 383 | 58.77 350 | 42.90 346 | 48.46 364 | 51.72 389 | 24.97 361 | 70.24 313 | 36.06 338 | 53.89 364 | 68.64 369 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 241 | 63.88 223 | 63.14 294 | 74.75 245 | 31.04 380 | 71.16 269 | 63.64 325 | 56.32 174 | 59.80 283 | 84.99 133 | 44.51 177 | 75.46 285 | 39.12 316 | 80.62 104 | 82.92 200 |
|
| MDA-MVSNet-bldmvs | | | 53.87 319 | 50.81 331 | 63.05 295 | 66.25 351 | 48.58 233 | 56.93 364 | 63.82 323 | 48.09 296 | 41.22 382 | 70.48 347 | 30.34 320 | 68.00 324 | 34.24 344 | 45.92 380 | 72.57 334 |
|
| tpmvs | | | 58.47 285 | 56.95 291 | 63.03 296 | 70.20 315 | 41.21 305 | 67.90 299 | 67.23 299 | 49.62 275 | 54.73 331 | 70.84 342 | 34.14 280 | 76.24 282 | 36.64 333 | 61.29 335 | 71.64 346 |
|
| USDC | | | 56.35 303 | 54.24 316 | 62.69 297 | 64.74 358 | 40.31 311 | 65.05 323 | 73.83 247 | 43.93 338 | 47.58 365 | 77.71 280 | 15.36 382 | 75.05 287 | 38.19 321 | 61.81 332 | 72.70 332 |
|
| our_test_3 | | | 56.49 300 | 54.42 312 | 62.68 298 | 69.51 325 | 45.48 267 | 66.08 310 | 61.49 341 | 44.11 337 | 50.73 357 | 69.60 354 | 33.05 293 | 68.15 320 | 38.38 319 | 56.86 353 | 74.40 320 |
|
| GG-mvs-BLEND | | | | | 62.34 299 | 71.36 300 | 37.04 344 | 69.20 291 | 57.33 358 | | 54.73 331 | 65.48 373 | 30.37 319 | 77.82 252 | 34.82 342 | 74.93 182 | 72.17 342 |
|
| gg-mvs-nofinetune | | | 57.86 291 | 56.43 297 | 62.18 300 | 72.62 276 | 35.35 357 | 66.57 306 | 56.33 362 | 50.65 264 | 57.64 305 | 57.10 385 | 30.65 316 | 76.36 280 | 37.38 324 | 78.88 132 | 74.82 316 |
|
| ITE_SJBPF | | | | | 62.09 301 | 66.16 352 | 44.55 277 | | 64.32 319 | 47.36 306 | 55.31 323 | 80.34 232 | 19.27 375 | 62.68 345 | 36.29 337 | 62.39 327 | 79.04 268 |
|
| EPNet_dtu | | | 61.90 262 | 61.97 249 | 61.68 302 | 72.89 272 | 39.78 316 | 75.85 190 | 65.62 311 | 55.09 203 | 54.56 333 | 79.36 252 | 37.59 246 | 67.02 328 | 39.80 313 | 76.95 161 | 78.25 274 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TDRefinement | | | 53.44 323 | 50.72 332 | 61.60 303 | 64.31 361 | 46.96 251 | 70.89 274 | 65.27 314 | 41.78 350 | 44.61 376 | 77.98 269 | 11.52 390 | 66.36 332 | 28.57 377 | 51.59 369 | 71.49 349 |
|
| ETVMVS | | | 59.51 281 | 58.81 275 | 61.58 304 | 77.46 197 | 34.87 358 | 64.94 325 | 59.35 347 | 54.06 225 | 61.08 271 | 76.67 292 | 29.54 327 | 71.87 302 | 32.16 354 | 74.07 189 | 78.01 281 |
|
| PVSNet | | 50.76 19 | 58.40 286 | 57.39 287 | 61.42 305 | 75.53 233 | 44.04 280 | 61.43 340 | 63.45 326 | 47.04 311 | 56.91 309 | 73.61 324 | 27.00 350 | 64.76 338 | 39.12 316 | 72.40 218 | 75.47 307 |
|
| TinyColmap | | | 54.14 316 | 51.72 327 | 61.40 306 | 66.84 346 | 41.97 298 | 66.52 307 | 68.51 291 | 44.81 327 | 42.69 381 | 75.77 307 | 11.66 388 | 72.94 295 | 31.96 356 | 56.77 355 | 69.27 367 |
|
| UWE-MVS | | | 60.18 274 | 59.78 269 | 61.39 307 | 77.67 185 | 33.92 369 | 69.04 293 | 63.82 323 | 48.56 287 | 64.27 230 | 77.64 281 | 27.20 347 | 70.40 311 | 33.56 349 | 76.24 169 | 79.83 258 |
|
| PatchMatch-RL | | | 56.25 304 | 54.55 311 | 61.32 308 | 77.06 207 | 56.07 109 | 65.57 314 | 54.10 370 | 44.13 336 | 53.49 346 | 71.27 341 | 25.20 360 | 66.78 329 | 36.52 335 | 63.66 315 | 61.12 375 |
|
| CVMVSNet | | | 59.63 280 | 59.14 273 | 61.08 309 | 74.47 252 | 38.84 325 | 75.20 202 | 68.74 290 | 31.15 376 | 58.24 301 | 76.51 297 | 32.39 308 | 68.58 319 | 49.77 230 | 65.84 298 | 75.81 302 |
|
| RPSCF | | | 55.80 308 | 54.22 317 | 60.53 310 | 65.13 357 | 42.91 292 | 64.30 327 | 57.62 355 | 36.84 369 | 58.05 303 | 82.28 192 | 28.01 340 | 56.24 374 | 37.14 326 | 58.61 347 | 82.44 211 |
|
| WB-MVSnew | | | 59.66 279 | 59.69 270 | 59.56 311 | 75.19 239 | 35.78 356 | 69.34 290 | 64.28 320 | 46.88 312 | 61.76 265 | 75.79 306 | 40.61 217 | 65.20 337 | 32.16 354 | 71.21 232 | 77.70 282 |
|
| KD-MVS_2432*1600 | | | 53.45 321 | 51.50 329 | 59.30 312 | 62.82 366 | 37.14 341 | 55.33 367 | 71.79 265 | 47.34 307 | 55.09 326 | 70.52 345 | 21.91 370 | 70.45 309 | 35.72 339 | 42.97 383 | 70.31 359 |
|
| miper_refine_blended | | | 53.45 321 | 51.50 329 | 59.30 312 | 62.82 366 | 37.14 341 | 55.33 367 | 71.79 265 | 47.34 307 | 55.09 326 | 70.52 345 | 21.91 370 | 70.45 309 | 35.72 339 | 42.97 383 | 70.31 359 |
|
| Patchmtry | | | 57.16 295 | 56.47 296 | 59.23 314 | 69.17 331 | 34.58 363 | 62.98 332 | 63.15 329 | 44.53 330 | 56.83 310 | 74.84 315 | 35.83 265 | 68.71 318 | 40.03 311 | 60.91 336 | 74.39 321 |
|
| KD-MVS_self_test | | | 55.22 312 | 53.89 319 | 59.21 315 | 57.80 385 | 27.47 390 | 57.75 360 | 74.32 240 | 47.38 305 | 50.90 354 | 70.00 350 | 28.45 338 | 70.30 312 | 40.44 309 | 57.92 349 | 79.87 257 |
|
| EU-MVSNet | | | 55.61 309 | 54.41 313 | 59.19 316 | 65.41 356 | 33.42 371 | 72.44 251 | 71.91 264 | 28.81 378 | 51.27 351 | 73.87 322 | 24.76 362 | 69.08 317 | 43.04 293 | 58.20 348 | 75.06 310 |
|
| ADS-MVSNet2 | | | 51.33 332 | 48.76 339 | 59.07 317 | 66.02 354 | 44.60 275 | 50.90 377 | 59.76 346 | 36.90 367 | 50.74 355 | 66.18 371 | 26.38 352 | 63.11 343 | 27.17 380 | 54.76 361 | 69.50 365 |
|
| pmmvs5 | | | 56.47 301 | 55.68 303 | 58.86 318 | 61.41 374 | 36.71 347 | 66.37 308 | 62.75 331 | 40.38 360 | 53.70 340 | 76.62 294 | 34.56 275 | 67.05 327 | 40.02 312 | 65.27 301 | 72.83 331 |
|
| PM-MVS | | | 52.33 327 | 50.19 335 | 58.75 319 | 62.10 371 | 45.14 270 | 65.75 311 | 40.38 396 | 43.60 339 | 53.52 344 | 72.65 327 | 9.16 396 | 65.87 335 | 50.41 226 | 54.18 363 | 65.24 373 |
|
| FMVSNet5 | | | 55.86 307 | 54.93 307 | 58.66 320 | 71.05 305 | 36.35 350 | 64.18 329 | 62.48 333 | 46.76 313 | 50.66 358 | 74.73 317 | 25.80 357 | 64.04 340 | 33.11 350 | 65.57 300 | 75.59 305 |
|
| testing3 | | | 56.54 299 | 55.92 301 | 58.41 321 | 77.52 195 | 27.93 388 | 69.72 286 | 56.36 361 | 54.75 213 | 58.63 298 | 77.80 276 | 20.88 374 | 71.75 303 | 25.31 386 | 62.25 328 | 75.53 306 |
|
| test_vis1_n_1920 | | | 58.86 283 | 59.06 274 | 58.25 322 | 63.76 362 | 43.14 289 | 67.49 303 | 66.36 306 | 40.22 361 | 65.89 197 | 71.95 335 | 31.04 313 | 59.75 356 | 59.94 156 | 64.90 304 | 71.85 345 |
|
| test-LLR | | | 58.15 289 | 58.13 285 | 58.22 323 | 68.57 334 | 44.80 272 | 65.46 317 | 57.92 353 | 50.08 270 | 55.44 321 | 69.82 351 | 32.62 303 | 57.44 366 | 49.66 233 | 73.62 196 | 72.41 338 |
|
| test-mter | | | 56.42 302 | 55.82 302 | 58.22 323 | 68.57 334 | 44.80 272 | 65.46 317 | 57.92 353 | 39.94 364 | 55.44 321 | 69.82 351 | 21.92 369 | 57.44 366 | 49.66 233 | 73.62 196 | 72.41 338 |
|
| MIMVSNet | | | 57.35 293 | 57.07 289 | 58.22 323 | 74.21 259 | 37.18 340 | 62.46 335 | 60.88 344 | 48.88 284 | 55.29 324 | 75.99 304 | 31.68 311 | 62.04 347 | 31.87 357 | 72.35 219 | 75.43 308 |
|
| Anonymous20240521 | | | 55.30 310 | 54.41 313 | 57.96 326 | 60.92 379 | 41.73 301 | 71.09 272 | 71.06 270 | 41.18 355 | 48.65 363 | 73.31 325 | 16.93 378 | 59.25 358 | 42.54 297 | 64.01 312 | 72.90 330 |
|
| WTY-MVS | | | 59.75 278 | 60.39 266 | 57.85 327 | 72.32 284 | 37.83 334 | 61.05 346 | 64.18 321 | 45.95 322 | 61.91 262 | 79.11 256 | 47.01 151 | 60.88 350 | 42.50 298 | 69.49 264 | 74.83 315 |
|
| MIMVSNet1 | | | 55.17 313 | 54.31 315 | 57.77 328 | 70.03 319 | 32.01 377 | 65.68 313 | 64.81 315 | 49.19 280 | 46.75 370 | 76.00 302 | 25.53 359 | 64.04 340 | 28.65 376 | 62.13 329 | 77.26 289 |
|
| XXY-MVS | | | 60.68 271 | 61.67 252 | 57.70 329 | 70.43 312 | 38.45 329 | 64.19 328 | 66.47 304 | 48.05 297 | 63.22 240 | 80.86 224 | 49.28 116 | 60.47 351 | 45.25 277 | 67.28 288 | 74.19 323 |
|
| test_cas_vis1_n_1920 | | | 56.91 297 | 56.71 294 | 57.51 330 | 59.13 382 | 45.40 268 | 63.58 330 | 61.29 342 | 36.24 370 | 67.14 172 | 71.85 336 | 29.89 324 | 56.69 370 | 57.65 168 | 63.58 317 | 70.46 358 |
|
| tpmrst | | | 58.24 287 | 58.70 278 | 56.84 331 | 66.97 344 | 34.32 364 | 69.57 288 | 61.14 343 | 47.17 310 | 58.58 299 | 71.60 337 | 41.28 212 | 60.41 352 | 49.20 237 | 62.84 323 | 75.78 303 |
|
| dmvs_re | | | 56.77 298 | 56.83 293 | 56.61 332 | 69.23 329 | 41.02 306 | 58.37 355 | 64.18 321 | 50.59 266 | 57.45 307 | 71.42 338 | 35.54 267 | 58.94 360 | 37.23 325 | 67.45 286 | 69.87 363 |
|
| TESTMET0.1,1 | | | 55.28 311 | 54.90 308 | 56.42 333 | 66.56 348 | 43.67 283 | 65.46 317 | 56.27 363 | 39.18 366 | 53.83 339 | 67.44 363 | 24.21 364 | 55.46 377 | 48.04 248 | 73.11 209 | 70.13 361 |
|
| PMMVS | | | 53.96 317 | 53.26 323 | 56.04 334 | 62.60 369 | 50.92 194 | 61.17 344 | 56.09 364 | 32.81 374 | 53.51 345 | 66.84 368 | 34.04 282 | 59.93 355 | 44.14 282 | 68.18 280 | 57.27 383 |
|
| YYNet1 | | | 50.73 334 | 48.96 336 | 56.03 335 | 61.10 376 | 41.78 300 | 51.94 375 | 56.44 360 | 40.94 358 | 44.84 374 | 67.80 361 | 30.08 322 | 55.08 378 | 36.77 329 | 50.71 371 | 71.22 352 |
|
| MDA-MVSNet_test_wron | | | 50.71 335 | 48.95 337 | 56.00 336 | 61.17 375 | 41.84 299 | 51.90 376 | 56.45 359 | 40.96 357 | 44.79 375 | 67.84 360 | 30.04 323 | 55.07 379 | 36.71 331 | 50.69 372 | 71.11 355 |
|
| myMVS_eth3d | | | 54.86 315 | 54.61 310 | 55.61 337 | 74.69 247 | 27.31 391 | 65.52 315 | 57.49 356 | 50.97 261 | 56.52 313 | 72.18 330 | 21.87 372 | 68.09 321 | 27.70 379 | 64.59 309 | 71.44 350 |
|
| Syy-MVS | | | 56.00 306 | 56.23 299 | 55.32 338 | 74.69 247 | 26.44 394 | 65.52 315 | 57.49 356 | 50.97 261 | 56.52 313 | 72.18 330 | 39.89 221 | 68.09 321 | 24.20 387 | 64.59 309 | 71.44 350 |
|
| UnsupCasMVSNet_eth | | | 53.16 326 | 52.47 324 | 55.23 339 | 59.45 381 | 33.39 372 | 59.43 352 | 69.13 287 | 45.98 319 | 50.35 360 | 72.32 329 | 29.30 331 | 58.26 364 | 42.02 302 | 44.30 381 | 74.05 324 |
|
| sss | | | 56.17 305 | 56.57 295 | 54.96 340 | 66.93 345 | 36.32 352 | 57.94 358 | 61.69 340 | 41.67 352 | 58.64 297 | 75.32 313 | 38.72 235 | 56.25 373 | 42.04 301 | 66.19 296 | 72.31 341 |
|
| tpm | | | 57.34 294 | 58.16 283 | 54.86 341 | 71.80 292 | 34.77 360 | 67.47 304 | 56.04 365 | 48.20 294 | 60.10 277 | 76.92 288 | 37.17 253 | 53.41 382 | 40.76 308 | 65.01 303 | 76.40 299 |
|
| EPMVS | | | 53.96 317 | 53.69 320 | 54.79 342 | 66.12 353 | 31.96 378 | 62.34 337 | 49.05 380 | 44.42 333 | 55.54 319 | 71.33 340 | 30.22 321 | 56.70 369 | 41.65 305 | 62.54 326 | 75.71 304 |
|
| Anonymous20231206 | | | 55.10 314 | 55.30 306 | 54.48 343 | 69.81 324 | 33.94 368 | 62.91 333 | 62.13 339 | 41.08 356 | 55.18 325 | 75.65 308 | 32.75 300 | 56.59 372 | 30.32 370 | 67.86 282 | 72.91 329 |
|
| EGC-MVSNET | | | 42.47 350 | 38.48 358 | 54.46 344 | 74.33 256 | 48.73 231 | 70.33 281 | 51.10 376 | 0.03 408 | 0.18 409 | 67.78 362 | 13.28 385 | 66.49 331 | 18.91 393 | 50.36 373 | 48.15 390 |
|
| test_fmvs1_n | | | 51.37 331 | 50.35 334 | 54.42 345 | 52.85 388 | 37.71 336 | 61.16 345 | 51.93 372 | 28.15 380 | 63.81 236 | 69.73 353 | 13.72 383 | 53.95 380 | 51.16 221 | 60.65 340 | 71.59 347 |
|
| pmmvs3 | | | 44.92 346 | 41.95 353 | 53.86 346 | 52.58 390 | 43.55 284 | 62.11 338 | 46.90 388 | 26.05 385 | 40.63 383 | 60.19 381 | 11.08 393 | 57.91 365 | 31.83 361 | 46.15 379 | 60.11 376 |
|
| test_fmvs1 | | | 51.32 333 | 50.48 333 | 53.81 347 | 53.57 387 | 37.51 338 | 60.63 349 | 51.16 375 | 28.02 382 | 63.62 237 | 69.23 356 | 16.41 379 | 53.93 381 | 51.01 222 | 60.70 339 | 69.99 362 |
|
| UnsupCasMVSNet_bld | | | 50.07 337 | 48.87 338 | 53.66 348 | 60.97 378 | 33.67 370 | 57.62 361 | 64.56 318 | 39.47 365 | 47.38 366 | 64.02 377 | 27.47 344 | 59.32 357 | 34.69 343 | 43.68 382 | 67.98 370 |
|
| LCM-MVSNet | | | 40.30 355 | 35.88 361 | 53.57 349 | 42.24 399 | 29.15 384 | 45.21 389 | 60.53 345 | 22.23 392 | 28.02 394 | 50.98 392 | 3.72 405 | 61.78 348 | 31.22 367 | 38.76 389 | 69.78 364 |
|
| test_vis1_n | | | 49.89 338 | 48.69 340 | 53.50 350 | 53.97 386 | 37.38 339 | 61.53 339 | 47.33 386 | 28.54 379 | 59.62 286 | 67.10 367 | 13.52 384 | 52.27 385 | 49.07 238 | 57.52 350 | 70.84 356 |
|
| test20.03 | | | 53.87 319 | 54.02 318 | 53.41 351 | 61.47 373 | 28.11 387 | 61.30 342 | 59.21 348 | 51.34 256 | 52.09 349 | 77.43 283 | 33.29 292 | 58.55 362 | 29.76 372 | 60.27 342 | 73.58 327 |
|
| ANet_high | | | 41.38 353 | 37.47 360 | 53.11 352 | 39.73 404 | 24.45 399 | 56.94 363 | 69.69 278 | 47.65 302 | 26.04 396 | 52.32 388 | 12.44 386 | 62.38 346 | 21.80 390 | 10.61 405 | 72.49 335 |
|
| PVSNet_0 | | 43.31 20 | 47.46 344 | 45.64 347 | 52.92 353 | 67.60 342 | 44.65 274 | 54.06 371 | 54.64 366 | 41.59 353 | 46.15 372 | 58.75 382 | 30.99 314 | 58.66 361 | 32.18 353 | 24.81 397 | 55.46 385 |
|
| dp | | | 51.89 329 | 51.60 328 | 52.77 354 | 68.44 337 | 32.45 376 | 62.36 336 | 54.57 367 | 44.16 335 | 49.31 362 | 67.91 359 | 28.87 334 | 56.61 371 | 33.89 345 | 54.89 360 | 69.24 368 |
|
| test0.0.03 1 | | | 53.32 324 | 53.59 321 | 52.50 355 | 62.81 368 | 29.45 383 | 59.51 351 | 54.11 369 | 50.08 270 | 54.40 335 | 74.31 320 | 32.62 303 | 55.92 375 | 30.50 369 | 63.95 314 | 72.15 343 |
|
| PatchT | | | 53.17 325 | 53.44 322 | 52.33 356 | 68.29 338 | 25.34 398 | 58.21 356 | 54.41 368 | 44.46 332 | 54.56 333 | 69.05 357 | 33.32 291 | 60.94 349 | 36.93 328 | 61.76 333 | 70.73 357 |
|
| test_fmvs2 | | | 48.69 340 | 47.49 345 | 52.29 357 | 48.63 394 | 33.06 374 | 57.76 359 | 48.05 384 | 25.71 386 | 59.76 284 | 69.60 354 | 11.57 389 | 52.23 386 | 49.45 236 | 56.86 353 | 71.58 348 |
|
| CHOSEN 280x420 | | | 47.83 342 | 46.36 346 | 52.24 358 | 67.37 343 | 49.78 215 | 38.91 395 | 43.11 394 | 35.00 372 | 43.27 380 | 63.30 378 | 28.95 332 | 49.19 389 | 36.53 334 | 60.80 338 | 57.76 382 |
|
| Patchmatch-test | | | 49.08 339 | 48.28 341 | 51.50 359 | 64.40 360 | 30.85 381 | 45.68 387 | 48.46 383 | 35.60 371 | 46.10 373 | 72.10 332 | 34.47 278 | 46.37 392 | 27.08 382 | 60.65 340 | 77.27 288 |
|
| ADS-MVSNet | | | 48.48 341 | 47.77 342 | 50.63 360 | 66.02 354 | 29.92 382 | 50.90 377 | 50.87 379 | 36.90 367 | 50.74 355 | 66.18 371 | 26.38 352 | 52.47 384 | 27.17 380 | 54.76 361 | 69.50 365 |
|
| testgi | | | 51.90 328 | 52.37 325 | 50.51 361 | 60.39 380 | 23.55 401 | 58.42 354 | 58.15 351 | 49.03 282 | 51.83 350 | 79.21 255 | 22.39 367 | 55.59 376 | 29.24 375 | 62.64 324 | 72.40 340 |
|
| test_fmvs3 | | | 44.30 347 | 42.55 350 | 49.55 362 | 42.83 398 | 27.15 393 | 53.03 373 | 44.93 390 | 22.03 393 | 53.69 342 | 64.94 374 | 4.21 403 | 49.63 388 | 47.47 249 | 49.82 374 | 71.88 344 |
|
| MVS-HIRNet | | | 45.52 345 | 44.48 348 | 48.65 363 | 68.49 336 | 34.05 367 | 59.41 353 | 44.50 391 | 27.03 383 | 37.96 390 | 50.47 393 | 26.16 355 | 64.10 339 | 26.74 383 | 59.52 343 | 47.82 392 |
|
| new-patchmatchnet | | | 47.56 343 | 47.73 343 | 47.06 364 | 58.81 383 | 9.37 410 | 48.78 381 | 59.21 348 | 43.28 342 | 44.22 377 | 68.66 358 | 25.67 358 | 57.20 368 | 31.57 364 | 49.35 376 | 74.62 319 |
|
| test_vis1_rt | | | 41.35 354 | 39.45 356 | 47.03 365 | 46.65 397 | 37.86 333 | 47.76 382 | 38.65 397 | 23.10 389 | 44.21 378 | 51.22 391 | 11.20 392 | 44.08 394 | 39.27 315 | 53.02 366 | 59.14 378 |
|
| FPMVS | | | 42.18 351 | 41.11 354 | 45.39 366 | 58.03 384 | 41.01 308 | 49.50 379 | 53.81 371 | 30.07 377 | 33.71 391 | 64.03 375 | 11.69 387 | 52.08 387 | 14.01 397 | 55.11 359 | 43.09 394 |
|
| LF4IMVS | | | 42.95 349 | 42.26 351 | 45.04 367 | 48.30 395 | 32.50 375 | 54.80 369 | 48.49 382 | 28.03 381 | 40.51 384 | 70.16 348 | 9.24 395 | 43.89 395 | 31.63 362 | 49.18 377 | 58.72 379 |
|
| PMVS |  | 28.69 22 | 36.22 360 | 33.29 364 | 45.02 368 | 36.82 406 | 35.98 355 | 54.68 370 | 48.74 381 | 26.31 384 | 21.02 399 | 51.61 390 | 2.88 408 | 60.10 354 | 9.99 405 | 47.58 378 | 38.99 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dmvs_testset | | | 50.16 336 | 51.90 326 | 44.94 369 | 66.49 349 | 11.78 407 | 61.01 347 | 51.50 374 | 51.17 259 | 50.30 361 | 67.44 363 | 39.28 228 | 60.29 353 | 22.38 389 | 57.49 351 | 62.76 374 |
|
| APD_test1 | | | 37.39 359 | 34.94 362 | 44.72 370 | 48.88 393 | 33.19 373 | 52.95 374 | 44.00 393 | 19.49 394 | 27.28 395 | 58.59 383 | 3.18 407 | 52.84 383 | 18.92 392 | 41.17 386 | 48.14 391 |
|
| Gipuma |  | | 34.77 361 | 31.91 365 | 43.33 371 | 62.05 372 | 37.87 332 | 20.39 400 | 67.03 300 | 23.23 388 | 18.41 401 | 25.84 401 | 4.24 402 | 62.73 344 | 14.71 396 | 51.32 370 | 29.38 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| mvsany_test1 | | | 39.38 356 | 38.16 359 | 43.02 372 | 49.05 392 | 34.28 365 | 44.16 391 | 25.94 407 | 22.74 391 | 46.57 371 | 62.21 380 | 23.85 365 | 41.16 399 | 33.01 351 | 35.91 391 | 53.63 386 |
|
| WB-MVS | | | 43.26 348 | 43.41 349 | 42.83 373 | 63.32 365 | 10.32 409 | 58.17 357 | 45.20 389 | 45.42 324 | 40.44 385 | 67.26 366 | 34.01 284 | 58.98 359 | 11.96 401 | 24.88 396 | 59.20 377 |
|
| SSC-MVS | | | 41.96 352 | 41.99 352 | 41.90 374 | 62.46 370 | 9.28 411 | 57.41 362 | 44.32 392 | 43.38 341 | 38.30 389 | 66.45 369 | 32.67 302 | 58.42 363 | 10.98 402 | 21.91 399 | 57.99 381 |
|
| DSMNet-mixed | | | 39.30 358 | 38.72 357 | 41.03 375 | 51.22 391 | 19.66 404 | 45.53 388 | 31.35 403 | 15.83 400 | 39.80 387 | 67.42 365 | 22.19 368 | 45.13 393 | 22.43 388 | 52.69 367 | 58.31 380 |
|
| testf1 | | | 31.46 366 | 28.89 369 | 39.16 376 | 41.99 401 | 28.78 385 | 46.45 385 | 37.56 398 | 14.28 401 | 21.10 397 | 48.96 394 | 1.48 411 | 47.11 390 | 13.63 398 | 34.56 392 | 41.60 395 |
|
| APD_test2 | | | 31.46 366 | 28.89 369 | 39.16 376 | 41.99 401 | 28.78 385 | 46.45 385 | 37.56 398 | 14.28 401 | 21.10 397 | 48.96 394 | 1.48 411 | 47.11 390 | 13.63 398 | 34.56 392 | 41.60 395 |
|
| mvsany_test3 | | | 32.62 363 | 30.57 367 | 38.77 378 | 36.16 407 | 24.20 400 | 38.10 396 | 20.63 409 | 19.14 395 | 40.36 386 | 57.43 384 | 5.06 400 | 36.63 402 | 29.59 374 | 28.66 395 | 55.49 384 |
|
| test_vis3_rt | | | 32.09 364 | 30.20 368 | 37.76 379 | 35.36 408 | 27.48 389 | 40.60 394 | 28.29 406 | 16.69 398 | 32.52 392 | 40.53 397 | 1.96 409 | 37.40 401 | 33.64 348 | 42.21 385 | 48.39 389 |
|
| N_pmnet | | | 39.35 357 | 40.28 355 | 36.54 380 | 63.76 362 | 1.62 415 | 49.37 380 | 0.76 414 | 34.62 373 | 43.61 379 | 66.38 370 | 26.25 354 | 42.57 396 | 26.02 385 | 51.77 368 | 65.44 372 |
|
| test_f | | | 31.86 365 | 31.05 366 | 34.28 381 | 32.33 410 | 21.86 402 | 32.34 397 | 30.46 404 | 16.02 399 | 39.78 388 | 55.45 386 | 4.80 401 | 32.36 404 | 30.61 368 | 37.66 390 | 48.64 388 |
|
| new_pmnet | | | 34.13 362 | 34.29 363 | 33.64 382 | 52.63 389 | 18.23 406 | 44.43 390 | 33.90 402 | 22.81 390 | 30.89 393 | 53.18 387 | 10.48 394 | 35.72 403 | 20.77 391 | 39.51 387 | 46.98 393 |
|
| MVE |  | 17.77 23 | 21.41 371 | 17.77 376 | 32.34 383 | 34.34 409 | 25.44 397 | 16.11 401 | 24.11 408 | 11.19 403 | 13.22 403 | 31.92 399 | 1.58 410 | 30.95 405 | 10.47 403 | 17.03 401 | 40.62 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 27.40 368 | 25.91 371 | 31.87 384 | 39.46 405 | 6.57 412 | 31.17 398 | 28.52 405 | 23.96 387 | 20.45 400 | 48.94 396 | 4.20 404 | 37.94 400 | 16.51 394 | 19.97 400 | 51.09 387 |
|
| E-PMN | | | 23.77 369 | 22.73 373 | 26.90 385 | 42.02 400 | 20.67 403 | 42.66 392 | 35.70 400 | 17.43 396 | 10.28 406 | 25.05 402 | 6.42 398 | 42.39 397 | 10.28 404 | 14.71 402 | 17.63 401 |
|
| EMVS | | | 22.97 370 | 21.84 374 | 26.36 386 | 40.20 403 | 19.53 405 | 41.95 393 | 34.64 401 | 17.09 397 | 9.73 407 | 22.83 403 | 7.29 397 | 42.22 398 | 9.18 406 | 13.66 403 | 17.32 402 |
|
| test_method | | | 19.68 372 | 18.10 375 | 24.41 387 | 13.68 412 | 3.11 414 | 12.06 403 | 42.37 395 | 2.00 406 | 11.97 404 | 36.38 398 | 5.77 399 | 29.35 406 | 15.06 395 | 23.65 398 | 40.76 397 |
|
| wuyk23d | | | 13.32 374 | 12.52 377 | 15.71 388 | 47.54 396 | 26.27 395 | 31.06 399 | 1.98 413 | 4.93 405 | 5.18 408 | 1.94 408 | 0.45 413 | 18.54 407 | 6.81 408 | 12.83 404 | 2.33 405 |
|
| DeepMVS_CX |  | | | | 12.03 389 | 17.97 411 | 10.91 408 | | 10.60 412 | 7.46 404 | 11.07 405 | 28.36 400 | 3.28 406 | 11.29 408 | 8.01 407 | 9.74 407 | 13.89 403 |
|
| tmp_tt | | | 9.43 375 | 11.14 378 | 4.30 390 | 2.38 413 | 4.40 413 | 13.62 402 | 16.08 411 | 0.39 407 | 15.89 402 | 13.06 404 | 15.80 381 | 5.54 409 | 12.63 400 | 10.46 406 | 2.95 404 |
|
| test123 | | | 4.73 377 | 6.30 380 | 0.02 391 | 0.01 414 | 0.01 416 | 56.36 365 | 0.00 415 | 0.01 409 | 0.04 410 | 0.21 410 | 0.01 414 | 0.00 410 | 0.03 410 | 0.00 408 | 0.04 406 |
|
| testmvs | | | 4.52 378 | 6.03 381 | 0.01 392 | 0.01 414 | 0.00 417 | 53.86 372 | 0.00 415 | 0.01 409 | 0.04 410 | 0.27 409 | 0.00 415 | 0.00 410 | 0.04 409 | 0.00 408 | 0.03 407 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 17.50 373 | 23.34 372 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 78.63 163 | 0.00 411 | 0.00 412 | 82.18 193 | 49.25 117 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 3.92 379 | 5.23 382 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 47.05 148 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| ab-mvs-re | | | 6.49 376 | 8.65 379 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 77.89 274 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 415 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| WAC-MVS | | | | | | | 27.31 391 | | | | | | | | 27.77 378 | | |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 64 | 60.87 84 | 81.50 16 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 55.09 203 | 84.46 4 | 89.84 43 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 12 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 57 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 87 | 57.95 146 | 78.10 24 | 90.06 36 | 56.12 40 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| RE-MVS-def | | | | 73.71 64 | | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 108 | 58.07 141 | 73.14 76 | 90.07 34 | 43.06 190 | | 68.20 79 | 81.76 97 | 84.03 162 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 60 | | 85.53 25 | 53.93 227 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 14 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 39 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 69 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
| 9.14 | | | | 78.75 15 | | 83.10 69 | | 84.15 43 | 88.26 1 | 59.90 107 | 78.57 23 | 90.36 27 | 57.51 32 | 86.86 65 | 77.39 23 | 89.52 21 | |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 47 | 79.66 142 | 59.00 123 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 23 |
|
| test0726 | | | | | | 87.75 7 | 59.07 64 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 277 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 274 | | | | 78.05 277 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 290 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 125 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 294 | | | | 3.64 406 | 32.39 308 | 69.49 315 | 44.17 280 | | |
|
| test_post | | | | | | | | | | | | 3.55 407 | 33.90 285 | 66.52 330 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 375 | 34.50 276 | 74.27 291 | | | |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 410 | | | | | | | | |
|
| gm-plane-assit | | | | | | 71.40 299 | 41.72 303 | | | 48.85 285 | | 73.31 325 | | 82.48 169 | 48.90 240 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 172 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 82 | 81.26 116 | 55.65 191 | 74.93 45 | 88.81 56 | 53.70 65 | 84.68 119 | | | |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 85 | 81.18 119 | 55.86 182 | 74.81 49 | 88.80 58 | 53.70 65 | 84.45 123 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 153 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 47 | | 81.04 123 | | 74.68 52 | | | 84.04 129 | | | |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 77 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 80 | | 60.37 96 | 75.01 43 | 89.06 52 | 56.22 39 | | 72.19 59 | 88.96 24 | |
|
| 旧先验2 | | | | | | | | 76.08 183 | | 45.32 325 | 76.55 33 | | | 65.56 336 | 58.75 164 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 76.12 181 | | | | | | | | | |
|
| 旧先验1 | | | | | | 83.04 70 | 53.15 158 | | 67.52 295 | | | 87.85 71 | 44.08 181 | | | 80.76 103 | 78.03 280 |
|
| æ— å…ˆéªŒ | | | | | | | | 79.66 111 | 74.30 242 | 48.40 292 | | | | 80.78 204 | 53.62 200 | | 79.03 269 |
|
| 原ACMM2 | | | | | | | | 79.02 117 | | | | | | | | | |
|
| test222 | | | | | | 83.14 68 | 58.68 73 | 72.57 249 | 63.45 326 | 41.78 350 | 67.56 165 | 86.12 109 | 37.13 255 | | | 78.73 137 | 74.98 313 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 301 | 46.95 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 56 | | | | |
|
| testdata1 | | | | | | | | 72.65 245 | | 60.50 91 | | | | | | | |
|
| plane_prior7 | | | | | | 81.41 90 | 55.96 111 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 97 | 56.24 106 | | | | | | 45.26 172 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 55 | 68.16 81 | 80.58 106 | 84.65 147 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 110 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 108 | | | 63.92 36 | 69.27 131 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 40 | | 64.52 25 | | | | | | | |
|
| plane_prior1 | | | | | | 81.27 95 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 56.31 102 | 83.58 53 | | 63.19 48 | | | | | | 80.48 109 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 387 | | | | | | | | |
|
| test11 | | | | | | | | | 83.47 68 | | | | | | | | |
|
| door | | | | | | | | | 47.60 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 131 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 80.66 103 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 103 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 95 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 155 | | | 86.93 63 | | | 84.32 154 |
|
| HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 110 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 166 | | | | |
|
| NP-MVS | | | | | | 80.98 100 | 56.05 110 | | | | | 85.54 128 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 396 | 61.22 343 | | 40.10 362 | 51.10 352 | | 32.97 295 | | 38.49 318 | | 78.61 272 |
|
| MDTV_nov1_ep13 | | | | 57.00 290 | | 72.73 274 | 38.26 330 | 65.02 324 | 64.73 317 | 44.74 328 | 55.46 320 | 72.48 328 | 32.61 305 | 70.47 308 | 37.47 323 | 67.75 284 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 189 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 223 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 128 | | | | |
|