This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 12
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 41
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 23
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 18
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11370.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
PC_three_145255.09 20384.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 12
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 19989.38 1964.07 11886.50 5689.69 2
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4486.38 76
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 57
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 8088.88 5553.72 6489.06 2368.27 7888.04 3887.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 22
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7567.78 370.09 11386.34 10354.92 4988.90 2572.68 5784.55 6687.76 36
ZD-MVS86.64 2160.38 4382.70 8757.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 49
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 5988.68 2776.48 2889.63 2087.16 55
iter_conf05_1171.51 9770.02 11575.99 6379.93 12051.46 18777.37 15278.24 17854.95 20972.06 9782.87 17529.55 32688.61 2867.40 9187.81 4287.89 26
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10388.54 2970.79 6889.71 1787.79 35
bld_raw_dy_0_6470.97 10769.31 12675.95 6579.93 12051.43 18880.93 9075.96 21253.39 23372.29 9483.29 16930.48 31888.53 3067.40 9180.11 11487.89 26
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 7688.53 3074.79 4288.34 2986.63 72
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7788.39 3279.34 890.52 1386.78 66
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6390.50 2453.20 7088.35 3374.02 4887.05 4586.13 91
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4388.32 3473.48 5387.03 4684.83 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6890.56 2249.80 11188.24 3574.02 4887.03 4686.32 84
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 7090.58 2149.90 10988.21 3673.78 5087.03 4686.29 87
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6161.71 7672.45 9390.34 2948.48 12788.13 3772.32 5886.85 5185.78 103
DP-MVS Recon72.15 8970.73 10176.40 5886.57 2457.99 7981.15 8982.96 8257.03 15866.78 17885.56 12544.50 17888.11 3851.77 21780.23 11383.10 198
test1277.76 4384.52 5858.41 7583.36 7372.93 8354.61 5388.05 3988.12 3586.81 64
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9590.01 4047.95 13188.01 4071.55 6586.74 5386.37 78
X-MVStestdata70.21 12367.28 17479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 956.49 40547.95 13188.01 4071.55 6586.74 5386.37 78
EC-MVSNet75.84 4575.87 4275.74 7178.86 14452.65 16683.73 5086.08 1763.47 4272.77 8687.25 8053.13 7187.93 4271.97 6185.57 6186.66 70
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17474.05 6188.98 5453.34 6987.92 4369.23 7688.42 2887.59 42
ETV-MVS74.46 5973.84 6276.33 6079.27 13355.24 12979.22 11685.00 3664.97 2172.65 8879.46 25053.65 6887.87 4467.45 9082.91 8285.89 100
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10385.71 2256.59 16972.46 9186.76 8556.89 3487.86 4566.36 9988.91 2583.64 184
API-MVS72.17 8671.41 8774.45 10181.95 8357.22 8984.03 4580.38 13459.89 11068.40 14382.33 19049.64 11287.83 4651.87 21584.16 7278.30 273
MG-MVS73.96 6373.89 6174.16 10885.65 4249.69 21881.59 8481.29 11561.45 7871.05 10588.11 6351.77 9187.73 4761.05 14883.09 7785.05 136
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4386.57 73
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6059.34 11979.37 1989.76 4559.84 1687.62 4976.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba71.15 10269.54 12175.99 6377.61 19253.46 15281.95 7875.11 22957.73 15166.95 17685.96 11637.14 25487.56 5067.94 8375.49 17986.97 58
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7989.97 4150.90 10487.48 5175.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6962.44 6472.68 8790.50 2448.18 12987.34 5273.59 5285.71 5984.76 146
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6265.37 1378.78 2290.64 1958.63 2587.24 5379.00 1290.37 1485.26 130
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7978.57 16458.58 13274.32 5884.51 14555.94 4187.22 5467.11 9484.48 6885.52 115
HQP_MVS74.31 6073.73 6376.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 13186.10 11045.26 17287.21 5568.16 8180.58 10684.65 147
plane_prior584.01 4987.21 5568.16 8180.58 10684.65 147
iter_conf0569.40 14867.62 15974.73 8877.84 17951.13 19079.28 11573.71 24954.62 21468.17 14883.59 16328.68 33687.16 5765.74 10876.95 16185.91 98
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 12389.74 4645.43 16887.16 5772.01 6082.87 8485.14 132
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS73.33 6772.68 7275.29 8278.82 14653.33 15678.23 12984.79 3961.30 8170.41 11081.04 21852.41 8087.12 5964.61 11782.49 8985.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t70.83 11069.56 12074.64 9486.21 3154.63 13682.34 7081.81 9848.22 29363.01 24685.83 12140.92 21687.10 6057.91 16679.79 11682.18 215
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6177.08 2690.18 1587.87 30
AdaColmapbinary69.99 12768.66 14073.97 11284.94 5457.83 8082.63 6578.71 16056.28 17664.34 22784.14 15041.57 20687.06 6246.45 26078.88 13277.02 292
HQP4-MVS67.85 15586.93 6384.32 154
HQP-MVS73.45 6672.80 7175.40 7880.66 10354.94 13182.31 7183.90 5462.10 6867.85 15585.54 12845.46 16686.93 6367.04 9580.35 11084.32 154
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6577.39 2389.52 21
RRT_MVS69.42 14667.49 16675.21 8378.01 17452.56 17082.23 7578.15 17955.84 18465.65 20185.07 13230.86 31586.83 6661.56 14670.00 25286.24 89
DELS-MVS74.76 5274.46 5575.65 7477.84 17952.25 17675.59 19484.17 4663.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5887.89 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 7986.78 6880.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6663.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS71.78 9270.60 10275.30 8179.85 12253.54 15077.27 15883.26 7857.92 14766.49 18479.39 25152.07 8686.69 7060.05 15479.14 13085.66 111
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21080.97 12565.13 1575.77 3690.88 1748.63 12486.66 7177.23 2488.17 3384.81 143
LPG-MVS_test72.74 7571.74 8175.76 6980.22 11157.51 8682.55 6783.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
LGP-MVS_train75.76 6980.22 11157.51 8683.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13560.76 1586.56 7467.86 8487.87 4186.06 93
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9162.90 5271.77 9990.26 3146.61 15586.55 7571.71 6385.66 6084.97 139
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9259.99 10675.10 4190.35 2847.66 13686.52 7671.64 6482.99 7984.47 152
原ACMM174.69 9085.39 4759.40 5483.42 7051.47 25370.27 11286.61 9348.61 12586.51 7753.85 19987.96 3978.16 275
QAPM70.05 12568.81 13673.78 11676.54 21853.43 15383.23 5483.48 6752.89 23865.90 19686.29 10441.55 20886.49 7851.01 22278.40 14281.42 225
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7986.38 76
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18372.62 24775.81 21353.70 22965.31 20778.96 25728.81 33586.39 8043.93 28473.48 20182.55 206
EPP-MVSNet72.16 8871.31 9174.71 8978.68 15049.70 21682.10 7681.65 10060.40 9365.94 19485.84 12051.74 9286.37 8155.93 17879.55 12288.07 25
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 10386.03 11353.83 6186.36 8267.74 8586.91 5088.19 20
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16573.09 24175.13 22855.69 18958.48 30073.73 32332.86 29686.32 8350.63 22570.11 24981.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 7087.27 7955.06 4686.30 8471.78 6284.58 6589.25 4
PAPM_NR72.63 7771.80 8075.13 8481.72 8553.42 15479.91 10583.28 7759.14 12166.31 18985.90 11851.86 8986.06 8557.45 16980.62 10485.91 98
PAPR71.72 9570.82 9974.41 10281.20 9751.17 18979.55 11383.33 7455.81 18666.93 17784.61 14150.95 10286.06 8555.79 18179.20 12886.00 94
ACMP63.53 672.30 8371.20 9375.59 7780.28 10957.54 8482.74 6382.84 8660.58 9065.24 21386.18 10739.25 22986.03 8766.95 9776.79 16483.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 7658.41 13573.71 6690.14 3345.62 16185.99 8869.64 7282.85 8585.78 103
Effi-MVS+73.31 6872.54 7475.62 7577.87 17753.64 14779.62 11279.61 14361.63 7772.02 9882.61 18156.44 3785.97 8963.99 12179.07 13187.25 54
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9473.16 25453.06 23559.09 29282.35 18936.79 26085.94 9032.82 35269.96 25472.45 336
OPM-MVS74.73 5374.25 5776.19 6180.81 10259.01 6782.60 6683.64 6363.74 3972.52 9087.49 7447.18 14685.88 9169.47 7480.78 10283.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SR-MVS-dyc-post74.57 5773.90 6076.58 5683.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3444.74 17585.84 9268.20 7981.76 9784.03 162
cascas65.98 21463.42 23173.64 12777.26 20252.58 16972.26 25477.21 19648.56 28761.21 27074.60 31832.57 30685.82 9350.38 22776.75 16582.52 208
h-mvs3372.71 7671.49 8576.40 5881.99 8259.58 5276.92 16776.74 20360.40 9374.81 4985.95 11745.54 16485.76 9470.41 7070.61 23983.86 171
FA-MVS(test-final)69.82 13168.48 14373.84 11478.44 15650.04 21175.58 19678.99 15458.16 13967.59 16482.14 19742.66 19285.63 9556.60 17376.19 17085.84 101
IS-MVSNet71.57 9671.00 9773.27 14178.86 14445.63 26680.22 9978.69 16164.14 3566.46 18587.36 7649.30 11585.60 9650.26 22883.71 7588.59 9
HPM-MVS_fast74.30 6173.46 6676.80 5284.45 6059.04 6683.65 5281.05 12260.15 10370.43 10989.84 4341.09 21585.59 9767.61 8882.90 8385.77 106
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4885.58 9876.12 3184.94 6386.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator64.47 572.49 7971.39 8875.79 6877.70 18358.99 6880.66 9583.15 8062.24 6665.46 20586.59 9442.38 19785.52 9959.59 16084.72 6482.85 203
MAR-MVS71.51 9770.15 11275.60 7681.84 8459.39 5581.38 8682.90 8454.90 21168.08 15278.70 25947.73 13485.51 10051.68 21984.17 7181.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19176.89 16874.25 24353.67 23065.59 20381.76 20535.15 27085.50 10155.94 17772.47 21786.47 75
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19677.86 13973.99 24654.54 21864.64 22582.53 18635.06 27185.50 10155.71 18269.91 25586.67 69
MVS67.37 18866.33 19470.51 20375.46 23450.94 19273.95 22781.85 9741.57 35462.54 25478.57 26447.98 13085.47 10352.97 20682.05 9275.14 309
EPNet73.09 7072.16 7775.90 6775.95 22656.28 10483.05 5672.39 25966.53 1065.27 20987.00 8150.40 10685.47 10362.48 13586.32 5785.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet61.53 26658.42 28070.86 19569.96 32052.07 17965.31 32181.36 10843.20 34459.36 28870.15 34935.37 26885.47 10336.42 33664.65 30775.06 310
v1070.21 12369.02 13273.81 11573.51 26350.92 19478.74 12081.39 10660.05 10566.39 18781.83 20447.58 13885.41 10662.80 13268.86 27585.09 135
v119269.97 12868.68 13973.85 11373.19 26550.94 19277.68 14481.36 10857.51 15368.95 13780.85 22545.28 17185.33 10762.97 13170.37 24385.27 129
v114470.42 11969.31 12673.76 11873.22 26450.64 19977.83 14181.43 10558.58 13269.40 12981.16 21547.53 13985.29 10864.01 12070.64 23785.34 125
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7376.46 22051.83 18479.67 11085.08 3165.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7390.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124069.24 15267.91 15473.25 14373.02 27049.82 21477.21 15980.54 13156.43 17268.34 14580.51 22943.33 18884.99 11062.03 14069.77 26084.95 140
PAPM67.92 17966.69 18471.63 17578.09 17049.02 22677.09 16281.24 11851.04 26060.91 27283.98 15547.71 13584.99 11040.81 30779.32 12680.90 241
v192192069.47 14468.17 15173.36 13973.06 26850.10 21077.39 15180.56 13056.58 17068.59 13980.37 23044.72 17684.98 11262.47 13669.82 25785.00 137
v870.33 12169.28 12873.49 13373.15 26650.22 20778.62 12380.78 12860.79 8666.45 18682.11 19949.35 11484.98 11263.58 12768.71 27685.28 128
v14419269.71 13368.51 14273.33 14073.10 26750.13 20977.54 14880.64 12956.65 16368.57 14180.55 22846.87 15384.96 11462.98 13069.66 26284.89 141
EI-MVSNet-Vis-set72.42 8271.59 8274.91 8578.47 15554.02 14177.05 16379.33 14965.03 1871.68 10179.35 25352.75 7484.89 11566.46 9874.23 18785.83 102
PCF-MVS61.88 870.95 10869.49 12375.35 7977.63 18755.71 11776.04 18681.81 9850.30 26869.66 12485.40 13152.51 7784.89 11551.82 21680.24 11285.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 11769.45 12573.66 12572.62 27650.03 21277.58 14580.51 13259.90 10769.52 12582.14 19747.53 13984.88 11765.07 11370.17 24886.09 92
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22171.32 26573.12 25549.39 27763.82 23576.50 29934.95 27384.84 11853.20 20575.49 17984.13 161
TEST985.58 4361.59 2481.62 8281.26 11655.65 19174.93 4588.81 5653.70 6584.68 119
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11655.86 18274.93 4588.81 5653.70 6584.68 11975.24 3888.33 3083.65 183
EI-MVSNet-UG-set71.92 9071.06 9674.52 10077.98 17553.56 14976.62 17279.16 15064.40 2771.18 10478.95 25852.19 8484.66 12165.47 11073.57 19885.32 126
v7n69.01 15567.36 17173.98 11172.51 28052.65 16678.54 12681.30 11460.26 10262.67 25081.62 20743.61 18584.49 12257.01 17168.70 27784.79 144
test_885.40 4660.96 3481.54 8581.18 11955.86 18274.81 4988.80 5853.70 6584.45 123
test_040263.25 24761.01 26269.96 21080.00 11854.37 13976.86 17072.02 26354.58 21758.71 29580.79 22735.00 27284.36 12426.41 38464.71 30671.15 354
PS-MVSNAJss72.24 8471.21 9275.31 8078.50 15355.93 11281.63 8182.12 9356.24 17770.02 11785.68 12447.05 14884.34 12565.27 11174.41 18685.67 110
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18152.83 16480.39 9678.03 18157.30 15457.47 30682.55 18327.68 34384.17 12645.54 27069.78 25879.90 256
OpenMVScopyleft61.03 968.85 15667.56 16072.70 15274.26 25853.99 14281.21 8881.34 11252.70 23962.75 24985.55 12738.86 23484.14 12748.41 24483.01 7879.97 255
Fast-Effi-MVS+70.28 12269.12 13173.73 12178.50 15351.50 18675.01 20779.46 14756.16 17968.59 13979.55 24853.97 5884.05 12853.34 20377.53 15085.65 112
agg_prior85.04 5059.96 4781.04 12374.68 5284.04 129
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15177.99 13678.82 15653.37 23456.03 31777.41 28424.75 36384.04 12946.37 26173.42 20373.14 328
Effi-MVS+-dtu69.64 13867.53 16375.95 6576.10 22462.29 1580.20 10076.06 21159.83 11165.26 21277.09 28641.56 20784.02 13160.60 15171.09 23581.53 224
MVS_111021_HR74.02 6273.46 6675.69 7283.01 7260.63 4077.29 15778.40 17561.18 8270.58 10885.97 11554.18 5784.00 13267.52 8982.98 8182.45 210
VDDNet71.81 9171.33 9073.26 14282.80 7547.60 24678.74 12075.27 22359.59 11572.94 8289.40 4841.51 20983.91 13358.75 16482.99 7988.26 16
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11752.53 17174.26 22176.29 20658.48 13468.38 14484.20 14842.59 19383.83 13446.53 25975.91 17282.56 205
baseline74.61 5674.70 5374.34 10375.70 22849.99 21377.54 14884.63 4062.73 5973.98 6287.79 7357.67 3083.82 13569.49 7382.74 8789.20 6
LFMVS71.78 9271.59 8272.32 16083.40 6746.38 25579.75 10871.08 26864.18 3272.80 8588.64 5942.58 19483.72 13657.41 17084.49 6786.86 62
TR-MVS66.59 20965.07 21471.17 19079.18 13649.63 22073.48 23675.20 22752.95 23667.90 15380.33 23339.81 22383.68 13743.20 29273.56 19980.20 251
MSLP-MVS++73.77 6573.47 6574.66 9283.02 7159.29 5882.30 7481.88 9659.34 11971.59 10286.83 8345.94 15983.65 13865.09 11285.22 6281.06 238
casdiffmvspermissive74.80 5174.89 5274.53 9975.59 23250.37 20578.17 13285.06 3362.80 5874.40 5687.86 7057.88 2783.61 13969.46 7582.79 8689.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet69.54 14168.85 13471.59 17678.05 17243.81 28274.20 22280.86 12765.18 1462.76 24884.52 14352.35 8283.59 14050.96 22470.78 23687.37 50
BH-untuned68.27 17067.29 17371.21 18779.74 12353.22 15776.06 18477.46 19257.19 15666.10 19181.61 20845.37 17083.50 14145.42 27576.68 16676.91 296
UniMVSNet (Re)70.63 11470.20 11071.89 16578.55 15245.29 26975.94 18882.92 8363.68 4068.16 14983.59 16353.89 6083.49 14253.97 19771.12 23486.89 61
VDD-MVS72.50 7872.09 7873.75 12081.58 8649.69 21877.76 14377.63 18863.21 4773.21 7389.02 5342.14 19883.32 14361.72 14282.50 8888.25 17
UA-Net73.13 6972.93 7073.76 11883.58 6451.66 18578.75 11977.66 18767.75 472.61 8989.42 4749.82 11083.29 14453.61 20183.14 7686.32 84
MVSFormer71.50 9970.38 10774.88 8678.76 14757.15 9482.79 6178.48 16851.26 25769.49 12683.22 17043.99 18383.24 14566.06 10179.37 12384.23 157
test_djsdf69.45 14567.74 15574.58 9774.57 25154.92 13382.79 6178.48 16851.26 25765.41 20683.49 16738.37 23883.24 14566.06 10169.25 26885.56 114
ACMM61.98 770.80 11269.73 11874.02 11080.59 10858.59 7482.68 6482.02 9555.46 19567.18 17184.39 14738.51 23683.17 14760.65 15076.10 17180.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet70.36 12070.10 11471.17 19078.64 15142.97 29176.53 17481.16 12166.95 668.53 14285.42 13051.61 9483.07 14852.32 20969.70 26187.46 45
V4268.65 16167.35 17272.56 15368.93 33350.18 20872.90 24379.47 14656.92 16069.45 12880.26 23446.29 15782.99 14964.07 11867.82 28384.53 149
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 24975.59 19469.68 27954.61 21554.11 33779.26 25427.07 34982.96 15043.27 29049.79 37580.41 248
BH-w/o66.85 20165.83 20369.90 21479.29 13152.46 17374.66 21676.65 20454.51 21964.85 22278.12 26645.59 16382.95 15143.26 29175.54 17874.27 322
hse-mvs271.04 10469.86 11674.60 9679.58 12657.12 9673.96 22675.25 22460.40 9374.81 4981.95 20145.54 16482.90 15270.41 7066.83 29183.77 176
AUN-MVS68.45 16866.41 19174.57 9879.53 12857.08 9773.93 22975.23 22554.44 22066.69 18181.85 20337.10 25682.89 15362.07 13866.84 29083.75 177
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29348.33 23673.68 23577.88 18255.80 18765.91 19578.62 26347.35 14582.88 15459.45 16166.25 29583.81 172
test_yl69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
DCV-MVSNet69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
PVSNet_BlendedMVS68.56 16667.72 15671.07 19377.03 20850.57 20074.50 21881.52 10153.66 23164.22 23379.72 24449.13 11982.87 15555.82 17973.92 19179.77 261
PVSNet_Blended68.59 16267.72 15671.19 18877.03 20850.57 20072.51 25081.52 10151.91 24664.22 23377.77 27949.13 11982.87 15555.82 17979.58 12080.14 253
UniMVSNet_NR-MVSNet71.11 10371.00 9771.44 17979.20 13544.13 27876.02 18782.60 8866.48 1168.20 14684.60 14256.82 3582.82 15954.62 19270.43 24187.36 52
DU-MVS70.01 12669.53 12271.44 17978.05 17244.13 27875.01 20781.51 10364.37 2868.20 14684.52 14349.12 12182.82 15954.62 19270.43 24187.37 50
GeoE71.01 10570.15 11273.60 13079.57 12752.17 17778.93 11878.12 18058.02 14367.76 16383.87 15752.36 8182.72 16156.90 17275.79 17485.92 97
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17878.53 16650.59 26656.47 31578.65 26139.84 22282.68 16244.10 28372.12 22472.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNetpermissive72.18 8571.37 8974.61 9581.29 9355.41 12680.90 9178.28 17760.73 8869.23 13488.09 6444.36 18082.65 16357.68 16781.75 9985.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20474.74 23452.91 23760.03 27880.12 23633.68 28782.64 16461.86 14176.34 16885.78 103
PVSNet_Blended_VisFu71.45 10070.39 10674.65 9382.01 8058.82 7179.93 10480.35 13555.09 20365.82 20082.16 19649.17 11882.64 16460.34 15278.62 13982.50 209
tt080567.77 18267.24 17869.34 22474.87 24240.08 31277.36 15381.37 10755.31 19766.33 18884.65 13937.35 24982.55 16655.65 18472.28 22285.39 124
EI-MVSNet69.27 15168.44 14771.73 17174.47 25249.39 22375.20 20278.45 17159.60 11269.16 13576.51 29751.29 9682.50 16759.86 15971.45 23183.30 189
MVSTER67.16 19565.58 20871.88 16670.37 31449.70 21670.25 28278.45 17151.52 25169.16 13580.37 23038.45 23782.50 16760.19 15371.46 23083.44 187
gm-plane-assit71.40 29941.72 30348.85 28573.31 32582.48 16948.90 240
Anonymous2023121169.28 15068.47 14571.73 17180.28 10947.18 25079.98 10282.37 9054.61 21567.24 16984.01 15439.43 22682.41 17055.45 18672.83 21285.62 113
LS3D64.71 23062.50 24371.34 18579.72 12555.71 11779.82 10674.72 23548.50 29056.62 31184.62 14033.59 28982.34 17129.65 37375.23 18175.97 300
PS-MVSNAJ70.51 11669.70 11972.93 14681.52 8755.79 11674.92 21079.00 15355.04 20869.88 12178.66 26047.05 14882.19 17261.61 14379.58 12080.83 242
Anonymous2024052969.91 12969.02 13272.56 15380.19 11447.65 24477.56 14780.99 12455.45 19669.88 12186.76 8539.24 23082.18 17354.04 19677.10 16087.85 31
xiu_mvs_v2_base70.52 11569.75 11772.84 14881.21 9655.63 12075.11 20478.92 15554.92 21069.96 12079.68 24547.00 15282.09 17461.60 14479.37 12380.81 243
sasdasda74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
canonicalmvs74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
v14868.24 17267.19 18071.40 18270.43 31247.77 24375.76 19277.03 19858.91 12467.36 16780.10 23748.60 12681.89 17760.01 15566.52 29484.53 149
CPTT-MVS72.78 7472.08 7974.87 8784.88 5761.41 2684.15 4377.86 18355.27 19867.51 16688.08 6541.93 20181.85 17869.04 7780.01 11581.35 231
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9378.56 16552.48 24264.27 23084.10 15227.45 34581.84 17963.45 12970.56 24083.69 179
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9278.51 16752.33 24364.33 22884.11 15128.28 33981.81 18063.48 12870.62 23883.67 180
FIs70.82 11171.43 8668.98 22978.33 16238.14 33176.96 16583.59 6561.02 8367.33 16886.73 8755.07 4581.64 18154.61 19479.22 12787.14 56
HyFIR lowres test65.67 21863.01 23773.67 12479.97 11955.65 11969.07 29275.52 21942.68 34863.53 23877.95 27040.43 21881.64 18146.01 26471.91 22583.73 178
K. test v360.47 27357.11 28870.56 20173.74 26248.22 23775.10 20662.55 33258.27 13853.62 34376.31 30027.81 34281.59 18347.42 25039.18 38881.88 221
IterMVS-LS69.22 15368.48 14371.43 18174.44 25449.40 22276.23 18077.55 18959.60 11265.85 19981.59 21051.28 9781.58 18459.87 15869.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24159.92 35076.39 20554.35 22158.67 29682.46 18829.44 33081.49 18542.12 30071.14 23377.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
c3_l68.33 16967.56 16070.62 20070.87 30746.21 25874.47 21978.80 15856.22 17866.19 19078.53 26551.88 8881.40 18662.08 13769.04 27184.25 156
ECVR-MVScopyleft67.72 18367.51 16468.35 23779.46 12936.29 35474.79 21366.93 30158.72 12767.19 17088.05 6636.10 26281.38 18752.07 21284.25 6987.39 48
lessismore_v069.91 21371.42 29847.80 24150.90 37850.39 35975.56 30927.43 34681.33 18845.91 26534.10 39480.59 245
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31046.21 25873.98 22578.68 16255.07 20666.05 19277.80 27652.16 8581.31 18961.53 14769.32 26583.67 180
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33045.98 26072.85 24478.41 17451.38 25465.65 20175.98 30551.17 9981.25 19060.82 14969.32 26583.29 191
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28848.06 23973.93 22972.51 25847.23 30954.74 33080.92 22221.49 37381.24 19148.57 24356.22 35779.53 263
alignmvs73.86 6473.99 5973.45 13578.20 16550.50 20478.57 12482.43 8959.40 11776.57 3286.71 8956.42 3881.23 19265.84 10681.79 9688.62 8
MVS_Test72.45 8072.46 7572.42 15974.88 24148.50 23476.28 17983.14 8159.40 11772.46 9184.68 13755.66 4281.12 19365.98 10579.66 11987.63 40
cl2267.47 18766.45 18770.54 20269.85 32346.49 25473.85 23277.35 19455.07 20665.51 20477.92 27247.64 13781.10 19461.58 14569.32 26584.01 164
GA-MVS65.53 22063.70 22771.02 19470.87 30748.10 23870.48 27874.40 23956.69 16264.70 22476.77 29133.66 28881.10 19455.42 18770.32 24583.87 170
MSDG61.81 26459.23 27269.55 22272.64 27552.63 16870.45 27975.81 21351.38 25453.70 34076.11 30129.52 32881.08 19637.70 32265.79 29974.93 314
baseline263.42 24361.26 25969.89 21572.55 27847.62 24571.54 26268.38 29250.11 26954.82 32975.55 31043.06 19080.96 19748.13 24767.16 28981.11 236
ambc65.13 28163.72 36437.07 34347.66 38478.78 15954.37 33671.42 33811.24 39180.94 19845.64 26853.85 36577.38 286
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17152.01 18279.48 11479.69 14055.75 18856.59 31280.98 22027.12 34880.94 19842.90 29671.58 22977.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250665.33 22464.61 21767.50 24479.46 12934.19 36674.43 22051.92 37358.72 12766.75 18088.05 6625.99 35680.92 20051.94 21484.25 6987.39 48
UGNet68.81 15767.39 16973.06 14478.33 16254.47 13779.77 10775.40 22160.45 9263.22 24084.40 14632.71 30180.91 20151.71 21880.56 10883.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
nrg03072.96 7273.01 6972.84 14875.41 23550.24 20680.02 10182.89 8558.36 13774.44 5586.73 8758.90 2480.83 20265.84 10674.46 18387.44 46
tpm262.07 26060.10 26867.99 24072.79 27343.86 28171.05 27366.85 30243.14 34562.77 24775.39 31238.32 23980.80 20341.69 30368.88 27379.32 265
无先验79.66 11174.30 24248.40 29280.78 20453.62 20079.03 269
FC-MVSNet-test69.80 13270.58 10467.46 24577.61 19234.73 36276.05 18583.19 7960.84 8565.88 19886.46 10054.52 5480.76 20552.52 20878.12 14486.91 60
OMC-MVS71.40 10170.60 10273.78 11676.60 21653.15 15879.74 10979.78 13958.37 13668.75 13886.45 10145.43 16880.60 20662.58 13377.73 14887.58 43
test111167.21 19067.14 18167.42 24679.24 13434.76 36173.89 23165.65 31058.71 12966.96 17587.95 6936.09 26380.53 20752.03 21383.79 7486.97 58
cl____67.18 19366.26 19869.94 21170.20 31545.74 26273.30 23776.83 20155.10 20165.27 20979.57 24747.39 14380.53 20759.41 16369.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31545.74 26273.29 23876.83 20155.10 20165.27 20979.58 24647.38 14480.53 20759.43 16269.22 26983.54 185
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 19957.60 15261.97 26176.85 29039.31 22780.49 21054.72 19170.28 24682.17 217
anonymousdsp67.00 19964.82 21673.57 13170.09 31856.13 10776.35 17777.35 19448.43 29164.99 22180.84 22633.01 29480.34 21164.66 11567.64 28584.23 157
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28577.31 15477.83 18456.45 17164.60 22682.70 17738.08 24380.33 21246.08 26372.31 22183.92 167
test_fmvsmconf0.01_n72.17 8671.50 8474.16 10867.96 33955.58 12378.06 13574.67 23654.19 22374.54 5488.23 6150.35 10880.24 21578.07 2177.46 15286.65 71
test_fmvsmconf0.1_n72.81 7372.33 7674.24 10769.89 32255.81 11578.22 13075.40 22154.17 22475.00 4488.03 6853.82 6280.23 21678.08 2078.34 14386.69 68
test_fmvsmconf_n73.01 7172.59 7374.27 10671.28 30255.88 11478.21 13175.56 21854.31 22274.86 4887.80 7254.72 5180.23 21678.07 2178.48 14086.70 67
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29076.11 18277.47 19056.62 16665.22 21582.17 19541.85 20280.18 21847.05 25772.72 21683.20 193
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29474.98 20977.15 19755.83 18565.04 21881.16 21539.91 22080.14 21947.18 25472.76 21382.90 202
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12477.47 19048.51 28955.71 31881.89 20233.71 28679.71 22041.66 30470.37 24377.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous20240521166.84 20265.99 20169.40 22380.19 11442.21 29771.11 27171.31 26758.80 12667.90 15386.39 10229.83 32579.65 22149.60 23578.78 13586.33 82
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31144.82 27175.33 19870.86 27145.04 32656.06 31676.00 30226.89 35179.65 22135.36 34167.29 28772.60 333
CostFormer64.04 23862.51 24268.61 23471.88 29045.77 26171.30 26670.60 27347.55 30364.31 22976.61 29541.63 20579.62 22349.74 23169.00 27280.42 247
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33577.57 14682.11 9462.03 7362.65 25182.48 18750.57 10579.46 22442.91 29564.01 31284.79 144
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17278.42 12773.30 25249.92 27350.96 35381.51 21123.06 36679.40 22531.63 36265.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131464.61 23263.21 23568.80 23171.87 29147.46 24773.95 22778.39 17642.88 34759.97 27976.60 29638.11 24279.39 22654.84 19072.32 22079.55 262
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28352.45 17470.80 27578.45 17153.84 22859.87 28181.10 21716.24 38079.32 22755.64 18571.76 22680.47 246
lupinMVS69.57 14068.28 15073.44 13678.76 14757.15 9476.57 17373.29 25346.19 31769.49 12682.18 19343.99 18379.23 22864.66 11579.37 12383.93 166
jason69.65 13768.39 14973.43 13778.27 16456.88 9877.12 16173.71 24946.53 31469.34 13083.22 17043.37 18779.18 22964.77 11479.20 12884.23 157
jason: jason.
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32672.65 24569.11 28857.07 15762.45 25781.03 21937.01 25879.17 23031.84 35873.25 20679.83 258
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20679.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20681.36 229
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 35976.43 17679.38 14862.55 6161.66 26683.83 15845.60 16279.15 23341.64 30660.88 33785.00 137
WR-MVS68.47 16768.47 14568.44 23680.20 11339.84 31573.75 23476.07 21064.68 2268.11 15183.63 16250.39 10779.14 23449.78 22969.66 26286.34 80
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34877.03 16480.42 13362.95 5062.51 25684.03 15346.69 15479.07 23544.22 27963.08 32285.51 116
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32472.35 25269.11 28856.98 15962.37 25980.96 22137.01 25879.00 23931.43 36573.05 21081.36 229
thres20062.20 25961.16 26165.34 27875.38 23639.99 31469.60 28769.29 28655.64 19261.87 26376.99 28737.07 25778.96 24031.28 36673.28 20577.06 291
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29574.18 22375.59 21760.37 9666.77 17986.06 11237.64 24578.93 24152.16 21173.49 20086.32 84
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23076.52 17580.04 13850.64 26565.24 21384.93 13439.15 23178.54 24236.77 32976.88 16385.14 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35376.94 16679.61 14362.36 6562.43 25883.66 16145.69 16078.37 24345.35 27663.26 32085.42 122
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35176.83 17179.52 14562.45 6362.54 25483.47 16846.32 15678.37 24345.47 27463.43 31985.45 119
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 15755.24 19967.79 16185.81 12336.54 26178.28 24562.04 13975.74 17583.19 194
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15254.77 21266.99 17486.01 11439.57 22578.21 24662.54 13473.33 20483.37 188
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14878.12 13376.16 20747.97 29852.41 34881.61 20827.87 34178.11 24740.07 31066.66 29277.00 293
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32774.66 21675.08 23358.90 12561.79 26482.63 18051.18 9878.07 24843.63 28855.87 35880.99 240
MGCFI-Net72.45 8073.34 6869.81 21677.77 18243.21 28875.84 19181.18 11959.59 11575.45 3886.64 9057.74 2877.94 24963.92 12281.90 9588.30 15
mvs_anonymous68.03 17567.51 16469.59 21972.08 28744.57 27671.99 25775.23 22551.67 24767.06 17382.57 18254.68 5277.94 24956.56 17475.71 17686.26 88
diffmvspermissive70.69 11370.43 10571.46 17869.45 32748.95 22872.93 24278.46 17057.27 15571.69 10083.97 15651.48 9577.92 25170.70 6977.95 14787.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND62.34 29971.36 30037.04 34469.20 29157.33 35854.73 33165.48 37330.37 31977.82 25234.82 34274.93 18272.17 342
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24440.53 35963.16 24378.65 26141.30 21077.80 25345.80 26674.09 18881.40 228
dcpmvs_274.55 5875.23 4872.48 15582.34 7753.34 15577.87 13881.46 10457.80 15075.49 3786.81 8462.22 1377.75 25471.09 6782.02 9386.34 80
D2MVS62.30 25760.29 26768.34 23866.46 35048.42 23565.70 31273.42 25147.71 30158.16 30275.02 31430.51 31777.71 25553.96 19871.68 22878.90 271
VPA-MVSNet69.02 15469.47 12467.69 24377.42 19841.00 30974.04 22479.68 14160.06 10469.26 13384.81 13651.06 10177.58 25654.44 19574.43 18584.48 151
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17872.05 25674.05 24546.41 31557.42 30874.36 31934.35 27977.57 25745.62 26973.67 19566.26 371
test_fmvsm_n_192071.73 9471.14 9473.50 13272.52 27956.53 10175.60 19376.16 20748.11 29577.22 2885.56 12553.10 7277.43 25874.86 4077.14 15886.55 74
CANet_DTU68.18 17367.71 15869.59 21974.83 24346.24 25778.66 12276.85 20059.60 11263.45 23982.09 20035.25 26977.41 25959.88 15778.76 13685.14 132
TAMVS66.78 20465.27 21271.33 18679.16 13853.67 14673.84 23369.59 28152.32 24465.28 20881.72 20644.49 17977.40 26042.32 29978.66 13882.92 200
test_fmvsmvis_n_192070.84 10970.38 10772.22 16271.16 30355.39 12775.86 18972.21 26149.03 28273.28 7286.17 10851.83 9077.29 26175.80 3278.05 14583.98 165
Baseline_NR-MVSNet67.05 19767.56 16065.50 27575.65 22937.70 33775.42 19774.65 23759.90 10768.14 15083.15 17349.12 12177.20 26252.23 21069.78 25881.60 223
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14153.13 16073.27 23971.07 26952.15 24564.72 22380.23 23543.56 18677.10 26345.48 27378.88 13283.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet69.68 13670.19 11168.16 23979.73 12441.63 30470.53 27777.38 19360.37 9670.69 10786.63 9251.08 10077.09 26453.61 20181.69 10185.75 108
pmmvs663.69 24162.82 24066.27 26170.63 30939.27 32273.13 24075.47 22052.69 24059.75 28582.30 19139.71 22477.03 26547.40 25164.35 31182.53 207
testing9164.46 23463.80 22566.47 25678.43 15740.06 31367.63 30069.59 28159.06 12263.18 24278.05 26834.05 28176.99 26648.30 24575.87 17382.37 212
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32371.22 26773.72 24855.22 20060.21 27580.09 23841.26 21376.98 26730.02 37168.09 28178.97 270
testing9964.05 23763.29 23466.34 25878.17 16939.76 31767.33 30568.00 29458.60 13163.03 24578.10 26732.57 30676.94 26848.22 24675.58 17782.34 213
fmvsm_l_conf0.5_n70.99 10670.82 9971.48 17771.45 29554.40 13877.18 16070.46 27448.67 28675.17 4086.86 8253.77 6376.86 26976.33 3077.51 15183.17 197
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 37961.42 34158.14 35258.71 12953.02 34779.55 24843.07 18976.80 27045.69 26777.96 14682.11 218
testing1162.81 25161.90 25065.54 27478.38 15840.76 31067.59 30266.78 30355.48 19460.13 27677.11 28531.67 31276.79 27145.53 27174.45 18479.06 267
fmvsm_s_conf0.1_n_a69.32 14968.44 14771.96 16370.91 30653.78 14578.12 13362.30 33649.35 27873.20 7486.55 9851.99 8776.79 27174.83 4168.68 27885.32 126
fmvsm_s_conf0.5_n_a69.54 14168.74 13871.93 16472.47 28153.82 14478.25 12862.26 33749.78 27473.12 7886.21 10652.66 7576.79 27175.02 3968.88 27385.18 131
fmvsm_l_conf0.5_n_a70.50 11770.27 10971.18 18971.30 30154.09 14076.89 16869.87 27747.90 29974.37 5786.49 9953.07 7376.69 27475.41 3577.11 15982.76 204
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30669.96 28474.43 23849.29 27961.66 26680.92 22247.43 14276.68 27544.91 27871.69 22781.94 219
VPNet67.52 18668.11 15265.74 27279.18 13636.80 34672.17 25572.83 25662.04 7267.79 16185.83 12148.88 12376.60 27651.30 22072.97 21183.81 172
fmvsm_s_conf0.5_n69.58 13968.84 13571.79 16972.31 28552.90 16277.90 13762.43 33549.97 27272.85 8485.90 11852.21 8376.49 27775.75 3370.26 24785.97 95
fmvsm_s_conf0.1_n69.41 14768.60 14171.83 16771.07 30452.88 16377.85 14062.44 33449.58 27672.97 8186.22 10551.68 9376.48 27875.53 3470.10 25086.14 90
pm-mvs165.24 22564.97 21566.04 26772.38 28239.40 32172.62 24775.63 21655.53 19362.35 26083.18 17247.45 14176.47 27949.06 23966.54 29382.24 214
gg-mvs-nofinetune57.86 29156.43 29762.18 30072.62 27635.35 35766.57 30656.33 36250.65 26457.64 30557.10 38530.65 31676.36 28037.38 32478.88 13274.82 316
MVS_111021_LR69.50 14368.78 13771.65 17478.38 15859.33 5674.82 21270.11 27658.08 14067.83 15984.68 13741.96 20076.34 28165.62 10977.54 14979.30 266
tpmvs58.47 28556.95 29163.03 29670.20 31541.21 30567.90 29967.23 29949.62 27554.73 33170.84 34234.14 28076.24 28236.64 33361.29 33571.64 346
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30170.41 28076.14 20953.99 22665.98 19383.51 16649.48 11376.24 28248.60 24273.46 20284.14 160
testing22262.29 25861.31 25765.25 28077.87 17738.53 32868.34 29566.31 30756.37 17363.15 24477.58 28228.47 33776.18 28437.04 32776.65 16781.05 239
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38071.16 26963.64 32556.32 17459.80 28384.99 13344.51 17775.46 28539.12 31680.62 10482.92 200
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11186.64 9041.29 21175.23 28649.72 23281.75 9975.93 301
USDC56.35 30354.24 31662.69 29764.74 35840.31 31165.05 32373.83 24743.93 33847.58 36577.71 28015.36 38275.05 28738.19 32161.81 33272.70 332
pmmvs461.48 26859.39 27167.76 24271.57 29453.86 14371.42 26365.34 31244.20 33459.46 28777.92 27235.90 26474.71 28843.87 28664.87 30574.71 318
tpm cat159.25 28256.95 29166.15 26472.19 28646.96 25168.09 29765.76 30940.03 36357.81 30470.56 34438.32 23974.51 28938.26 32061.50 33477.00 293
baseline163.81 24063.87 22463.62 28976.29 22136.36 34971.78 26167.29 29856.05 18164.23 23282.95 17447.11 14774.41 29047.30 25361.85 33180.10 254
patchmatchnet-post64.03 37534.50 27674.27 291
SCA60.49 27258.38 28166.80 25174.14 26048.06 23963.35 33163.23 32849.13 28159.33 29172.10 33237.45 24774.27 29144.17 28062.57 32578.05 277
SDMVSNet68.03 17568.10 15367.84 24177.13 20448.72 23265.32 32079.10 15158.02 14365.08 21682.55 18347.83 13373.40 29363.92 12273.92 19181.41 226
1112_ss64.00 23963.36 23265.93 26979.28 13242.58 29371.35 26472.36 26046.41 31560.55 27477.89 27446.27 15873.28 29446.18 26269.97 25381.92 220
TinyColmap54.14 31651.72 32761.40 30666.84 34641.97 29866.52 30768.51 29144.81 32742.69 38175.77 30711.66 38872.94 29531.96 35656.77 35569.27 367
pmmvs-eth3d58.81 28456.31 29866.30 26067.61 34152.42 17572.30 25364.76 31643.55 34054.94 32874.19 32128.95 33272.60 29643.31 28957.21 35273.88 326
IterMVS62.79 25261.27 25867.35 24869.37 32852.04 18171.17 26868.24 29352.63 24159.82 28276.91 28937.32 25072.36 29752.80 20763.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test58.06 29055.38 30566.10 26669.51 32548.99 22768.01 29866.13 30844.50 33154.05 33870.74 34332.09 31072.34 29836.68 33256.71 35676.99 295
Patchmatch-RL test58.16 28855.49 30466.15 26467.92 34048.89 22960.66 34851.07 37747.86 30059.36 28862.71 37934.02 28372.27 29956.41 17559.40 34477.30 287
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33236.93 34567.60 30172.80 25755.67 19059.95 28076.63 29345.01 17472.22 30039.74 31462.09 33080.74 244
testdata272.18 30146.95 258
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35864.94 32559.35 34754.06 22561.08 27176.67 29229.54 32771.87 30232.16 35474.07 18978.01 281
testing356.54 29955.92 30158.41 32177.52 19527.93 38869.72 28656.36 36154.75 21358.63 29877.80 27620.88 37471.75 30325.31 38662.25 32875.53 306
CMPMVSbinary42.80 2157.81 29255.97 30063.32 29160.98 37747.38 24864.66 32669.50 28332.06 37546.83 36977.80 27629.50 32971.36 30448.68 24173.75 19471.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14039.53 32068.17 29670.17 27543.25 34359.03 29379.90 23944.08 18171.24 30543.79 28768.42 27981.25 232
CNLPA65.43 22164.02 22169.68 21778.73 14958.07 7877.82 14270.71 27251.49 25261.57 26883.58 16538.23 24170.82 30643.90 28570.10 25080.16 252
CR-MVSNet59.91 27657.90 28665.96 26869.96 32052.07 17965.31 32163.15 32942.48 34959.36 28874.84 31535.83 26570.75 30745.50 27264.65 30775.06 310
MDTV_nov1_ep1357.00 29072.73 27438.26 33065.02 32464.73 31744.74 32855.46 32072.48 32832.61 30570.47 30837.47 32367.75 284
KD-MVS_2432*160053.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
miper_refine_blended53.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 36969.04 29363.82 32348.56 28764.27 23077.64 28127.20 34770.40 31133.56 34976.24 16979.83 258
KD-MVS_self_test55.22 31253.89 31959.21 31557.80 38527.47 39057.75 36074.32 24047.38 30550.90 35470.00 35028.45 33870.30 31240.44 30957.92 34979.87 257
JIA-IIPM51.56 33047.68 34463.21 29364.61 35950.73 19847.71 38358.77 35042.90 34648.46 36451.72 38924.97 36170.24 31336.06 33853.89 36468.64 369
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29662.67 33472.11 26258.02 14365.08 21682.55 18341.22 21469.88 31447.32 25273.92 19181.41 226
test_post168.67 2943.64 40632.39 30869.49 31544.17 280
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25369.42 28962.18 33847.55 30358.88 29471.96 33434.49 27769.16 31642.99 29463.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet55.61 30954.41 31359.19 31665.41 35633.42 37172.44 25171.91 26428.81 37851.27 35173.87 32224.76 36269.08 31743.04 29358.20 34875.06 310
Patchmtry57.16 29556.47 29659.23 31469.17 33134.58 36362.98 33263.15 32944.53 33056.83 31074.84 31535.83 26568.71 31840.03 31160.91 33674.39 321
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32575.20 20268.74 29031.15 37658.24 30176.51 29732.39 30868.58 31949.77 23065.84 29875.81 302
our_test_356.49 30054.42 31262.68 29869.51 32545.48 26766.08 31061.49 34144.11 33750.73 35769.60 35433.05 29368.15 32038.38 31956.86 35374.40 320
Syy-MVS56.00 30656.23 29955.32 33874.69 24726.44 39465.52 31557.49 35650.97 26156.52 31372.18 33039.89 22168.09 32124.20 38764.59 30971.44 350
myMVS_eth3d54.86 31554.61 31055.61 33774.69 24727.31 39165.52 31557.49 35650.97 26156.52 31372.18 33021.87 37268.09 32127.70 37964.59 30971.44 350
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34746.25 25656.29 36675.70 21550.68 26361.27 26975.48 31140.21 21968.03 32356.31 17665.25 30282.18 215
MDA-MVSNet-bldmvs53.87 31950.81 33163.05 29566.25 35148.58 23356.93 36463.82 32348.09 29641.22 38270.48 34730.34 32068.00 32434.24 34445.92 38072.57 334
AllTest57.08 29654.65 30964.39 28671.44 29649.03 22469.92 28567.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
TestCases64.39 28671.44 29649.03 22467.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
pmmvs556.47 30155.68 30358.86 31861.41 37436.71 34766.37 30862.75 33140.38 36053.70 34076.62 29434.56 27567.05 32740.02 31265.27 30172.83 331
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31675.85 19065.62 31155.09 20354.56 33379.36 25237.59 24667.02 32839.80 31376.95 16178.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL56.25 30454.55 31161.32 30877.06 20756.07 10965.57 31454.10 37044.13 33653.49 34671.27 34125.20 36066.78 32936.52 33563.66 31561.12 375
test_post3.55 40733.90 28566.52 330
EGC-MVSNET42.47 35038.48 35854.46 34474.33 25648.73 23170.33 28151.10 3760.03 4080.18 40967.78 36213.28 38566.49 33118.91 39350.36 37348.15 390
TDRefinement53.44 32350.72 33261.60 30364.31 36146.96 25170.89 27465.27 31441.78 35044.61 37677.98 26911.52 39066.36 33228.57 37751.59 36971.49 349
testdata64.66 28381.52 8752.93 16165.29 31346.09 31873.88 6487.46 7538.08 24366.26 33353.31 20478.48 14074.78 317
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 28950.80 19771.15 27069.63 28045.71 32360.61 27377.93 27137.45 24765.99 33455.67 18363.50 31879.42 264
PM-MVS52.33 32750.19 33558.75 31962.10 37145.14 27065.75 31140.38 39643.60 33953.52 34472.65 3279.16 39665.87 33550.41 22654.18 36365.24 373
旧先验276.08 18345.32 32576.55 3365.56 33658.75 164
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35669.34 29064.28 32046.88 31261.76 26575.79 30640.61 21765.20 33732.16 35471.21 23277.70 282
PVSNet50.76 1958.40 28657.39 28761.42 30575.53 23344.04 28061.43 34063.45 32647.04 31156.91 30973.61 32427.00 35064.76 33839.12 31672.40 21875.47 307
MVS-HIRNet45.52 34544.48 34848.65 36368.49 33634.05 36759.41 35344.50 39127.03 38337.96 39050.47 39326.16 35564.10 33926.74 38359.52 34347.82 392
FMVSNet555.86 30754.93 30758.66 32071.05 30536.35 35064.18 32962.48 33346.76 31350.66 35874.73 31725.80 35764.04 34033.11 35065.57 30075.59 305
MIMVSNet155.17 31354.31 31557.77 32870.03 31932.01 37765.68 31364.81 31549.19 28046.75 37076.00 30225.53 35964.04 34028.65 37662.13 32977.26 289
patch_mono-269.85 13071.09 9566.16 26379.11 13954.80 13571.97 25874.31 24153.50 23270.90 10684.17 14957.63 3163.31 34266.17 10082.02 9380.38 249
ADS-MVSNet251.33 33248.76 33959.07 31766.02 35444.60 27550.90 37759.76 34636.90 36750.74 35566.18 37126.38 35263.11 34327.17 38054.76 36169.50 365
Gipumacopyleft34.77 36131.91 36543.33 37162.05 37237.87 33220.39 40067.03 30023.23 38818.41 40125.84 4014.24 40262.73 34414.71 39651.32 37029.38 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF62.09 30166.16 35244.55 27764.32 31947.36 30655.31 32380.34 23219.27 37562.68 34536.29 33762.39 32779.04 268
ANet_high41.38 35337.47 36053.11 35239.73 40424.45 39956.94 36369.69 27847.65 30226.04 39652.32 38812.44 38662.38 34621.80 39010.61 40572.49 335
MIMVSNet57.35 29357.07 28958.22 32374.21 25937.18 34062.46 33560.88 34448.88 28455.29 32475.99 30431.68 31162.04 34731.87 35772.35 21975.43 308
LCM-MVSNet40.30 35535.88 36153.57 34942.24 39929.15 38445.21 38960.53 34522.23 39228.02 39450.98 3923.72 40561.78 34831.22 36738.76 38969.78 364
PatchT53.17 32553.44 32252.33 35668.29 33825.34 39858.21 35654.41 36844.46 33254.56 33369.05 35733.32 29160.94 34936.93 32861.76 33370.73 357
WTY-MVS59.75 27860.39 26657.85 32772.32 28437.83 33461.05 34664.18 32145.95 32261.91 26279.11 25647.01 15160.88 35042.50 29869.49 26474.83 315
XXY-MVS60.68 27161.67 25257.70 32970.43 31238.45 32964.19 32866.47 30448.05 29763.22 24080.86 22449.28 11660.47 35145.25 27767.28 28874.19 323
tpmrst58.24 28758.70 27856.84 33166.97 34434.32 36469.57 28861.14 34347.17 31058.58 29971.60 33741.28 21260.41 35249.20 23762.84 32375.78 303
dmvs_testset50.16 33651.90 32644.94 36966.49 34911.78 40761.01 34751.50 37451.17 25950.30 36167.44 36339.28 22860.29 35322.38 38957.49 35162.76 374
PMVScopyleft28.69 2236.22 36033.29 36445.02 36836.82 40635.98 35554.68 37048.74 38126.31 38421.02 39951.61 3902.88 40860.10 3549.99 40547.58 37838.99 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS53.96 31753.26 32356.04 33462.60 36950.92 19461.17 34456.09 36432.81 37453.51 34566.84 36834.04 28259.93 35544.14 28268.18 28057.27 383
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36243.14 28967.49 30366.36 30640.22 36165.89 19771.95 33531.04 31359.75 35659.94 15664.90 30471.85 345
UnsupCasMVSNet_bld50.07 33748.87 33853.66 34860.97 37833.67 37057.62 36164.56 31839.47 36547.38 36664.02 37727.47 34459.32 35734.69 34343.68 38267.98 370
Anonymous2024052155.30 31054.41 31357.96 32660.92 37941.73 30171.09 27271.06 27041.18 35548.65 36373.31 32516.93 37859.25 35842.54 29764.01 31272.90 330
WB-MVS43.26 34843.41 34942.83 37363.32 36510.32 40958.17 35745.20 38945.42 32440.44 38567.26 36634.01 28458.98 35911.96 40124.88 39659.20 377
dmvs_re56.77 29856.83 29356.61 33269.23 32941.02 30658.37 35564.18 32150.59 26657.45 30771.42 33835.54 26758.94 36037.23 32567.45 28669.87 363
PVSNet_043.31 2047.46 34445.64 34752.92 35367.60 34244.65 27454.06 37154.64 36641.59 35346.15 37258.75 38230.99 31458.66 36132.18 35324.81 39755.46 385
test20.0353.87 31954.02 31853.41 35161.47 37328.11 38761.30 34259.21 34851.34 25652.09 34977.43 28333.29 29258.55 36229.76 37260.27 34273.58 327
SSC-MVS41.96 35241.99 35241.90 37462.46 3709.28 41157.41 36244.32 39243.38 34138.30 38966.45 36932.67 30258.42 36310.98 40221.91 39957.99 381
UnsupCasMVSNet_eth53.16 32652.47 32455.23 33959.45 38133.39 37259.43 35269.13 28745.98 31950.35 36072.32 32929.30 33158.26 36442.02 30244.30 38174.05 324
pmmvs344.92 34641.95 35353.86 34652.58 39043.55 28462.11 33846.90 38826.05 38540.63 38360.19 38111.08 39357.91 36531.83 36146.15 37960.11 376
test-LLR58.15 28958.13 28558.22 32368.57 33444.80 27265.46 31757.92 35350.08 27055.44 32169.82 35132.62 30357.44 36649.66 23373.62 19672.41 338
test-mter56.42 30255.82 30258.22 32368.57 33444.80 27265.46 31757.92 35339.94 36455.44 32169.82 35121.92 36957.44 36649.66 23373.62 19672.41 338
new-patchmatchnet47.56 34347.73 34347.06 36458.81 3839.37 41048.78 38159.21 34843.28 34244.22 37768.66 35825.67 35857.20 36831.57 36449.35 37674.62 319
EPMVS53.96 31753.69 32054.79 34266.12 35331.96 37862.34 33749.05 38044.42 33355.54 31971.33 34030.22 32156.70 36941.65 30562.54 32675.71 304
test_cas_vis1_n_192056.91 29756.71 29457.51 33059.13 38245.40 26863.58 33061.29 34236.24 37067.14 17271.85 33629.89 32456.69 37057.65 16863.58 31770.46 358
dp51.89 32951.60 32852.77 35468.44 33732.45 37662.36 33654.57 36744.16 33549.31 36267.91 35928.87 33456.61 37133.89 34554.89 36069.24 368
Anonymous2023120655.10 31455.30 30654.48 34369.81 32433.94 36862.91 33362.13 33941.08 35655.18 32575.65 30832.75 30056.59 37230.32 37067.86 28272.91 329
sss56.17 30556.57 29554.96 34066.93 34536.32 35257.94 35861.69 34041.67 35258.64 29775.32 31338.72 23556.25 37342.04 30166.19 29672.31 341
RPSCF55.80 30854.22 31760.53 31065.13 35742.91 29264.30 32757.62 35536.84 36958.05 30382.28 19228.01 34056.24 37437.14 32658.61 34782.44 211
test0.0.03 153.32 32453.59 32152.50 35562.81 36829.45 38359.51 35154.11 36950.08 27054.40 33574.31 32032.62 30355.92 37530.50 36963.95 31472.15 343
testgi51.90 32852.37 32550.51 36160.39 38023.55 40158.42 35458.15 35149.03 28251.83 35079.21 25522.39 36755.59 37629.24 37562.64 32472.40 340
TESTMET0.1,155.28 31154.90 30856.42 33366.56 34843.67 28365.46 31756.27 36339.18 36653.83 33967.44 36324.21 36455.46 37748.04 24873.11 20970.13 361
YYNet150.73 33448.96 33656.03 33561.10 37641.78 30051.94 37556.44 36040.94 35844.84 37467.80 36130.08 32255.08 37836.77 32950.71 37171.22 352
MDA-MVSNet_test_wron50.71 33548.95 33756.00 33661.17 37541.84 29951.90 37656.45 35940.96 35744.79 37567.84 36030.04 32355.07 37936.71 33150.69 37271.11 355
test_fmvs1_n51.37 33150.35 33454.42 34552.85 38837.71 33661.16 34551.93 37228.15 38063.81 23669.73 35313.72 38353.95 38051.16 22160.65 34071.59 347
test_fmvs151.32 33350.48 33353.81 34753.57 38737.51 33860.63 34951.16 37528.02 38263.62 23769.23 35616.41 37953.93 38151.01 22260.70 33969.99 362
tpm57.34 29458.16 28354.86 34171.80 29234.77 36067.47 30456.04 36548.20 29460.10 27776.92 28837.17 25353.41 38240.76 30865.01 30376.40 299
APD_test137.39 35934.94 36244.72 37048.88 39333.19 37352.95 37444.00 39319.49 39427.28 39558.59 3833.18 40752.84 38318.92 39241.17 38648.14 391
ADS-MVSNet48.48 34147.77 34250.63 36066.02 35429.92 38250.90 37750.87 37936.90 36750.74 35566.18 37126.38 35252.47 38427.17 38054.76 36169.50 365
test_vis1_n49.89 33848.69 34053.50 35053.97 38637.38 33961.53 33947.33 38628.54 37959.62 28667.10 36713.52 38452.27 38549.07 23857.52 35070.84 356
test_fmvs248.69 34047.49 34552.29 35748.63 39433.06 37457.76 35948.05 38425.71 38659.76 28469.60 35411.57 38952.23 38649.45 23656.86 35371.58 348
FPMVS42.18 35141.11 35445.39 36658.03 38441.01 30849.50 37953.81 37130.07 37733.71 39164.03 37511.69 38752.08 38714.01 39755.11 35943.09 394
test_fmvs344.30 34742.55 35049.55 36242.83 39827.15 39353.03 37344.93 39022.03 39353.69 34264.94 3744.21 40349.63 38847.47 24949.82 37471.88 344
CHOSEN 280x42047.83 34246.36 34652.24 35867.37 34349.78 21538.91 39543.11 39435.00 37243.27 38063.30 37828.95 33249.19 38936.53 33460.80 33857.76 382
testf131.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
APD_test231.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
Patchmatch-test49.08 33948.28 34151.50 35964.40 36030.85 38145.68 38748.46 38335.60 37146.10 37372.10 33234.47 27846.37 39227.08 38260.65 34077.27 288
DSMNet-mixed39.30 35838.72 35741.03 37551.22 39119.66 40445.53 38831.35 40315.83 40039.80 38767.42 36522.19 36845.13 39322.43 38852.69 36758.31 380
test_vis1_rt41.35 35439.45 35647.03 36546.65 39737.86 33347.76 38238.65 39723.10 38944.21 37851.22 39111.20 39244.08 39439.27 31553.02 36659.14 378
LF4IMVS42.95 34942.26 35145.04 36748.30 39532.50 37554.80 36948.49 38228.03 38140.51 38470.16 3489.24 39543.89 39531.63 36249.18 37758.72 379
N_pmnet39.35 35740.28 35536.54 38063.76 3621.62 41549.37 3800.76 41434.62 37343.61 37966.38 37026.25 35442.57 39626.02 38551.77 36865.44 372
E-PMN23.77 36922.73 37326.90 38542.02 40020.67 40342.66 39235.70 40017.43 39610.28 40625.05 4026.42 39842.39 39710.28 40414.71 40217.63 401
EMVS22.97 37021.84 37426.36 38640.20 40319.53 40541.95 39334.64 40117.09 3979.73 40722.83 4037.29 39742.22 3989.18 40613.66 40317.32 402
mvsany_test139.38 35638.16 35943.02 37249.05 39234.28 36544.16 39125.94 40722.74 39146.57 37162.21 38023.85 36541.16 39933.01 35135.91 39153.63 386
PMMVS227.40 36825.91 37131.87 38439.46 4056.57 41231.17 39828.52 40523.96 38720.45 40048.94 3964.20 40437.94 40016.51 39419.97 40051.09 387
test_vis3_rt32.09 36430.20 36837.76 37935.36 40827.48 38940.60 39428.29 40616.69 39832.52 39240.53 3971.96 40937.40 40133.64 34842.21 38548.39 389
mvsany_test332.62 36330.57 36738.77 37836.16 40724.20 40038.10 39620.63 40919.14 39540.36 38657.43 3845.06 40036.63 40229.59 37428.66 39555.49 384
new_pmnet34.13 36234.29 36333.64 38252.63 38918.23 40644.43 39033.90 40222.81 39030.89 39353.18 38710.48 39435.72 40320.77 39139.51 38746.98 393
test_f31.86 36531.05 36634.28 38132.33 41021.86 40232.34 39730.46 40416.02 39939.78 38855.45 3864.80 40132.36 40430.61 36837.66 39048.64 388
MVEpermissive17.77 2321.41 37117.77 37632.34 38334.34 40925.44 39716.11 40124.11 40811.19 40313.22 40331.92 3991.58 41030.95 40510.47 40317.03 40140.62 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 37218.10 37524.41 38713.68 4123.11 41412.06 40342.37 3952.00 40611.97 40436.38 3985.77 39929.35 40615.06 39523.65 39840.76 397
wuyk23d13.32 37412.52 37715.71 38847.54 39626.27 39531.06 3991.98 4134.93 4055.18 4081.94 4080.45 41318.54 4076.81 40812.83 4042.33 405
DeepMVS_CXcopyleft12.03 38917.97 41110.91 40810.60 4127.46 40411.07 40528.36 4003.28 40611.29 4088.01 4079.74 40713.89 403
tmp_tt9.43 37511.14 3784.30 3902.38 4134.40 41313.62 40216.08 4110.39 40715.89 40213.06 40415.80 3815.54 40912.63 40010.46 4062.95 404
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k17.50 37323.34 3720.00 3930.00 4160.00 4170.00 40478.63 1630.00 4110.00 41282.18 19349.25 1170.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.92 3795.23 3820.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 41147.05 1480.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
testmvs4.52 3786.03 3810.01 3920.01 4140.00 41753.86 3720.00 4150.01 4090.04 4100.27 4090.00 4150.00 4100.04 4090.00 4080.03 407
test1234.73 3776.30 3800.02 3910.01 4140.01 41656.36 3650.00 4150.01 4090.04 4100.21 4100.01 4140.00 4100.03 4100.00 4080.04 406
ab-mvs-re6.49 3768.65 3790.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 41277.89 2740.00 4150.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
WAC-MVS27.31 39127.77 378
FOURS186.12 3660.82 3788.18 183.61 6460.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 416
eth-test0.00 416
RE-MVS-def73.71 6483.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3443.06 19068.20 7981.76 9784.03 162
IU-MVS87.77 459.15 6085.53 2553.93 22784.64 379.07 1190.87 588.37 14
save fliter86.17 3361.30 2883.98 4779.66 14259.00 123
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27478.05 277
sam_mvs33.43 290
MTGPAbinary80.97 125
MTMP86.03 1917.08 410
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
新几何276.12 181
旧先验183.04 7053.15 15867.52 29587.85 7144.08 18180.76 10378.03 280
原ACMM279.02 117
test22283.14 6858.68 7372.57 24963.45 32641.78 35067.56 16586.12 10937.13 25578.73 13774.98 313
segment_acmp54.23 56
testdata172.65 24560.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 172
plane_prior486.10 110
plane_prior356.09 10863.92 3669.27 131
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 109
n20.00 415
nn0.00 415
door-mid47.19 387
test1183.47 68
door47.60 385
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 155
ACMP_Plane80.66 10382.31 7162.10 6867.85 155
BP-MVS67.04 95
HQP3-MVS83.90 5480.35 110
HQP2-MVS45.46 166
NP-MVS80.98 10056.05 11085.54 128
MDTV_nov1_ep13_2view25.89 39661.22 34340.10 36251.10 35232.97 29538.49 31878.61 272
ACMMP++_ref74.07 189
ACMMP++72.16 223
Test By Simon48.33 128