This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11370.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7567.78 370.09 11386.34 10354.92 4988.90 2572.68 5784.55 6687.76 36
UA-Net73.13 6972.93 7073.76 11883.58 6451.66 18578.75 11977.66 18767.75 472.61 8989.42 4749.82 11083.29 14453.61 20183.14 7686.32 84
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 57
TranMVSNet+NR-MVSNet70.36 12070.10 11471.17 19078.64 15142.97 29176.53 17481.16 12166.95 668.53 14285.42 13051.61 9483.07 14852.32 20969.70 26187.46 45
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 19989.38 1964.07 11886.50 5689.69 2
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4486.38 76
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 7072.16 7775.90 6775.95 22656.28 10483.05 5672.39 25966.53 1065.27 20987.00 8150.40 10685.47 10362.48 13586.32 5785.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 10371.00 9771.44 17979.20 13544.13 27876.02 18782.60 8866.48 1168.20 14684.60 14256.82 3582.82 15954.62 19270.43 24187.36 52
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6265.37 1378.78 2290.64 1958.63 2587.24 5379.00 1290.37 1485.26 130
NR-MVSNet69.54 14168.85 13471.59 17678.05 17243.81 28274.20 22280.86 12765.18 1462.76 24884.52 14352.35 8283.59 14050.96 22470.78 23687.37 50
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21080.97 12565.13 1575.77 3690.88 1748.63 12486.66 7177.23 2488.17 3384.81 143
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 12
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 23
EI-MVSNet-Vis-set72.42 8271.59 8274.91 8578.47 15554.02 14177.05 16379.33 14965.03 1871.68 10179.35 25352.75 7484.89 11566.46 9874.23 18785.83 102
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7376.46 22051.83 18479.67 11085.08 3165.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7390.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
ETV-MVS74.46 5973.84 6276.33 6079.27 13355.24 12979.22 11685.00 3664.97 2172.65 8879.46 25053.65 6887.87 4467.45 9082.91 8285.89 100
WR-MVS68.47 16768.47 14568.44 23680.20 11339.84 31573.75 23476.07 21064.68 2268.11 15183.63 16250.39 10779.14 23449.78 22969.66 26286.34 80
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9590.01 4047.95 13188.01 4071.55 6586.74 5386.37 78
X-MVStestdata70.21 12367.28 17479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 956.49 40547.95 13188.01 4071.55 6586.74 5386.37 78
HQP_MVS74.31 6073.73 6376.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 13186.10 11045.26 17287.21 5568.16 8180.58 10684.65 147
plane_prior284.22 4064.52 25
EI-MVSNet-UG-set71.92 9071.06 9674.52 10077.98 17553.56 14976.62 17279.16 15064.40 2771.18 10478.95 25852.19 8484.66 12165.47 11073.57 19885.32 126
DU-MVS70.01 12669.53 12271.44 17978.05 17244.13 27875.01 20781.51 10364.37 2868.20 14684.52 14349.12 12182.82 15954.62 19270.43 24187.37 50
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
LFMVS71.78 9271.59 8272.32 16083.40 6746.38 25579.75 10871.08 26864.18 3272.80 8588.64 5942.58 19483.72 13657.41 17084.49 6786.86 62
IS-MVSNet71.57 9671.00 9773.27 14178.86 14445.63 26680.22 9978.69 16164.14 3566.46 18587.36 7649.30 11585.60 9650.26 22883.71 7588.59 9
plane_prior356.09 10863.92 3669.27 131
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6663.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5274.46 5575.65 7477.84 17952.25 17675.59 19484.17 4663.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5887.89 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5374.25 5776.19 6180.81 10259.01 6782.60 6683.64 6363.74 3972.52 9087.49 7447.18 14685.88 9169.47 7480.78 10283.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 11470.20 11071.89 16578.55 15245.29 26975.94 18882.92 8363.68 4068.16 14983.59 16353.89 6083.49 14253.97 19771.12 23486.89 61
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 7688.53 3074.79 4288.34 2986.63 72
EC-MVSNet75.84 4575.87 4275.74 7178.86 14452.65 16683.73 5086.08 1763.47 4272.77 8687.25 8053.13 7187.93 4271.97 6185.57 6186.66 70
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 5988.68 2776.48 2889.63 2087.16 55
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 7087.27 7955.06 4686.30 8471.78 6284.58 6589.25 4
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 7872.09 7873.75 12081.58 8649.69 21877.76 14377.63 18863.21 4773.21 7389.02 5342.14 19883.32 14361.72 14282.50 8888.25 17
plane_prior56.31 10283.58 5363.19 4880.48 109
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 12389.74 4645.43 16887.16 5772.01 6082.87 8485.14 132
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34877.03 16480.42 13362.95 5062.51 25684.03 15346.69 15479.07 23544.22 27963.08 32285.51 116
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9162.90 5271.77 9990.26 3146.61 15586.55 7571.71 6385.66 6084.97 139
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7788.39 3279.34 890.52 1386.78 66
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 22
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6390.50 2453.20 7088.35 3374.02 4887.05 4586.13 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6890.56 2249.80 11188.24 3574.02 4887.03 4686.32 84
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 7090.58 2149.90 10988.21 3673.78 5087.03 4686.29 87
casdiffmvspermissive74.80 5174.89 5274.53 9975.59 23250.37 20578.17 13285.06 3362.80 5874.40 5687.86 7057.88 2783.61 13969.46 7582.79 8689.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5674.70 5374.34 10375.70 22849.99 21377.54 14884.63 4062.73 5973.98 6287.79 7357.67 3083.82 13569.49 7382.74 8789.20 6
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7989.97 4150.90 10487.48 5175.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 35976.43 17679.38 14862.55 6161.66 26683.83 15845.60 16279.15 23341.64 30660.88 33785.00 137
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35176.83 17179.52 14562.45 6362.54 25483.47 16846.32 15678.37 24345.47 27463.43 31985.45 119
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6962.44 6472.68 8790.50 2448.18 12987.34 5273.59 5285.71 5984.76 146
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35376.94 16679.61 14362.36 6562.43 25883.66 16145.69 16078.37 24345.35 27663.26 32085.42 122
3Dnovator64.47 572.49 7971.39 8875.79 6877.70 18358.99 6880.66 9583.15 8062.24 6665.46 20586.59 9442.38 19785.52 9959.59 16084.72 6482.85 203
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 7986.78 6880.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10382.31 7162.10 6867.85 155
ACMP_Plane80.66 10382.31 7162.10 6867.85 155
HQP-MVS73.45 6672.80 7175.40 7880.66 10354.94 13182.31 7183.90 5462.10 6867.85 15585.54 12845.46 16686.93 6367.04 9580.35 11084.32 154
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 10386.03 11353.83 6186.36 8267.74 8586.91 5088.19 20
VPNet67.52 18668.11 15265.74 27279.18 13636.80 34672.17 25572.83 25662.04 7267.79 16185.83 12148.88 12376.60 27651.30 22072.97 21183.81 172
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33577.57 14682.11 9462.03 7362.65 25182.48 18750.57 10579.46 22442.91 29564.01 31284.79 144
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 8088.88 5553.72 6489.06 2368.27 7888.04 3887.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6177.08 2690.18 1587.87 30
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6161.71 7672.45 9390.34 2948.48 12788.13 3772.32 5886.85 5185.78 103
Effi-MVS+73.31 6872.54 7475.62 7577.87 17753.64 14779.62 11279.61 14361.63 7772.02 9882.61 18156.44 3785.97 8963.99 12179.07 13187.25 54
MG-MVS73.96 6373.89 6174.16 10885.65 4249.69 21881.59 8481.29 11561.45 7871.05 10588.11 6351.77 9187.73 4761.05 14883.09 7785.05 136
LPG-MVS_test72.74 7571.74 8175.76 6980.22 11157.51 8682.55 6783.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
LGP-MVS_train75.76 6980.22 11157.51 8683.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
CLD-MVS73.33 6772.68 7275.29 8278.82 14653.33 15678.23 12984.79 3961.30 8170.41 11081.04 21852.41 8087.12 5964.61 11782.49 8985.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR74.02 6273.46 6675.69 7283.01 7260.63 4077.29 15778.40 17561.18 8270.58 10885.97 11554.18 5784.00 13267.52 8982.98 8182.45 210
FIs70.82 11171.43 8668.98 22978.33 16238.14 33176.96 16583.59 6561.02 8367.33 16886.73 8755.07 4581.64 18154.61 19479.22 12787.14 56
FOURS186.12 3660.82 3788.18 183.61 6460.87 8481.50 16
FC-MVSNet-test69.80 13270.58 10467.46 24577.61 19234.73 36276.05 18583.19 7960.84 8565.88 19886.46 10054.52 5480.76 20552.52 20878.12 14486.91 60
v870.33 12169.28 12873.49 13373.15 26650.22 20778.62 12380.78 12860.79 8666.45 18682.11 19949.35 11484.98 11263.58 12768.71 27685.28 128
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13560.76 1586.56 7467.86 8487.87 4186.06 93
Vis-MVSNetpermissive72.18 8571.37 8974.61 9581.29 9355.41 12680.90 9178.28 17760.73 8869.23 13488.09 6444.36 18082.65 16357.68 16781.75 9985.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4388.32 3473.48 5387.03 4684.83 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 8371.20 9375.59 7780.28 10957.54 8482.74 6382.84 8660.58 9065.24 21386.18 10739.25 22986.03 8766.95 9776.79 16483.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 24560.50 91
UGNet68.81 15767.39 16973.06 14478.33 16254.47 13779.77 10775.40 22160.45 9263.22 24084.40 14632.71 30180.91 20151.71 21880.56 10883.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 7671.49 8576.40 5881.99 8259.58 5276.92 16776.74 20360.40 9374.81 4985.95 11745.54 16485.76 9470.41 7070.61 23983.86 171
hse-mvs271.04 10469.86 11674.60 9679.58 12657.12 9673.96 22675.25 22460.40 9374.81 4981.95 20145.54 16482.90 15270.41 7066.83 29183.77 176
EPP-MVSNet72.16 8871.31 9174.71 8978.68 15049.70 21682.10 7681.65 10060.40 9365.94 19485.84 12051.74 9286.37 8155.93 17879.55 12288.07 25
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29574.18 22375.59 21760.37 9666.77 17986.06 11237.64 24578.93 24152.16 21173.49 20086.32 84
test_prior281.75 8060.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4885.58 9876.12 3184.94 6386.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 13670.19 11168.16 23979.73 12441.63 30470.53 27777.38 19360.37 9670.69 10786.63 9251.08 10077.09 26453.61 20181.69 10185.75 108
sasdasda74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
canonicalmvs74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
v7n69.01 15567.36 17173.98 11172.51 28052.65 16678.54 12681.30 11460.26 10262.67 25081.62 20743.61 18584.49 12257.01 17168.70 27784.79 144
HPM-MVS_fast74.30 6173.46 6676.80 5284.45 6059.04 6683.65 5281.05 12260.15 10370.43 10989.84 4341.09 21585.59 9767.61 8882.90 8385.77 106
VPA-MVSNet69.02 15469.47 12467.69 24377.42 19841.00 30974.04 22479.68 14160.06 10469.26 13384.81 13651.06 10177.58 25654.44 19574.43 18584.48 151
v1070.21 12369.02 13273.81 11573.51 26350.92 19478.74 12081.39 10660.05 10566.39 18781.83 20447.58 13885.41 10662.80 13268.86 27585.09 135
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9259.99 10675.10 4190.35 2847.66 13686.52 7671.64 6482.99 7984.47 152
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6577.39 2389.52 21
v2v48270.50 11769.45 12573.66 12572.62 27650.03 21277.58 14580.51 13259.90 10769.52 12582.14 19747.53 13984.88 11765.07 11370.17 24886.09 92
Baseline_NR-MVSNet67.05 19767.56 16065.50 27575.65 22937.70 33775.42 19774.65 23759.90 10768.14 15083.15 17349.12 12177.20 26252.23 21069.78 25881.60 223
API-MVS72.17 8671.41 8774.45 10181.95 8357.22 8984.03 4580.38 13459.89 11068.40 14382.33 19049.64 11287.83 4651.87 21584.16 7278.30 273
Effi-MVS+-dtu69.64 13867.53 16375.95 6576.10 22462.29 1580.20 10076.06 21159.83 11165.26 21277.09 28641.56 20784.02 13160.60 15171.09 23581.53 224
CANet_DTU68.18 17367.71 15869.59 21974.83 24346.24 25778.66 12276.85 20059.60 11263.45 23982.09 20035.25 26977.41 25959.88 15778.76 13685.14 132
EI-MVSNet69.27 15168.44 14771.73 17174.47 25249.39 22375.20 20278.45 17159.60 11269.16 13576.51 29751.29 9682.50 16759.86 15971.45 23183.30 189
IterMVS-LS69.22 15368.48 14371.43 18174.44 25449.40 22276.23 18077.55 18959.60 11265.85 19981.59 21051.28 9781.58 18459.87 15869.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net72.45 8073.34 6869.81 21677.77 18243.21 28875.84 19181.18 11959.59 11575.45 3886.64 9057.74 2877.94 24963.92 12281.90 9588.30 15
VDDNet71.81 9171.33 9073.26 14282.80 7547.60 24678.74 12075.27 22359.59 11572.94 8289.40 4841.51 20983.91 13358.75 16482.99 7988.26 16
alignmvs73.86 6473.99 5973.45 13578.20 16550.50 20478.57 12482.43 8959.40 11776.57 3286.71 8956.42 3881.23 19265.84 10681.79 9688.62 8
MVS_Test72.45 8072.46 7572.42 15974.88 24148.50 23476.28 17983.14 8159.40 11772.46 9184.68 13755.66 4281.12 19365.98 10579.66 11987.63 40
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6059.34 11979.37 1989.76 4559.84 1687.62 4976.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 6573.47 6574.66 9283.02 7159.29 5882.30 7481.88 9659.34 11971.59 10286.83 8345.94 15983.65 13865.09 11285.22 6281.06 238
PAPM_NR72.63 7771.80 8075.13 8481.72 8553.42 15479.91 10583.28 7759.14 12166.31 18985.90 11851.86 8986.06 8557.45 16980.62 10485.91 98
testing9164.46 23463.80 22566.47 25678.43 15740.06 31367.63 30069.59 28159.06 12263.18 24278.05 26834.05 28176.99 26648.30 24575.87 17382.37 212
save fliter86.17 3361.30 2883.98 4779.66 14259.00 123
v14868.24 17267.19 18071.40 18270.43 31247.77 24375.76 19277.03 19858.91 12467.36 16780.10 23748.60 12681.89 17760.01 15566.52 29484.53 149
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32774.66 21675.08 23358.90 12561.79 26482.63 18051.18 9878.07 24843.63 28855.87 35880.99 240
Anonymous20240521166.84 20265.99 20169.40 22380.19 11442.21 29771.11 27171.31 26758.80 12667.90 15386.39 10229.83 32579.65 22149.60 23578.78 13586.33 82
test250665.33 22464.61 21767.50 24479.46 12934.19 36674.43 22051.92 37358.72 12766.75 18088.05 6625.99 35680.92 20051.94 21484.25 6987.39 48
ECVR-MVScopyleft67.72 18367.51 16468.35 23779.46 12936.29 35474.79 21366.93 30158.72 12767.19 17088.05 6636.10 26281.38 18752.07 21284.25 6987.39 48
test111167.21 19067.14 18167.42 24679.24 13434.76 36173.89 23165.65 31058.71 12966.96 17587.95 6936.09 26380.53 20752.03 21383.79 7486.97 58
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 37961.42 34158.14 35258.71 12953.02 34779.55 24843.07 18976.80 27045.69 26777.96 14682.11 218
testing9964.05 23763.29 23466.34 25878.17 16939.76 31767.33 30568.00 29458.60 13163.03 24578.10 26732.57 30676.94 26848.22 24675.58 17782.34 213
v114470.42 11969.31 12673.76 11873.22 26450.64 19977.83 14181.43 10558.58 13269.40 12981.16 21547.53 13985.29 10864.01 12070.64 23785.34 125
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7978.57 16458.58 13274.32 5884.51 14555.94 4187.22 5467.11 9484.48 6885.52 115
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11752.53 17174.26 22176.29 20658.48 13468.38 14484.20 14842.59 19383.83 13446.53 25975.91 17282.56 205
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 7658.41 13573.71 6690.14 3345.62 16185.99 8869.64 7282.85 8585.78 103
OMC-MVS71.40 10170.60 10273.78 11676.60 21653.15 15879.74 10979.78 13958.37 13668.75 13886.45 10145.43 16880.60 20662.58 13377.73 14887.58 43
nrg03072.96 7273.01 6972.84 14875.41 23550.24 20680.02 10182.89 8558.36 13774.44 5586.73 8758.90 2480.83 20265.84 10674.46 18387.44 46
K. test v360.47 27357.11 28870.56 20173.74 26248.22 23775.10 20662.55 33258.27 13853.62 34376.31 30027.81 34281.59 18347.42 25039.18 38881.88 221
FA-MVS(test-final)69.82 13168.48 14373.84 11478.44 15650.04 21175.58 19678.99 15458.16 13967.59 16482.14 19742.66 19285.63 9556.60 17376.19 17085.84 101
MVS_111021_LR69.50 14368.78 13771.65 17478.38 15859.33 5674.82 21270.11 27658.08 14067.83 15984.68 13741.96 20076.34 28165.62 10977.54 14979.30 266
SR-MVS-dyc-post74.57 5773.90 6076.58 5683.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3444.74 17585.84 9268.20 7981.76 9784.03 162
RE-MVS-def73.71 6483.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3443.06 19068.20 7981.76 9784.03 162
SDMVSNet68.03 17568.10 15367.84 24177.13 20448.72 23265.32 32079.10 15158.02 14365.08 21682.55 18347.83 13373.40 29363.92 12273.92 19181.41 226
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29662.67 33472.11 26258.02 14365.08 21682.55 18341.22 21469.88 31447.32 25273.92 19181.41 226
GeoE71.01 10570.15 11273.60 13079.57 12752.17 17778.93 11878.12 18058.02 14367.76 16383.87 15752.36 8182.72 16156.90 17275.79 17485.92 97
ZD-MVS86.64 2160.38 4382.70 8757.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 49
EIA-MVS71.78 9270.60 10275.30 8179.85 12253.54 15077.27 15883.26 7857.92 14766.49 18479.39 25152.07 8686.69 7060.05 15479.14 13085.66 111
test_yl69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
DCV-MVSNet69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
dcpmvs_274.55 5875.23 4872.48 15582.34 7753.34 15577.87 13881.46 10457.80 15075.49 3786.81 8462.22 1377.75 25471.09 6782.02 9386.34 80
mvsmamba71.15 10269.54 12175.99 6377.61 19253.46 15281.95 7875.11 22957.73 15166.95 17685.96 11637.14 25487.56 5067.94 8375.49 17986.97 58
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 19957.60 15261.97 26176.85 29039.31 22780.49 21054.72 19170.28 24682.17 217
v119269.97 12868.68 13973.85 11373.19 26550.94 19277.68 14481.36 10857.51 15368.95 13780.85 22545.28 17185.33 10762.97 13170.37 24385.27 129
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18152.83 16480.39 9678.03 18157.30 15457.47 30682.55 18327.68 34384.17 12645.54 27069.78 25879.90 256
diffmvspermissive70.69 11370.43 10571.46 17869.45 32748.95 22872.93 24278.46 17057.27 15571.69 10083.97 15651.48 9577.92 25170.70 6977.95 14787.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 17067.29 17371.21 18779.74 12353.22 15776.06 18477.46 19257.19 15666.10 19181.61 20845.37 17083.50 14145.42 27576.68 16676.91 296
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32672.65 24569.11 28857.07 15762.45 25781.03 21937.01 25879.17 23031.84 35873.25 20679.83 258
DP-MVS Recon72.15 8970.73 10176.40 5886.57 2457.99 7981.15 8982.96 8257.03 15866.78 17885.56 12544.50 17888.11 3851.77 21780.23 11383.10 198
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32472.35 25269.11 28856.98 15962.37 25980.96 22137.01 25879.00 23931.43 36573.05 21081.36 229
V4268.65 16167.35 17272.56 15368.93 33350.18 20872.90 24379.47 14656.92 16069.45 12880.26 23446.29 15782.99 14964.07 11867.82 28384.53 149
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4386.57 73
GA-MVS65.53 22063.70 22771.02 19470.87 30748.10 23870.48 27874.40 23956.69 16264.70 22476.77 29133.66 28881.10 19455.42 18770.32 24583.87 170
v14419269.71 13368.51 14273.33 14073.10 26750.13 20977.54 14880.64 12956.65 16368.57 14180.55 22846.87 15384.96 11462.98 13069.66 26284.89 141
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20679.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20681.36 229
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29076.11 18277.47 19056.62 16665.22 21582.17 19541.85 20280.18 21847.05 25772.72 21683.20 193
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10385.71 2256.59 16972.46 9186.76 8556.89 3487.86 4566.36 9988.91 2583.64 184
v192192069.47 14468.17 15173.36 13973.06 26850.10 21077.39 15180.56 13056.58 17068.59 13980.37 23044.72 17684.98 11262.47 13669.82 25785.00 137
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28577.31 15477.83 18456.45 17164.60 22682.70 17738.08 24380.33 21246.08 26372.31 22183.92 167
v124069.24 15267.91 15473.25 14373.02 27049.82 21477.21 15980.54 13156.43 17268.34 14580.51 22943.33 18884.99 11062.03 14069.77 26084.95 140
testing22262.29 25861.31 25765.25 28077.87 17738.53 32868.34 29566.31 30756.37 17363.15 24477.58 28228.47 33776.18 28437.04 32776.65 16781.05 239
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17474.05 6188.98 5453.34 6987.92 4369.23 7688.42 2887.59 42
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38071.16 26963.64 32556.32 17459.80 28384.99 13344.51 17775.46 28539.12 31680.62 10482.92 200
AdaColmapbinary69.99 12768.66 14073.97 11284.94 5457.83 8082.63 6578.71 16056.28 17664.34 22784.14 15041.57 20687.06 6246.45 26078.88 13277.02 292
PS-MVSNAJss72.24 8471.21 9275.31 8078.50 15355.93 11281.63 8182.12 9356.24 17770.02 11785.68 12447.05 14884.34 12565.27 11174.41 18685.67 110
c3_l68.33 16967.56 16070.62 20070.87 30746.21 25874.47 21978.80 15856.22 17866.19 19078.53 26551.88 8881.40 18662.08 13769.04 27184.25 156
Fast-Effi-MVS+70.28 12269.12 13173.73 12178.50 15351.50 18675.01 20779.46 14756.16 17968.59 13979.55 24853.97 5884.05 12853.34 20377.53 15085.65 112
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10388.54 2970.79 6889.71 1787.79 35
baseline163.81 24063.87 22463.62 28976.29 22136.36 34971.78 26167.29 29856.05 18164.23 23282.95 17447.11 14774.41 29047.30 25361.85 33180.10 254
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11655.86 18274.93 4588.81 5653.70 6584.68 11975.24 3888.33 3083.65 183
test_885.40 4660.96 3481.54 8581.18 11955.86 18274.81 4988.80 5853.70 6584.45 123
RRT_MVS69.42 14667.49 16675.21 8378.01 17452.56 17082.23 7578.15 17955.84 18465.65 20185.07 13230.86 31586.83 6661.56 14670.00 25286.24 89
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29474.98 20977.15 19755.83 18565.04 21881.16 21539.91 22080.14 21947.18 25472.76 21382.90 202
PAPR71.72 9570.82 9974.41 10281.20 9751.17 18979.55 11383.33 7455.81 18666.93 17784.61 14150.95 10286.06 8555.79 18179.20 12886.00 94
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29348.33 23673.68 23577.88 18255.80 18765.91 19578.62 26347.35 14582.88 15459.45 16166.25 29583.81 172
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17152.01 18279.48 11479.69 14055.75 18856.59 31280.98 22027.12 34880.94 19842.90 29671.58 22977.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16573.09 24175.13 22855.69 18958.48 30073.73 32332.86 29686.32 8350.63 22570.11 24981.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33236.93 34567.60 30172.80 25755.67 19059.95 28076.63 29345.01 17472.22 30039.74 31462.09 33080.74 244
TEST985.58 4361.59 2481.62 8281.26 11655.65 19174.93 4588.81 5653.70 6584.68 119
thres20062.20 25961.16 26165.34 27875.38 23639.99 31469.60 28769.29 28655.64 19261.87 26376.99 28737.07 25778.96 24031.28 36673.28 20577.06 291
pm-mvs165.24 22564.97 21566.04 26772.38 28239.40 32172.62 24775.63 21655.53 19362.35 26083.18 17247.45 14176.47 27949.06 23966.54 29382.24 214
testing1162.81 25161.90 25065.54 27478.38 15840.76 31067.59 30266.78 30355.48 19460.13 27677.11 28531.67 31276.79 27145.53 27174.45 18479.06 267
ACMM61.98 770.80 11269.73 11874.02 11080.59 10858.59 7482.68 6482.02 9555.46 19567.18 17184.39 14738.51 23683.17 14760.65 15076.10 17180.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 12969.02 13272.56 15380.19 11447.65 24477.56 14780.99 12455.45 19669.88 12186.76 8539.24 23082.18 17354.04 19677.10 16087.85 31
tt080567.77 18267.24 17869.34 22474.87 24240.08 31277.36 15381.37 10755.31 19766.33 18884.65 13937.35 24982.55 16655.65 18472.28 22285.39 124
CPTT-MVS72.78 7472.08 7974.87 8784.88 5761.41 2684.15 4377.86 18355.27 19867.51 16688.08 6541.93 20181.85 17869.04 7780.01 11581.35 231
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 15755.24 19967.79 16185.81 12336.54 26178.28 24562.04 13975.74 17583.19 194
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32371.22 26773.72 24855.22 20060.21 27580.09 23841.26 21376.98 26730.02 37168.09 28178.97 270
cl____67.18 19366.26 19869.94 21170.20 31545.74 26273.30 23776.83 20155.10 20165.27 20979.57 24747.39 14380.53 20759.41 16369.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31545.74 26273.29 23876.83 20155.10 20165.27 20979.58 24647.38 14480.53 20759.43 16269.22 26983.54 185
PC_three_145255.09 20384.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 12
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31675.85 19065.62 31155.09 20354.56 33379.36 25237.59 24667.02 32839.80 31376.95 16178.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 10070.39 10674.65 9382.01 8058.82 7179.93 10480.35 13555.09 20365.82 20082.16 19649.17 11882.64 16460.34 15278.62 13982.50 209
cl2267.47 18766.45 18770.54 20269.85 32346.49 25473.85 23277.35 19455.07 20665.51 20477.92 27247.64 13781.10 19461.58 14569.32 26584.01 164
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31046.21 25873.98 22578.68 16255.07 20666.05 19277.80 27652.16 8581.31 18961.53 14769.32 26583.67 180
PS-MVSNAJ70.51 11669.70 11972.93 14681.52 8755.79 11674.92 21079.00 15355.04 20869.88 12178.66 26047.05 14882.19 17261.61 14379.58 12080.83 242
iter_conf05_1171.51 9770.02 11575.99 6379.93 12051.46 18777.37 15278.24 17854.95 20972.06 9782.87 17529.55 32688.61 2867.40 9187.81 4287.89 26
xiu_mvs_v2_base70.52 11569.75 11772.84 14881.21 9655.63 12075.11 20478.92 15554.92 21069.96 12079.68 24547.00 15282.09 17461.60 14479.37 12380.81 243
MAR-MVS71.51 9770.15 11275.60 7681.84 8459.39 5581.38 8682.90 8454.90 21168.08 15278.70 25947.73 13485.51 10051.68 21984.17 7181.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15254.77 21266.99 17486.01 11439.57 22578.21 24662.54 13473.33 20483.37 188
testing356.54 29955.92 30158.41 32177.52 19527.93 38869.72 28656.36 36154.75 21358.63 29877.80 27620.88 37471.75 30325.31 38662.25 32875.53 306
iter_conf0569.40 14867.62 15974.73 8877.84 17951.13 19079.28 11573.71 24954.62 21468.17 14883.59 16328.68 33687.16 5765.74 10876.95 16185.91 98
Anonymous2023121169.28 15068.47 14571.73 17180.28 10947.18 25079.98 10282.37 9054.61 21567.24 16984.01 15439.43 22682.41 17055.45 18672.83 21285.62 113
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 24975.59 19469.68 27954.61 21554.11 33779.26 25427.07 34982.96 15043.27 29049.79 37580.41 248
test_040263.25 24761.01 26269.96 21080.00 11854.37 13976.86 17072.02 26354.58 21758.71 29580.79 22735.00 27284.36 12426.41 38464.71 30671.15 354
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19677.86 13973.99 24654.54 21864.64 22582.53 18635.06 27185.50 10155.71 18269.91 25586.67 69
BH-w/o66.85 20165.83 20369.90 21479.29 13152.46 17374.66 21676.65 20454.51 21964.85 22278.12 26645.59 16382.95 15143.26 29175.54 17874.27 322
AUN-MVS68.45 16866.41 19174.57 9879.53 12857.08 9773.93 22975.23 22554.44 22066.69 18181.85 20337.10 25682.89 15362.07 13866.84 29083.75 177
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24159.92 35076.39 20554.35 22158.67 29682.46 18829.44 33081.49 18542.12 30071.14 23377.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n73.01 7172.59 7374.27 10671.28 30255.88 11478.21 13175.56 21854.31 22274.86 4887.80 7254.72 5180.23 21678.07 2178.48 14086.70 67
test_fmvsmconf0.01_n72.17 8671.50 8474.16 10867.96 33955.58 12378.06 13574.67 23654.19 22374.54 5488.23 6150.35 10880.24 21578.07 2177.46 15286.65 71
test_fmvsmconf0.1_n72.81 7372.33 7674.24 10769.89 32255.81 11578.22 13075.40 22154.17 22475.00 4488.03 6853.82 6280.23 21678.08 2078.34 14386.69 68
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35864.94 32559.35 34754.06 22561.08 27176.67 29229.54 32771.87 30232.16 35474.07 18978.01 281
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30170.41 28076.14 20953.99 22665.98 19383.51 16649.48 11376.24 28248.60 24273.46 20284.14 160
IU-MVS87.77 459.15 6085.53 2553.93 22784.64 379.07 1190.87 588.37 14
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28352.45 17470.80 27578.45 17153.84 22859.87 28181.10 21716.24 38079.32 22755.64 18571.76 22680.47 246
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18372.62 24775.81 21353.70 22965.31 20778.96 25728.81 33586.39 8043.93 28473.48 20182.55 206
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19176.89 16874.25 24353.67 23065.59 20381.76 20535.15 27085.50 10155.94 17772.47 21786.47 75
PVSNet_BlendedMVS68.56 16667.72 15671.07 19377.03 20850.57 20074.50 21881.52 10153.66 23164.22 23379.72 24449.13 11982.87 15555.82 17973.92 19179.77 261
patch_mono-269.85 13071.09 9566.16 26379.11 13954.80 13571.97 25874.31 24153.50 23270.90 10684.17 14957.63 3163.31 34266.17 10082.02 9380.38 249
bld_raw_dy_0_6470.97 10769.31 12675.95 6579.93 12051.43 18880.93 9075.96 21253.39 23372.29 9483.29 16930.48 31888.53 3067.40 9180.11 11487.89 26
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15177.99 13678.82 15653.37 23456.03 31777.41 28424.75 36384.04 12946.37 26173.42 20373.14 328
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9473.16 25453.06 23559.09 29282.35 18936.79 26085.94 9032.82 35269.96 25472.45 336
TR-MVS66.59 20965.07 21471.17 19079.18 13649.63 22073.48 23675.20 22752.95 23667.90 15380.33 23339.81 22383.68 13743.20 29273.56 19980.20 251
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20474.74 23452.91 23760.03 27880.12 23633.68 28782.64 16461.86 14176.34 16885.78 103
QAPM70.05 12568.81 13673.78 11676.54 21853.43 15383.23 5483.48 6752.89 23865.90 19686.29 10441.55 20886.49 7851.01 22278.40 14281.42 225
OpenMVScopyleft61.03 968.85 15667.56 16072.70 15274.26 25853.99 14281.21 8881.34 11252.70 23962.75 24985.55 12738.86 23484.14 12748.41 24483.01 7879.97 255
pmmvs663.69 24162.82 24066.27 26170.63 30939.27 32273.13 24075.47 22052.69 24059.75 28582.30 19139.71 22477.03 26547.40 25164.35 31182.53 207
IterMVS62.79 25261.27 25867.35 24869.37 32852.04 18171.17 26868.24 29352.63 24159.82 28276.91 28937.32 25072.36 29752.80 20763.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9378.56 16552.48 24264.27 23084.10 15227.45 34581.84 17963.45 12970.56 24083.69 179
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9278.51 16752.33 24364.33 22884.11 15128.28 33981.81 18063.48 12870.62 23883.67 180
TAMVS66.78 20465.27 21271.33 18679.16 13853.67 14673.84 23369.59 28152.32 24465.28 20881.72 20644.49 17977.40 26042.32 29978.66 13882.92 200
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14153.13 16073.27 23971.07 26952.15 24564.72 22380.23 23543.56 18677.10 26345.48 27378.88 13283.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended68.59 16267.72 15671.19 18877.03 20850.57 20072.51 25081.52 10151.91 24664.22 23377.77 27949.13 11982.87 15555.82 17979.58 12080.14 253
mvs_anonymous68.03 17567.51 16469.59 21972.08 28744.57 27671.99 25775.23 22551.67 24767.06 17382.57 18254.68 5277.94 24956.56 17475.71 17686.26 88
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
MVSTER67.16 19565.58 20871.88 16670.37 31449.70 21670.25 28278.45 17151.52 25169.16 13580.37 23038.45 23782.50 16760.19 15371.46 23083.44 187
CNLPA65.43 22164.02 22169.68 21778.73 14958.07 7877.82 14270.71 27251.49 25261.57 26883.58 16538.23 24170.82 30643.90 28570.10 25080.16 252
原ACMM174.69 9085.39 4759.40 5483.42 7051.47 25370.27 11286.61 9348.61 12586.51 7753.85 19987.96 3978.16 275
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33045.98 26072.85 24478.41 17451.38 25465.65 20175.98 30551.17 9981.25 19060.82 14969.32 26583.29 191
MSDG61.81 26459.23 27269.55 22272.64 27552.63 16870.45 27975.81 21351.38 25453.70 34076.11 30129.52 32881.08 19637.70 32265.79 29974.93 314
test20.0353.87 31954.02 31853.41 35161.47 37328.11 38761.30 34259.21 34851.34 25652.09 34977.43 28333.29 29258.55 36229.76 37260.27 34273.58 327
MVSFormer71.50 9970.38 10774.88 8678.76 14757.15 9482.79 6178.48 16851.26 25769.49 12683.22 17043.99 18383.24 14566.06 10179.37 12384.23 157
test_djsdf69.45 14567.74 15574.58 9774.57 25154.92 13382.79 6178.48 16851.26 25765.41 20683.49 16738.37 23883.24 14566.06 10169.25 26885.56 114
dmvs_testset50.16 33651.90 32644.94 36966.49 34911.78 40761.01 34751.50 37451.17 25950.30 36167.44 36339.28 22860.29 35322.38 38957.49 35162.76 374
PAPM67.92 17966.69 18471.63 17578.09 17049.02 22677.09 16281.24 11851.04 26060.91 27283.98 15547.71 13584.99 11040.81 30779.32 12680.90 241
Syy-MVS56.00 30656.23 29955.32 33874.69 24726.44 39465.52 31557.49 35650.97 26156.52 31372.18 33039.89 22168.09 32124.20 38764.59 30971.44 350
myMVS_eth3d54.86 31554.61 31055.61 33774.69 24727.31 39165.52 31557.49 35650.97 26156.52 31372.18 33021.87 37268.09 32127.70 37964.59 30971.44 350
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34746.25 25656.29 36675.70 21550.68 26361.27 26975.48 31140.21 21968.03 32356.31 17665.25 30282.18 215
gg-mvs-nofinetune57.86 29156.43 29762.18 30072.62 27635.35 35766.57 30656.33 36250.65 26457.64 30557.10 38530.65 31676.36 28037.38 32478.88 13274.82 316
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23076.52 17580.04 13850.64 26565.24 21384.93 13439.15 23178.54 24236.77 32976.88 16385.14 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 29856.83 29356.61 33269.23 32941.02 30658.37 35564.18 32150.59 26657.45 30771.42 33835.54 26758.94 36037.23 32567.45 28669.87 363
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17878.53 16650.59 26656.47 31578.65 26139.84 22282.68 16244.10 28372.12 22472.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 10869.49 12375.35 7977.63 18755.71 11776.04 18681.81 9850.30 26869.66 12485.40 13152.51 7784.89 11551.82 21680.24 11285.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline263.42 24361.26 25969.89 21572.55 27847.62 24571.54 26268.38 29250.11 26954.82 32975.55 31043.06 19080.96 19748.13 24767.16 28981.11 236
test-LLR58.15 28958.13 28558.22 32368.57 33444.80 27265.46 31757.92 35350.08 27055.44 32169.82 35132.62 30357.44 36649.66 23373.62 19672.41 338
test0.0.03 153.32 32453.59 32152.50 35562.81 36829.45 38359.51 35154.11 36950.08 27054.40 33574.31 32032.62 30355.92 37530.50 36963.95 31472.15 343
fmvsm_s_conf0.5_n69.58 13968.84 13571.79 16972.31 28552.90 16277.90 13762.43 33549.97 27272.85 8485.90 11852.21 8376.49 27775.75 3370.26 24785.97 95
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17278.42 12773.30 25249.92 27350.96 35381.51 21123.06 36679.40 22531.63 36265.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14168.74 13871.93 16472.47 28153.82 14478.25 12862.26 33749.78 27473.12 7886.21 10652.66 7576.79 27175.02 3968.88 27385.18 131
tpmvs58.47 28556.95 29163.03 29670.20 31541.21 30567.90 29967.23 29949.62 27554.73 33170.84 34234.14 28076.24 28236.64 33361.29 33571.64 346
fmvsm_s_conf0.1_n69.41 14768.60 14171.83 16771.07 30452.88 16377.85 14062.44 33449.58 27672.97 8186.22 10551.68 9376.48 27875.53 3470.10 25086.14 90
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22171.32 26573.12 25549.39 27763.82 23576.50 29934.95 27384.84 11853.20 20575.49 17984.13 161
fmvsm_s_conf0.1_n_a69.32 14968.44 14771.96 16370.91 30653.78 14578.12 13362.30 33649.35 27873.20 7486.55 9851.99 8776.79 27174.83 4168.68 27885.32 126
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30669.96 28474.43 23849.29 27961.66 26680.92 22247.43 14276.68 27544.91 27871.69 22781.94 219
MIMVSNet155.17 31354.31 31557.77 32870.03 31932.01 37765.68 31364.81 31549.19 28046.75 37076.00 30225.53 35964.04 34028.65 37662.13 32977.26 289
SCA60.49 27258.38 28166.80 25174.14 26048.06 23963.35 33163.23 32849.13 28159.33 29172.10 33237.45 24774.27 29144.17 28062.57 32578.05 277
test_fmvsmvis_n_192070.84 10970.38 10772.22 16271.16 30355.39 12775.86 18972.21 26149.03 28273.28 7286.17 10851.83 9077.29 26175.80 3278.05 14583.98 165
testgi51.90 32852.37 32550.51 36160.39 38023.55 40158.42 35458.15 35149.03 28251.83 35079.21 25522.39 36755.59 37629.24 37562.64 32472.40 340
MIMVSNet57.35 29357.07 28958.22 32374.21 25937.18 34062.46 33560.88 34448.88 28455.29 32475.99 30431.68 31162.04 34731.87 35772.35 21975.43 308
gm-plane-assit71.40 29941.72 30348.85 28573.31 32582.48 16948.90 240
fmvsm_l_conf0.5_n70.99 10670.82 9971.48 17771.45 29554.40 13877.18 16070.46 27448.67 28675.17 4086.86 8253.77 6376.86 26976.33 3077.51 15183.17 197
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 36969.04 29363.82 32348.56 28764.27 23077.64 28127.20 34770.40 31133.56 34976.24 16979.83 258
cascas65.98 21463.42 23173.64 12777.26 20252.58 16972.26 25477.21 19648.56 28761.21 27074.60 31832.57 30685.82 9350.38 22776.75 16582.52 208
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12477.47 19048.51 28955.71 31881.89 20233.71 28679.71 22041.66 30470.37 24377.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 23062.50 24371.34 18579.72 12555.71 11779.82 10674.72 23548.50 29056.62 31184.62 14033.59 28982.34 17129.65 37375.23 18175.97 300
anonymousdsp67.00 19964.82 21673.57 13170.09 31856.13 10776.35 17777.35 19448.43 29164.99 22180.84 22633.01 29480.34 21164.66 11567.64 28584.23 157
无先验79.66 11174.30 24248.40 29280.78 20453.62 20079.03 269
114514_t70.83 11069.56 12074.64 9486.21 3154.63 13682.34 7081.81 9848.22 29363.01 24685.83 12140.92 21687.10 6057.91 16679.79 11682.18 215
tpm57.34 29458.16 28354.86 34171.80 29234.77 36067.47 30456.04 36548.20 29460.10 27776.92 28837.17 25353.41 38240.76 30865.01 30376.40 299
test_fmvsm_n_192071.73 9471.14 9473.50 13272.52 27956.53 10175.60 19376.16 20748.11 29577.22 2885.56 12553.10 7277.43 25874.86 4077.14 15886.55 74
MDA-MVSNet-bldmvs53.87 31950.81 33163.05 29566.25 35148.58 23356.93 36463.82 32348.09 29641.22 38270.48 34730.34 32068.00 32434.24 34445.92 38072.57 334
XXY-MVS60.68 27161.67 25257.70 32970.43 31238.45 32964.19 32866.47 30448.05 29763.22 24080.86 22449.28 11660.47 35145.25 27767.28 28874.19 323
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14878.12 13376.16 20747.97 29852.41 34881.61 20827.87 34178.11 24740.07 31066.66 29277.00 293
fmvsm_l_conf0.5_n_a70.50 11770.27 10971.18 18971.30 30154.09 14076.89 16869.87 27747.90 29974.37 5786.49 9953.07 7376.69 27475.41 3577.11 15982.76 204
Patchmatch-RL test58.16 28855.49 30466.15 26467.92 34048.89 22960.66 34851.07 37747.86 30059.36 28862.71 37934.02 28372.27 29956.41 17559.40 34477.30 287
D2MVS62.30 25760.29 26768.34 23866.46 35048.42 23565.70 31273.42 25147.71 30158.16 30275.02 31430.51 31777.71 25553.96 19871.68 22878.90 271
ANet_high41.38 35337.47 36053.11 35239.73 40424.45 39956.94 36369.69 27847.65 30226.04 39652.32 38812.44 38662.38 34621.80 39010.61 40572.49 335
CostFormer64.04 23862.51 24268.61 23471.88 29045.77 26171.30 26670.60 27347.55 30364.31 22976.61 29541.63 20579.62 22349.74 23169.00 27280.42 247
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25369.42 28962.18 33847.55 30358.88 29471.96 33434.49 27769.16 31642.99 29463.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 31253.89 31959.21 31557.80 38527.47 39057.75 36074.32 24047.38 30550.90 35470.00 35028.45 33870.30 31240.44 30957.92 34979.87 257
ITE_SJBPF62.09 30166.16 35244.55 27764.32 31947.36 30655.31 32380.34 23219.27 37562.68 34536.29 33762.39 32779.04 268
KD-MVS_2432*160053.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
miper_refine_blended53.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28848.06 23973.93 22972.51 25847.23 30954.74 33080.92 22221.49 37381.24 19148.57 24356.22 35779.53 263
tpmrst58.24 28758.70 27856.84 33166.97 34434.32 36469.57 28861.14 34347.17 31058.58 29971.60 33741.28 21260.41 35249.20 23762.84 32375.78 303
PVSNet50.76 1958.40 28657.39 28761.42 30575.53 23344.04 28061.43 34063.45 32647.04 31156.91 30973.61 32427.00 35064.76 33839.12 31672.40 21875.47 307
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35669.34 29064.28 32046.88 31261.76 26575.79 30640.61 21765.20 33732.16 35471.21 23277.70 282
FMVSNet555.86 30754.93 30758.66 32071.05 30536.35 35064.18 32962.48 33346.76 31350.66 35874.73 31725.80 35764.04 34033.11 35065.57 30075.59 305
jason69.65 13768.39 14973.43 13778.27 16456.88 9877.12 16173.71 24946.53 31469.34 13083.22 17043.37 18779.18 22964.77 11479.20 12884.23 157
jason: jason.
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17872.05 25674.05 24546.41 31557.42 30874.36 31934.35 27977.57 25745.62 26973.67 19566.26 371
1112_ss64.00 23963.36 23265.93 26979.28 13242.58 29371.35 26472.36 26046.41 31560.55 27477.89 27446.27 15873.28 29446.18 26269.97 25381.92 220
lupinMVS69.57 14068.28 15073.44 13678.76 14757.15 9476.57 17373.29 25346.19 31769.49 12682.18 19343.99 18379.23 22864.66 11579.37 12383.93 166
testdata64.66 28381.52 8752.93 16165.29 31346.09 31873.88 6487.46 7538.08 24366.26 33353.31 20478.48 14074.78 317
UnsupCasMVSNet_eth53.16 32652.47 32455.23 33959.45 38133.39 37259.43 35269.13 28745.98 31950.35 36072.32 32929.30 33158.26 36442.02 30244.30 38174.05 324
AllTest57.08 29654.65 30964.39 28671.44 29649.03 22469.92 28567.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
TestCases64.39 28671.44 29649.03 22467.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
WTY-MVS59.75 27860.39 26657.85 32772.32 28437.83 33461.05 34664.18 32145.95 32261.91 26279.11 25647.01 15160.88 35042.50 29869.49 26474.83 315
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 28950.80 19771.15 27069.63 28045.71 32360.61 27377.93 27137.45 24765.99 33455.67 18363.50 31879.42 264
WB-MVS43.26 34843.41 34942.83 37363.32 36510.32 40958.17 35745.20 38945.42 32440.44 38567.26 36634.01 28458.98 35911.96 40124.88 39659.20 377
旧先验276.08 18345.32 32576.55 3365.56 33658.75 164
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31144.82 27175.33 19870.86 27145.04 32656.06 31676.00 30226.89 35179.65 22135.36 34167.29 28772.60 333
TinyColmap54.14 31651.72 32761.40 30666.84 34641.97 29866.52 30768.51 29144.81 32742.69 38175.77 30711.66 38872.94 29531.96 35656.77 35569.27 367
MDTV_nov1_ep1357.00 29072.73 27438.26 33065.02 32464.73 31744.74 32855.46 32072.48 32832.61 30570.47 30837.47 32367.75 284
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11186.64 9041.29 21175.23 28649.72 23281.75 9975.93 301
Patchmtry57.16 29556.47 29659.23 31469.17 33134.58 36362.98 33263.15 32944.53 33056.83 31074.84 31535.83 26568.71 31840.03 31160.91 33674.39 321
ppachtmachnet_test58.06 29055.38 30566.10 26669.51 32548.99 22768.01 29866.13 30844.50 33154.05 33870.74 34332.09 31072.34 29836.68 33256.71 35676.99 295
PatchT53.17 32553.44 32252.33 35668.29 33825.34 39858.21 35654.41 36844.46 33254.56 33369.05 35733.32 29160.94 34936.93 32861.76 33370.73 357
EPMVS53.96 31753.69 32054.79 34266.12 35331.96 37862.34 33749.05 38044.42 33355.54 31971.33 34030.22 32156.70 36941.65 30562.54 32675.71 304
pmmvs461.48 26859.39 27167.76 24271.57 29453.86 14371.42 26365.34 31244.20 33459.46 28777.92 27235.90 26474.71 28843.87 28664.87 30574.71 318
dp51.89 32951.60 32852.77 35468.44 33732.45 37662.36 33654.57 36744.16 33549.31 36267.91 35928.87 33456.61 37133.89 34554.89 36069.24 368
PatchMatch-RL56.25 30454.55 31161.32 30877.06 20756.07 10965.57 31454.10 37044.13 33653.49 34671.27 34125.20 36066.78 32936.52 33563.66 31561.12 375
our_test_356.49 30054.42 31262.68 29869.51 32545.48 26766.08 31061.49 34144.11 33750.73 35769.60 35433.05 29368.15 32038.38 31956.86 35374.40 320
USDC56.35 30354.24 31662.69 29764.74 35840.31 31165.05 32373.83 24743.93 33847.58 36577.71 28015.36 38275.05 28738.19 32161.81 33272.70 332
PM-MVS52.33 32750.19 33558.75 31962.10 37145.14 27065.75 31140.38 39643.60 33953.52 34472.65 3279.16 39665.87 33550.41 22654.18 36365.24 373
pmmvs-eth3d58.81 28456.31 29866.30 26067.61 34152.42 17572.30 25364.76 31643.55 34054.94 32874.19 32128.95 33272.60 29643.31 28957.21 35273.88 326
SSC-MVS41.96 35241.99 35241.90 37462.46 3709.28 41157.41 36244.32 39243.38 34138.30 38966.45 36932.67 30258.42 36310.98 40221.91 39957.99 381
new-patchmatchnet47.56 34347.73 34347.06 36458.81 3839.37 41048.78 38159.21 34843.28 34244.22 37768.66 35825.67 35857.20 36831.57 36449.35 37674.62 319
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14039.53 32068.17 29670.17 27543.25 34359.03 29379.90 23944.08 18171.24 30543.79 28768.42 27981.25 232
RPMNet61.53 26658.42 28070.86 19569.96 32052.07 17965.31 32181.36 10843.20 34459.36 28870.15 34935.37 26885.47 10336.42 33664.65 30775.06 310
tpm262.07 26060.10 26867.99 24072.79 27343.86 28171.05 27366.85 30243.14 34562.77 24775.39 31238.32 23980.80 20341.69 30368.88 27379.32 265
JIA-IIPM51.56 33047.68 34463.21 29364.61 35950.73 19847.71 38358.77 35042.90 34648.46 36451.72 38924.97 36170.24 31336.06 33853.89 36468.64 369
131464.61 23263.21 23568.80 23171.87 29147.46 24773.95 22778.39 17642.88 34759.97 27976.60 29638.11 24279.39 22654.84 19072.32 22079.55 262
HyFIR lowres test65.67 21863.01 23773.67 12479.97 11955.65 11969.07 29275.52 21942.68 34863.53 23877.95 27040.43 21881.64 18146.01 26471.91 22583.73 178
CR-MVSNet59.91 27657.90 28665.96 26869.96 32052.07 17965.31 32163.15 32942.48 34959.36 28874.84 31535.83 26570.75 30745.50 27264.65 30775.06 310
test22283.14 6858.68 7372.57 24963.45 32641.78 35067.56 16586.12 10937.13 25578.73 13774.98 313
TDRefinement53.44 32350.72 33261.60 30364.31 36146.96 25170.89 27465.27 31441.78 35044.61 37677.98 26911.52 39066.36 33228.57 37751.59 36971.49 349
sss56.17 30556.57 29554.96 34066.93 34536.32 35257.94 35861.69 34041.67 35258.64 29775.32 31338.72 23556.25 37342.04 30166.19 29672.31 341
PVSNet_043.31 2047.46 34445.64 34752.92 35367.60 34244.65 27454.06 37154.64 36641.59 35346.15 37258.75 38230.99 31458.66 36132.18 35324.81 39755.46 385
MVS67.37 18866.33 19470.51 20375.46 23450.94 19273.95 22781.85 9741.57 35462.54 25478.57 26447.98 13085.47 10352.97 20682.05 9275.14 309
Anonymous2024052155.30 31054.41 31357.96 32660.92 37941.73 30171.09 27271.06 27041.18 35548.65 36373.31 32516.93 37859.25 35842.54 29764.01 31272.90 330
Anonymous2023120655.10 31455.30 30654.48 34369.81 32433.94 36862.91 33362.13 33941.08 35655.18 32575.65 30832.75 30056.59 37230.32 37067.86 28272.91 329
MDA-MVSNet_test_wron50.71 33548.95 33756.00 33661.17 37541.84 29951.90 37656.45 35940.96 35744.79 37567.84 36030.04 32355.07 37936.71 33150.69 37271.11 355
YYNet150.73 33448.96 33656.03 33561.10 37641.78 30051.94 37556.44 36040.94 35844.84 37467.80 36130.08 32255.08 37836.77 32950.71 37171.22 352
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24440.53 35963.16 24378.65 26141.30 21077.80 25345.80 26674.09 18881.40 228
pmmvs556.47 30155.68 30358.86 31861.41 37436.71 34766.37 30862.75 33140.38 36053.70 34076.62 29434.56 27567.05 32740.02 31265.27 30172.83 331
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36243.14 28967.49 30366.36 30640.22 36165.89 19771.95 33531.04 31359.75 35659.94 15664.90 30471.85 345
MDTV_nov1_ep13_2view25.89 39661.22 34340.10 36251.10 35232.97 29538.49 31878.61 272
tpm cat159.25 28256.95 29166.15 26472.19 28646.96 25168.09 29765.76 30940.03 36357.81 30470.56 34438.32 23974.51 28938.26 32061.50 33477.00 293
test-mter56.42 30255.82 30258.22 32368.57 33444.80 27265.46 31757.92 35339.94 36455.44 32169.82 35121.92 36957.44 36649.66 23373.62 19672.41 338
UnsupCasMVSNet_bld50.07 33748.87 33853.66 34860.97 37833.67 37057.62 36164.56 31839.47 36547.38 36664.02 37727.47 34459.32 35734.69 34343.68 38267.98 370
TESTMET0.1,155.28 31154.90 30856.42 33366.56 34843.67 28365.46 31756.27 36339.18 36653.83 33967.44 36324.21 36455.46 37748.04 24873.11 20970.13 361
ADS-MVSNet251.33 33248.76 33959.07 31766.02 35444.60 27550.90 37759.76 34636.90 36750.74 35566.18 37126.38 35263.11 34327.17 38054.76 36169.50 365
ADS-MVSNet48.48 34147.77 34250.63 36066.02 35429.92 38250.90 37750.87 37936.90 36750.74 35566.18 37126.38 35252.47 38427.17 38054.76 36169.50 365
RPSCF55.80 30854.22 31760.53 31065.13 35742.91 29264.30 32757.62 35536.84 36958.05 30382.28 19228.01 34056.24 37437.14 32658.61 34782.44 211
test_cas_vis1_n_192056.91 29756.71 29457.51 33059.13 38245.40 26863.58 33061.29 34236.24 37067.14 17271.85 33629.89 32456.69 37057.65 16863.58 31770.46 358
Patchmatch-test49.08 33948.28 34151.50 35964.40 36030.85 38145.68 38748.46 38335.60 37146.10 37372.10 33234.47 27846.37 39227.08 38260.65 34077.27 288
CHOSEN 280x42047.83 34246.36 34652.24 35867.37 34349.78 21538.91 39543.11 39435.00 37243.27 38063.30 37828.95 33249.19 38936.53 33460.80 33857.76 382
N_pmnet39.35 35740.28 35536.54 38063.76 3621.62 41549.37 3800.76 41434.62 37343.61 37966.38 37026.25 35442.57 39626.02 38551.77 36865.44 372
PMMVS53.96 31753.26 32356.04 33462.60 36950.92 19461.17 34456.09 36432.81 37453.51 34566.84 36834.04 28259.93 35544.14 28268.18 28057.27 383
CMPMVSbinary42.80 2157.81 29255.97 30063.32 29160.98 37747.38 24864.66 32669.50 28332.06 37546.83 36977.80 27629.50 32971.36 30448.68 24173.75 19471.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32575.20 20268.74 29031.15 37658.24 30176.51 29732.39 30868.58 31949.77 23065.84 29875.81 302
FPMVS42.18 35141.11 35445.39 36658.03 38441.01 30849.50 37953.81 37130.07 37733.71 39164.03 37511.69 38752.08 38714.01 39755.11 35943.09 394
EU-MVSNet55.61 30954.41 31359.19 31665.41 35633.42 37172.44 25171.91 26428.81 37851.27 35173.87 32224.76 36269.08 31743.04 29358.20 34875.06 310
test_vis1_n49.89 33848.69 34053.50 35053.97 38637.38 33961.53 33947.33 38628.54 37959.62 28667.10 36713.52 38452.27 38549.07 23857.52 35070.84 356
test_fmvs1_n51.37 33150.35 33454.42 34552.85 38837.71 33661.16 34551.93 37228.15 38063.81 23669.73 35313.72 38353.95 38051.16 22160.65 34071.59 347
LF4IMVS42.95 34942.26 35145.04 36748.30 39532.50 37554.80 36948.49 38228.03 38140.51 38470.16 3489.24 39543.89 39531.63 36249.18 37758.72 379
test_fmvs151.32 33350.48 33353.81 34753.57 38737.51 33860.63 34951.16 37528.02 38263.62 23769.23 35616.41 37953.93 38151.01 22260.70 33969.99 362
MVS-HIRNet45.52 34544.48 34848.65 36368.49 33634.05 36759.41 35344.50 39127.03 38337.96 39050.47 39326.16 35564.10 33926.74 38359.52 34347.82 392
PMVScopyleft28.69 2236.22 36033.29 36445.02 36836.82 40635.98 35554.68 37048.74 38126.31 38421.02 39951.61 3902.88 40860.10 3549.99 40547.58 37838.99 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 34641.95 35353.86 34652.58 39043.55 28462.11 33846.90 38826.05 38540.63 38360.19 38111.08 39357.91 36531.83 36146.15 37960.11 376
test_fmvs248.69 34047.49 34552.29 35748.63 39433.06 37457.76 35948.05 38425.71 38659.76 28469.60 35411.57 38952.23 38649.45 23656.86 35371.58 348
PMMVS227.40 36825.91 37131.87 38439.46 4056.57 41231.17 39828.52 40523.96 38720.45 40048.94 3964.20 40437.94 40016.51 39419.97 40051.09 387
Gipumacopyleft34.77 36131.91 36543.33 37162.05 37237.87 33220.39 40067.03 30023.23 38818.41 40125.84 4014.24 40262.73 34414.71 39651.32 37029.38 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 35439.45 35647.03 36546.65 39737.86 33347.76 38238.65 39723.10 38944.21 37851.22 39111.20 39244.08 39439.27 31553.02 36659.14 378
new_pmnet34.13 36234.29 36333.64 38252.63 38918.23 40644.43 39033.90 40222.81 39030.89 39353.18 38710.48 39435.72 40320.77 39139.51 38746.98 393
mvsany_test139.38 35638.16 35943.02 37249.05 39234.28 36544.16 39125.94 40722.74 39146.57 37162.21 38023.85 36541.16 39933.01 35135.91 39153.63 386
LCM-MVSNet40.30 35535.88 36153.57 34942.24 39929.15 38445.21 38960.53 34522.23 39228.02 39450.98 3923.72 40561.78 34831.22 36738.76 38969.78 364
test_fmvs344.30 34742.55 35049.55 36242.83 39827.15 39353.03 37344.93 39022.03 39353.69 34264.94 3744.21 40349.63 38847.47 24949.82 37471.88 344
APD_test137.39 35934.94 36244.72 37048.88 39333.19 37352.95 37444.00 39319.49 39427.28 39558.59 3833.18 40752.84 38318.92 39241.17 38648.14 391
mvsany_test332.62 36330.57 36738.77 37836.16 40724.20 40038.10 39620.63 40919.14 39540.36 38657.43 3845.06 40036.63 40229.59 37428.66 39555.49 384
E-PMN23.77 36922.73 37326.90 38542.02 40020.67 40342.66 39235.70 40017.43 39610.28 40625.05 4026.42 39842.39 39710.28 40414.71 40217.63 401
EMVS22.97 37021.84 37426.36 38640.20 40319.53 40541.95 39334.64 40117.09 3979.73 40722.83 4037.29 39742.22 3989.18 40613.66 40317.32 402
test_vis3_rt32.09 36430.20 36837.76 37935.36 40827.48 38940.60 39428.29 40616.69 39832.52 39240.53 3971.96 40937.40 40133.64 34842.21 38548.39 389
test_f31.86 36531.05 36634.28 38132.33 41021.86 40232.34 39730.46 40416.02 39939.78 38855.45 3864.80 40132.36 40430.61 36837.66 39048.64 388
DSMNet-mixed39.30 35838.72 35741.03 37551.22 39119.66 40445.53 38831.35 40315.83 40039.80 38767.42 36522.19 36845.13 39322.43 38852.69 36758.31 380
testf131.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
APD_test231.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
MVEpermissive17.77 2321.41 37117.77 37632.34 38334.34 40925.44 39716.11 40124.11 40811.19 40313.22 40331.92 3991.58 41030.95 40510.47 40317.03 40140.62 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 38917.97 41110.91 40810.60 4127.46 40411.07 40528.36 4003.28 40611.29 4088.01 4079.74 40713.89 403
wuyk23d13.32 37412.52 37715.71 38847.54 39626.27 39531.06 3991.98 4134.93 4055.18 4081.94 4080.45 41318.54 4076.81 40812.83 4042.33 405
test_method19.68 37218.10 37524.41 38713.68 4123.11 41412.06 40342.37 3952.00 40611.97 40436.38 3985.77 39929.35 40615.06 39523.65 39840.76 397
tmp_tt9.43 37511.14 3784.30 3902.38 4134.40 41313.62 40216.08 4110.39 40715.89 40213.06 40415.80 3815.54 40912.63 40010.46 4062.95 404
EGC-MVSNET42.47 35038.48 35854.46 34474.33 25648.73 23170.33 28151.10 3760.03 4080.18 40967.78 36213.28 38566.49 33118.91 39350.36 37348.15 390
testmvs4.52 3786.03 3810.01 3920.01 4140.00 41753.86 3720.00 4150.01 4090.04 4100.27 4090.00 4150.00 4100.04 4090.00 4080.03 407
test1234.73 3776.30 3800.02 3910.01 4140.01 41656.36 3650.00 4150.01 4090.04 4100.21 4100.01 4140.00 4100.03 4100.00 4080.04 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k17.50 37323.34 3720.00 3930.00 4160.00 4170.00 40478.63 1630.00 4110.00 41282.18 19349.25 1170.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.92 3795.23 3820.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 41147.05 1480.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
ab-mvs-re6.49 3768.65 3790.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 41277.89 2740.00 4150.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
WAC-MVS27.31 39127.77 378
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
eth-test20.00 416
eth-test0.00 416
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 18
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 41
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27478.05 277
sam_mvs33.43 290
ambc65.13 28163.72 36437.07 34347.66 38478.78 15954.37 33671.42 33811.24 39180.94 19845.64 26853.85 36577.38 286
MTGPAbinary80.97 125
test_post168.67 2943.64 40632.39 30869.49 31544.17 280
test_post3.55 40733.90 28566.52 330
patchmatchnet-post64.03 37534.50 27674.27 291
GG-mvs-BLEND62.34 29971.36 30037.04 34469.20 29157.33 35854.73 33165.48 37330.37 31977.82 25234.82 34274.93 18272.17 342
MTMP86.03 1917.08 410
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
agg_prior85.04 5059.96 4781.04 12374.68 5284.04 129
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7986.38 76
新几何276.12 181
旧先验183.04 7053.15 15867.52 29587.85 7144.08 18180.76 10378.03 280
原ACMM279.02 117
testdata272.18 30146.95 258
segment_acmp54.23 56
test1277.76 4384.52 5858.41 7583.36 7372.93 8354.61 5388.05 3988.12 3586.81 64
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 172
plane_prior584.01 4987.21 5568.16 8180.58 10684.65 147
plane_prior486.10 110
plane_prior181.27 95
n20.00 415
nn0.00 415
door-mid47.19 387
lessismore_v069.91 21371.42 29847.80 24150.90 37850.39 35975.56 30927.43 34681.33 18845.91 26534.10 39480.59 245
test1183.47 68
door47.60 385
HQP5-MVS54.94 131
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6384.32 154
HQP3-MVS83.90 5480.35 110
HQP2-MVS45.46 166
NP-MVS80.98 10056.05 11085.54 128
ACMMP++_ref74.07 189
ACMMP++72.16 223
Test By Simon48.33 128