This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
IU-MVS87.77 459.15 6085.53 2553.93 22084.64 379.07 1190.87 588.37 13
PC_three_145255.09 19784.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 780.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
SD-MVS77.70 2577.62 2577.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1878.28 1978.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS78.82 1279.22 1177.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
APD-MVScopyleft78.02 2278.04 2277.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft79.88 880.14 879.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
9.1478.75 1483.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
ZD-MVS86.64 2160.38 4382.70 8657.95 14278.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
ACMMP_NAP78.77 1478.78 1378.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
SteuartSystems-ACMMP79.48 1079.31 1079.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS79.84 979.97 979.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
test_fmvsm_n_192071.73 9171.14 9173.50 13072.52 26956.53 10175.60 19176.16 20448.11 28777.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
canonicalmvs74.67 5374.98 4973.71 12178.94 14050.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
MM79.99 260.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
alignmvs73.86 6273.99 5773.45 13378.20 16050.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
旧先验276.08 18245.32 31676.55 3265.56 32858.75 162
MP-MVS-pluss78.35 1978.46 1778.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7176.46 21051.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA76.90 3376.42 3478.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
dcpmvs_274.55 5675.23 4772.48 15382.34 7753.34 15577.87 13881.46 10357.80 14675.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
CSCG76.92 3276.75 3077.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
fmvsm_l_conf0.5_n70.99 10270.82 9671.48 17571.45 28554.40 13877.18 15970.46 27148.67 27975.17 3886.86 8253.77 6176.86 26476.33 3077.51 14883.17 194
SR-MVS76.13 4175.70 4277.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
ZNCC-MVS78.82 1278.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
test_fmvsmconf0.1_n72.81 7172.33 7374.24 10669.89 31255.81 11578.22 12975.40 21754.17 21875.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
TEST985.58 4361.59 2481.62 8281.26 11555.65 18674.93 4388.81 5653.70 6384.68 118
train_agg76.27 3876.15 3676.64 5585.58 4361.59 2481.62 8281.26 11555.86 17774.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
MCST-MVS77.48 2777.45 2677.54 4586.67 2058.36 7683.22 5586.93 556.91 15774.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
test_fmvsmconf_n73.01 6972.59 7074.27 10571.28 29255.88 11478.21 13075.56 21454.31 21674.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
h-mvs3372.71 7471.49 8276.40 5881.99 8159.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23083.86 168
hse-mvs271.04 10069.86 11274.60 9579.58 12357.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28283.77 173
test_885.40 4660.96 3481.54 8581.18 11855.86 17774.81 4788.80 5853.70 6384.45 122
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
test_fmvsmconf0.01_n72.17 8371.50 8174.16 10767.96 32955.58 12378.06 13574.67 23254.19 21774.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
nrg03072.96 7073.01 6672.84 14675.41 22550.24 20580.02 10082.89 8458.36 13374.44 5386.73 8758.90 2380.83 20065.84 10374.46 17687.44 42
casdiffmvspermissive74.80 5074.89 5074.53 9875.59 22250.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a70.50 11270.27 10671.18 18771.30 29154.09 14076.89 16769.87 27447.90 29174.37 5586.49 9753.07 7176.69 26875.41 3577.11 15682.76 201
TSAR-MVS + GP.74.90 4974.15 5677.17 4982.00 8058.77 7281.80 7978.57 16258.58 12874.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
GST-MVS78.14 2177.85 2378.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
MVS_030478.73 1578.75 1478.66 3080.82 10057.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
CDPH-MVS76.31 3775.67 4378.22 3785.35 4859.14 6281.31 8784.02 4856.32 16974.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
baseline74.61 5474.70 5174.34 10275.70 21849.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
HFP-MVS78.01 2377.65 2479.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
testdata64.66 27781.52 8652.93 16265.29 30646.09 30973.88 6287.46 7538.08 24066.26 32553.31 20278.48 13674.78 308
DeepC-MVS69.38 278.56 1778.14 2179.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize74.96 4874.39 5476.67 5482.20 7858.24 7783.67 5183.29 7558.41 13173.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
MP-MVScopyleft78.35 1978.26 2078.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR77.71 2477.23 2779.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
PHI-MVS75.87 4375.36 4477.41 4680.62 10655.91 11384.28 3985.78 2056.08 17573.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
CS-MVS76.25 3975.98 3877.06 5080.15 11555.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
region2R77.67 2677.18 2879.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
test_fmvsmvis_n_192070.84 10470.38 10472.22 16071.16 29355.39 12775.86 18872.21 25849.03 27573.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
VDD-MVS72.50 7672.09 7573.75 11981.58 8549.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
fmvsm_s_conf0.1_n_a69.32 14568.44 14271.96 16170.91 29653.78 14578.12 13362.30 32749.35 27173.20 7286.55 9651.99 8576.79 26674.83 4168.68 26985.32 123
DELS-MVS74.76 5174.46 5375.65 7277.84 17252.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post74.57 5573.90 5876.58 5683.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6283.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
fmvsm_s_conf0.5_n_a69.54 13768.74 13371.93 16272.47 27153.82 14478.25 12762.26 32849.78 26773.12 7686.21 10452.66 7376.79 26675.02 3968.88 26485.18 128
HPM-MVScopyleft77.28 2876.85 2978.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n69.41 14368.60 13671.83 16571.07 29452.88 16577.85 14062.44 32549.58 26972.97 7986.22 10351.68 9176.48 27275.53 3470.10 24186.14 86
VDDNet71.81 8871.33 8773.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
fmvsm_s_conf0.5_n69.58 13568.84 13071.79 16772.31 27552.90 16477.90 13762.43 32649.97 26572.85 8285.90 11652.21 8176.49 27175.75 3370.26 23885.97 91
LFMVS71.78 8971.59 7972.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
EC-MVSNet75.84 4475.87 4175.74 6978.86 14152.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
CP-MVS77.12 3176.68 3178.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
ETV-MVS74.46 5773.84 6076.33 6079.27 13155.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
UA-Net73.13 6772.93 6773.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
OPM-MVS74.73 5274.25 5576.19 6180.81 10159.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPM-MVS75.47 4775.00 4876.88 5181.38 9159.16 5979.94 10285.71 2256.59 16572.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
MVS_Test72.45 7872.46 7272.42 15774.88 23048.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
PGM-MVS76.77 3476.06 3778.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
XVS77.17 3076.56 3379.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11867.28 17079.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 39647.95 12988.01 3871.55 6586.74 5286.37 74
Effi-MVS+73.31 6672.54 7175.62 7377.87 17153.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
mPP-MVS76.54 3575.93 3978.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
diffmvspermissive70.69 10870.43 10271.46 17669.45 31748.95 22772.93 24078.46 16857.27 15171.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set72.42 7971.59 7974.91 8478.47 15254.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 17985.83 98
MSLP-MVS++73.77 6373.47 6374.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 234
CS-MVS-test75.62 4675.31 4676.56 5780.63 10555.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
EI-MVSNet-UG-set71.92 8771.06 9374.52 9977.98 16953.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 18985.32 123
MG-MVS73.96 6173.89 5974.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
patch_mono-269.85 12571.09 9266.16 25979.11 13754.80 13571.97 25674.31 23753.50 22570.90 10284.17 14757.63 2963.31 33366.17 9882.02 9180.38 244
VNet69.68 13270.19 10868.16 23779.73 12141.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
MVS_111021_HR74.02 6073.46 6475.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
HPM-MVS_fast74.30 5973.46 6476.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
CLD-MVS73.33 6572.68 6975.29 8078.82 14353.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
新几何170.76 19585.66 4161.13 3066.43 29944.68 32070.29 10786.64 9041.29 20975.23 27949.72 23081.75 9675.93 292
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 24570.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 268
CANet76.46 3675.93 3978.06 3981.29 9257.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
xiu_mvs_v1_base_debu68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base_debi68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
PS-MVSNAJss72.24 8171.21 8975.31 7878.50 15055.93 11281.63 8182.12 9256.24 17270.02 11385.68 12247.05 14684.34 12465.27 10974.41 17885.67 106
test_yl69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
xiu_mvs_v2_base70.52 11069.75 11372.84 14681.21 9555.63 12075.11 20278.92 15354.92 20469.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 238
Anonymous2024052969.91 12469.02 12772.56 15180.19 11347.65 24377.56 14780.99 12255.45 19069.88 11786.76 8539.24 22782.18 17254.04 19477.10 15787.85 27
PS-MVSNAJ70.51 11169.70 11572.93 14481.52 8655.79 11674.92 20879.00 15155.04 20269.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 237
ACMMPcopyleft76.02 4275.33 4578.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS61.88 870.95 10369.49 11975.35 7777.63 17855.71 11776.04 18581.81 9750.30 26169.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 11269.45 12173.66 12372.62 26650.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 23986.09 88
MVSFormer71.50 9570.38 10474.88 8578.76 14457.15 9482.79 6178.48 16651.26 24969.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
lupinMVS69.57 13668.28 14573.44 13478.76 14457.15 9476.57 17273.29 25046.19 30869.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
V4268.65 15767.35 16872.56 15168.93 32350.18 20772.90 24179.47 14456.92 15669.45 12480.26 23246.29 15582.99 14864.07 11667.82 27484.53 146
v114470.42 11469.31 12273.76 11773.22 25450.64 19977.83 14181.43 10458.58 12869.40 12581.16 21347.53 13785.29 10764.01 11870.64 22885.34 122
jason69.65 13368.39 14473.43 13578.27 15956.88 9877.12 16073.71 24646.53 30569.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
HQP_MVS74.31 5873.73 6176.06 6281.41 8956.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior356.09 10863.92 3669.27 127
VPA-MVSNet69.02 15069.47 12067.69 24177.42 18841.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 17784.48 148
Vis-MVSNetpermissive72.18 8271.37 8674.61 9481.29 9255.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet69.27 14768.44 14271.73 16974.47 24249.39 22275.20 20078.45 16959.60 11169.16 13176.51 28951.29 9482.50 16659.86 15771.45 22383.30 186
MVSTER67.16 19165.58 20471.88 16470.37 30449.70 21570.25 28078.45 16951.52 24369.16 13180.37 22838.45 23482.50 16660.19 15171.46 22283.44 184
v119269.97 12368.68 13473.85 11273.19 25550.94 19277.68 14481.36 10757.51 14968.95 13380.85 22345.28 16985.33 10662.97 12970.37 23485.27 126
OMC-MVS71.40 9770.60 9973.78 11576.60 20653.15 15979.74 10879.78 13758.37 13268.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
Fast-Effi-MVS+70.28 11769.12 12673.73 12078.50 15051.50 18875.01 20579.46 14556.16 17468.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
v192192069.47 14068.17 14673.36 13773.06 25850.10 20977.39 15180.56 12856.58 16668.59 13580.37 22844.72 17484.98 11162.47 13469.82 24885.00 134
v14419269.71 12968.51 13773.33 13873.10 25750.13 20877.54 14880.64 12756.65 15968.57 13780.55 22646.87 15184.96 11362.98 12869.66 25384.89 138
TranMVSNet+NR-MVSNet70.36 11570.10 11171.17 18878.64 14842.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25287.46 41
API-MVS72.17 8371.41 8474.45 10081.95 8257.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 266
BH-RMVSNet68.81 15367.42 16472.97 14380.11 11652.53 17374.26 21976.29 20358.48 13068.38 14084.20 14642.59 19183.83 13346.53 25575.91 16782.56 202
v124069.24 14867.91 15073.25 14173.02 26049.82 21377.21 15880.54 12956.43 16868.34 14180.51 22743.33 18684.99 10962.03 13869.77 25184.95 137
UniMVSNet_NR-MVSNet71.11 9971.00 9471.44 17779.20 13344.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23287.36 48
DU-MVS70.01 12169.53 11871.44 17778.05 16644.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23287.37 46
iter_conf0569.40 14467.62 15574.73 8777.84 17251.13 19079.28 11473.71 24654.62 20868.17 14483.59 16128.68 32887.16 5565.74 10576.95 15885.91 94
UniMVSNet (Re)70.63 10970.20 10771.89 16378.55 14945.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 22586.89 57
Baseline_NR-MVSNet67.05 19367.56 15665.50 27075.65 21937.70 33175.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 24981.60 219
WR-MVS68.47 16368.47 14068.44 23480.20 11239.84 31173.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 25386.34 76
MAR-MVS71.51 9470.15 10975.60 7481.84 8359.39 5581.38 8682.90 8354.90 20568.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
iter_conf_final69.82 12668.02 14975.23 8179.38 12852.91 16380.11 9973.96 24354.99 20368.04 14983.59 16129.05 32387.16 5565.41 10877.62 14585.63 109
Anonymous20240521166.84 19865.99 19769.40 22180.19 11342.21 29571.11 26971.31 26458.80 12367.90 15086.39 10029.83 31879.65 21949.60 23378.78 13186.33 78
TR-MVS66.59 20565.07 21071.17 18879.18 13449.63 21973.48 23475.20 22352.95 22867.90 15080.33 23139.81 22083.68 13643.20 28773.56 19080.20 246
HQP-NCC80.66 10282.31 7162.10 6867.85 152
ACMP_Plane80.66 10282.31 7162.10 6867.85 152
HQP4-MVS67.85 15286.93 6284.32 151
HQP-MVS73.45 6472.80 6875.40 7680.66 10254.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
MVS_111021_LR69.50 13968.78 13271.65 17278.38 15459.33 5674.82 21070.11 27358.08 13667.83 15684.68 13541.96 19876.34 27565.62 10677.54 14679.30 260
3Dnovator+66.72 475.84 4474.57 5279.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
VPNet67.52 18268.11 14765.74 26879.18 13436.80 34072.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27051.30 21872.97 20283.81 169
XVG-OURS68.76 15667.37 16672.90 14574.32 24757.22 8970.09 28178.81 15555.24 19367.79 15885.81 12136.54 25878.28 24362.04 13775.74 16983.19 191
GeoE71.01 10170.15 10973.60 12879.57 12452.17 17978.93 11778.12 17758.02 13967.76 16083.87 15552.36 7982.72 16056.90 17075.79 16885.92 93
FA-MVS(test-final)69.82 12668.48 13873.84 11378.44 15350.04 21075.58 19478.99 15258.16 13567.59 16182.14 19542.66 19085.63 9456.60 17176.19 16585.84 97
test22283.14 6858.68 7372.57 24763.45 31741.78 34167.56 16286.12 10737.13 25278.73 13374.98 304
CPTT-MVS72.78 7272.08 7674.87 8684.88 5761.41 2684.15 4377.86 18055.27 19267.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 227
v14868.24 16867.19 17671.40 18070.43 30247.77 24275.76 19077.03 19558.91 12167.36 16480.10 23548.60 12481.89 17560.01 15366.52 28584.53 146
FIs70.82 10671.43 8368.98 22778.33 15738.14 32576.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
Anonymous2023121169.28 14668.47 14071.73 16980.28 10847.18 24979.98 10182.37 8954.61 20967.24 16684.01 15239.43 22382.41 16955.45 18472.83 20385.62 110
ECVR-MVScopyleft67.72 17967.51 16068.35 23579.46 12636.29 34874.79 21166.93 29658.72 12467.19 16788.05 6636.10 25981.38 18552.07 21084.25 6887.39 44
ACMM61.98 770.80 10769.73 11474.02 10980.59 10758.59 7482.68 6482.02 9455.46 18967.18 16884.39 14538.51 23383.17 14660.65 14876.10 16680.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192056.91 28756.71 28457.51 32159.13 37245.40 26763.58 32161.29 33436.24 36167.14 16971.85 32729.89 31756.69 36157.65 16663.58 30870.46 349
mvs_anonymous68.03 17167.51 16069.59 21772.08 27744.57 27571.99 25575.23 22151.67 23967.06 17082.57 18054.68 5077.94 24756.56 17275.71 17086.26 84
XVG-OURS-SEG-HR68.81 15367.47 16372.82 14874.40 24556.87 9970.59 27479.04 15054.77 20666.99 17186.01 11239.57 22278.21 24462.54 13273.33 19583.37 185
test111167.21 18667.14 17767.42 24479.24 13234.76 35373.89 22965.65 30358.71 12666.96 17287.95 6936.09 26080.53 20552.03 21183.79 7386.97 54
mvsmamba71.15 9869.54 11775.99 6377.61 18353.46 15281.95 7875.11 22557.73 14766.95 17385.96 11437.14 25187.56 4867.94 8375.49 17286.97 54
PAPR71.72 9270.82 9674.41 10181.20 9651.17 18979.55 11283.33 7355.81 18166.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
DP-MVS Recon72.15 8670.73 9876.40 5886.57 2457.99 7981.15 8982.96 8157.03 15466.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
UniMVSNet_ETH3D67.60 18167.07 17869.18 22677.39 18942.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24278.93 23952.16 20973.49 19186.32 80
test250665.33 22064.61 21367.50 24279.46 12634.19 35874.43 21851.92 36458.72 12466.75 17788.05 6625.99 34680.92 19851.94 21284.25 6887.39 44
AUN-MVS68.45 16466.41 18774.57 9779.53 12557.08 9773.93 22775.23 22154.44 21466.69 17881.85 20137.10 25382.89 15262.07 13666.84 28183.75 174
LPG-MVS_test72.74 7371.74 7875.76 6780.22 11057.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11057.51 8683.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
EIA-MVS71.78 8970.60 9975.30 7979.85 11953.54 15077.27 15783.26 7757.92 14366.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
IS-MVSNet71.57 9371.00 9473.27 13978.86 14145.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
v870.33 11669.28 12373.49 13173.15 25650.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 26785.28 125
v1070.21 11869.02 12773.81 11473.51 25350.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 26685.09 132
tt080567.77 17867.24 17469.34 22274.87 23140.08 30977.36 15281.37 10655.31 19166.33 18584.65 13737.35 24682.55 16555.65 18272.28 21485.39 121
PAPM_NR72.63 7571.80 7775.13 8381.72 8453.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
c3_l68.33 16567.56 15670.62 19870.87 29746.21 25774.47 21778.80 15656.22 17366.19 18778.53 26351.88 8681.40 18462.08 13569.04 26284.25 153
BH-untuned68.27 16667.29 16971.21 18579.74 12053.22 15876.06 18377.46 18957.19 15266.10 18881.61 20645.37 16883.50 14045.42 27076.68 16376.91 287
miper_ehance_all_eth68.03 17167.24 17470.40 20270.54 30046.21 25773.98 22378.68 16055.07 20066.05 18977.80 27252.16 8381.31 18761.53 14569.32 25683.67 177
ab-mvs66.65 20266.42 18667.37 24576.17 21341.73 29970.41 27876.14 20653.99 21965.98 19083.51 16549.48 11176.24 27648.60 24073.46 19384.14 157
EPP-MVSNet72.16 8571.31 8874.71 8878.68 14749.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
eth_miper_zixun_eth67.63 18066.28 19371.67 17171.60 28348.33 23573.68 23377.88 17955.80 18265.91 19278.62 26147.35 14382.88 15359.45 15966.25 28683.81 169
QAPM70.05 12068.81 13173.78 11576.54 20853.43 15383.23 5483.48 6652.89 23065.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 221
test_vis1_n_192058.86 27359.06 26558.25 31363.76 35243.14 28767.49 29666.36 30040.22 35265.89 19471.95 32631.04 30759.75 34759.94 15464.90 29571.85 336
FC-MVSNet-test69.80 12870.58 10167.46 24377.61 18334.73 35476.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
IterMVS-LS69.22 14968.48 13871.43 17974.44 24449.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 24783.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_Blended_VisFu71.45 9670.39 10374.65 9282.01 7958.82 7179.93 10380.35 13355.09 19765.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
miper_enhance_ethall67.11 19266.09 19670.17 20669.21 32045.98 25972.85 24278.41 17251.38 24665.65 19875.98 29751.17 9781.25 18860.82 14769.32 25683.29 188
RRT_MVS69.42 14267.49 16275.21 8278.01 16852.56 17282.23 7578.15 17655.84 17965.65 19885.07 13030.86 30986.83 6561.56 14470.00 24386.24 85
thisisatest053067.92 17565.78 20074.33 10376.29 21151.03 19176.89 16774.25 23953.67 22365.59 20081.76 20335.15 26785.50 10055.94 17572.47 20886.47 71
cl2267.47 18366.45 18370.54 20069.85 31346.49 25373.85 23077.35 19155.07 20065.51 20177.92 26847.64 13581.10 19261.58 14369.32 25684.01 161
3Dnovator64.47 572.49 7771.39 8575.79 6677.70 17558.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
test_djsdf69.45 14167.74 15174.58 9674.57 24154.92 13382.79 6178.48 16651.26 24965.41 20383.49 16638.37 23583.24 14466.06 9969.25 25985.56 111
FE-MVS65.91 21163.33 22873.63 12677.36 19051.95 18572.62 24575.81 20953.70 22265.31 20478.96 25528.81 32786.39 7943.93 27973.48 19282.55 203
TAMVS66.78 20065.27 20871.33 18479.16 13653.67 14673.84 23169.59 27852.32 23665.28 20581.72 20444.49 17777.40 25742.32 29478.66 13482.92 197
cl____67.18 18966.26 19469.94 20970.20 30545.74 26173.30 23576.83 19855.10 19565.27 20679.57 24547.39 14180.53 20559.41 16169.22 26083.53 183
DIV-MVS_self_test67.18 18966.26 19469.94 20970.20 30545.74 26173.29 23676.83 19855.10 19565.27 20679.58 24447.38 14280.53 20559.43 16069.22 26083.54 182
EPNet73.09 6872.16 7475.90 6575.95 21656.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu69.64 13467.53 15975.95 6476.10 21462.29 1580.20 9876.06 20859.83 11065.26 20977.09 27941.56 20584.02 13060.60 14971.09 22681.53 220
ACMP63.53 672.30 8071.20 9075.59 7580.28 10857.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22686.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS59.36 1066.60 20365.20 20970.81 19476.63 20548.75 22976.52 17480.04 13650.64 25865.24 21084.93 13239.15 22878.54 24036.77 32376.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet266.93 19666.31 19268.79 23077.63 17842.98 28876.11 18177.47 18756.62 16265.22 21282.17 19341.85 20080.18 21647.05 25372.72 20783.20 190
SDMVSNet68.03 17168.10 14867.84 23977.13 19448.72 23165.32 31279.10 14958.02 13965.08 21382.55 18147.83 13173.40 28763.92 12073.92 18281.41 222
sd_testset64.46 23164.45 21464.51 27977.13 19442.25 29462.67 32572.11 25958.02 13965.08 21382.55 18141.22 21269.88 30647.32 24873.92 18281.41 222
GBi-Net67.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
test167.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
FMVSNet366.32 20865.61 20368.46 23376.48 20942.34 29274.98 20777.15 19455.83 18065.04 21581.16 21339.91 21780.14 21747.18 25072.76 20482.90 199
anonymousdsp67.00 19564.82 21273.57 12970.09 30856.13 10776.35 17677.35 19148.43 28364.99 21880.84 22433.01 29080.34 20964.66 11367.64 27684.23 154
BH-w/o66.85 19765.83 19969.90 21279.29 12952.46 17574.66 21476.65 20154.51 21364.85 21978.12 26445.59 16182.95 15043.26 28675.54 17174.27 313
CDS-MVSNet66.80 19965.37 20571.10 19078.98 13953.13 16173.27 23771.07 26652.15 23764.72 22080.23 23343.56 18477.10 26045.48 26878.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS65.53 21663.70 22271.02 19270.87 29748.10 23770.48 27674.40 23556.69 15864.70 22176.77 28433.66 28481.10 19255.42 18570.32 23683.87 167
tttt051767.83 17765.66 20274.33 10376.69 20350.82 19677.86 13973.99 24254.54 21264.64 22282.53 18435.06 26885.50 10055.71 18069.91 24686.67 65
FMVSNet166.70 20165.87 19869.19 22377.49 18743.33 28477.31 15377.83 18156.45 16764.60 22382.70 17538.08 24080.33 21046.08 25972.31 21383.92 164
AdaColmapbinary69.99 12268.66 13573.97 11184.94 5457.83 8082.63 6578.71 15856.28 17164.34 22484.14 14841.57 20487.06 6146.45 25678.88 12877.02 283
jajsoiax68.25 16766.45 18373.66 12375.62 22055.49 12580.82 9178.51 16552.33 23564.33 22584.11 14928.28 33081.81 17863.48 12570.62 22983.67 177
CostFormer64.04 23362.51 23768.61 23271.88 28045.77 26071.30 26470.60 27047.55 29564.31 22676.61 28741.63 20379.62 22149.74 22969.00 26380.42 242
mvs_tets68.18 16966.36 18973.63 12675.61 22155.35 12880.77 9278.56 16352.48 23464.27 22784.10 15027.45 33681.84 17763.45 12670.56 23183.69 176
baseline163.81 23563.87 22063.62 28376.29 21136.36 34371.78 25967.29 29356.05 17664.23 22882.95 17347.11 14574.41 28347.30 24961.85 32280.10 249
PVSNet_BlendedMVS68.56 16267.72 15271.07 19177.03 19850.57 20074.50 21681.52 10053.66 22464.22 22979.72 24249.13 11782.87 15455.82 17773.92 18279.77 255
PVSNet_Blended68.59 15867.72 15271.19 18677.03 19850.57 20072.51 24881.52 10051.91 23864.22 22977.77 27549.13 11782.87 15455.82 17779.58 11680.14 248
thisisatest051565.83 21263.50 22572.82 14873.75 25149.50 22071.32 26373.12 25249.39 27063.82 23176.50 29134.95 27084.84 11753.20 20375.49 17284.13 158
test_fmvs1_n51.37 32150.35 32454.42 33652.85 37837.71 33061.16 33651.93 36328.15 37163.81 23269.73 34413.72 37453.95 37151.16 21960.65 33171.59 338
test_fmvs151.32 32350.48 32353.81 33853.57 37737.51 33260.63 34051.16 36628.02 37363.62 23369.23 34716.41 37053.93 37251.01 22060.70 33069.99 353
HyFIR lowres test65.67 21463.01 23273.67 12279.97 11855.65 11969.07 28975.52 21542.68 33963.53 23477.95 26640.43 21581.64 17946.01 26071.91 21783.73 175
CANet_DTU68.18 16967.71 15469.59 21774.83 23246.24 25678.66 12176.85 19759.60 11163.45 23582.09 19835.25 26677.41 25659.88 15578.76 13285.14 129
UGNet68.81 15367.39 16573.06 14278.33 15754.47 13779.77 10675.40 21760.45 9263.22 23684.40 14432.71 29780.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS60.68 26461.67 24657.70 32070.43 30238.45 32364.19 31966.47 29848.05 28963.22 23680.86 22249.28 11460.47 34245.25 27267.28 27974.19 314
CHOSEN 1792x268865.08 22462.84 23471.82 16681.49 8856.26 10566.32 30174.20 24040.53 35063.16 23878.65 25941.30 20877.80 25045.80 26274.09 18081.40 224
114514_t70.83 10569.56 11674.64 9386.21 3154.63 13682.34 7081.81 9748.22 28563.01 23985.83 11940.92 21487.10 5957.91 16479.79 11282.18 210
tpm262.07 25360.10 26167.99 23872.79 26343.86 28071.05 27166.85 29743.14 33662.77 24075.39 30338.32 23680.80 20141.69 29868.88 26479.32 259
NR-MVSNet69.54 13768.85 12971.59 17478.05 16643.81 28174.20 22080.86 12565.18 1462.76 24184.52 14152.35 8083.59 13950.96 22270.78 22787.37 46
OpenMVScopyleft61.03 968.85 15267.56 15672.70 15074.26 24853.99 14281.21 8881.34 11152.70 23162.75 24285.55 12538.86 23184.14 12648.41 24283.01 7779.97 250
v7n69.01 15167.36 16773.98 11072.51 27052.65 16878.54 12581.30 11360.26 10162.67 24381.62 20543.61 18384.49 12157.01 16968.70 26884.79 141
WR-MVS_H67.02 19466.92 17967.33 24777.95 17037.75 32977.57 14682.11 9362.03 7362.65 24482.48 18550.57 10379.46 22242.91 29064.01 30384.79 141
tfpn200view963.18 24362.18 24266.21 25876.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19779.83 253
thres40063.31 23962.18 24266.72 25076.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19781.36 225
MVS67.37 18466.33 19070.51 20175.46 22450.94 19273.95 22581.85 9641.57 34562.54 24778.57 26247.98 12885.47 10252.97 20482.05 9075.14 300
CP-MVSNet66.49 20666.41 18766.72 25077.67 17736.33 34576.83 17079.52 14362.45 6362.54 24783.47 16746.32 15478.37 24145.47 26963.43 31085.45 116
PEN-MVS66.60 20366.45 18367.04 24877.11 19636.56 34277.03 16380.42 13162.95 5062.51 24984.03 15146.69 15279.07 23344.22 27463.08 31385.51 113
thres100view90063.28 24162.41 23965.89 26677.31 19138.66 32172.65 24369.11 28457.07 15362.45 25081.03 21737.01 25579.17 22831.84 34973.25 19779.83 253
PS-CasMVS66.42 20766.32 19166.70 25277.60 18536.30 34776.94 16579.61 14162.36 6562.43 25183.66 15945.69 15878.37 24145.35 27163.26 31185.42 119
thres600view763.30 24062.27 24066.41 25477.18 19338.87 31972.35 25069.11 28456.98 15562.37 25280.96 21937.01 25579.00 23731.43 35673.05 20181.36 225
pm-mvs165.24 22164.97 21166.04 26372.38 27239.40 31672.62 24575.63 21255.53 18862.35 25383.18 17047.45 13976.47 27349.06 23766.54 28482.24 209
Fast-Effi-MVS+-dtu67.37 18465.33 20773.48 13272.94 26157.78 8277.47 15076.88 19657.60 14861.97 25476.85 28339.31 22480.49 20854.72 18970.28 23782.17 212
WTY-MVS59.75 27060.39 25957.85 31872.32 27437.83 32861.05 33764.18 31345.95 31361.91 25579.11 25447.01 14960.88 34142.50 29369.49 25574.83 306
thres20062.20 25261.16 25465.34 27375.38 22639.99 31069.60 28569.29 28255.64 18761.87 25676.99 28037.07 25478.96 23831.28 35773.28 19677.06 282
TransMVSNet (Re)64.72 22664.33 21565.87 26775.22 22738.56 32274.66 21475.08 22958.90 12261.79 25782.63 17851.18 9678.07 24643.63 28355.87 34980.99 235
DTE-MVSNet65.58 21565.34 20666.31 25576.06 21534.79 35176.43 17579.38 14662.55 6161.66 25883.83 15645.60 16079.15 23141.64 30160.88 32885.00 134
HY-MVS56.14 1364.55 23063.89 21866.55 25374.73 23641.02 30469.96 28274.43 23449.29 27261.66 25880.92 22047.43 14076.68 26944.91 27371.69 21981.94 215
CNLPA65.43 21764.02 21769.68 21578.73 14658.07 7877.82 14270.71 26951.49 24461.57 26083.58 16438.23 23870.82 29943.90 28070.10 24180.16 247
miper_lstm_enhance62.03 25460.88 25765.49 27166.71 33746.25 25556.29 35775.70 21150.68 25661.27 26175.48 30240.21 21668.03 31556.31 17465.25 29382.18 210
cascas65.98 21063.42 22673.64 12577.26 19252.58 17172.26 25277.21 19348.56 28061.21 26274.60 30932.57 30285.82 9250.38 22576.75 16282.52 205
PAPM67.92 17566.69 18071.63 17378.09 16449.02 22577.09 16181.24 11751.04 25360.91 26383.98 15347.71 13384.99 10940.81 30279.32 12280.90 236
IterMVS-SCA-FT62.49 24761.52 24865.40 27271.99 27950.80 19771.15 26869.63 27745.71 31460.61 26477.93 26737.45 24465.99 32655.67 18163.50 30979.42 258
1112_ss64.00 23463.36 22765.93 26579.28 13042.58 29171.35 26272.36 25746.41 30660.55 26577.89 27046.27 15673.28 28846.18 25869.97 24481.92 216
tfpnnormal62.47 24861.63 24764.99 27674.81 23339.01 31871.22 26573.72 24555.22 19460.21 26680.09 23641.26 21176.98 26330.02 36268.09 27278.97 263
bld_raw_dy_0_6464.87 22563.22 22969.83 21474.79 23453.32 15778.15 13262.02 33151.20 25160.17 26783.12 17224.15 35574.20 28663.08 12772.33 21181.96 214
tpm57.34 28458.16 27354.86 33271.80 28234.77 35267.47 29756.04 35648.20 28660.10 26876.92 28137.17 25053.41 37340.76 30365.01 29476.40 290
ET-MVSNet_ETH3D67.96 17465.72 20174.68 9076.67 20455.62 12275.11 20274.74 23052.91 22960.03 26980.12 23433.68 28382.64 16361.86 13976.34 16485.78 99
131464.61 22963.21 23068.80 22971.87 28147.46 24673.95 22578.39 17442.88 33859.97 27076.60 28838.11 23979.39 22454.84 18872.32 21279.55 256
CL-MVSNet_self_test61.53 25960.94 25663.30 28668.95 32236.93 33967.60 29572.80 25455.67 18559.95 27176.63 28545.01 17272.22 29439.74 30962.09 32180.74 239
XVG-ACMP-BASELINE64.36 23262.23 24170.74 19672.35 27352.45 17670.80 27378.45 16953.84 22159.87 27281.10 21516.24 37179.32 22555.64 18371.76 21880.47 241
IterMVS62.79 24661.27 25167.35 24669.37 31852.04 18371.17 26668.24 28952.63 23359.82 27376.91 28237.32 24772.36 29152.80 20563.19 31277.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 23663.88 21963.14 28874.75 23531.04 37171.16 26763.64 31656.32 16959.80 27484.99 13144.51 17575.46 27839.12 31180.62 10182.92 197
test_fmvs248.69 33047.49 33552.29 34848.63 38433.06 36557.76 35048.05 37525.71 37759.76 27569.60 34511.57 38052.23 37749.45 23456.86 34471.58 339
pmmvs663.69 23662.82 23566.27 25770.63 29939.27 31773.13 23875.47 21652.69 23259.75 27682.30 18939.71 22177.03 26247.40 24764.35 30282.53 204
test_vis1_n49.89 32848.69 33053.50 34153.97 37637.38 33361.53 33047.33 37728.54 37059.62 27767.10 35813.52 37552.27 37649.07 23657.52 34170.84 347
pmmvs461.48 26159.39 26267.76 24071.57 28453.86 14371.42 26165.34 30544.20 32559.46 27877.92 26835.90 26174.71 28143.87 28164.87 29674.71 309
Patchmatch-RL test58.16 27855.49 29466.15 26067.92 33048.89 22860.66 33951.07 36847.86 29259.36 27962.71 37034.02 27972.27 29356.41 17359.40 33577.30 278
CR-MVSNet59.91 26857.90 27665.96 26469.96 31052.07 18165.31 31363.15 32042.48 34059.36 27974.84 30635.83 26270.75 30045.50 26764.65 29875.06 301
RPMNet61.53 25958.42 27070.86 19369.96 31052.07 18165.31 31381.36 10743.20 33559.36 27970.15 34035.37 26585.47 10236.42 33064.65 29875.06 301
SCA60.49 26558.38 27166.80 24974.14 25048.06 23863.35 32263.23 31949.13 27459.33 28272.10 32337.45 24474.27 28444.17 27562.57 31678.05 270
DP-MVS65.68 21363.66 22371.75 16884.93 5556.87 9980.74 9373.16 25153.06 22759.09 28382.35 18736.79 25785.94 8932.82 34569.96 24572.45 327
Test_1112_low_res62.32 25061.77 24564.00 28279.08 13839.53 31568.17 29170.17 27243.25 33459.03 28479.90 23744.08 17971.24 29843.79 28268.42 27081.25 228
PatchmatchNetpermissive59.84 26958.24 27264.65 27873.05 25946.70 25269.42 28762.18 32947.55 29558.88 28571.96 32534.49 27469.16 30842.99 28963.60 30778.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_040263.25 24261.01 25569.96 20880.00 11754.37 13976.86 16972.02 26054.58 21158.71 28680.79 22535.00 26984.36 12326.41 37564.71 29771.15 345
LTVRE_ROB55.42 1663.15 24461.23 25368.92 22876.57 20747.80 24059.92 34176.39 20254.35 21558.67 28782.46 18629.44 32181.49 18342.12 29571.14 22477.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 29556.57 28554.96 33166.93 33536.32 34657.94 34961.69 33241.67 34358.64 28875.32 30438.72 23256.25 36442.04 29666.19 28772.31 332
testing356.54 28955.92 29158.41 31277.52 18627.93 37969.72 28456.36 35254.75 20758.63 28977.80 27220.88 36571.75 29625.31 37762.25 31975.53 297
tpmrst58.24 27758.70 26856.84 32266.97 33434.32 35669.57 28661.14 33547.17 30258.58 29071.60 32841.28 21060.41 34349.20 23562.84 31475.78 294
IB-MVS56.42 1265.40 21962.73 23673.40 13674.89 22952.78 16773.09 23975.13 22455.69 18458.48 29173.73 31432.86 29286.32 8250.63 22370.11 24081.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet59.63 27159.14 26461.08 30174.47 24238.84 32075.20 20068.74 28631.15 36758.24 29276.51 28932.39 30368.58 31149.77 22865.84 28975.81 293
D2MVS62.30 25160.29 26068.34 23666.46 34048.42 23465.70 30473.42 24847.71 29358.16 29375.02 30530.51 31177.71 25253.96 19671.68 22078.90 264
RPSCF55.80 29854.22 30760.53 30265.13 34742.91 29064.30 31857.62 34636.84 36058.05 29482.28 19028.01 33156.24 36537.14 32158.61 33882.44 208
tpm cat159.25 27256.95 28166.15 26072.19 27646.96 25068.09 29265.76 30240.03 35457.81 29570.56 33538.32 23674.51 28238.26 31561.50 32577.00 284
gg-mvs-nofinetune57.86 28156.43 28762.18 29472.62 26635.35 35066.57 29856.33 35350.65 25757.64 29657.10 37630.65 31076.36 27437.38 31978.88 12874.82 307
ACMH+57.40 1166.12 20964.06 21672.30 15977.79 17452.83 16680.39 9578.03 17857.30 15057.47 29782.55 18127.68 33484.17 12545.54 26669.78 24979.90 251
dmvs_re56.77 28856.83 28356.61 32369.23 31941.02 30458.37 34664.18 31350.59 25957.45 29871.42 32935.54 26458.94 35137.23 32067.45 27769.87 354
MS-PatchMatch62.42 24961.46 24965.31 27475.21 22852.10 18072.05 25474.05 24146.41 30657.42 29974.36 31034.35 27677.57 25445.62 26573.67 18666.26 362
PVSNet50.76 1958.40 27657.39 27761.42 29875.53 22344.04 27961.43 33163.45 31747.04 30356.91 30073.61 31527.00 34064.76 32939.12 31172.40 20975.47 298
Patchmtry57.16 28556.47 28659.23 30569.17 32134.58 35562.98 32363.15 32044.53 32156.83 30174.84 30635.83 26268.71 31040.03 30660.91 32774.39 312
LS3D64.71 22762.50 23871.34 18379.72 12255.71 11779.82 10574.72 23148.50 28256.62 30284.62 13833.59 28582.34 17029.65 36475.23 17475.97 291
ACMH55.70 1565.20 22263.57 22470.07 20778.07 16552.01 18479.48 11379.69 13855.75 18356.59 30380.98 21827.12 33880.94 19642.90 29171.58 22177.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS56.00 29656.23 28955.32 32974.69 23726.44 38565.52 30757.49 34750.97 25456.52 30472.18 32139.89 21868.09 31324.20 37864.59 30071.44 341
myMVS_eth3d54.86 30554.61 30055.61 32874.69 23727.31 38265.52 30757.49 34750.97 25456.52 30472.18 32121.87 36368.09 31327.70 37064.59 30071.44 341
MVP-Stereo65.41 21863.80 22170.22 20377.62 18255.53 12476.30 17778.53 16450.59 25956.47 30678.65 25939.84 21982.68 16144.10 27872.12 21672.44 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft52.78 1860.03 26758.14 27465.69 26970.47 30144.82 27075.33 19670.86 26845.04 31756.06 30776.00 29426.89 34179.65 21935.36 33567.29 27872.60 324
EG-PatchMatch MVS64.71 22762.87 23370.22 20377.68 17653.48 15177.99 13678.82 15453.37 22656.03 30877.41 27824.75 35384.04 12846.37 25773.42 19473.14 319
PLCcopyleft56.13 1465.09 22363.21 23070.72 19781.04 9854.87 13478.57 12377.47 18748.51 28155.71 30981.89 20033.71 28279.71 21841.66 29970.37 23477.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 30753.69 31054.79 33366.12 34331.96 36962.34 32849.05 37144.42 32455.54 31071.33 33130.22 31456.70 36041.65 30062.54 31775.71 295
MDTV_nov1_ep1357.00 28072.73 26438.26 32465.02 31664.73 31044.74 31955.46 31172.48 31932.61 30170.47 30137.47 31867.75 275
test-LLR58.15 27958.13 27558.22 31468.57 32444.80 27165.46 30957.92 34450.08 26355.44 31269.82 34232.62 29957.44 35749.66 23173.62 18772.41 329
test-mter56.42 29255.82 29258.22 31468.57 32444.80 27165.46 30957.92 34439.94 35555.44 31269.82 34221.92 36057.44 35749.66 23173.62 18772.41 329
ITE_SJBPF62.09 29566.16 34244.55 27664.32 31247.36 29855.31 31480.34 23019.27 36662.68 33636.29 33162.39 31879.04 261
MIMVSNet57.35 28357.07 27958.22 31474.21 24937.18 33462.46 32660.88 33648.88 27755.29 31575.99 29631.68 30662.04 33831.87 34872.35 21075.43 299
Anonymous2023120655.10 30455.30 29654.48 33469.81 31433.94 36062.91 32462.13 33041.08 34755.18 31675.65 29932.75 29656.59 36330.32 36167.86 27372.91 320
KD-MVS_2432*160053.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
miper_refine_blended53.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
pmmvs-eth3d58.81 27456.31 28866.30 25667.61 33152.42 17772.30 25164.76 30943.55 33154.94 31974.19 31228.95 32472.60 29043.31 28457.21 34373.88 317
baseline263.42 23861.26 25269.89 21372.55 26847.62 24471.54 26068.38 28850.11 26254.82 32075.55 30143.06 18880.96 19548.13 24367.16 28081.11 232
OurMVSNet-221017-061.37 26258.63 26969.61 21672.05 27848.06 23873.93 22772.51 25547.23 30154.74 32180.92 22021.49 36481.24 18948.57 24156.22 34879.53 257
GG-mvs-BLEND62.34 29371.36 29037.04 33869.20 28857.33 34954.73 32265.48 36430.37 31277.82 24934.82 33674.93 17572.17 333
tpmvs58.47 27556.95 28163.03 29070.20 30541.21 30367.90 29467.23 29449.62 26854.73 32270.84 33334.14 27776.24 27636.64 32761.29 32671.64 337
EPNet_dtu61.90 25561.97 24461.68 29672.89 26239.78 31275.85 18965.62 30455.09 19754.56 32479.36 25037.59 24367.02 32039.80 30876.95 15878.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT53.17 31553.44 31252.33 34768.29 32825.34 38958.21 34754.41 35944.46 32354.56 32469.05 34833.32 28760.94 34036.93 32261.76 32470.73 348
test0.0.03 153.32 31453.59 31152.50 34662.81 35829.45 37459.51 34254.11 36050.08 26354.40 32674.31 31132.62 29955.92 36630.50 36063.95 30572.15 334
ambc65.13 27563.72 35437.07 33747.66 37578.78 15754.37 32771.42 32911.24 38280.94 19645.64 26453.85 35677.38 277
SixPastTwentyTwo61.65 25858.80 26770.20 20575.80 21747.22 24875.59 19269.68 27654.61 20954.11 32879.26 25227.07 33982.96 14943.27 28549.79 36680.41 243
ppachtmachnet_test58.06 28055.38 29566.10 26269.51 31548.99 22668.01 29366.13 30144.50 32254.05 32970.74 33432.09 30572.34 29236.68 32656.71 34776.99 286
TESTMET0.1,155.28 30154.90 29856.42 32466.56 33843.67 28265.46 30956.27 35439.18 35753.83 33067.44 35424.21 35455.46 36848.04 24473.11 20070.13 352
pmmvs556.47 29155.68 29358.86 30961.41 36436.71 34166.37 30062.75 32240.38 35153.70 33176.62 28634.56 27267.05 31940.02 30765.27 29272.83 322
MSDG61.81 25759.23 26369.55 22072.64 26552.63 17070.45 27775.81 20951.38 24653.70 33176.11 29329.52 31981.08 19437.70 31765.79 29074.93 305
test_fmvs344.30 33742.55 34049.55 35342.83 38827.15 38453.03 36444.93 38122.03 38453.69 33364.94 3654.21 39449.63 37947.47 24549.82 36571.88 335
K. test v360.47 26657.11 27870.56 19973.74 25248.22 23675.10 20462.55 32358.27 13453.62 33476.31 29227.81 33381.59 18147.42 24639.18 37981.88 217
PM-MVS52.33 31750.19 32558.75 31062.10 36145.14 26965.75 30340.38 38743.60 33053.52 33572.65 3189.16 38765.87 32750.41 22454.18 35465.24 364
PMMVS53.96 30753.26 31356.04 32562.60 35950.92 19461.17 33556.09 35532.81 36553.51 33666.84 35934.04 27859.93 34644.14 27768.18 27157.27 374
PatchMatch-RL56.25 29454.55 30161.32 30077.06 19756.07 10965.57 30654.10 36144.13 32753.49 33771.27 33225.20 35066.78 32136.52 32963.66 30661.12 366
LCM-MVSNet-Re61.88 25661.35 25063.46 28474.58 24031.48 37061.42 33258.14 34358.71 12653.02 33879.55 24643.07 18776.80 26545.69 26377.96 14282.11 213
F-COLMAP63.05 24560.87 25869.58 21976.99 20053.63 14878.12 13376.16 20447.97 29052.41 33981.61 20627.87 33278.11 24540.07 30566.66 28377.00 284
test20.0353.87 30954.02 30853.41 34261.47 36328.11 37861.30 33359.21 33951.34 24852.09 34077.43 27733.29 28858.55 35329.76 36360.27 33373.58 318
testgi51.90 31852.37 31550.51 35260.39 37023.55 39258.42 34558.15 34249.03 27551.83 34179.21 25322.39 35855.59 36729.24 36662.64 31572.40 331
EU-MVSNet55.61 29954.41 30359.19 30765.41 34633.42 36272.44 24971.91 26128.81 36951.27 34273.87 31324.76 35269.08 30943.04 28858.20 33975.06 301
MDTV_nov1_ep13_2view25.89 38761.22 33440.10 35351.10 34332.97 29138.49 31378.61 265
COLMAP_ROBcopyleft52.97 1761.27 26358.81 26668.64 23174.63 23952.51 17478.42 12673.30 24949.92 26650.96 34481.51 20923.06 35779.40 22331.63 35365.85 28874.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test55.22 30253.89 30959.21 30657.80 37527.47 38157.75 35174.32 23647.38 29750.90 34570.00 34128.45 32970.30 30440.44 30457.92 34079.87 252
ADS-MVSNet251.33 32248.76 32959.07 30866.02 34444.60 27450.90 36859.76 33836.90 35850.74 34666.18 36226.38 34263.11 33427.17 37154.76 35269.50 356
ADS-MVSNet48.48 33147.77 33250.63 35166.02 34429.92 37350.90 36850.87 37036.90 35850.74 34666.18 36226.38 34252.47 37527.17 37154.76 35269.50 356
our_test_356.49 29054.42 30262.68 29269.51 31545.48 26666.08 30261.49 33344.11 32850.73 34869.60 34533.05 28968.15 31238.38 31456.86 34474.40 311
FMVSNet555.86 29754.93 29758.66 31171.05 29536.35 34464.18 32062.48 32446.76 30450.66 34974.73 30825.80 34764.04 33133.11 34365.57 29175.59 296
lessismore_v069.91 21171.42 28847.80 24050.90 36950.39 35075.56 30027.43 33781.33 18645.91 26134.10 38580.59 240
UnsupCasMVSNet_eth53.16 31652.47 31455.23 33059.45 37133.39 36359.43 34369.13 28345.98 31050.35 35172.32 32029.30 32258.26 35542.02 29744.30 37274.05 315
dmvs_testset50.16 32651.90 31644.94 36066.49 33911.78 39861.01 33851.50 36551.17 25250.30 35267.44 35439.28 22560.29 34422.38 38057.49 34262.76 365
dp51.89 31951.60 31852.77 34568.44 32732.45 36762.36 32754.57 35844.16 32649.31 35367.91 35028.87 32656.61 36233.89 33954.89 35169.24 359
Anonymous2024052155.30 30054.41 30357.96 31760.92 36941.73 29971.09 27071.06 26741.18 34648.65 35473.31 31616.93 36959.25 34942.54 29264.01 30372.90 321
JIA-IIPM51.56 32047.68 33463.21 28764.61 34950.73 19847.71 37458.77 34142.90 33748.46 35551.72 38024.97 35170.24 30536.06 33253.89 35568.64 360
USDC56.35 29354.24 30662.69 29164.74 34840.31 30865.05 31573.83 24443.93 32947.58 35677.71 27615.36 37375.05 28038.19 31661.81 32372.70 323
UnsupCasMVSNet_bld50.07 32748.87 32853.66 33960.97 36833.67 36157.62 35264.56 31139.47 35647.38 35764.02 36827.47 33559.32 34834.69 33743.68 37367.98 361
AllTest57.08 28654.65 29964.39 28071.44 28649.03 22369.92 28367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
TestCases64.39 28071.44 28649.03 22367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
CMPMVSbinary42.80 2157.81 28255.97 29063.32 28560.98 36747.38 24764.66 31769.50 27932.06 36646.83 36077.80 27229.50 32071.36 29748.68 23973.75 18571.21 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet155.17 30354.31 30557.77 31970.03 30932.01 36865.68 30564.81 30849.19 27346.75 36176.00 29425.53 34964.04 33128.65 36762.13 32077.26 280
mvsany_test139.38 34638.16 34943.02 36349.05 38234.28 35744.16 38225.94 39822.74 38246.57 36262.21 37123.85 35641.16 39033.01 34435.91 38253.63 377
PVSNet_043.31 2047.46 33445.64 33752.92 34467.60 33244.65 27354.06 36254.64 35741.59 34446.15 36358.75 37330.99 30858.66 35232.18 34624.81 38855.46 376
Patchmatch-test49.08 32948.28 33151.50 35064.40 35030.85 37245.68 37848.46 37435.60 36246.10 36472.10 32334.47 27546.37 38327.08 37360.65 33177.27 279
YYNet150.73 32448.96 32656.03 32661.10 36641.78 29851.94 36656.44 35140.94 34944.84 36567.80 35230.08 31555.08 36936.77 32350.71 36271.22 343
MDA-MVSNet_test_wron50.71 32548.95 32756.00 32761.17 36541.84 29751.90 36756.45 35040.96 34844.79 36667.84 35130.04 31655.07 37036.71 32550.69 36371.11 346
TDRefinement53.44 31350.72 32261.60 29764.31 35146.96 25070.89 27265.27 30741.78 34144.61 36777.98 26511.52 38166.36 32428.57 36851.59 36071.49 340
new-patchmatchnet47.56 33347.73 33347.06 35558.81 3739.37 40148.78 37259.21 33943.28 33344.22 36868.66 34925.67 34857.20 35931.57 35549.35 36774.62 310
test_vis1_rt41.35 34439.45 34647.03 35646.65 38737.86 32747.76 37338.65 38823.10 38044.21 36951.22 38211.20 38344.08 38539.27 31053.02 35759.14 369
N_pmnet39.35 34740.28 34536.54 37163.76 3521.62 40649.37 3710.76 40534.62 36443.61 37066.38 36126.25 34442.57 38726.02 37651.77 35965.44 363
CHOSEN 280x42047.83 33246.36 33652.24 34967.37 33349.78 21438.91 38643.11 38535.00 36343.27 37163.30 36928.95 32449.19 38036.53 32860.80 32957.76 373
TinyColmap54.14 30651.72 31761.40 29966.84 33641.97 29666.52 29968.51 28744.81 31842.69 37275.77 29811.66 37972.94 28931.96 34756.77 34669.27 358
MDA-MVSNet-bldmvs53.87 30950.81 32163.05 28966.25 34148.58 23256.93 35563.82 31548.09 28841.22 37370.48 33830.34 31368.00 31634.24 33845.92 37172.57 325
pmmvs344.92 33641.95 34353.86 33752.58 38043.55 28362.11 32946.90 37926.05 37640.63 37460.19 37211.08 38457.91 35631.83 35246.15 37060.11 367
LF4IMVS42.95 33942.26 34145.04 35848.30 38532.50 36654.80 36048.49 37328.03 37240.51 37570.16 3399.24 38643.89 38631.63 35349.18 36858.72 370
WB-MVS43.26 33843.41 33942.83 36463.32 35510.32 40058.17 34845.20 38045.42 31540.44 37667.26 35734.01 28058.98 35011.96 39224.88 38759.20 368
mvsany_test332.62 35330.57 35738.77 36936.16 39724.20 39138.10 38720.63 40019.14 38640.36 37757.43 3755.06 39136.63 39329.59 36528.66 38655.49 375
DSMNet-mixed39.30 34838.72 34741.03 36651.22 38119.66 39545.53 37931.35 39415.83 39139.80 37867.42 35622.19 35945.13 38422.43 37952.69 35858.31 371
test_f31.86 35531.05 35634.28 37232.33 40021.86 39332.34 38830.46 39516.02 39039.78 37955.45 3774.80 39232.36 39530.61 35937.66 38148.64 379
SSC-MVS41.96 34241.99 34241.90 36562.46 3609.28 40257.41 35344.32 38343.38 33238.30 38066.45 36032.67 29858.42 35410.98 39321.91 39057.99 372
MVS-HIRNet45.52 33544.48 33848.65 35468.49 32634.05 35959.41 34444.50 38227.03 37437.96 38150.47 38426.16 34564.10 33026.74 37459.52 33447.82 383
FPMVS42.18 34141.11 34445.39 35758.03 37441.01 30649.50 37053.81 36230.07 36833.71 38264.03 36611.69 37852.08 37814.01 38855.11 35043.09 385
test_vis3_rt32.09 35430.20 35837.76 37035.36 39827.48 38040.60 38528.29 39716.69 38932.52 38340.53 3881.96 40037.40 39233.64 34242.21 37648.39 380
new_pmnet34.13 35234.29 35333.64 37352.63 37918.23 39744.43 38133.90 39322.81 38130.89 38453.18 37810.48 38535.72 39420.77 38239.51 37846.98 384
LCM-MVSNet40.30 34535.88 35153.57 34042.24 38929.15 37545.21 38060.53 33722.23 38328.02 38550.98 3833.72 39661.78 33931.22 35838.76 38069.78 355
APD_test137.39 34934.94 35244.72 36148.88 38333.19 36452.95 36544.00 38419.49 38527.28 38658.59 3743.18 39852.84 37418.92 38341.17 37748.14 382
ANet_high41.38 34337.47 35053.11 34339.73 39424.45 39056.94 35469.69 27547.65 29426.04 38752.32 37912.44 37762.38 33721.80 38110.61 39672.49 326
testf131.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
APD_test231.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
PMVScopyleft28.69 2236.22 35033.29 35445.02 35936.82 39635.98 34954.68 36148.74 37226.31 37521.02 39051.61 3812.88 39960.10 3459.99 39647.58 36938.99 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS227.40 35825.91 36131.87 37539.46 3956.57 40331.17 38928.52 39623.96 37820.45 39148.94 3874.20 39537.94 39116.51 38519.97 39151.09 378
Gipumacopyleft34.77 35131.91 35543.33 36262.05 36237.87 32620.39 39167.03 29523.23 37918.41 39225.84 3924.24 39362.73 33514.71 38751.32 36129.38 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.43 36511.14 3684.30 3812.38 4034.40 40413.62 39316.08 4020.39 39815.89 39313.06 39515.80 3725.54 40012.63 39110.46 3972.95 395
MVEpermissive17.77 2321.41 36117.77 36632.34 37434.34 39925.44 38816.11 39224.11 39911.19 39413.22 39431.92 3901.58 40130.95 39610.47 39417.03 39240.62 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 36218.10 36524.41 37813.68 4023.11 40512.06 39442.37 3862.00 39711.97 39536.38 3895.77 39029.35 39715.06 38623.65 38940.76 388
DeepMVS_CXcopyleft12.03 38017.97 40110.91 39910.60 4037.46 39511.07 39628.36 3913.28 39711.29 3998.01 3989.74 39813.89 394
E-PMN23.77 35922.73 36326.90 37642.02 39020.67 39442.66 38335.70 39117.43 38710.28 39725.05 3936.42 38942.39 38810.28 39514.71 39317.63 392
EMVS22.97 36021.84 36426.36 37740.20 39319.53 39641.95 38434.64 39217.09 3889.73 39822.83 3947.29 38842.22 3899.18 39713.66 39417.32 393
wuyk23d13.32 36412.52 36715.71 37947.54 38626.27 38631.06 3901.98 4044.93 3965.18 3991.94 3990.45 40418.54 3986.81 39912.83 3952.33 396
EGC-MVSNET42.47 34038.48 34854.46 33574.33 24648.73 23070.33 27951.10 3670.03 3990.18 40067.78 35313.28 37666.49 32318.91 38450.36 36448.15 381
testmvs4.52 3686.03 3710.01 3830.01 4040.00 40853.86 3630.00 4060.01 4000.04 4010.27 4000.00 4060.00 4010.04 4000.00 3990.03 398
test1234.73 3676.30 3700.02 3820.01 4040.01 40756.36 3560.00 4060.01 4000.04 4010.21 4010.01 4050.00 4010.03 4010.00 3990.04 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k17.50 36323.34 3620.00 3840.00 4060.00 4080.00 39578.63 1610.00 4020.00 40382.18 19149.25 1150.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.92 3695.23 3720.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 40247.05 1460.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
ab-mvs-re6.49 3668.65 3690.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 40377.89 2700.00 4060.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
WAC-MVS27.31 38227.77 369
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
eth-test20.00 406
eth-test0.00 406
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
save fliter86.17 3361.30 2883.98 4779.66 14059.00 120
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
GSMVS78.05 270
sam_mvs134.74 27178.05 270
sam_mvs33.43 286
MTGPAbinary80.97 123
test_post168.67 2903.64 39732.39 30369.49 30744.17 275
test_post3.55 39833.90 28166.52 322
patchmatchnet-post64.03 36634.50 27374.27 284
MTMP86.03 1917.08 401
gm-plane-assit71.40 28941.72 30148.85 27873.31 31682.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
agg_prior273.09 5587.93 4084.33 150
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
新几何276.12 180
旧先验183.04 7053.15 15967.52 29087.85 7144.08 17980.76 10078.03 273
无先验79.66 11074.30 23848.40 28480.78 20253.62 19879.03 262
原ACMM279.02 116
testdata272.18 29546.95 254
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 8955.96 111
plane_prior681.20 9656.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
plane_prior284.22 4064.52 25
plane_prior181.27 94
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 406
nn0.00 406
door-mid47.19 378
test1183.47 67
door47.60 376
HQP5-MVS54.94 131
BP-MVS67.04 93
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 9956.05 11085.54 126
ACMMP++_ref74.07 181
ACMMP++72.16 215
Test By Simon48.33 126