| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 3 | 88.44 27 | 88.09 21 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MM | | | | | 79.99 2 | | 60.01 46 | 86.19 17 | 83.93 51 | 73.19 1 | 77.08 30 | 91.21 15 | 57.23 31 | 90.73 10 | 83.35 1 | 88.12 35 | 89.22 5 |
|
| SteuartSystems-ACMMP | | | 79.48 10 | 79.31 10 | 79.98 3 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 16 | 54.26 53 | 90.06 13 | 78.42 19 | 89.02 23 | 87.69 33 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 27 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 27 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 34 | 89.70 16 | 79.85 5 | 91.48 1 | 88.19 18 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 42 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 16 |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 21 | 79.83 7 | 83.60 63 | 61.62 23 | 84.17 42 | 86.85 6 | 63.23 46 | 73.84 63 | 90.25 32 | 57.68 27 | 89.96 14 | 74.62 43 | 89.03 22 | 87.89 24 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 66.72 4 | 75.84 44 | 74.57 52 | 79.66 9 | 82.40 76 | 59.92 48 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 157 | 89.24 51 | 42.03 197 | 89.38 19 | 64.07 116 | 86.50 55 | 89.69 2 |
|
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 60 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 11 |
|
| CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 36 | 85.03 34 | 66.96 5 | 77.58 27 | 90.06 36 | 59.47 20 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 53 |
|
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 31 | 84.42 42 | 66.73 8 | 74.67 51 | 89.38 49 | 55.30 42 | 89.18 21 | 74.19 46 | 87.34 43 | 86.38 72 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 69 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 16 |
|
| ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 40 | 90.47 26 | 53.96 57 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 51 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 59 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 63 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 37 |
|
| ACMMPR | | | 77.71 24 | 77.23 27 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 45 | 62.82 55 | 73.55 66 | 90.56 22 | 49.80 109 | 88.24 33 | 74.02 48 | 87.03 45 | 86.32 80 |
|
| region2R | | | 77.67 26 | 77.18 28 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 47 | 62.81 57 | 73.30 68 | 90.58 21 | 49.90 107 | 88.21 34 | 73.78 50 | 87.03 45 | 86.29 83 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 19 | 84.92 56 | 60.32 44 | 83.03 57 | 85.33 27 | 62.86 54 | 80.17 17 | 90.03 38 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 20 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 29 | 76.63 32 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 33 | 84.85 38 | 61.98 74 | 73.06 78 | 88.88 55 | 53.72 62 | 89.06 23 | 68.27 78 | 88.04 38 | 87.42 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HFP-MVS | | | 78.01 23 | 77.65 24 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 44 | 62.82 55 | 73.96 61 | 90.50 24 | 53.20 68 | 88.35 31 | 74.02 48 | 87.05 44 | 86.13 87 |
|
| HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 61 | 65.37 13 | 78.78 22 | 90.64 19 | 58.63 24 | 87.24 51 | 79.00 12 | 90.37 14 | 85.26 127 |
|
| XVS | | | 77.17 30 | 76.56 33 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 52 | 64.55 23 | 72.17 92 | 90.01 40 | 47.95 129 | 88.01 38 | 71.55 65 | 86.74 52 | 86.37 74 |
|
| X-MVStestdata | | | 70.21 118 | 67.28 170 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 52 | 64.55 23 | 72.17 92 | 6.49 396 | 47.95 129 | 88.01 38 | 71.55 65 | 86.74 52 | 86.37 74 |
|
| GST-MVS | | | 78.14 21 | 77.85 23 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 29 | 63.56 41 | 74.29 57 | 90.03 38 | 52.56 74 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 68 |
|
| TSAR-MVS + MP. | | | 78.44 18 | 78.28 19 | 78.90 26 | 84.96 52 | 61.41 26 | 84.03 45 | 83.82 59 | 59.34 117 | 79.37 19 | 89.76 45 | 59.84 16 | 87.62 47 | 76.69 27 | 86.74 52 | 87.68 34 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 76.77 34 | 76.06 37 | 78.88 27 | 86.14 35 | 62.73 9 | 82.55 67 | 83.74 60 | 61.71 76 | 72.45 91 | 90.34 29 | 48.48 125 | 88.13 35 | 72.32 58 | 86.85 50 | 85.78 99 |
|
| APDe-MVS |  | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 15 | 78.70 13 | 88.32 31 | 86.79 61 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 78.77 14 | 78.78 13 | 78.74 29 | 85.44 45 | 61.04 31 | 83.84 49 | 85.16 30 | 62.88 53 | 78.10 24 | 91.26 13 | 52.51 75 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 62 |
|
| MVS_0304 | | | 78.73 15 | 78.75 14 | 78.66 30 | 80.82 100 | 57.62 83 | 85.31 30 | 81.31 112 | 70.51 2 | 74.17 58 | 91.24 14 | 54.99 45 | 89.56 17 | 82.29 2 | 88.13 34 | 88.80 7 |
|
| MP-MVS |  | | 78.35 19 | 78.26 20 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 65 | 63.89 37 | 73.60 65 | 90.60 20 | 54.85 48 | 86.72 68 | 77.20 25 | 88.06 37 | 85.74 105 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS |  | | 77.28 28 | 76.85 29 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 60 | 85.08 31 | 62.57 60 | 73.09 77 | 89.97 41 | 50.90 102 | 87.48 49 | 75.30 36 | 86.85 50 | 87.33 49 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 77.12 31 | 76.68 31 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 68 | 62.44 64 | 72.68 85 | 90.50 24 | 48.18 127 | 87.34 50 | 73.59 52 | 85.71 58 | 84.76 143 |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 64 | 87.85 5 | 85.03 34 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 116 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MTAPA | | | 76.90 33 | 76.42 34 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 208 | 80.97 123 | 65.13 15 | 75.77 35 | 90.88 17 | 48.63 122 | 86.66 70 | 77.23 24 | 88.17 33 | 84.81 140 |
|
| mPP-MVS | | | 76.54 35 | 75.93 39 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 90 | 62.90 52 | 71.77 95 | 90.26 31 | 46.61 153 | 86.55 74 | 71.71 63 | 85.66 59 | 84.97 136 |
|
| CDPH-MVS | | | 76.31 37 | 75.67 43 | 78.22 37 | 85.35 48 | 59.14 62 | 81.31 87 | 84.02 48 | 56.32 169 | 74.05 59 | 88.98 54 | 53.34 67 | 87.92 41 | 69.23 76 | 88.42 28 | 87.59 38 |
|
| ACMMP |  | | 76.02 42 | 75.33 45 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 41 | 63.04 49 | 69.80 119 | 89.74 46 | 45.43 166 | 87.16 55 | 72.01 60 | 82.87 83 | 85.14 129 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CANet | | | 76.46 36 | 75.93 39 | 78.06 39 | 81.29 92 | 57.53 85 | 82.35 69 | 83.31 74 | 67.78 3 | 70.09 109 | 86.34 101 | 54.92 47 | 88.90 25 | 72.68 57 | 84.55 65 | 87.76 32 |
|
| MP-MVS-pluss | | | 78.35 19 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 53 | 82.93 59 | 85.39 26 | 62.15 67 | 76.41 33 | 91.51 11 | 52.47 77 | 86.78 67 | 80.66 4 | 89.64 19 | 87.80 30 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| APD-MVS |  | | 78.02 22 | 78.04 22 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 43 | 60.61 89 | 79.05 21 | 90.30 30 | 55.54 41 | 88.32 32 | 73.48 53 | 87.03 45 | 84.83 139 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SD-MVS | | | 77.70 25 | 77.62 25 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 34 | 83.87 57 | 60.37 96 | 79.89 18 | 89.38 49 | 54.97 46 | 85.58 97 | 76.12 31 | 84.94 62 | 86.33 78 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test12 | | | | | 77.76 43 | 84.52 58 | 58.41 75 | | 83.36 72 | | 72.93 81 | | 54.61 51 | 88.05 37 | | 88.12 35 | 86.81 60 |
|
| SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 44 | 82.88 74 | 57.83 80 | 84.99 32 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 18 | 57.96 25 | 87.09 60 | 77.08 26 | 90.18 15 | 87.87 26 |
|
| MCST-MVS | | | 77.48 27 | 77.45 26 | 77.54 45 | 86.67 20 | 58.36 76 | 83.22 55 | 86.93 5 | 56.91 157 | 74.91 45 | 88.19 62 | 59.15 22 | 87.68 46 | 73.67 51 | 87.45 42 | 86.57 69 |
|
| CSCG | | | 76.92 32 | 76.75 30 | 77.41 46 | 83.96 62 | 59.60 51 | 82.95 58 | 86.50 13 | 60.78 87 | 75.27 37 | 84.83 133 | 60.76 15 | 86.56 73 | 67.86 84 | 87.87 41 | 86.06 89 |
|
| PHI-MVS | | | 75.87 43 | 75.36 44 | 77.41 46 | 80.62 106 | 55.91 113 | 84.28 39 | 85.78 20 | 56.08 175 | 73.41 67 | 86.58 94 | 50.94 101 | 88.54 28 | 70.79 68 | 89.71 17 | 87.79 31 |
|
| SR-MVS | | | 76.13 41 | 75.70 42 | 77.40 48 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 91 | 59.99 105 | 75.10 39 | 90.35 28 | 47.66 134 | 86.52 75 | 71.64 64 | 82.99 78 | 84.47 149 |
|
| TSAR-MVS + GP. | | | 74.90 49 | 74.15 56 | 77.17 49 | 82.00 80 | 58.77 72 | 81.80 79 | 78.57 162 | 58.58 128 | 74.32 56 | 84.51 143 | 55.94 39 | 87.22 52 | 67.11 92 | 84.48 67 | 85.52 112 |
|
| CS-MVS | | | 76.25 39 | 75.98 38 | 77.06 50 | 80.15 115 | 55.63 120 | 84.51 35 | 83.90 54 | 63.24 45 | 73.30 68 | 87.27 79 | 55.06 44 | 86.30 83 | 71.78 62 | 84.58 64 | 89.25 4 |
|
| DPM-MVS | | | 75.47 47 | 75.00 48 | 76.88 51 | 81.38 91 | 59.16 59 | 79.94 102 | 85.71 22 | 56.59 165 | 72.46 89 | 86.76 85 | 56.89 32 | 87.86 43 | 66.36 97 | 88.91 25 | 83.64 181 |
|
| HPM-MVS_fast | | | 74.30 59 | 73.46 64 | 76.80 52 | 84.45 60 | 59.04 66 | 83.65 52 | 81.05 120 | 60.15 102 | 70.43 105 | 89.84 43 | 41.09 213 | 85.59 96 | 67.61 88 | 82.90 82 | 85.77 102 |
|
| test_prior | | | | | 76.69 53 | 84.20 61 | 57.27 88 | | 84.88 37 | | | | | 86.43 78 | | | 86.38 72 |
|
| APD-MVS_3200maxsize | | | 74.96 48 | 74.39 54 | 76.67 54 | 82.20 78 | 58.24 77 | 83.67 51 | 83.29 75 | 58.41 131 | 73.71 64 | 90.14 33 | 45.62 159 | 85.99 87 | 69.64 72 | 82.85 84 | 85.78 99 |
|
| train_agg | | | 76.27 38 | 76.15 36 | 76.64 55 | 85.58 43 | 61.59 24 | 81.62 82 | 81.26 115 | 55.86 177 | 74.93 43 | 88.81 56 | 53.70 63 | 84.68 118 | 75.24 38 | 88.33 30 | 83.65 180 |
|
| SR-MVS-dyc-post | | | 74.57 55 | 73.90 58 | 76.58 56 | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 107 | 58.07 137 | 73.14 74 | 90.07 34 | 44.74 173 | 85.84 91 | 68.20 79 | 81.76 94 | 84.03 159 |
|
| CS-MVS-test | | | 75.62 46 | 75.31 46 | 76.56 57 | 80.63 105 | 55.13 130 | 83.88 48 | 85.22 28 | 62.05 71 | 71.49 99 | 86.03 111 | 53.83 59 | 86.36 81 | 67.74 85 | 86.91 49 | 88.19 18 |
|
| h-mvs33 | | | 72.71 74 | 71.49 82 | 76.40 58 | 81.99 81 | 59.58 52 | 76.92 166 | 76.74 200 | 60.40 93 | 74.81 47 | 85.95 115 | 45.54 162 | 85.76 93 | 70.41 70 | 70.61 230 | 83.86 168 |
|
| DP-MVS Recon | | | 72.15 86 | 70.73 98 | 76.40 58 | 86.57 24 | 57.99 79 | 81.15 89 | 82.96 81 | 57.03 154 | 66.78 175 | 85.56 123 | 44.50 176 | 88.11 36 | 51.77 215 | 80.23 110 | 83.10 195 |
|
| ETV-MVS | | | 74.46 57 | 73.84 60 | 76.33 60 | 79.27 131 | 55.24 129 | 79.22 115 | 85.00 36 | 64.97 21 | 72.65 86 | 79.46 248 | 53.65 66 | 87.87 42 | 67.45 90 | 82.91 81 | 85.89 96 |
|
| OPM-MVS | | | 74.73 52 | 74.25 55 | 76.19 61 | 80.81 101 | 59.01 67 | 82.60 66 | 83.64 62 | 63.74 39 | 72.52 88 | 87.49 74 | 47.18 144 | 85.88 90 | 69.47 74 | 80.78 99 | 83.66 179 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 74.31 58 | 73.73 61 | 76.06 62 | 81.41 89 | 56.31 102 | 84.22 40 | 84.01 49 | 64.52 25 | 69.27 127 | 86.10 108 | 45.26 170 | 87.21 53 | 68.16 81 | 80.58 103 | 84.65 144 |
|
| mvsmamba | | | 71.15 98 | 69.54 117 | 75.99 63 | 77.61 183 | 53.46 152 | 81.95 78 | 75.11 225 | 57.73 147 | 66.95 173 | 85.96 114 | 37.14 251 | 87.56 48 | 67.94 83 | 75.49 172 | 86.97 54 |
|
| Effi-MVS+-dtu | | | 69.64 134 | 67.53 159 | 75.95 64 | 76.10 214 | 62.29 15 | 80.20 98 | 76.06 208 | 59.83 110 | 65.26 209 | 77.09 279 | 41.56 205 | 84.02 130 | 60.60 149 | 71.09 226 | 81.53 220 |
|
| EPNet | | | 73.09 68 | 72.16 74 | 75.90 65 | 75.95 216 | 56.28 104 | 83.05 56 | 72.39 256 | 66.53 10 | 65.27 206 | 87.00 81 | 50.40 104 | 85.47 102 | 62.48 133 | 86.32 56 | 85.94 92 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| 3Dnovator | | 64.47 5 | 72.49 77 | 71.39 85 | 75.79 66 | 77.70 175 | 58.99 68 | 80.66 94 | 83.15 79 | 62.24 66 | 65.46 202 | 86.59 93 | 42.38 195 | 85.52 98 | 59.59 158 | 84.72 63 | 82.85 200 |
|
| LPG-MVS_test | | | 72.74 73 | 71.74 78 | 75.76 67 | 80.22 110 | 57.51 86 | 82.55 67 | 83.40 70 | 61.32 79 | 66.67 179 | 87.33 77 | 39.15 228 | 86.59 71 | 67.70 86 | 77.30 153 | 83.19 191 |
|
| LGP-MVS_train | | | | | 75.76 67 | 80.22 110 | 57.51 86 | | 83.40 70 | 61.32 79 | 66.67 179 | 87.33 77 | 39.15 228 | 86.59 71 | 67.70 86 | 77.30 153 | 83.19 191 |
|
| EC-MVSNet | | | 75.84 44 | 75.87 41 | 75.74 69 | 78.86 141 | 52.65 168 | 83.73 50 | 86.08 17 | 63.47 42 | 72.77 84 | 87.25 80 | 53.13 69 | 87.93 40 | 71.97 61 | 85.57 60 | 86.66 66 |
|
| MVS_111021_HR | | | 74.02 60 | 73.46 64 | 75.69 70 | 83.01 72 | 60.63 40 | 77.29 156 | 78.40 173 | 61.18 82 | 70.58 104 | 85.97 113 | 54.18 55 | 84.00 131 | 67.52 89 | 82.98 80 | 82.45 207 |
|
| casdiffmvs_mvg |  | | 76.14 40 | 76.30 35 | 75.66 71 | 76.46 210 | 51.83 186 | 79.67 109 | 85.08 31 | 65.02 19 | 75.84 34 | 88.58 60 | 59.42 21 | 85.08 108 | 72.75 56 | 83.93 72 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DELS-MVS | | | 74.76 51 | 74.46 53 | 75.65 72 | 77.84 172 | 52.25 178 | 75.59 192 | 84.17 46 | 63.76 38 | 73.15 73 | 82.79 174 | 59.58 19 | 86.80 66 | 67.24 91 | 86.04 57 | 87.89 24 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+ | | | 73.31 66 | 72.54 71 | 75.62 73 | 77.87 171 | 53.64 147 | 79.62 111 | 79.61 141 | 61.63 77 | 72.02 94 | 82.61 179 | 56.44 35 | 85.97 88 | 63.99 119 | 79.07 127 | 87.25 50 |
|
| MAR-MVS | | | 71.51 94 | 70.15 109 | 75.60 74 | 81.84 83 | 59.39 55 | 81.38 86 | 82.90 83 | 54.90 205 | 68.08 148 | 78.70 257 | 47.73 132 | 85.51 99 | 51.68 217 | 84.17 70 | 81.88 217 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| ACMP | | 63.53 6 | 72.30 80 | 71.20 90 | 75.59 75 | 80.28 108 | 57.54 84 | 82.74 63 | 82.84 85 | 60.58 90 | 65.24 210 | 86.18 105 | 39.25 226 | 86.03 86 | 66.95 95 | 76.79 161 | 83.22 189 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| HQP-MVS | | | 73.45 64 | 72.80 68 | 75.40 76 | 80.66 102 | 54.94 131 | 82.31 71 | 83.90 54 | 62.10 68 | 67.85 152 | 85.54 126 | 45.46 164 | 86.93 62 | 67.04 93 | 80.35 107 | 84.32 151 |
|
| PCF-MVS | | 61.88 8 | 70.95 103 | 69.49 119 | 75.35 77 | 77.63 178 | 55.71 117 | 76.04 185 | 81.81 97 | 50.30 261 | 69.66 120 | 85.40 129 | 52.51 75 | 84.89 114 | 51.82 214 | 80.24 109 | 85.45 116 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PS-MVSNAJss | | | 72.24 81 | 71.21 89 | 75.31 78 | 78.50 150 | 55.93 112 | 81.63 81 | 82.12 92 | 56.24 172 | 70.02 113 | 85.68 122 | 47.05 146 | 84.34 124 | 65.27 109 | 74.41 178 | 85.67 106 |
|
| EIA-MVS | | | 71.78 89 | 70.60 99 | 75.30 79 | 79.85 119 | 53.54 150 | 77.27 157 | 83.26 77 | 57.92 143 | 66.49 181 | 79.39 249 | 52.07 84 | 86.69 69 | 60.05 152 | 79.14 126 | 85.66 107 |
|
| CLD-MVS | | | 73.33 65 | 72.68 69 | 75.29 80 | 78.82 143 | 53.33 156 | 78.23 128 | 84.79 39 | 61.30 81 | 70.41 106 | 81.04 216 | 52.41 78 | 87.12 58 | 64.61 115 | 82.49 88 | 85.41 120 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| iter_conf_final | | | 69.82 126 | 68.02 149 | 75.23 81 | 79.38 128 | 52.91 163 | 80.11 99 | 73.96 243 | 54.99 203 | 68.04 149 | 83.59 161 | 29.05 323 | 87.16 55 | 65.41 108 | 77.62 145 | 85.63 109 |
|
| RRT_MVS | | | 69.42 142 | 67.49 162 | 75.21 82 | 78.01 168 | 52.56 172 | 82.23 75 | 78.15 176 | 55.84 179 | 65.65 198 | 85.07 130 | 30.86 309 | 86.83 65 | 61.56 144 | 70.00 243 | 86.24 85 |
|
| PAPM_NR | | | 72.63 75 | 71.80 77 | 75.13 83 | 81.72 84 | 53.42 154 | 79.91 104 | 83.28 76 | 59.14 119 | 66.31 186 | 85.90 116 | 51.86 87 | 86.06 84 | 57.45 167 | 80.62 101 | 85.91 94 |
|
| EI-MVSNet-Vis-set | | | 72.42 79 | 71.59 79 | 74.91 84 | 78.47 152 | 54.02 141 | 77.05 162 | 79.33 147 | 65.03 18 | 71.68 97 | 79.35 251 | 52.75 72 | 84.89 114 | 66.46 96 | 74.23 179 | 85.83 98 |
|
| MVSFormer | | | 71.50 95 | 70.38 104 | 74.88 85 | 78.76 144 | 57.15 94 | 82.79 61 | 78.48 166 | 51.26 249 | 69.49 122 | 83.22 168 | 43.99 181 | 83.24 144 | 66.06 99 | 79.37 119 | 84.23 154 |
|
| CPTT-MVS | | | 72.78 72 | 72.08 76 | 74.87 86 | 84.88 57 | 61.41 26 | 84.15 43 | 77.86 180 | 55.27 192 | 67.51 163 | 88.08 65 | 41.93 199 | 81.85 176 | 69.04 77 | 80.01 111 | 81.35 227 |
|
| iter_conf05 | | | 69.40 144 | 67.62 155 | 74.73 87 | 77.84 172 | 51.13 190 | 79.28 114 | 73.71 246 | 54.62 208 | 68.17 144 | 83.59 161 | 28.68 328 | 87.16 55 | 65.74 105 | 76.95 158 | 85.91 94 |
|
| EPP-MVSNet | | | 72.16 85 | 71.31 88 | 74.71 88 | 78.68 147 | 49.70 215 | 82.10 76 | 81.65 99 | 60.40 93 | 65.94 191 | 85.84 118 | 51.74 90 | 86.37 80 | 55.93 176 | 79.55 118 | 88.07 23 |
|
| 原ACMM1 | | | | | 74.69 89 | 85.39 47 | 59.40 54 | | 83.42 69 | 51.47 245 | 70.27 108 | 86.61 92 | 48.61 123 | 86.51 76 | 53.85 197 | 87.96 39 | 78.16 268 |
|
| ET-MVSNet_ETH3D | | | 67.96 174 | 65.72 201 | 74.68 90 | 76.67 204 | 55.62 122 | 75.11 202 | 74.74 230 | 52.91 229 | 60.03 269 | 80.12 234 | 33.68 283 | 82.64 163 | 61.86 139 | 76.34 164 | 85.78 99 |
|
| MSLP-MVS++ | | | 73.77 63 | 73.47 63 | 74.66 91 | 83.02 71 | 59.29 58 | 82.30 74 | 81.88 95 | 59.34 117 | 71.59 98 | 86.83 83 | 45.94 157 | 83.65 137 | 65.09 110 | 85.22 61 | 81.06 234 |
|
| PVSNet_Blended_VisFu | | | 71.45 96 | 70.39 103 | 74.65 92 | 82.01 79 | 58.82 71 | 79.93 103 | 80.35 133 | 55.09 197 | 65.82 197 | 82.16 194 | 49.17 116 | 82.64 163 | 60.34 150 | 78.62 135 | 82.50 206 |
|
| 114514_t | | | 70.83 105 | 69.56 116 | 74.64 93 | 86.21 31 | 54.63 136 | 82.34 70 | 81.81 97 | 48.22 285 | 63.01 239 | 85.83 119 | 40.92 214 | 87.10 59 | 57.91 164 | 79.79 112 | 82.18 210 |
|
| Vis-MVSNet |  | | 72.18 82 | 71.37 86 | 74.61 94 | 81.29 92 | 55.41 126 | 80.90 90 | 78.28 175 | 60.73 88 | 69.23 130 | 88.09 64 | 44.36 178 | 82.65 162 | 57.68 165 | 81.75 96 | 85.77 102 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| hse-mvs2 | | | 71.04 100 | 69.86 112 | 74.60 95 | 79.58 123 | 57.12 96 | 73.96 224 | 75.25 220 | 60.40 93 | 74.81 47 | 81.95 199 | 45.54 162 | 82.90 151 | 70.41 70 | 66.83 282 | 83.77 173 |
|
| test_djsdf | | | 69.45 141 | 67.74 151 | 74.58 96 | 74.57 241 | 54.92 133 | 82.79 61 | 78.48 166 | 51.26 249 | 65.41 203 | 83.49 166 | 38.37 235 | 83.24 144 | 66.06 99 | 69.25 259 | 85.56 111 |
|
| AUN-MVS | | | 68.45 164 | 66.41 187 | 74.57 97 | 79.53 125 | 57.08 97 | 73.93 227 | 75.23 221 | 54.44 214 | 66.69 178 | 81.85 201 | 37.10 253 | 82.89 152 | 62.07 136 | 66.84 281 | 83.75 174 |
|
| casdiffmvs |  | | 74.80 50 | 74.89 50 | 74.53 98 | 75.59 222 | 50.37 204 | 78.17 131 | 85.06 33 | 62.80 58 | 74.40 54 | 87.86 70 | 57.88 26 | 83.61 138 | 69.46 75 | 82.79 85 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EI-MVSNet-UG-set | | | 71.92 87 | 71.06 93 | 74.52 99 | 77.98 169 | 53.56 149 | 76.62 171 | 79.16 148 | 64.40 27 | 71.18 100 | 78.95 256 | 52.19 82 | 84.66 120 | 65.47 107 | 73.57 189 | 85.32 123 |
|
| API-MVS | | | 72.17 83 | 71.41 84 | 74.45 100 | 81.95 82 | 57.22 89 | 84.03 45 | 80.38 132 | 59.89 109 | 68.40 139 | 82.33 188 | 49.64 110 | 87.83 44 | 51.87 213 | 84.16 71 | 78.30 266 |
|
| PAPR | | | 71.72 92 | 70.82 96 | 74.41 101 | 81.20 96 | 51.17 189 | 79.55 112 | 83.33 73 | 55.81 181 | 66.93 174 | 84.61 139 | 50.95 100 | 86.06 84 | 55.79 179 | 79.20 124 | 86.00 90 |
|
| baseline | | | 74.61 54 | 74.70 51 | 74.34 102 | 75.70 218 | 49.99 212 | 77.54 148 | 84.63 40 | 62.73 59 | 73.98 60 | 87.79 73 | 57.67 28 | 83.82 134 | 69.49 73 | 82.74 86 | 89.20 6 |
|
| thisisatest0530 | | | 67.92 175 | 65.78 200 | 74.33 103 | 76.29 211 | 51.03 191 | 76.89 167 | 74.25 239 | 53.67 223 | 65.59 200 | 81.76 203 | 35.15 267 | 85.50 100 | 55.94 175 | 72.47 208 | 86.47 71 |
|
| tttt0517 | | | 67.83 177 | 65.66 202 | 74.33 103 | 76.69 203 | 50.82 196 | 77.86 139 | 73.99 242 | 54.54 212 | 64.64 222 | 82.53 184 | 35.06 268 | 85.50 100 | 55.71 180 | 69.91 246 | 86.67 65 |
|
| test_fmvsmconf_n | | | 73.01 69 | 72.59 70 | 74.27 105 | 71.28 292 | 55.88 114 | 78.21 130 | 75.56 214 | 54.31 216 | 74.86 46 | 87.80 72 | 54.72 49 | 80.23 214 | 78.07 21 | 78.48 136 | 86.70 63 |
|
| test_fmvsmconf0.1_n | | | 72.81 71 | 72.33 73 | 74.24 106 | 69.89 312 | 55.81 115 | 78.22 129 | 75.40 217 | 54.17 218 | 75.00 42 | 88.03 68 | 53.82 60 | 80.23 214 | 78.08 20 | 78.34 139 | 86.69 64 |
|
| test_fmvsmconf0.01_n | | | 72.17 83 | 71.50 81 | 74.16 107 | 67.96 329 | 55.58 123 | 78.06 135 | 74.67 232 | 54.19 217 | 74.54 52 | 88.23 61 | 50.35 106 | 80.24 213 | 78.07 21 | 77.46 149 | 86.65 67 |
|
| MG-MVS | | | 73.96 61 | 73.89 59 | 74.16 107 | 85.65 42 | 49.69 217 | 81.59 84 | 81.29 114 | 61.45 78 | 71.05 101 | 88.11 63 | 51.77 89 | 87.73 45 | 61.05 146 | 83.09 76 | 85.05 133 |
|
| ACMM | | 61.98 7 | 70.80 107 | 69.73 114 | 74.02 109 | 80.59 107 | 58.59 74 | 82.68 64 | 82.02 94 | 55.46 189 | 67.18 168 | 84.39 145 | 38.51 233 | 83.17 146 | 60.65 148 | 76.10 166 | 80.30 245 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| v7n | | | 69.01 151 | 67.36 167 | 73.98 110 | 72.51 270 | 52.65 168 | 78.54 125 | 81.30 113 | 60.26 101 | 62.67 243 | 81.62 205 | 43.61 183 | 84.49 121 | 57.01 169 | 68.70 268 | 84.79 141 |
|
| AdaColmap |  | | 69.99 122 | 68.66 135 | 73.97 111 | 84.94 54 | 57.83 80 | 82.63 65 | 78.71 158 | 56.28 171 | 64.34 224 | 84.14 148 | 41.57 204 | 87.06 61 | 46.45 256 | 78.88 128 | 77.02 283 |
|
| v1192 | | | 69.97 123 | 68.68 134 | 73.85 112 | 73.19 255 | 50.94 192 | 77.68 144 | 81.36 107 | 57.51 149 | 68.95 133 | 80.85 223 | 45.28 169 | 85.33 106 | 62.97 129 | 70.37 234 | 85.27 126 |
|
| FA-MVS(test-final) | | | 69.82 126 | 68.48 138 | 73.84 113 | 78.44 153 | 50.04 210 | 75.58 194 | 78.99 152 | 58.16 135 | 67.59 161 | 82.14 195 | 42.66 190 | 85.63 94 | 56.60 171 | 76.19 165 | 85.84 97 |
|
| v10 | | | 70.21 118 | 69.02 127 | 73.81 114 | 73.51 253 | 50.92 194 | 78.74 119 | 81.39 105 | 60.05 104 | 66.39 184 | 81.83 202 | 47.58 136 | 85.41 105 | 62.80 130 | 68.86 266 | 85.09 132 |
|
| QAPM | | | 70.05 120 | 68.81 131 | 73.78 115 | 76.54 208 | 53.43 153 | 83.23 54 | 83.48 66 | 52.89 230 | 65.90 193 | 86.29 102 | 41.55 206 | 86.49 77 | 51.01 220 | 78.40 138 | 81.42 221 |
|
| OMC-MVS | | | 71.40 97 | 70.60 99 | 73.78 115 | 76.60 206 | 53.15 159 | 79.74 108 | 79.78 137 | 58.37 132 | 68.75 134 | 86.45 99 | 45.43 166 | 80.60 204 | 62.58 131 | 77.73 144 | 87.58 39 |
|
| UA-Net | | | 73.13 67 | 72.93 67 | 73.76 117 | 83.58 64 | 51.66 187 | 78.75 118 | 77.66 184 | 67.75 4 | 72.61 87 | 89.42 47 | 49.82 108 | 83.29 143 | 53.61 199 | 83.14 75 | 86.32 80 |
|
| v1144 | | | 70.42 114 | 69.31 122 | 73.76 117 | 73.22 254 | 50.64 199 | 77.83 141 | 81.43 104 | 58.58 128 | 69.40 125 | 81.16 213 | 47.53 137 | 85.29 107 | 64.01 118 | 70.64 228 | 85.34 122 |
|
| VDD-MVS | | | 72.50 76 | 72.09 75 | 73.75 119 | 81.58 85 | 49.69 217 | 77.76 143 | 77.63 185 | 63.21 47 | 73.21 71 | 89.02 53 | 42.14 196 | 83.32 142 | 61.72 140 | 82.50 87 | 88.25 15 |
|
| Fast-Effi-MVS+ | | | 70.28 117 | 69.12 126 | 73.73 120 | 78.50 150 | 51.50 188 | 75.01 205 | 79.46 145 | 56.16 174 | 68.59 135 | 79.55 246 | 53.97 56 | 84.05 127 | 53.34 201 | 77.53 147 | 85.65 108 |
|
| canonicalmvs | | | 74.67 53 | 74.98 49 | 73.71 121 | 78.94 140 | 50.56 202 | 80.23 96 | 83.87 57 | 60.30 100 | 77.15 29 | 86.56 95 | 59.65 17 | 82.00 174 | 66.01 101 | 82.12 89 | 88.58 10 |
|
| HyFIR lowres test | | | 65.67 214 | 63.01 232 | 73.67 122 | 79.97 118 | 55.65 119 | 69.07 289 | 75.52 215 | 42.68 339 | 63.53 234 | 77.95 266 | 40.43 215 | 81.64 179 | 46.01 260 | 71.91 217 | 83.73 175 |
|
| jajsoiax | | | 68.25 167 | 66.45 183 | 73.66 123 | 75.62 220 | 55.49 125 | 80.82 91 | 78.51 165 | 52.33 235 | 64.33 225 | 84.11 149 | 28.28 330 | 81.81 178 | 63.48 125 | 70.62 229 | 83.67 177 |
|
| v2v482 | | | 70.50 112 | 69.45 121 | 73.66 123 | 72.62 266 | 50.03 211 | 77.58 145 | 80.51 130 | 59.90 106 | 69.52 121 | 82.14 195 | 47.53 137 | 84.88 116 | 65.07 111 | 70.17 239 | 86.09 88 |
|
| cascas | | | 65.98 210 | 63.42 226 | 73.64 125 | 77.26 192 | 52.58 171 | 72.26 252 | 77.21 193 | 48.56 280 | 61.21 262 | 74.60 309 | 32.57 302 | 85.82 92 | 50.38 225 | 76.75 162 | 82.52 205 |
|
| FE-MVS | | | 65.91 211 | 63.33 228 | 73.63 126 | 77.36 190 | 51.95 185 | 72.62 245 | 75.81 209 | 53.70 222 | 65.31 204 | 78.96 255 | 28.81 327 | 86.39 79 | 43.93 279 | 73.48 192 | 82.55 203 |
|
| mvs_tets | | | 68.18 169 | 66.36 189 | 73.63 126 | 75.61 221 | 55.35 128 | 80.77 92 | 78.56 163 | 52.48 234 | 64.27 227 | 84.10 150 | 27.45 336 | 81.84 177 | 63.45 126 | 70.56 231 | 83.69 176 |
|
| GeoE | | | 71.01 101 | 70.15 109 | 73.60 128 | 79.57 124 | 52.17 179 | 78.93 117 | 78.12 177 | 58.02 139 | 67.76 160 | 83.87 155 | 52.36 79 | 82.72 160 | 56.90 170 | 75.79 168 | 85.92 93 |
|
| anonymousdsp | | | 67.00 195 | 64.82 212 | 73.57 129 | 70.09 308 | 56.13 107 | 76.35 176 | 77.35 191 | 48.43 283 | 64.99 218 | 80.84 224 | 33.01 290 | 80.34 209 | 64.66 113 | 67.64 276 | 84.23 154 |
|
| test_fmvsm_n_1920 | | | 71.73 91 | 71.14 91 | 73.50 130 | 72.52 269 | 56.53 101 | 75.60 191 | 76.16 204 | 48.11 287 | 77.22 28 | 85.56 123 | 53.10 70 | 77.43 255 | 74.86 40 | 77.14 155 | 86.55 70 |
|
| v8 | | | 70.33 116 | 69.28 123 | 73.49 131 | 73.15 256 | 50.22 206 | 78.62 122 | 80.78 126 | 60.79 86 | 66.45 183 | 82.11 197 | 49.35 112 | 84.98 111 | 63.58 124 | 68.71 267 | 85.28 125 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 184 | 65.33 207 | 73.48 132 | 72.94 261 | 57.78 82 | 77.47 150 | 76.88 196 | 57.60 148 | 61.97 254 | 76.85 283 | 39.31 224 | 80.49 208 | 54.72 189 | 70.28 237 | 82.17 212 |
|
| alignmvs | | | 73.86 62 | 73.99 57 | 73.45 133 | 78.20 160 | 50.50 203 | 78.57 123 | 82.43 88 | 59.40 115 | 76.57 31 | 86.71 89 | 56.42 36 | 81.23 190 | 65.84 103 | 81.79 93 | 88.62 8 |
|
| lupinMVS | | | 69.57 136 | 68.28 145 | 73.44 134 | 78.76 144 | 57.15 94 | 76.57 172 | 73.29 250 | 46.19 308 | 69.49 122 | 82.18 191 | 43.99 181 | 79.23 226 | 64.66 113 | 79.37 119 | 83.93 163 |
|
| jason | | | 69.65 133 | 68.39 144 | 73.43 135 | 78.27 159 | 56.88 98 | 77.12 160 | 73.71 246 | 46.53 305 | 69.34 126 | 83.22 168 | 43.37 185 | 79.18 227 | 64.77 112 | 79.20 124 | 84.23 154 |
| jason: jason. |
| IB-MVS | | 56.42 12 | 65.40 219 | 62.73 236 | 73.40 136 | 74.89 229 | 52.78 167 | 73.09 239 | 75.13 224 | 55.69 184 | 58.48 291 | 73.73 314 | 32.86 292 | 86.32 82 | 50.63 223 | 70.11 240 | 81.10 233 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| v1921920 | | | 69.47 140 | 68.17 146 | 73.36 137 | 73.06 258 | 50.10 209 | 77.39 151 | 80.56 128 | 56.58 166 | 68.59 135 | 80.37 228 | 44.72 174 | 84.98 111 | 62.47 134 | 69.82 248 | 85.00 134 |
|
| v144192 | | | 69.71 129 | 68.51 137 | 73.33 138 | 73.10 257 | 50.13 208 | 77.54 148 | 80.64 127 | 56.65 159 | 68.57 137 | 80.55 226 | 46.87 151 | 84.96 113 | 62.98 128 | 69.66 253 | 84.89 138 |
|
| IS-MVSNet | | | 71.57 93 | 71.00 94 | 73.27 139 | 78.86 141 | 45.63 265 | 80.22 97 | 78.69 159 | 64.14 35 | 66.46 182 | 87.36 76 | 49.30 113 | 85.60 95 | 50.26 226 | 83.71 74 | 88.59 9 |
|
| VDDNet | | | 71.81 88 | 71.33 87 | 73.26 140 | 82.80 75 | 47.60 245 | 78.74 119 | 75.27 219 | 59.59 114 | 72.94 80 | 89.40 48 | 41.51 207 | 83.91 132 | 58.75 162 | 82.99 78 | 88.26 14 |
|
| v1240 | | | 69.24 148 | 67.91 150 | 73.25 141 | 73.02 260 | 49.82 213 | 77.21 158 | 80.54 129 | 56.43 168 | 68.34 141 | 80.51 227 | 43.33 186 | 84.99 109 | 62.03 138 | 69.77 251 | 84.95 137 |
|
| UGNet | | | 68.81 153 | 67.39 165 | 73.06 142 | 78.33 157 | 54.47 137 | 79.77 106 | 75.40 217 | 60.45 92 | 63.22 236 | 84.40 144 | 32.71 297 | 80.91 199 | 51.71 216 | 80.56 105 | 83.81 169 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| BH-RMVSNet | | | 68.81 153 | 67.42 164 | 72.97 143 | 80.11 116 | 52.53 173 | 74.26 219 | 76.29 203 | 58.48 130 | 68.38 140 | 84.20 146 | 42.59 191 | 83.83 133 | 46.53 255 | 75.91 167 | 82.56 202 |
|
| PS-MVSNAJ | | | 70.51 111 | 69.70 115 | 72.93 144 | 81.52 86 | 55.79 116 | 74.92 208 | 79.00 151 | 55.04 202 | 69.88 117 | 78.66 258 | 47.05 146 | 82.19 171 | 61.61 141 | 79.58 116 | 80.83 237 |
|
| XVG-OURS | | | 68.76 156 | 67.37 166 | 72.90 145 | 74.32 247 | 57.22 89 | 70.09 281 | 78.81 155 | 55.24 193 | 67.79 158 | 85.81 121 | 36.54 258 | 78.28 243 | 62.04 137 | 75.74 169 | 83.19 191 |
|
| xiu_mvs_v2_base | | | 70.52 110 | 69.75 113 | 72.84 146 | 81.21 95 | 55.63 120 | 75.11 202 | 78.92 153 | 54.92 204 | 69.96 116 | 79.68 243 | 47.00 150 | 82.09 173 | 61.60 142 | 79.37 119 | 80.81 238 |
|
| nrg030 | | | 72.96 70 | 73.01 66 | 72.84 146 | 75.41 225 | 50.24 205 | 80.02 100 | 82.89 84 | 58.36 133 | 74.44 53 | 86.73 87 | 58.90 23 | 80.83 200 | 65.84 103 | 74.46 176 | 87.44 42 |
|
| thisisatest0515 | | | 65.83 212 | 63.50 225 | 72.82 148 | 73.75 251 | 49.50 220 | 71.32 263 | 73.12 252 | 49.39 270 | 63.82 231 | 76.50 291 | 34.95 270 | 84.84 117 | 53.20 203 | 75.49 172 | 84.13 158 |
|
| XVG-OURS-SEG-HR | | | 68.81 153 | 67.47 163 | 72.82 148 | 74.40 245 | 56.87 99 | 70.59 274 | 79.04 150 | 54.77 206 | 66.99 171 | 86.01 112 | 39.57 222 | 78.21 244 | 62.54 132 | 73.33 195 | 83.37 185 |
|
| OpenMVS |  | 61.03 9 | 68.85 152 | 67.56 156 | 72.70 150 | 74.26 248 | 53.99 142 | 81.21 88 | 81.34 111 | 52.70 231 | 62.75 242 | 85.55 125 | 38.86 231 | 84.14 126 | 48.41 242 | 83.01 77 | 79.97 250 |
|
| Anonymous20240529 | | | 69.91 124 | 69.02 127 | 72.56 151 | 80.19 113 | 47.65 243 | 77.56 147 | 80.99 122 | 55.45 190 | 69.88 117 | 86.76 85 | 39.24 227 | 82.18 172 | 54.04 194 | 77.10 157 | 87.85 27 |
|
| V42 | | | 68.65 157 | 67.35 168 | 72.56 151 | 68.93 323 | 50.18 207 | 72.90 241 | 79.47 144 | 56.92 156 | 69.45 124 | 80.26 232 | 46.29 155 | 82.99 148 | 64.07 116 | 67.82 274 | 84.53 146 |
|
| dcpmvs_2 | | | 74.55 56 | 75.23 47 | 72.48 153 | 82.34 77 | 53.34 155 | 77.87 138 | 81.46 103 | 57.80 146 | 75.49 36 | 86.81 84 | 62.22 13 | 77.75 251 | 71.09 67 | 82.02 91 | 86.34 76 |
|
| xiu_mvs_v1_base_debu | | | 68.58 159 | 67.28 170 | 72.48 153 | 78.19 161 | 57.19 91 | 75.28 197 | 75.09 226 | 51.61 240 | 70.04 110 | 81.41 210 | 32.79 293 | 79.02 234 | 63.81 121 | 77.31 150 | 81.22 229 |
|
| xiu_mvs_v1_base | | | 68.58 159 | 67.28 170 | 72.48 153 | 78.19 161 | 57.19 91 | 75.28 197 | 75.09 226 | 51.61 240 | 70.04 110 | 81.41 210 | 32.79 293 | 79.02 234 | 63.81 121 | 77.31 150 | 81.22 229 |
|
| xiu_mvs_v1_base_debi | | | 68.58 159 | 67.28 170 | 72.48 153 | 78.19 161 | 57.19 91 | 75.28 197 | 75.09 226 | 51.61 240 | 70.04 110 | 81.41 210 | 32.79 293 | 79.02 234 | 63.81 121 | 77.31 150 | 81.22 229 |
|
| MVS_Test | | | 72.45 78 | 72.46 72 | 72.42 157 | 74.88 230 | 48.50 233 | 76.28 178 | 83.14 80 | 59.40 115 | 72.46 89 | 84.68 135 | 55.66 40 | 81.12 191 | 65.98 102 | 79.66 115 | 87.63 36 |
|
| LFMVS | | | 71.78 89 | 71.59 79 | 72.32 158 | 83.40 67 | 46.38 254 | 79.75 107 | 71.08 265 | 64.18 32 | 72.80 83 | 88.64 59 | 42.58 192 | 83.72 135 | 57.41 168 | 84.49 66 | 86.86 58 |
|
| ACMH+ | | 57.40 11 | 66.12 209 | 64.06 216 | 72.30 159 | 77.79 174 | 52.83 166 | 80.39 95 | 78.03 178 | 57.30 150 | 57.47 297 | 82.55 181 | 27.68 334 | 84.17 125 | 45.54 266 | 69.78 249 | 79.90 251 |
|
| test_fmvsmvis_n_1920 | | | 70.84 104 | 70.38 104 | 72.22 160 | 71.16 293 | 55.39 127 | 75.86 188 | 72.21 258 | 49.03 275 | 73.28 70 | 86.17 106 | 51.83 88 | 77.29 258 | 75.80 32 | 78.05 141 | 83.98 162 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 145 | 68.44 142 | 71.96 161 | 70.91 296 | 53.78 145 | 78.12 133 | 62.30 327 | 49.35 271 | 73.20 72 | 86.55 96 | 51.99 85 | 76.79 266 | 74.83 41 | 68.68 269 | 85.32 123 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 137 | 68.74 133 | 71.93 162 | 72.47 271 | 53.82 144 | 78.25 127 | 62.26 328 | 49.78 267 | 73.12 76 | 86.21 104 | 52.66 73 | 76.79 266 | 75.02 39 | 68.88 264 | 85.18 128 |
|
| UniMVSNet (Re) | | | 70.63 109 | 70.20 107 | 71.89 163 | 78.55 149 | 45.29 268 | 75.94 187 | 82.92 82 | 63.68 40 | 68.16 145 | 83.59 161 | 53.89 58 | 83.49 141 | 53.97 195 | 71.12 225 | 86.89 57 |
|
| MVSTER | | | 67.16 191 | 65.58 204 | 71.88 164 | 70.37 304 | 49.70 215 | 70.25 280 | 78.45 169 | 51.52 243 | 69.16 131 | 80.37 228 | 38.45 234 | 82.50 166 | 60.19 151 | 71.46 222 | 83.44 184 |
|
| fmvsm_s_conf0.1_n | | | 69.41 143 | 68.60 136 | 71.83 165 | 71.07 294 | 52.88 165 | 77.85 140 | 62.44 325 | 49.58 269 | 72.97 79 | 86.22 103 | 51.68 91 | 76.48 272 | 75.53 34 | 70.10 241 | 86.14 86 |
|
| CHOSEN 1792x2688 | | | 65.08 224 | 62.84 234 | 71.82 166 | 81.49 88 | 56.26 105 | 66.32 301 | 74.20 240 | 40.53 350 | 63.16 238 | 78.65 259 | 41.30 208 | 77.80 250 | 45.80 262 | 74.09 180 | 81.40 224 |
|
| fmvsm_s_conf0.5_n | | | 69.58 135 | 68.84 130 | 71.79 167 | 72.31 275 | 52.90 164 | 77.90 137 | 62.43 326 | 49.97 265 | 72.85 82 | 85.90 116 | 52.21 81 | 76.49 271 | 75.75 33 | 70.26 238 | 85.97 91 |
|
| DP-MVS | | | 65.68 213 | 63.66 223 | 71.75 168 | 84.93 55 | 56.87 99 | 80.74 93 | 73.16 251 | 53.06 227 | 59.09 283 | 82.35 187 | 36.79 257 | 85.94 89 | 32.82 345 | 69.96 245 | 72.45 327 |
|
| Anonymous20231211 | | | 69.28 146 | 68.47 140 | 71.73 169 | 80.28 108 | 47.18 249 | 79.98 101 | 82.37 89 | 54.61 209 | 67.24 166 | 84.01 152 | 39.43 223 | 82.41 169 | 55.45 184 | 72.83 203 | 85.62 110 |
|
| EI-MVSNet | | | 69.27 147 | 68.44 142 | 71.73 169 | 74.47 242 | 49.39 222 | 75.20 200 | 78.45 169 | 59.60 111 | 69.16 131 | 76.51 289 | 51.29 94 | 82.50 166 | 59.86 157 | 71.45 223 | 83.30 186 |
|
| eth_miper_zixun_eth | | | 67.63 180 | 66.28 193 | 71.67 171 | 71.60 283 | 48.33 235 | 73.68 233 | 77.88 179 | 55.80 182 | 65.91 192 | 78.62 261 | 47.35 143 | 82.88 153 | 59.45 159 | 66.25 286 | 83.81 169 |
|
| MVS_111021_LR | | | 69.50 139 | 68.78 132 | 71.65 172 | 78.38 154 | 59.33 56 | 74.82 210 | 70.11 273 | 58.08 136 | 67.83 156 | 84.68 135 | 41.96 198 | 76.34 275 | 65.62 106 | 77.54 146 | 79.30 260 |
|
| PAPM | | | 67.92 175 | 66.69 180 | 71.63 173 | 78.09 164 | 49.02 225 | 77.09 161 | 81.24 117 | 51.04 253 | 60.91 263 | 83.98 153 | 47.71 133 | 84.99 109 | 40.81 302 | 79.32 122 | 80.90 236 |
|
| NR-MVSNet | | | 69.54 137 | 68.85 129 | 71.59 174 | 78.05 166 | 43.81 281 | 74.20 220 | 80.86 125 | 65.18 14 | 62.76 241 | 84.52 141 | 52.35 80 | 83.59 139 | 50.96 222 | 70.78 227 | 87.37 46 |
|
| fmvsm_l_conf0.5_n | | | 70.99 102 | 70.82 96 | 71.48 175 | 71.45 285 | 54.40 138 | 77.18 159 | 70.46 271 | 48.67 279 | 75.17 38 | 86.86 82 | 53.77 61 | 76.86 264 | 76.33 30 | 77.51 148 | 83.17 194 |
|
| diffmvs |  | | 70.69 108 | 70.43 102 | 71.46 176 | 69.45 317 | 48.95 227 | 72.93 240 | 78.46 168 | 57.27 151 | 71.69 96 | 83.97 154 | 51.48 93 | 77.92 248 | 70.70 69 | 77.95 143 | 87.53 40 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet_NR-MVSNet | | | 71.11 99 | 71.00 94 | 71.44 177 | 79.20 133 | 44.13 277 | 76.02 186 | 82.60 87 | 66.48 11 | 68.20 142 | 84.60 140 | 56.82 33 | 82.82 158 | 54.62 190 | 70.43 232 | 87.36 48 |
|
| DU-MVS | | | 70.01 121 | 69.53 118 | 71.44 177 | 78.05 166 | 44.13 277 | 75.01 205 | 81.51 102 | 64.37 28 | 68.20 142 | 84.52 141 | 49.12 119 | 82.82 158 | 54.62 190 | 70.43 232 | 87.37 46 |
|
| IterMVS-LS | | | 69.22 149 | 68.48 138 | 71.43 179 | 74.44 244 | 49.40 221 | 76.23 179 | 77.55 186 | 59.60 111 | 65.85 196 | 81.59 208 | 51.28 95 | 81.58 182 | 59.87 156 | 69.90 247 | 83.30 186 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 68.24 168 | 67.19 176 | 71.40 180 | 70.43 302 | 47.77 242 | 75.76 190 | 77.03 195 | 58.91 121 | 67.36 164 | 80.10 235 | 48.60 124 | 81.89 175 | 60.01 153 | 66.52 285 | 84.53 146 |
|
| test_yl | | | 69.69 130 | 69.13 124 | 71.36 181 | 78.37 155 | 45.74 261 | 74.71 212 | 80.20 134 | 57.91 144 | 70.01 114 | 83.83 156 | 42.44 193 | 82.87 154 | 54.97 186 | 79.72 113 | 85.48 114 |
|
| DCV-MVSNet | | | 69.69 130 | 69.13 124 | 71.36 181 | 78.37 155 | 45.74 261 | 74.71 212 | 80.20 134 | 57.91 144 | 70.01 114 | 83.83 156 | 42.44 193 | 82.87 154 | 54.97 186 | 79.72 113 | 85.48 114 |
|
| LS3D | | | 64.71 227 | 62.50 238 | 71.34 183 | 79.72 122 | 55.71 117 | 79.82 105 | 74.72 231 | 48.50 282 | 56.62 302 | 84.62 138 | 33.59 285 | 82.34 170 | 29.65 364 | 75.23 174 | 75.97 291 |
|
| TAMVS | | | 66.78 200 | 65.27 208 | 71.33 184 | 79.16 136 | 53.67 146 | 73.84 231 | 69.59 278 | 52.32 236 | 65.28 205 | 81.72 204 | 44.49 177 | 77.40 257 | 42.32 294 | 78.66 134 | 82.92 197 |
|
| BH-untuned | | | 68.27 166 | 67.29 169 | 71.21 185 | 79.74 120 | 53.22 158 | 76.06 183 | 77.46 189 | 57.19 152 | 66.10 188 | 81.61 206 | 45.37 168 | 83.50 140 | 45.42 270 | 76.68 163 | 76.91 287 |
|
| PVSNet_Blended | | | 68.59 158 | 67.72 152 | 71.19 186 | 77.03 198 | 50.57 200 | 72.51 248 | 81.52 100 | 51.91 238 | 64.22 229 | 77.77 275 | 49.13 117 | 82.87 154 | 55.82 177 | 79.58 116 | 80.14 248 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 112 | 70.27 106 | 71.18 187 | 71.30 291 | 54.09 140 | 76.89 167 | 69.87 274 | 47.90 291 | 74.37 55 | 86.49 97 | 53.07 71 | 76.69 268 | 75.41 35 | 77.11 156 | 82.76 201 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 115 | 70.10 111 | 71.17 188 | 78.64 148 | 42.97 289 | 76.53 173 | 81.16 119 | 66.95 6 | 68.53 138 | 85.42 128 | 51.61 92 | 83.07 147 | 52.32 207 | 69.70 252 | 87.46 41 |
|
| TR-MVS | | | 66.59 205 | 65.07 210 | 71.17 188 | 79.18 134 | 49.63 219 | 73.48 234 | 75.20 223 | 52.95 228 | 67.90 150 | 80.33 231 | 39.81 220 | 83.68 136 | 43.20 287 | 73.56 190 | 80.20 246 |
|
| CDS-MVSNet | | | 66.80 199 | 65.37 205 | 71.10 190 | 78.98 139 | 53.13 161 | 73.27 237 | 71.07 266 | 52.15 237 | 64.72 220 | 80.23 233 | 43.56 184 | 77.10 260 | 45.48 268 | 78.88 128 | 83.05 196 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PVSNet_BlendedMVS | | | 68.56 162 | 67.72 152 | 71.07 191 | 77.03 198 | 50.57 200 | 74.50 216 | 81.52 100 | 53.66 224 | 64.22 229 | 79.72 242 | 49.13 117 | 82.87 154 | 55.82 177 | 73.92 182 | 79.77 255 |
|
| GA-MVS | | | 65.53 216 | 63.70 222 | 71.02 192 | 70.87 297 | 48.10 237 | 70.48 276 | 74.40 235 | 56.69 158 | 64.70 221 | 76.77 284 | 33.66 284 | 81.10 192 | 55.42 185 | 70.32 236 | 83.87 167 |
|
| RPMNet | | | 61.53 259 | 58.42 270 | 70.86 193 | 69.96 310 | 52.07 181 | 65.31 313 | 81.36 107 | 43.20 335 | 59.36 279 | 70.15 340 | 35.37 265 | 85.47 102 | 36.42 330 | 64.65 298 | 75.06 301 |
|
| TAPA-MVS | | 59.36 10 | 66.60 203 | 65.20 209 | 70.81 194 | 76.63 205 | 48.75 229 | 76.52 174 | 80.04 136 | 50.64 258 | 65.24 210 | 84.93 132 | 39.15 228 | 78.54 240 | 36.77 323 | 76.88 160 | 85.14 129 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| æ–°å‡ ä½•1 | | | | | 70.76 195 | 85.66 41 | 61.13 30 | | 66.43 299 | 44.68 320 | 70.29 107 | 86.64 90 | 41.29 209 | 75.23 279 | 49.72 230 | 81.75 96 | 75.93 292 |
|
| XVG-ACMP-BASELINE | | | 64.36 232 | 62.23 241 | 70.74 196 | 72.35 273 | 52.45 176 | 70.80 273 | 78.45 169 | 53.84 221 | 59.87 272 | 81.10 215 | 16.24 371 | 79.32 225 | 55.64 183 | 71.76 218 | 80.47 241 |
|
| PLC |  | 56.13 14 | 65.09 223 | 63.21 230 | 70.72 197 | 81.04 98 | 54.87 134 | 78.57 123 | 77.47 187 | 48.51 281 | 55.71 309 | 81.89 200 | 33.71 282 | 79.71 218 | 41.66 299 | 70.37 234 | 77.58 275 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| c3_l | | | 68.33 165 | 67.56 156 | 70.62 198 | 70.87 297 | 46.21 257 | 74.47 217 | 78.80 156 | 56.22 173 | 66.19 187 | 78.53 263 | 51.88 86 | 81.40 184 | 62.08 135 | 69.04 262 | 84.25 153 |
|
| K. test v3 | | | 60.47 266 | 57.11 278 | 70.56 199 | 73.74 252 | 48.22 236 | 75.10 204 | 62.55 323 | 58.27 134 | 53.62 334 | 76.31 292 | 27.81 333 | 81.59 181 | 47.42 246 | 39.18 379 | 81.88 217 |
|
| cl22 | | | 67.47 183 | 66.45 183 | 70.54 200 | 69.85 313 | 46.49 253 | 73.85 230 | 77.35 191 | 55.07 200 | 65.51 201 | 77.92 268 | 47.64 135 | 81.10 192 | 61.58 143 | 69.32 256 | 84.01 161 |
|
| MVS | | | 67.37 184 | 66.33 190 | 70.51 201 | 75.46 224 | 50.94 192 | 73.95 225 | 81.85 96 | 41.57 345 | 62.54 247 | 78.57 262 | 47.98 128 | 85.47 102 | 52.97 204 | 82.05 90 | 75.14 300 |
|
| miper_ehance_all_eth | | | 68.03 171 | 67.24 174 | 70.40 202 | 70.54 300 | 46.21 257 | 73.98 223 | 78.68 160 | 55.07 200 | 66.05 189 | 77.80 272 | 52.16 83 | 81.31 187 | 61.53 145 | 69.32 256 | 83.67 177 |
|
| MVP-Stereo | | | 65.41 218 | 63.80 221 | 70.22 203 | 77.62 182 | 55.53 124 | 76.30 177 | 78.53 164 | 50.59 259 | 56.47 306 | 78.65 259 | 39.84 219 | 82.68 161 | 44.10 278 | 72.12 216 | 72.44 328 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EG-PatchMatch MVS | | | 64.71 227 | 62.87 233 | 70.22 203 | 77.68 176 | 53.48 151 | 77.99 136 | 78.82 154 | 53.37 226 | 56.03 308 | 77.41 278 | 24.75 353 | 84.04 128 | 46.37 257 | 73.42 194 | 73.14 319 |
|
| SixPastTwentyTwo | | | 61.65 258 | 58.80 267 | 70.20 205 | 75.80 217 | 47.22 248 | 75.59 192 | 69.68 276 | 54.61 209 | 54.11 328 | 79.26 252 | 27.07 339 | 82.96 149 | 43.27 285 | 49.79 366 | 80.41 243 |
|
| miper_enhance_ethall | | | 67.11 192 | 66.09 196 | 70.17 206 | 69.21 320 | 45.98 259 | 72.85 242 | 78.41 172 | 51.38 246 | 65.65 198 | 75.98 297 | 51.17 97 | 81.25 188 | 60.82 147 | 69.32 256 | 83.29 188 |
|
| ACMH | | 55.70 15 | 65.20 222 | 63.57 224 | 70.07 207 | 78.07 165 | 52.01 184 | 79.48 113 | 79.69 138 | 55.75 183 | 56.59 303 | 80.98 218 | 27.12 338 | 80.94 196 | 42.90 291 | 71.58 221 | 77.25 281 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_0402 | | | 63.25 242 | 61.01 255 | 69.96 208 | 80.00 117 | 54.37 139 | 76.86 169 | 72.02 260 | 54.58 211 | 58.71 286 | 80.79 225 | 35.00 269 | 84.36 123 | 26.41 375 | 64.71 297 | 71.15 345 |
|
| cl____ | | | 67.18 189 | 66.26 194 | 69.94 209 | 70.20 305 | 45.74 261 | 73.30 235 | 76.83 198 | 55.10 195 | 65.27 206 | 79.57 245 | 47.39 141 | 80.53 205 | 59.41 161 | 69.22 260 | 83.53 183 |
|
| DIV-MVS_self_test | | | 67.18 189 | 66.26 194 | 69.94 209 | 70.20 305 | 45.74 261 | 73.29 236 | 76.83 198 | 55.10 195 | 65.27 206 | 79.58 244 | 47.38 142 | 80.53 205 | 59.43 160 | 69.22 260 | 83.54 182 |
|
| lessismore_v0 | | | | | 69.91 211 | 71.42 288 | 47.80 240 | | 50.90 369 | | 50.39 350 | 75.56 300 | 27.43 337 | 81.33 186 | 45.91 261 | 34.10 385 | 80.59 240 |
|
| BH-w/o | | | 66.85 197 | 65.83 199 | 69.90 212 | 79.29 129 | 52.46 175 | 74.66 214 | 76.65 201 | 54.51 213 | 64.85 219 | 78.12 264 | 45.59 161 | 82.95 150 | 43.26 286 | 75.54 171 | 74.27 313 |
|
| baseline2 | | | 63.42 238 | 61.26 252 | 69.89 213 | 72.55 268 | 47.62 244 | 71.54 260 | 68.38 288 | 50.11 262 | 54.82 320 | 75.55 301 | 43.06 188 | 80.96 195 | 48.13 243 | 67.16 280 | 81.11 232 |
|
| bld_raw_dy_0_64 | | | 64.87 225 | 63.22 229 | 69.83 214 | 74.79 234 | 53.32 157 | 78.15 132 | 62.02 331 | 51.20 251 | 60.17 267 | 83.12 172 | 24.15 355 | 74.20 286 | 63.08 127 | 72.33 211 | 81.96 214 |
|
| CNLPA | | | 65.43 217 | 64.02 217 | 69.68 215 | 78.73 146 | 58.07 78 | 77.82 142 | 70.71 269 | 51.49 244 | 61.57 260 | 83.58 164 | 38.23 238 | 70.82 299 | 43.90 280 | 70.10 241 | 80.16 247 |
|
| OurMVSNet-221017-0 | | | 61.37 262 | 58.63 269 | 69.61 216 | 72.05 278 | 48.06 238 | 73.93 227 | 72.51 255 | 47.23 301 | 54.74 321 | 80.92 220 | 21.49 364 | 81.24 189 | 48.57 241 | 56.22 348 | 79.53 257 |
|
| CANet_DTU | | | 68.18 169 | 67.71 154 | 69.59 217 | 74.83 232 | 46.24 256 | 78.66 121 | 76.85 197 | 59.60 111 | 63.45 235 | 82.09 198 | 35.25 266 | 77.41 256 | 59.88 155 | 78.76 132 | 85.14 129 |
|
| mvs_anonymous | | | 68.03 171 | 67.51 160 | 69.59 217 | 72.08 277 | 44.57 275 | 71.99 255 | 75.23 221 | 51.67 239 | 67.06 170 | 82.57 180 | 54.68 50 | 77.94 247 | 56.56 172 | 75.71 170 | 86.26 84 |
|
| F-COLMAP | | | 63.05 245 | 60.87 258 | 69.58 219 | 76.99 200 | 53.63 148 | 78.12 133 | 76.16 204 | 47.97 290 | 52.41 339 | 81.61 206 | 27.87 332 | 78.11 245 | 40.07 305 | 66.66 283 | 77.00 284 |
|
| MSDG | | | 61.81 257 | 59.23 263 | 69.55 220 | 72.64 265 | 52.63 170 | 70.45 277 | 75.81 209 | 51.38 246 | 53.70 331 | 76.11 293 | 29.52 319 | 81.08 194 | 37.70 317 | 65.79 290 | 74.93 305 |
|
| Anonymous202405211 | | | 66.84 198 | 65.99 197 | 69.40 221 | 80.19 113 | 42.21 295 | 71.11 269 | 71.31 264 | 58.80 123 | 67.90 150 | 86.39 100 | 29.83 318 | 79.65 219 | 49.60 233 | 78.78 131 | 86.33 78 |
|
| tt0805 | | | 67.77 178 | 67.24 174 | 69.34 222 | 74.87 231 | 40.08 309 | 77.36 152 | 81.37 106 | 55.31 191 | 66.33 185 | 84.65 137 | 37.35 246 | 82.55 165 | 55.65 182 | 72.28 214 | 85.39 121 |
|
| GBi-Net | | | 67.21 186 | 66.55 181 | 69.19 223 | 77.63 178 | 43.33 284 | 77.31 153 | 77.83 181 | 56.62 162 | 65.04 215 | 82.70 175 | 41.85 200 | 80.33 210 | 47.18 250 | 72.76 204 | 83.92 164 |
|
| test1 | | | 67.21 186 | 66.55 181 | 69.19 223 | 77.63 178 | 43.33 284 | 77.31 153 | 77.83 181 | 56.62 162 | 65.04 215 | 82.70 175 | 41.85 200 | 80.33 210 | 47.18 250 | 72.76 204 | 83.92 164 |
|
| FMVSNet1 | | | 66.70 201 | 65.87 198 | 69.19 223 | 77.49 187 | 43.33 284 | 77.31 153 | 77.83 181 | 56.45 167 | 64.60 223 | 82.70 175 | 38.08 240 | 80.33 210 | 46.08 259 | 72.31 213 | 83.92 164 |
|
| UniMVSNet_ETH3D | | | 67.60 181 | 67.07 178 | 69.18 226 | 77.39 189 | 42.29 293 | 74.18 221 | 75.59 213 | 60.37 96 | 66.77 176 | 86.06 110 | 37.64 242 | 78.93 239 | 52.16 209 | 73.49 191 | 86.32 80 |
|
| FIs | | | 70.82 106 | 71.43 83 | 68.98 227 | 78.33 157 | 38.14 325 | 76.96 164 | 83.59 64 | 61.02 83 | 67.33 165 | 86.73 87 | 55.07 43 | 81.64 179 | 54.61 192 | 79.22 123 | 87.14 52 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 244 | 61.23 253 | 68.92 228 | 76.57 207 | 47.80 240 | 59.92 341 | 76.39 202 | 54.35 215 | 58.67 287 | 82.46 186 | 29.44 321 | 81.49 183 | 42.12 295 | 71.14 224 | 77.46 276 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| 1314 | | | 64.61 229 | 63.21 230 | 68.80 229 | 71.87 281 | 47.46 246 | 73.95 225 | 78.39 174 | 42.88 338 | 59.97 270 | 76.60 288 | 38.11 239 | 79.39 224 | 54.84 188 | 72.32 212 | 79.55 256 |
|
| FMVSNet2 | | | 66.93 196 | 66.31 192 | 68.79 230 | 77.63 178 | 42.98 288 | 76.11 181 | 77.47 187 | 56.62 162 | 65.22 212 | 82.17 193 | 41.85 200 | 80.18 216 | 47.05 253 | 72.72 207 | 83.20 190 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 263 | 58.81 266 | 68.64 231 | 74.63 239 | 52.51 174 | 78.42 126 | 73.30 249 | 49.92 266 | 50.96 344 | 81.51 209 | 23.06 357 | 79.40 223 | 31.63 353 | 65.85 288 | 74.01 316 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CostFormer | | | 64.04 233 | 62.51 237 | 68.61 232 | 71.88 280 | 45.77 260 | 71.30 264 | 70.60 270 | 47.55 295 | 64.31 226 | 76.61 287 | 41.63 203 | 79.62 221 | 49.74 229 | 69.00 263 | 80.42 242 |
|
| FMVSNet3 | | | 66.32 208 | 65.61 203 | 68.46 233 | 76.48 209 | 42.34 292 | 74.98 207 | 77.15 194 | 55.83 180 | 65.04 215 | 81.16 213 | 39.91 217 | 80.14 217 | 47.18 250 | 72.76 204 | 82.90 199 |
|
| WR-MVS | | | 68.47 163 | 68.47 140 | 68.44 234 | 80.20 112 | 39.84 311 | 73.75 232 | 76.07 207 | 64.68 22 | 68.11 147 | 83.63 160 | 50.39 105 | 79.14 232 | 49.78 227 | 69.66 253 | 86.34 76 |
|
| ECVR-MVS |  | | 67.72 179 | 67.51 160 | 68.35 235 | 79.46 126 | 36.29 348 | 74.79 211 | 66.93 296 | 58.72 124 | 67.19 167 | 88.05 66 | 36.10 259 | 81.38 185 | 52.07 210 | 84.25 68 | 87.39 44 |
|
| D2MVS | | | 62.30 251 | 60.29 260 | 68.34 236 | 66.46 340 | 48.42 234 | 65.70 304 | 73.42 248 | 47.71 293 | 58.16 293 | 75.02 305 | 30.51 311 | 77.71 252 | 53.96 196 | 71.68 220 | 78.90 264 |
|
| VNet | | | 69.68 132 | 70.19 108 | 68.16 237 | 79.73 121 | 41.63 302 | 70.53 275 | 77.38 190 | 60.37 96 | 70.69 103 | 86.63 91 | 51.08 98 | 77.09 261 | 53.61 199 | 81.69 98 | 85.75 104 |
|
| tpm2 | | | 62.07 253 | 60.10 261 | 67.99 238 | 72.79 263 | 43.86 280 | 71.05 271 | 66.85 297 | 43.14 336 | 62.77 240 | 75.39 303 | 38.32 236 | 80.80 201 | 41.69 298 | 68.88 264 | 79.32 259 |
|
| SDMVSNet | | | 68.03 171 | 68.10 148 | 67.84 239 | 77.13 194 | 48.72 231 | 65.32 312 | 79.10 149 | 58.02 139 | 65.08 213 | 82.55 181 | 47.83 131 | 73.40 287 | 63.92 120 | 73.92 182 | 81.41 222 |
|
| pmmvs4 | | | 61.48 261 | 59.39 262 | 67.76 240 | 71.57 284 | 53.86 143 | 71.42 261 | 65.34 305 | 44.20 325 | 59.46 278 | 77.92 268 | 35.90 261 | 74.71 281 | 43.87 281 | 64.87 296 | 74.71 309 |
|
| VPA-MVSNet | | | 69.02 150 | 69.47 120 | 67.69 241 | 77.42 188 | 41.00 307 | 74.04 222 | 79.68 139 | 60.06 103 | 69.26 129 | 84.81 134 | 51.06 99 | 77.58 253 | 54.44 193 | 74.43 177 | 84.48 148 |
|
| test2506 | | | 65.33 220 | 64.61 213 | 67.50 242 | 79.46 126 | 34.19 358 | 74.43 218 | 51.92 364 | 58.72 124 | 66.75 177 | 88.05 66 | 25.99 346 | 80.92 198 | 51.94 212 | 84.25 68 | 87.39 44 |
|
| FC-MVSNet-test | | | 69.80 128 | 70.58 101 | 67.46 243 | 77.61 183 | 34.73 354 | 76.05 184 | 83.19 78 | 60.84 85 | 65.88 195 | 86.46 98 | 54.52 52 | 80.76 203 | 52.52 206 | 78.12 140 | 86.91 56 |
|
| test1111 | | | 67.21 186 | 67.14 177 | 67.42 244 | 79.24 132 | 34.76 353 | 73.89 229 | 65.65 303 | 58.71 126 | 66.96 172 | 87.95 69 | 36.09 260 | 80.53 205 | 52.03 211 | 83.79 73 | 86.97 54 |
|
| ab-mvs | | | 66.65 202 | 66.42 186 | 67.37 245 | 76.17 213 | 41.73 299 | 70.41 278 | 76.14 206 | 53.99 219 | 65.98 190 | 83.51 165 | 49.48 111 | 76.24 276 | 48.60 240 | 73.46 193 | 84.14 157 |
|
| IterMVS | | | 62.79 246 | 61.27 251 | 67.35 246 | 69.37 318 | 52.04 183 | 71.17 266 | 68.24 289 | 52.63 233 | 59.82 273 | 76.91 282 | 37.32 247 | 72.36 291 | 52.80 205 | 63.19 312 | 77.66 274 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| WR-MVS_H | | | 67.02 194 | 66.92 179 | 67.33 247 | 77.95 170 | 37.75 329 | 77.57 146 | 82.11 93 | 62.03 73 | 62.65 244 | 82.48 185 | 50.57 103 | 79.46 222 | 42.91 290 | 64.01 303 | 84.79 141 |
|
| PEN-MVS | | | 66.60 203 | 66.45 183 | 67.04 248 | 77.11 196 | 36.56 342 | 77.03 163 | 80.42 131 | 62.95 50 | 62.51 249 | 84.03 151 | 46.69 152 | 79.07 233 | 44.22 274 | 63.08 313 | 85.51 113 |
|
| SCA | | | 60.49 265 | 58.38 271 | 66.80 249 | 74.14 250 | 48.06 238 | 63.35 322 | 63.23 319 | 49.13 274 | 59.33 282 | 72.10 323 | 37.45 244 | 74.27 284 | 44.17 275 | 62.57 316 | 78.05 270 |
|
| thres400 | | | 63.31 239 | 62.18 242 | 66.72 250 | 76.85 201 | 39.62 313 | 71.96 257 | 69.44 280 | 56.63 160 | 62.61 245 | 79.83 238 | 37.18 248 | 79.17 228 | 31.84 349 | 73.25 197 | 81.36 225 |
|
| CP-MVSNet | | | 66.49 206 | 66.41 187 | 66.72 250 | 77.67 177 | 36.33 345 | 76.83 170 | 79.52 143 | 62.45 63 | 62.54 247 | 83.47 167 | 46.32 154 | 78.37 241 | 45.47 269 | 63.43 310 | 85.45 116 |
|
| PS-CasMVS | | | 66.42 207 | 66.32 191 | 66.70 252 | 77.60 185 | 36.30 347 | 76.94 165 | 79.61 141 | 62.36 65 | 62.43 251 | 83.66 159 | 45.69 158 | 78.37 241 | 45.35 271 | 63.26 311 | 85.42 119 |
|
| HY-MVS | | 56.14 13 | 64.55 230 | 63.89 218 | 66.55 253 | 74.73 236 | 41.02 304 | 69.96 282 | 74.43 234 | 49.29 272 | 61.66 258 | 80.92 220 | 47.43 140 | 76.68 269 | 44.91 273 | 71.69 219 | 81.94 215 |
|
| thres600view7 | | | 63.30 240 | 62.27 240 | 66.41 254 | 77.18 193 | 38.87 319 | 72.35 250 | 69.11 284 | 56.98 155 | 62.37 252 | 80.96 219 | 37.01 255 | 79.00 237 | 31.43 356 | 73.05 201 | 81.36 225 |
|
| DTE-MVSNet | | | 65.58 215 | 65.34 206 | 66.31 255 | 76.06 215 | 34.79 351 | 76.43 175 | 79.38 146 | 62.55 61 | 61.66 258 | 83.83 156 | 45.60 160 | 79.15 231 | 41.64 301 | 60.88 328 | 85.00 134 |
|
| pmmvs-eth3d | | | 58.81 274 | 56.31 288 | 66.30 256 | 67.61 331 | 52.42 177 | 72.30 251 | 64.76 309 | 43.55 331 | 54.94 319 | 74.19 312 | 28.95 324 | 72.60 290 | 43.31 284 | 57.21 343 | 73.88 317 |
|
| pmmvs6 | | | 63.69 236 | 62.82 235 | 66.27 257 | 70.63 299 | 39.27 317 | 73.13 238 | 75.47 216 | 52.69 232 | 59.75 276 | 82.30 189 | 39.71 221 | 77.03 262 | 47.40 247 | 64.35 302 | 82.53 204 |
|
| tfpn200view9 | | | 63.18 243 | 62.18 242 | 66.21 258 | 76.85 201 | 39.62 313 | 71.96 257 | 69.44 280 | 56.63 160 | 62.61 245 | 79.83 238 | 37.18 248 | 79.17 228 | 31.84 349 | 73.25 197 | 79.83 253 |
|
| patch_mono-2 | | | 69.85 125 | 71.09 92 | 66.16 259 | 79.11 137 | 54.80 135 | 71.97 256 | 74.31 237 | 53.50 225 | 70.90 102 | 84.17 147 | 57.63 29 | 63.31 333 | 66.17 98 | 82.02 91 | 80.38 244 |
|
| Patchmatch-RL test | | | 58.16 278 | 55.49 294 | 66.15 260 | 67.92 330 | 48.89 228 | 60.66 339 | 51.07 368 | 47.86 292 | 59.36 279 | 62.71 370 | 34.02 279 | 72.27 293 | 56.41 173 | 59.40 335 | 77.30 278 |
|
| tpm cat1 | | | 59.25 272 | 56.95 281 | 66.15 260 | 72.19 276 | 46.96 250 | 68.09 292 | 65.76 302 | 40.03 354 | 57.81 295 | 70.56 335 | 38.32 236 | 74.51 282 | 38.26 315 | 61.50 325 | 77.00 284 |
|
| ppachtmachnet_test | | | 58.06 280 | 55.38 295 | 66.10 262 | 69.51 315 | 48.99 226 | 68.01 293 | 66.13 301 | 44.50 322 | 54.05 329 | 70.74 334 | 32.09 305 | 72.34 292 | 36.68 326 | 56.71 347 | 76.99 286 |
|
| pm-mvs1 | | | 65.24 221 | 64.97 211 | 66.04 263 | 72.38 272 | 39.40 316 | 72.62 245 | 75.63 212 | 55.53 188 | 62.35 253 | 83.18 170 | 47.45 139 | 76.47 273 | 49.06 237 | 66.54 284 | 82.24 209 |
|
| CR-MVSNet | | | 59.91 268 | 57.90 276 | 65.96 264 | 69.96 310 | 52.07 181 | 65.31 313 | 63.15 320 | 42.48 340 | 59.36 279 | 74.84 306 | 35.83 262 | 70.75 300 | 45.50 267 | 64.65 298 | 75.06 301 |
|
| 1112_ss | | | 64.00 234 | 63.36 227 | 65.93 265 | 79.28 130 | 42.58 291 | 71.35 262 | 72.36 257 | 46.41 306 | 60.55 265 | 77.89 270 | 46.27 156 | 73.28 288 | 46.18 258 | 69.97 244 | 81.92 216 |
|
| thres100view900 | | | 63.28 241 | 62.41 239 | 65.89 266 | 77.31 191 | 38.66 321 | 72.65 243 | 69.11 284 | 57.07 153 | 62.45 250 | 81.03 217 | 37.01 255 | 79.17 228 | 31.84 349 | 73.25 197 | 79.83 253 |
|
| TransMVSNet (Re) | | | 64.72 226 | 64.33 215 | 65.87 267 | 75.22 227 | 38.56 322 | 74.66 214 | 75.08 229 | 58.90 122 | 61.79 257 | 82.63 178 | 51.18 96 | 78.07 246 | 43.63 283 | 55.87 349 | 80.99 235 |
|
| VPNet | | | 67.52 182 | 68.11 147 | 65.74 268 | 79.18 134 | 36.80 340 | 72.17 253 | 72.83 253 | 62.04 72 | 67.79 158 | 85.83 119 | 48.88 121 | 76.60 270 | 51.30 218 | 72.97 202 | 83.81 169 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 267 | 58.14 274 | 65.69 269 | 70.47 301 | 44.82 270 | 75.33 196 | 70.86 268 | 45.04 317 | 56.06 307 | 76.00 294 | 26.89 341 | 79.65 219 | 35.36 335 | 67.29 278 | 72.60 324 |
|
| Baseline_NR-MVSNet | | | 67.05 193 | 67.56 156 | 65.50 270 | 75.65 219 | 37.70 331 | 75.42 195 | 74.65 233 | 59.90 106 | 68.14 146 | 83.15 171 | 49.12 119 | 77.20 259 | 52.23 208 | 69.78 249 | 81.60 219 |
|
| miper_lstm_enhance | | | 62.03 254 | 60.88 257 | 65.49 271 | 66.71 337 | 46.25 255 | 56.29 357 | 75.70 211 | 50.68 256 | 61.27 261 | 75.48 302 | 40.21 216 | 68.03 315 | 56.31 174 | 65.25 293 | 82.18 210 |
|
| IterMVS-SCA-FT | | | 62.49 247 | 61.52 248 | 65.40 272 | 71.99 279 | 50.80 197 | 71.15 268 | 69.63 277 | 45.71 314 | 60.61 264 | 77.93 267 | 37.45 244 | 65.99 326 | 55.67 181 | 63.50 309 | 79.42 258 |
|
| thres200 | | | 62.20 252 | 61.16 254 | 65.34 273 | 75.38 226 | 39.99 310 | 69.60 285 | 69.29 282 | 55.64 187 | 61.87 256 | 76.99 280 | 37.07 254 | 78.96 238 | 31.28 357 | 73.28 196 | 77.06 282 |
|
| MS-PatchMatch | | | 62.42 249 | 61.46 249 | 65.31 274 | 75.21 228 | 52.10 180 | 72.05 254 | 74.05 241 | 46.41 306 | 57.42 299 | 74.36 310 | 34.35 276 | 77.57 254 | 45.62 265 | 73.67 186 | 66.26 362 |
|
| ambc | | | | | 65.13 275 | 63.72 354 | 37.07 337 | 47.66 375 | 78.78 157 | | 54.37 327 | 71.42 329 | 11.24 382 | 80.94 196 | 45.64 264 | 53.85 356 | 77.38 277 |
|
| tfpnnormal | | | 62.47 248 | 61.63 247 | 64.99 276 | 74.81 233 | 39.01 318 | 71.22 265 | 73.72 245 | 55.22 194 | 60.21 266 | 80.09 236 | 41.26 211 | 76.98 263 | 30.02 362 | 68.09 272 | 78.97 263 |
|
| testdata | | | | | 64.66 277 | 81.52 86 | 52.93 162 | | 65.29 306 | 46.09 309 | 73.88 62 | 87.46 75 | 38.08 240 | 66.26 325 | 53.31 202 | 78.48 136 | 74.78 308 |
|
| PatchmatchNet |  | | 59.84 269 | 58.24 272 | 64.65 278 | 73.05 259 | 46.70 252 | 69.42 287 | 62.18 329 | 47.55 295 | 58.88 285 | 71.96 325 | 34.49 274 | 69.16 308 | 42.99 289 | 63.60 307 | 78.07 269 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| sd_testset | | | 64.46 231 | 64.45 214 | 64.51 279 | 77.13 194 | 42.25 294 | 62.67 325 | 72.11 259 | 58.02 139 | 65.08 213 | 82.55 181 | 41.22 212 | 69.88 306 | 47.32 248 | 73.92 182 | 81.41 222 |
|
| AllTest | | | 57.08 286 | 54.65 299 | 64.39 280 | 71.44 286 | 49.03 223 | 69.92 283 | 67.30 291 | 45.97 311 | 47.16 358 | 79.77 240 | 17.47 367 | 67.56 317 | 33.65 340 | 59.16 336 | 76.57 288 |
|
| TestCases | | | | | 64.39 280 | 71.44 286 | 49.03 223 | | 67.30 291 | 45.97 311 | 47.16 358 | 79.77 240 | 17.47 367 | 67.56 317 | 33.65 340 | 59.16 336 | 76.57 288 |
|
| Test_1112_low_res | | | 62.32 250 | 61.77 245 | 64.00 282 | 79.08 138 | 39.53 315 | 68.17 291 | 70.17 272 | 43.25 334 | 59.03 284 | 79.90 237 | 44.08 179 | 71.24 298 | 43.79 282 | 68.42 270 | 81.25 228 |
|
| baseline1 | | | 63.81 235 | 63.87 220 | 63.62 283 | 76.29 211 | 36.36 343 | 71.78 259 | 67.29 293 | 56.05 176 | 64.23 228 | 82.95 173 | 47.11 145 | 74.41 283 | 47.30 249 | 61.85 322 | 80.10 249 |
|
| LCM-MVSNet-Re | | | 61.88 256 | 61.35 250 | 63.46 284 | 74.58 240 | 31.48 370 | 61.42 332 | 58.14 343 | 58.71 126 | 53.02 338 | 79.55 246 | 43.07 187 | 76.80 265 | 45.69 263 | 77.96 142 | 82.11 213 |
|
| CMPMVS |  | 42.80 21 | 57.81 282 | 55.97 290 | 63.32 285 | 60.98 367 | 47.38 247 | 64.66 317 | 69.50 279 | 32.06 366 | 46.83 360 | 77.80 272 | 29.50 320 | 71.36 297 | 48.68 239 | 73.75 185 | 71.21 344 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CL-MVSNet_self_test | | | 61.53 259 | 60.94 256 | 63.30 286 | 68.95 322 | 36.93 339 | 67.60 295 | 72.80 254 | 55.67 185 | 59.95 271 | 76.63 285 | 45.01 172 | 72.22 294 | 39.74 309 | 62.09 321 | 80.74 239 |
|
| JIA-IIPM | | | 51.56 320 | 47.68 334 | 63.21 287 | 64.61 349 | 50.73 198 | 47.71 374 | 58.77 341 | 42.90 337 | 48.46 355 | 51.72 380 | 24.97 351 | 70.24 305 | 36.06 332 | 53.89 355 | 68.64 360 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 236 | 63.88 219 | 63.14 288 | 74.75 235 | 31.04 371 | 71.16 267 | 63.64 316 | 56.32 169 | 59.80 274 | 84.99 131 | 44.51 175 | 75.46 278 | 39.12 311 | 80.62 101 | 82.92 197 |
|
| MDA-MVSNet-bldmvs | | | 53.87 309 | 50.81 321 | 63.05 289 | 66.25 341 | 48.58 232 | 56.93 355 | 63.82 315 | 48.09 288 | 41.22 373 | 70.48 338 | 30.34 313 | 68.00 316 | 34.24 338 | 45.92 371 | 72.57 325 |
|
| tpmvs | | | 58.47 275 | 56.95 281 | 63.03 290 | 70.20 305 | 41.21 303 | 67.90 294 | 67.23 294 | 49.62 268 | 54.73 322 | 70.84 333 | 34.14 277 | 76.24 276 | 36.64 327 | 61.29 326 | 71.64 337 |
|
| USDC | | | 56.35 293 | 54.24 306 | 62.69 291 | 64.74 348 | 40.31 308 | 65.05 315 | 73.83 244 | 43.93 329 | 47.58 356 | 77.71 276 | 15.36 373 | 75.05 280 | 38.19 316 | 61.81 323 | 72.70 323 |
|
| our_test_3 | | | 56.49 290 | 54.42 302 | 62.68 292 | 69.51 315 | 45.48 266 | 66.08 302 | 61.49 333 | 44.11 328 | 50.73 348 | 69.60 345 | 33.05 289 | 68.15 312 | 38.38 314 | 56.86 344 | 74.40 311 |
|
| GG-mvs-BLEND | | | | | 62.34 293 | 71.36 290 | 37.04 338 | 69.20 288 | 57.33 349 | | 54.73 322 | 65.48 364 | 30.37 312 | 77.82 249 | 34.82 336 | 74.93 175 | 72.17 333 |
|
| gg-mvs-nofinetune | | | 57.86 281 | 56.43 287 | 62.18 294 | 72.62 266 | 35.35 350 | 66.57 298 | 56.33 353 | 50.65 257 | 57.64 296 | 57.10 376 | 30.65 310 | 76.36 274 | 37.38 319 | 78.88 128 | 74.82 307 |
|
| ITE_SJBPF | | | | | 62.09 295 | 66.16 342 | 44.55 276 | | 64.32 312 | 47.36 298 | 55.31 314 | 80.34 230 | 19.27 366 | 62.68 336 | 36.29 331 | 62.39 318 | 79.04 261 |
|
| EPNet_dtu | | | 61.90 255 | 61.97 244 | 61.68 296 | 72.89 262 | 39.78 312 | 75.85 189 | 65.62 304 | 55.09 197 | 54.56 324 | 79.36 250 | 37.59 243 | 67.02 320 | 39.80 308 | 76.95 158 | 78.25 267 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TDRefinement | | | 53.44 313 | 50.72 322 | 61.60 297 | 64.31 351 | 46.96 250 | 70.89 272 | 65.27 307 | 41.78 341 | 44.61 367 | 77.98 265 | 11.52 381 | 66.36 324 | 28.57 368 | 51.59 360 | 71.49 340 |
|
| PVSNet | | 50.76 19 | 58.40 276 | 57.39 277 | 61.42 298 | 75.53 223 | 44.04 279 | 61.43 331 | 63.45 317 | 47.04 303 | 56.91 300 | 73.61 315 | 27.00 340 | 64.76 329 | 39.12 311 | 72.40 209 | 75.47 298 |
|
| TinyColmap | | | 54.14 306 | 51.72 317 | 61.40 299 | 66.84 336 | 41.97 296 | 66.52 299 | 68.51 287 | 44.81 318 | 42.69 372 | 75.77 298 | 11.66 379 | 72.94 289 | 31.96 347 | 56.77 346 | 69.27 358 |
|
| PatchMatch-RL | | | 56.25 294 | 54.55 301 | 61.32 300 | 77.06 197 | 56.07 109 | 65.57 306 | 54.10 361 | 44.13 327 | 53.49 337 | 71.27 332 | 25.20 350 | 66.78 321 | 36.52 329 | 63.66 306 | 61.12 366 |
|
| CVMVSNet | | | 59.63 271 | 59.14 264 | 61.08 301 | 74.47 242 | 38.84 320 | 75.20 200 | 68.74 286 | 31.15 367 | 58.24 292 | 76.51 289 | 32.39 303 | 68.58 311 | 49.77 228 | 65.84 289 | 75.81 293 |
|
| RPSCF | | | 55.80 298 | 54.22 307 | 60.53 302 | 65.13 347 | 42.91 290 | 64.30 318 | 57.62 346 | 36.84 360 | 58.05 294 | 82.28 190 | 28.01 331 | 56.24 365 | 37.14 321 | 58.61 338 | 82.44 208 |
|
| KD-MVS_2432*1600 | | | 53.45 311 | 51.50 319 | 59.30 303 | 62.82 356 | 37.14 335 | 55.33 358 | 71.79 262 | 47.34 299 | 55.09 317 | 70.52 336 | 21.91 361 | 70.45 302 | 35.72 333 | 42.97 374 | 70.31 350 |
|
| miper_refine_blended | | | 53.45 311 | 51.50 319 | 59.30 303 | 62.82 356 | 37.14 335 | 55.33 358 | 71.79 262 | 47.34 299 | 55.09 317 | 70.52 336 | 21.91 361 | 70.45 302 | 35.72 333 | 42.97 374 | 70.31 350 |
|
| Patchmtry | | | 57.16 285 | 56.47 286 | 59.23 305 | 69.17 321 | 34.58 355 | 62.98 323 | 63.15 320 | 44.53 321 | 56.83 301 | 74.84 306 | 35.83 262 | 68.71 310 | 40.03 306 | 60.91 327 | 74.39 312 |
|
| KD-MVS_self_test | | | 55.22 302 | 53.89 309 | 59.21 306 | 57.80 375 | 27.47 381 | 57.75 351 | 74.32 236 | 47.38 297 | 50.90 345 | 70.00 341 | 28.45 329 | 70.30 304 | 40.44 304 | 57.92 340 | 79.87 252 |
|
| EU-MVSNet | | | 55.61 299 | 54.41 303 | 59.19 307 | 65.41 346 | 33.42 362 | 72.44 249 | 71.91 261 | 28.81 369 | 51.27 342 | 73.87 313 | 24.76 352 | 69.08 309 | 43.04 288 | 58.20 339 | 75.06 301 |
|
| ADS-MVSNet2 | | | 51.33 322 | 48.76 329 | 59.07 308 | 66.02 344 | 44.60 274 | 50.90 368 | 59.76 338 | 36.90 358 | 50.74 346 | 66.18 362 | 26.38 342 | 63.11 334 | 27.17 371 | 54.76 352 | 69.50 356 |
|
| pmmvs5 | | | 56.47 291 | 55.68 293 | 58.86 309 | 61.41 364 | 36.71 341 | 66.37 300 | 62.75 322 | 40.38 351 | 53.70 331 | 76.62 286 | 34.56 272 | 67.05 319 | 40.02 307 | 65.27 292 | 72.83 322 |
|
| PM-MVS | | | 52.33 317 | 50.19 325 | 58.75 310 | 62.10 361 | 45.14 269 | 65.75 303 | 40.38 387 | 43.60 330 | 53.52 335 | 72.65 318 | 9.16 387 | 65.87 327 | 50.41 224 | 54.18 354 | 65.24 364 |
|
| FMVSNet5 | | | 55.86 297 | 54.93 297 | 58.66 311 | 71.05 295 | 36.35 344 | 64.18 320 | 62.48 324 | 46.76 304 | 50.66 349 | 74.73 308 | 25.80 347 | 64.04 331 | 33.11 343 | 65.57 291 | 75.59 296 |
|
| testing3 | | | 56.54 289 | 55.92 291 | 58.41 312 | 77.52 186 | 27.93 379 | 69.72 284 | 56.36 352 | 54.75 207 | 58.63 289 | 77.80 272 | 20.88 365 | 71.75 296 | 25.31 377 | 62.25 319 | 75.53 297 |
|
| test_vis1_n_1920 | | | 58.86 273 | 59.06 265 | 58.25 313 | 63.76 352 | 43.14 287 | 67.49 296 | 66.36 300 | 40.22 352 | 65.89 194 | 71.95 326 | 31.04 307 | 59.75 347 | 59.94 154 | 64.90 295 | 71.85 336 |
|
| test-LLR | | | 58.15 279 | 58.13 275 | 58.22 314 | 68.57 324 | 44.80 271 | 65.46 309 | 57.92 344 | 50.08 263 | 55.44 312 | 69.82 342 | 32.62 299 | 57.44 357 | 49.66 231 | 73.62 187 | 72.41 329 |
|
| test-mter | | | 56.42 292 | 55.82 292 | 58.22 314 | 68.57 324 | 44.80 271 | 65.46 309 | 57.92 344 | 39.94 355 | 55.44 312 | 69.82 342 | 21.92 360 | 57.44 357 | 49.66 231 | 73.62 187 | 72.41 329 |
|
| MIMVSNet | | | 57.35 283 | 57.07 279 | 58.22 314 | 74.21 249 | 37.18 334 | 62.46 326 | 60.88 336 | 48.88 277 | 55.29 315 | 75.99 296 | 31.68 306 | 62.04 338 | 31.87 348 | 72.35 210 | 75.43 299 |
|
| Anonymous20240521 | | | 55.30 300 | 54.41 303 | 57.96 317 | 60.92 369 | 41.73 299 | 71.09 270 | 71.06 267 | 41.18 346 | 48.65 354 | 73.31 316 | 16.93 369 | 59.25 349 | 42.54 292 | 64.01 303 | 72.90 321 |
|
| WTY-MVS | | | 59.75 270 | 60.39 259 | 57.85 318 | 72.32 274 | 37.83 328 | 61.05 337 | 64.18 313 | 45.95 313 | 61.91 255 | 79.11 254 | 47.01 149 | 60.88 341 | 42.50 293 | 69.49 255 | 74.83 306 |
|
| MIMVSNet1 | | | 55.17 303 | 54.31 305 | 57.77 319 | 70.03 309 | 32.01 368 | 65.68 305 | 64.81 308 | 49.19 273 | 46.75 361 | 76.00 294 | 25.53 349 | 64.04 331 | 28.65 367 | 62.13 320 | 77.26 280 |
|
| XXY-MVS | | | 60.68 264 | 61.67 246 | 57.70 320 | 70.43 302 | 38.45 323 | 64.19 319 | 66.47 298 | 48.05 289 | 63.22 236 | 80.86 222 | 49.28 114 | 60.47 342 | 45.25 272 | 67.28 279 | 74.19 314 |
|
| test_cas_vis1_n_1920 | | | 56.91 287 | 56.71 284 | 57.51 321 | 59.13 372 | 45.40 267 | 63.58 321 | 61.29 334 | 36.24 361 | 67.14 169 | 71.85 327 | 29.89 317 | 56.69 361 | 57.65 166 | 63.58 308 | 70.46 349 |
|
| tpmrst | | | 58.24 277 | 58.70 268 | 56.84 322 | 66.97 334 | 34.32 356 | 69.57 286 | 61.14 335 | 47.17 302 | 58.58 290 | 71.60 328 | 41.28 210 | 60.41 343 | 49.20 235 | 62.84 314 | 75.78 294 |
|
| dmvs_re | | | 56.77 288 | 56.83 283 | 56.61 323 | 69.23 319 | 41.02 304 | 58.37 346 | 64.18 313 | 50.59 259 | 57.45 298 | 71.42 329 | 35.54 264 | 58.94 351 | 37.23 320 | 67.45 277 | 69.87 354 |
|
| TESTMET0.1,1 | | | 55.28 301 | 54.90 298 | 56.42 324 | 66.56 338 | 43.67 282 | 65.46 309 | 56.27 354 | 39.18 357 | 53.83 330 | 67.44 354 | 24.21 354 | 55.46 368 | 48.04 244 | 73.11 200 | 70.13 352 |
|
| PMMVS | | | 53.96 307 | 53.26 313 | 56.04 325 | 62.60 359 | 50.92 194 | 61.17 335 | 56.09 355 | 32.81 365 | 53.51 336 | 66.84 359 | 34.04 278 | 59.93 346 | 44.14 277 | 68.18 271 | 57.27 374 |
|
| YYNet1 | | | 50.73 324 | 48.96 326 | 56.03 326 | 61.10 366 | 41.78 298 | 51.94 366 | 56.44 351 | 40.94 349 | 44.84 365 | 67.80 352 | 30.08 315 | 55.08 369 | 36.77 323 | 50.71 362 | 71.22 343 |
|
| MDA-MVSNet_test_wron | | | 50.71 325 | 48.95 327 | 56.00 327 | 61.17 365 | 41.84 297 | 51.90 367 | 56.45 350 | 40.96 348 | 44.79 366 | 67.84 351 | 30.04 316 | 55.07 370 | 36.71 325 | 50.69 363 | 71.11 346 |
|
| myMVS_eth3d | | | 54.86 305 | 54.61 300 | 55.61 328 | 74.69 237 | 27.31 382 | 65.52 307 | 57.49 347 | 50.97 254 | 56.52 304 | 72.18 321 | 21.87 363 | 68.09 313 | 27.70 370 | 64.59 300 | 71.44 341 |
|
| Syy-MVS | | | 56.00 296 | 56.23 289 | 55.32 329 | 74.69 237 | 26.44 385 | 65.52 307 | 57.49 347 | 50.97 254 | 56.52 304 | 72.18 321 | 39.89 218 | 68.09 313 | 24.20 378 | 64.59 300 | 71.44 341 |
|
| UnsupCasMVSNet_eth | | | 53.16 316 | 52.47 314 | 55.23 330 | 59.45 371 | 33.39 363 | 59.43 343 | 69.13 283 | 45.98 310 | 50.35 351 | 72.32 320 | 29.30 322 | 58.26 355 | 42.02 297 | 44.30 372 | 74.05 315 |
|
| sss | | | 56.17 295 | 56.57 285 | 54.96 331 | 66.93 335 | 36.32 346 | 57.94 349 | 61.69 332 | 41.67 343 | 58.64 288 | 75.32 304 | 38.72 232 | 56.25 364 | 42.04 296 | 66.19 287 | 72.31 332 |
|
| tpm | | | 57.34 284 | 58.16 273 | 54.86 332 | 71.80 282 | 34.77 352 | 67.47 297 | 56.04 356 | 48.20 286 | 60.10 268 | 76.92 281 | 37.17 250 | 53.41 373 | 40.76 303 | 65.01 294 | 76.40 290 |
|
| EPMVS | | | 53.96 307 | 53.69 310 | 54.79 333 | 66.12 343 | 31.96 369 | 62.34 328 | 49.05 371 | 44.42 324 | 55.54 310 | 71.33 331 | 30.22 314 | 56.70 360 | 41.65 300 | 62.54 317 | 75.71 295 |
|
| Anonymous20231206 | | | 55.10 304 | 55.30 296 | 54.48 334 | 69.81 314 | 33.94 360 | 62.91 324 | 62.13 330 | 41.08 347 | 55.18 316 | 75.65 299 | 32.75 296 | 56.59 363 | 30.32 361 | 67.86 273 | 72.91 320 |
|
| EGC-MVSNET | | | 42.47 340 | 38.48 348 | 54.46 335 | 74.33 246 | 48.73 230 | 70.33 279 | 51.10 367 | 0.03 399 | 0.18 400 | 67.78 353 | 13.28 376 | 66.49 323 | 18.91 384 | 50.36 364 | 48.15 381 |
|
| test_fmvs1_n | | | 51.37 321 | 50.35 324 | 54.42 336 | 52.85 378 | 37.71 330 | 61.16 336 | 51.93 363 | 28.15 371 | 63.81 232 | 69.73 344 | 13.72 374 | 53.95 371 | 51.16 219 | 60.65 331 | 71.59 338 |
|
| pmmvs3 | | | 44.92 336 | 41.95 343 | 53.86 337 | 52.58 380 | 43.55 283 | 62.11 329 | 46.90 379 | 26.05 376 | 40.63 374 | 60.19 372 | 11.08 384 | 57.91 356 | 31.83 352 | 46.15 370 | 60.11 367 |
|
| test_fmvs1 | | | 51.32 323 | 50.48 323 | 53.81 338 | 53.57 377 | 37.51 332 | 60.63 340 | 51.16 366 | 28.02 373 | 63.62 233 | 69.23 347 | 16.41 370 | 53.93 372 | 51.01 220 | 60.70 330 | 69.99 353 |
|
| UnsupCasMVSNet_bld | | | 50.07 327 | 48.87 328 | 53.66 339 | 60.97 368 | 33.67 361 | 57.62 352 | 64.56 311 | 39.47 356 | 47.38 357 | 64.02 368 | 27.47 335 | 59.32 348 | 34.69 337 | 43.68 373 | 67.98 361 |
|
| LCM-MVSNet | | | 40.30 345 | 35.88 351 | 53.57 340 | 42.24 389 | 29.15 375 | 45.21 380 | 60.53 337 | 22.23 383 | 28.02 385 | 50.98 383 | 3.72 396 | 61.78 339 | 31.22 358 | 38.76 380 | 69.78 355 |
|
| test_vis1_n | | | 49.89 328 | 48.69 330 | 53.50 341 | 53.97 376 | 37.38 333 | 61.53 330 | 47.33 377 | 28.54 370 | 59.62 277 | 67.10 358 | 13.52 375 | 52.27 376 | 49.07 236 | 57.52 341 | 70.84 347 |
|
| test20.03 | | | 53.87 309 | 54.02 308 | 53.41 342 | 61.47 363 | 28.11 378 | 61.30 333 | 59.21 339 | 51.34 248 | 52.09 340 | 77.43 277 | 33.29 288 | 58.55 353 | 29.76 363 | 60.27 333 | 73.58 318 |
|
| ANet_high | | | 41.38 343 | 37.47 350 | 53.11 343 | 39.73 394 | 24.45 390 | 56.94 354 | 69.69 275 | 47.65 294 | 26.04 387 | 52.32 379 | 12.44 377 | 62.38 337 | 21.80 381 | 10.61 396 | 72.49 326 |
|
| PVSNet_0 | | 43.31 20 | 47.46 334 | 45.64 337 | 52.92 344 | 67.60 332 | 44.65 273 | 54.06 362 | 54.64 357 | 41.59 344 | 46.15 363 | 58.75 373 | 30.99 308 | 58.66 352 | 32.18 346 | 24.81 388 | 55.46 376 |
|
| dp | | | 51.89 319 | 51.60 318 | 52.77 345 | 68.44 327 | 32.45 367 | 62.36 327 | 54.57 358 | 44.16 326 | 49.31 353 | 67.91 350 | 28.87 326 | 56.61 362 | 33.89 339 | 54.89 351 | 69.24 359 |
|
| test0.0.03 1 | | | 53.32 314 | 53.59 311 | 52.50 346 | 62.81 358 | 29.45 374 | 59.51 342 | 54.11 360 | 50.08 263 | 54.40 326 | 74.31 311 | 32.62 299 | 55.92 366 | 30.50 360 | 63.95 305 | 72.15 334 |
|
| PatchT | | | 53.17 315 | 53.44 312 | 52.33 347 | 68.29 328 | 25.34 389 | 58.21 347 | 54.41 359 | 44.46 323 | 54.56 324 | 69.05 348 | 33.32 287 | 60.94 340 | 36.93 322 | 61.76 324 | 70.73 348 |
|
| test_fmvs2 | | | 48.69 330 | 47.49 335 | 52.29 348 | 48.63 384 | 33.06 365 | 57.76 350 | 48.05 375 | 25.71 377 | 59.76 275 | 69.60 345 | 11.57 380 | 52.23 377 | 49.45 234 | 56.86 344 | 71.58 339 |
|
| CHOSEN 280x420 | | | 47.83 332 | 46.36 336 | 52.24 349 | 67.37 333 | 49.78 214 | 38.91 386 | 43.11 385 | 35.00 363 | 43.27 371 | 63.30 369 | 28.95 324 | 49.19 380 | 36.53 328 | 60.80 329 | 57.76 373 |
|
| Patchmatch-test | | | 49.08 329 | 48.28 331 | 51.50 350 | 64.40 350 | 30.85 372 | 45.68 378 | 48.46 374 | 35.60 362 | 46.10 364 | 72.10 323 | 34.47 275 | 46.37 383 | 27.08 373 | 60.65 331 | 77.27 279 |
|
| ADS-MVSNet | | | 48.48 331 | 47.77 332 | 50.63 351 | 66.02 344 | 29.92 373 | 50.90 368 | 50.87 370 | 36.90 358 | 50.74 346 | 66.18 362 | 26.38 342 | 52.47 375 | 27.17 371 | 54.76 352 | 69.50 356 |
|
| testgi | | | 51.90 318 | 52.37 315 | 50.51 352 | 60.39 370 | 23.55 392 | 58.42 345 | 58.15 342 | 49.03 275 | 51.83 341 | 79.21 253 | 22.39 358 | 55.59 367 | 29.24 366 | 62.64 315 | 72.40 331 |
|
| test_fmvs3 | | | 44.30 337 | 42.55 340 | 49.55 353 | 42.83 388 | 27.15 384 | 53.03 364 | 44.93 381 | 22.03 384 | 53.69 333 | 64.94 365 | 4.21 394 | 49.63 379 | 47.47 245 | 49.82 365 | 71.88 335 |
|
| MVS-HIRNet | | | 45.52 335 | 44.48 338 | 48.65 354 | 68.49 326 | 34.05 359 | 59.41 344 | 44.50 382 | 27.03 374 | 37.96 381 | 50.47 384 | 26.16 345 | 64.10 330 | 26.74 374 | 59.52 334 | 47.82 383 |
|
| new-patchmatchnet | | | 47.56 333 | 47.73 333 | 47.06 355 | 58.81 373 | 9.37 401 | 48.78 372 | 59.21 339 | 43.28 333 | 44.22 368 | 68.66 349 | 25.67 348 | 57.20 359 | 31.57 355 | 49.35 367 | 74.62 310 |
|
| test_vis1_rt | | | 41.35 344 | 39.45 346 | 47.03 356 | 46.65 387 | 37.86 327 | 47.76 373 | 38.65 388 | 23.10 380 | 44.21 369 | 51.22 382 | 11.20 383 | 44.08 385 | 39.27 310 | 53.02 357 | 59.14 369 |
|
| FPMVS | | | 42.18 341 | 41.11 344 | 45.39 357 | 58.03 374 | 41.01 306 | 49.50 370 | 53.81 362 | 30.07 368 | 33.71 382 | 64.03 366 | 11.69 378 | 52.08 378 | 14.01 388 | 55.11 350 | 43.09 385 |
|
| LF4IMVS | | | 42.95 339 | 42.26 341 | 45.04 358 | 48.30 385 | 32.50 366 | 54.80 360 | 48.49 373 | 28.03 372 | 40.51 375 | 70.16 339 | 9.24 386 | 43.89 386 | 31.63 353 | 49.18 368 | 58.72 370 |
|
| PMVS |  | 28.69 22 | 36.22 350 | 33.29 354 | 45.02 359 | 36.82 396 | 35.98 349 | 54.68 361 | 48.74 372 | 26.31 375 | 21.02 390 | 51.61 381 | 2.88 399 | 60.10 345 | 9.99 396 | 47.58 369 | 38.99 390 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dmvs_testset | | | 50.16 326 | 51.90 316 | 44.94 360 | 66.49 339 | 11.78 398 | 61.01 338 | 51.50 365 | 51.17 252 | 50.30 352 | 67.44 354 | 39.28 225 | 60.29 344 | 22.38 380 | 57.49 342 | 62.76 365 |
|
| APD_test1 | | | 37.39 349 | 34.94 352 | 44.72 361 | 48.88 383 | 33.19 364 | 52.95 365 | 44.00 384 | 19.49 385 | 27.28 386 | 58.59 374 | 3.18 398 | 52.84 374 | 18.92 383 | 41.17 377 | 48.14 382 |
|
| Gipuma |  | | 34.77 351 | 31.91 355 | 43.33 362 | 62.05 362 | 37.87 326 | 20.39 391 | 67.03 295 | 23.23 379 | 18.41 392 | 25.84 392 | 4.24 393 | 62.73 335 | 14.71 387 | 51.32 361 | 29.38 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| mvsany_test1 | | | 39.38 346 | 38.16 349 | 43.02 363 | 49.05 382 | 34.28 357 | 44.16 382 | 25.94 398 | 22.74 382 | 46.57 362 | 62.21 371 | 23.85 356 | 41.16 390 | 33.01 344 | 35.91 382 | 53.63 377 |
|
| WB-MVS | | | 43.26 338 | 43.41 339 | 42.83 364 | 63.32 355 | 10.32 400 | 58.17 348 | 45.20 380 | 45.42 315 | 40.44 376 | 67.26 357 | 34.01 280 | 58.98 350 | 11.96 392 | 24.88 387 | 59.20 368 |
|
| SSC-MVS | | | 41.96 342 | 41.99 342 | 41.90 365 | 62.46 360 | 9.28 402 | 57.41 353 | 44.32 383 | 43.38 332 | 38.30 380 | 66.45 360 | 32.67 298 | 58.42 354 | 10.98 393 | 21.91 390 | 57.99 372 |
|
| DSMNet-mixed | | | 39.30 348 | 38.72 347 | 41.03 366 | 51.22 381 | 19.66 395 | 45.53 379 | 31.35 394 | 15.83 391 | 39.80 378 | 67.42 356 | 22.19 359 | 45.13 384 | 22.43 379 | 52.69 358 | 58.31 371 |
|
| testf1 | | | 31.46 356 | 28.89 359 | 39.16 367 | 41.99 391 | 28.78 376 | 46.45 376 | 37.56 389 | 14.28 392 | 21.10 388 | 48.96 385 | 1.48 402 | 47.11 381 | 13.63 389 | 34.56 383 | 41.60 386 |
|
| APD_test2 | | | 31.46 356 | 28.89 359 | 39.16 367 | 41.99 391 | 28.78 376 | 46.45 376 | 37.56 389 | 14.28 392 | 21.10 388 | 48.96 385 | 1.48 402 | 47.11 381 | 13.63 389 | 34.56 383 | 41.60 386 |
|
| mvsany_test3 | | | 32.62 353 | 30.57 357 | 38.77 369 | 36.16 397 | 24.20 391 | 38.10 387 | 20.63 400 | 19.14 386 | 40.36 377 | 57.43 375 | 5.06 391 | 36.63 393 | 29.59 365 | 28.66 386 | 55.49 375 |
|
| test_vis3_rt | | | 32.09 354 | 30.20 358 | 37.76 370 | 35.36 398 | 27.48 380 | 40.60 385 | 28.29 397 | 16.69 389 | 32.52 383 | 40.53 388 | 1.96 400 | 37.40 392 | 33.64 342 | 42.21 376 | 48.39 380 |
|
| N_pmnet | | | 39.35 347 | 40.28 345 | 36.54 371 | 63.76 352 | 1.62 406 | 49.37 371 | 0.76 405 | 34.62 364 | 43.61 370 | 66.38 361 | 26.25 344 | 42.57 387 | 26.02 376 | 51.77 359 | 65.44 363 |
|
| test_f | | | 31.86 355 | 31.05 356 | 34.28 372 | 32.33 400 | 21.86 393 | 32.34 388 | 30.46 395 | 16.02 390 | 39.78 379 | 55.45 377 | 4.80 392 | 32.36 395 | 30.61 359 | 37.66 381 | 48.64 379 |
|
| new_pmnet | | | 34.13 352 | 34.29 353 | 33.64 373 | 52.63 379 | 18.23 397 | 44.43 381 | 33.90 393 | 22.81 381 | 30.89 384 | 53.18 378 | 10.48 385 | 35.72 394 | 20.77 382 | 39.51 378 | 46.98 384 |
|
| MVE |  | 17.77 23 | 21.41 361 | 17.77 366 | 32.34 374 | 34.34 399 | 25.44 388 | 16.11 392 | 24.11 399 | 11.19 394 | 13.22 394 | 31.92 390 | 1.58 401 | 30.95 396 | 10.47 394 | 17.03 392 | 40.62 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 27.40 358 | 25.91 361 | 31.87 375 | 39.46 395 | 6.57 403 | 31.17 389 | 28.52 396 | 23.96 378 | 20.45 391 | 48.94 387 | 4.20 395 | 37.94 391 | 16.51 385 | 19.97 391 | 51.09 378 |
|
| E-PMN | | | 23.77 359 | 22.73 363 | 26.90 376 | 42.02 390 | 20.67 394 | 42.66 383 | 35.70 391 | 17.43 387 | 10.28 397 | 25.05 393 | 6.42 389 | 42.39 388 | 10.28 395 | 14.71 393 | 17.63 392 |
|
| EMVS | | | 22.97 360 | 21.84 364 | 26.36 377 | 40.20 393 | 19.53 396 | 41.95 384 | 34.64 392 | 17.09 388 | 9.73 398 | 22.83 394 | 7.29 388 | 42.22 389 | 9.18 397 | 13.66 394 | 17.32 393 |
|
| test_method | | | 19.68 362 | 18.10 365 | 24.41 378 | 13.68 402 | 3.11 405 | 12.06 394 | 42.37 386 | 2.00 397 | 11.97 395 | 36.38 389 | 5.77 390 | 29.35 397 | 15.06 386 | 23.65 389 | 40.76 388 |
|
| wuyk23d | | | 13.32 364 | 12.52 367 | 15.71 379 | 47.54 386 | 26.27 386 | 31.06 390 | 1.98 404 | 4.93 396 | 5.18 399 | 1.94 399 | 0.45 404 | 18.54 398 | 6.81 399 | 12.83 395 | 2.33 396 |
|
| DeepMVS_CX |  | | | | 12.03 380 | 17.97 401 | 10.91 399 | | 10.60 403 | 7.46 395 | 11.07 396 | 28.36 391 | 3.28 397 | 11.29 399 | 8.01 398 | 9.74 398 | 13.89 394 |
|
| tmp_tt | | | 9.43 365 | 11.14 368 | 4.30 381 | 2.38 403 | 4.40 404 | 13.62 393 | 16.08 402 | 0.39 398 | 15.89 393 | 13.06 395 | 15.80 372 | 5.54 400 | 12.63 391 | 10.46 397 | 2.95 395 |
|
| test123 | | | 4.73 367 | 6.30 370 | 0.02 382 | 0.01 404 | 0.01 407 | 56.36 356 | 0.00 406 | 0.01 400 | 0.04 401 | 0.21 401 | 0.01 405 | 0.00 401 | 0.03 401 | 0.00 399 | 0.04 397 |
|
| testmvs | | | 4.52 368 | 6.03 371 | 0.01 383 | 0.01 404 | 0.00 408 | 53.86 363 | 0.00 406 | 0.01 400 | 0.04 401 | 0.27 400 | 0.00 406 | 0.00 401 | 0.04 400 | 0.00 399 | 0.03 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 17.50 363 | 23.34 362 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 78.63 161 | 0.00 402 | 0.00 403 | 82.18 191 | 49.25 115 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 3.92 369 | 5.23 372 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 47.05 146 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| ab-mvs-re | | | 6.49 366 | 8.65 369 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 77.89 270 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 406 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| WAC-MVS | | | | | | | 27.31 382 | | | | | | | | 27.77 369 | | |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 63 | 60.87 84 | 81.50 16 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 55.09 197 | 84.46 4 | 89.84 43 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 11 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 57 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 86 | 57.95 142 | 78.10 24 | 90.06 36 | 56.12 38 | 88.84 26 | 74.05 47 | 87.00 48 | |
|
| RE-MVS-def | | | | 73.71 62 | | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 107 | 58.07 137 | 73.14 74 | 90.07 34 | 43.06 188 | | 68.20 79 | 81.76 94 | 84.03 159 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 60 | | 85.53 25 | 53.93 220 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 13 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 35 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 69 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
| 9.14 | | | | 78.75 14 | | 83.10 69 | | 84.15 43 | 88.26 1 | 59.90 106 | 78.57 23 | 90.36 27 | 57.51 30 | 86.86 64 | 77.39 23 | 89.52 21 | |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 47 | 79.66 140 | 59.00 120 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 21 |
|
| test0726 | | | | | | 87.75 7 | 59.07 64 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 270 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 271 | | | | 78.05 270 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 286 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 123 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 290 | | | | 3.64 397 | 32.39 303 | 69.49 307 | 44.17 275 | | |
|
| test_post | | | | | | | | | | | | 3.55 398 | 33.90 281 | 66.52 322 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 366 | 34.50 273 | 74.27 284 | | | |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 401 | | | | | | | | |
|
| gm-plane-assit | | | | | | 71.40 289 | 41.72 301 | | | 48.85 278 | | 73.31 316 | | 82.48 168 | 48.90 238 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 169 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 82 | 81.26 115 | 55.65 186 | 74.93 43 | 88.81 56 | 53.70 63 | 84.68 118 | | | |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 85 | 81.18 118 | 55.86 177 | 74.81 47 | 88.80 58 | 53.70 63 | 84.45 122 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 150 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 47 | | 81.04 121 | | 74.68 50 | | | 84.04 128 | | | |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 77 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 80 | | 60.37 96 | 75.01 41 | 89.06 52 | 56.22 37 | | 72.19 59 | 88.96 24 | |
|
| 旧先验2 | | | | | | | | 76.08 182 | | 45.32 316 | 76.55 32 | | | 65.56 328 | 58.75 162 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 76.12 180 | | | | | | | | | |
|
| 旧先验1 | | | | | | 83.04 70 | 53.15 159 | | 67.52 290 | | | 87.85 71 | 44.08 179 | | | 80.76 100 | 78.03 273 |
|
| æ— å…ˆéªŒ | | | | | | | | 79.66 110 | 74.30 238 | 48.40 284 | | | | 80.78 202 | 53.62 198 | | 79.03 262 |
|
| 原ACMM2 | | | | | | | | 79.02 116 | | | | | | | | | |
|
| test222 | | | | | | 83.14 68 | 58.68 73 | 72.57 247 | 63.45 317 | 41.78 341 | 67.56 162 | 86.12 107 | 37.13 252 | | | 78.73 133 | 74.98 304 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 295 | 46.95 254 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
| testdata1 | | | | | | | | 72.65 243 | | 60.50 91 | | | | | | | |
|
| plane_prior7 | | | | | | 81.41 89 | 55.96 111 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 96 | 56.24 106 | | | | | | 45.26 170 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 53 | 68.16 81 | 80.58 103 | 84.65 144 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 108 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 108 | | | 63.92 36 | 69.27 127 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 40 | | 64.52 25 | | | | | | | |
|
| plane_prior1 | | | | | | 81.27 94 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 56.31 102 | 83.58 53 | | 63.19 48 | | | | | | 80.48 106 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 378 | | | | | | | | |
|
| test11 | | | | | | | | | 83.47 67 | | | | | | | | |
|
| door | | | | | | | | | 47.60 376 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 131 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 80.66 102 | | 82.31 71 | | 62.10 68 | 67.85 152 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 102 | | 82.31 71 | | 62.10 68 | 67.85 152 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 93 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 152 | | | 86.93 62 | | | 84.32 151 |
|
| HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 164 | | | | |
|
| NP-MVS | | | | | | 80.98 99 | 56.05 110 | | | | | 85.54 126 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 387 | 61.22 334 | | 40.10 353 | 51.10 343 | | 32.97 291 | | 38.49 313 | | 78.61 265 |
|
| MDTV_nov1_ep13 | | | | 57.00 280 | | 72.73 264 | 38.26 324 | 65.02 316 | 64.73 310 | 44.74 319 | 55.46 311 | 72.48 319 | 32.61 301 | 70.47 301 | 37.47 318 | 67.75 275 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 181 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 215 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 126 | | | | |
|