This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1484.26 591.86 667.01 190.84 379.48 491.38 288.42 9
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3085.97 191.84 866.87 390.83 578.63 1590.87 588.23 14
DVP-MVScopyleft80.84 481.64 378.42 3287.75 759.07 6387.85 585.03 3464.26 2783.82 892.00 364.82 890.75 878.66 1390.61 1185.45 108
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1083.81 1090.51 2163.71 1289.23 1881.51 188.44 2788.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4283.27 1391.83 1064.96 790.47 1076.41 2489.67 1886.84 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 4982.40 1492.12 259.64 1889.76 1478.70 1188.32 3186.79 59
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6082.20 1592.28 156.53 3389.70 1579.85 391.48 188.19 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1178.78 2290.64 1758.63 2487.24 4979.00 1090.37 1485.26 118
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3485.03 3466.96 377.58 2790.06 3459.47 2089.13 2078.67 1289.73 1687.03 51
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 778.03 2690.98 1454.26 5090.06 1278.42 1789.02 2387.69 31
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS78.82 1279.22 1177.60 4282.88 7457.83 7984.99 3088.13 261.86 7379.16 2090.75 1657.96 2587.09 5877.08 2190.18 1587.87 24
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5585.33 2762.86 5280.17 1790.03 3661.76 1488.95 2274.21 3288.67 2688.12 18
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4785.16 3062.88 5178.10 2491.26 1352.51 6788.39 2879.34 690.52 1386.78 60
9.1478.75 1483.10 6984.15 4188.26 159.90 10478.57 2390.36 2557.51 3086.86 6277.39 1889.52 21
ZNCC-MVS78.82 1278.67 1579.30 1386.43 2862.05 1886.62 1186.01 1863.32 4175.08 3790.47 2453.96 5488.68 2576.48 2389.63 2087.16 49
MP-MVS-pluss78.35 1878.46 1678.03 3884.96 5259.52 5282.93 5785.39 2662.15 6576.41 3191.51 1152.47 6986.78 6580.66 289.64 1987.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC78.58 1578.31 1779.39 1187.51 1262.61 1385.20 2984.42 4266.73 674.67 4689.38 4755.30 4189.18 1974.19 3387.34 4186.38 66
TSAR-MVS + MP.78.44 1778.28 1878.90 2584.96 5261.41 2684.03 4383.82 5859.34 11579.37 1989.76 4359.84 1687.62 4576.69 2286.74 5087.68 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft78.35 1878.26 1978.64 2986.54 2563.47 486.02 1983.55 6463.89 3573.60 5790.60 1854.85 4686.72 6677.20 2088.06 3585.74 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS69.38 278.56 1678.14 2079.83 683.60 6361.62 2384.17 4086.85 663.23 4473.84 5590.25 3057.68 2789.96 1374.62 3089.03 2287.89 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft78.02 2178.04 2177.98 3986.44 2760.81 3885.52 2684.36 4360.61 8779.05 2190.30 2855.54 4088.32 3073.48 4087.03 4384.83 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS78.14 2077.85 2278.99 2486.05 3861.82 2285.84 2085.21 2963.56 3974.29 5090.03 3652.56 6688.53 2774.79 2988.34 2986.63 63
HFP-MVS78.01 2277.65 2379.10 2086.71 1962.81 886.29 1484.32 4462.82 5373.96 5390.50 2253.20 6388.35 2974.02 3587.05 4286.13 80
SD-MVS77.70 2477.62 2477.93 4084.47 5961.88 2184.55 3283.87 5660.37 9479.89 1889.38 4754.97 4485.58 9576.12 2584.94 6086.33 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS77.48 2677.45 2577.54 4386.67 2058.36 7583.22 5386.93 556.91 15374.91 4188.19 5959.15 2287.68 4473.67 3887.45 4086.57 64
ACMMPR77.71 2377.23 2679.16 1686.75 1862.93 786.29 1484.24 4562.82 5373.55 5890.56 2049.80 9688.24 3174.02 3587.03 4386.32 74
region2R77.67 2577.18 2779.15 1786.76 1762.95 686.29 1484.16 4762.81 5573.30 6090.58 1949.90 9488.21 3273.78 3787.03 4386.29 77
HPM-MVScopyleft77.28 2776.85 2878.54 3085.00 5160.81 3882.91 5885.08 3162.57 5873.09 6689.97 3950.90 9087.48 4775.30 2686.85 4887.33 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CSCG76.92 3176.75 2977.41 4483.96 6259.60 5082.95 5686.50 1360.78 8575.27 3584.83 12060.76 1586.56 7167.86 7187.87 3986.06 82
CP-MVS77.12 3076.68 3078.43 3186.05 3863.18 587.55 1083.45 6762.44 6272.68 7290.50 2248.18 11487.34 4873.59 3985.71 5684.76 133
DeepC-MVS_fast68.24 377.25 2876.63 3179.12 1986.15 3460.86 3684.71 3184.85 3861.98 7273.06 6788.88 5353.72 5789.06 2168.27 6588.04 3687.42 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 2976.56 3279.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 7990.01 3847.95 11688.01 3671.55 5286.74 5086.37 68
MTAPA76.90 3276.42 3378.35 3386.08 3763.57 274.92 19580.97 12165.13 1375.77 3390.88 1548.63 10986.66 6877.23 1988.17 3384.81 130
casdiffmvs_mvgpermissive76.14 3976.30 3475.66 6976.46 20651.83 17379.67 10785.08 3165.02 1775.84 3288.58 5859.42 2185.08 10672.75 4383.93 7090.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
train_agg76.27 3776.15 3576.64 5385.58 4361.59 2481.62 8081.26 11355.86 17374.93 3988.81 5453.70 5884.68 11675.24 2888.33 3083.65 169
PGM-MVS76.77 3376.06 3678.88 2686.14 3562.73 982.55 6583.74 5961.71 7472.45 7890.34 2748.48 11288.13 3372.32 4586.85 4885.78 91
CS-MVS76.25 3875.98 3777.06 4880.15 11455.63 11584.51 3383.90 5363.24 4373.30 6087.27 7455.06 4386.30 8171.78 4984.58 6289.25 4
CANet76.46 3575.93 3878.06 3781.29 9257.53 8382.35 6783.31 7367.78 170.09 9686.34 9354.92 4588.90 2372.68 4484.55 6387.76 30
mPP-MVS76.54 3475.93 3878.34 3486.47 2663.50 385.74 2482.28 8962.90 5071.77 8290.26 2946.61 13986.55 7271.71 5085.66 5784.97 126
DROMVSNet75.84 4375.87 4075.74 6778.86 14052.65 15583.73 4886.08 1763.47 4072.77 7187.25 7553.13 6487.93 3871.97 4885.57 5886.66 62
SR-MVS76.13 4075.70 4177.40 4685.87 4061.20 2985.52 2682.19 9059.99 10375.10 3690.35 2647.66 12086.52 7371.64 5182.99 7684.47 139
CDPH-MVS76.31 3675.67 4278.22 3585.35 4859.14 6181.31 8584.02 4856.32 16574.05 5188.98 5253.34 6287.92 3969.23 6388.42 2887.59 36
PHI-MVS75.87 4275.36 4377.41 4480.62 10555.91 11084.28 3785.78 2056.08 17173.41 5986.58 8850.94 8988.54 2670.79 5589.71 1787.79 29
ACMMPcopyleft76.02 4175.33 4478.07 3685.20 4961.91 2085.49 2884.44 4163.04 4769.80 10689.74 4445.43 15287.16 5372.01 4782.87 8185.14 119
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test75.62 4575.31 4576.56 5580.63 10455.13 12383.88 4685.22 2862.05 6971.49 8686.03 10053.83 5686.36 7967.74 7286.91 4788.19 16
dcpmvs_274.55 5575.23 4672.48 14782.34 7753.34 14477.87 13081.46 10257.80 14275.49 3486.81 7862.22 1377.75 24671.09 5482.02 8986.34 70
DPM-MVS75.47 4675.00 4776.88 4981.38 9159.16 5879.94 10085.71 2256.59 16172.46 7686.76 7956.89 3187.86 4166.36 8488.91 2583.64 170
canonicalmvs74.67 5274.98 4873.71 11678.94 13950.56 18980.23 9483.87 5660.30 9877.15 2886.56 8959.65 1782.00 17266.01 8882.12 8788.58 8
casdiffmvspermissive74.80 4974.89 4974.53 9675.59 21850.37 19178.17 12685.06 3362.80 5674.40 4887.86 6657.88 2683.61 13669.46 6282.79 8389.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5374.70 5074.34 10075.70 21449.99 19977.54 13984.63 4062.73 5773.98 5287.79 6857.67 2883.82 13269.49 6082.74 8489.20 5
3Dnovator+66.72 475.84 4374.57 5179.66 882.40 7659.92 4785.83 2186.32 1666.92 567.80 14489.24 4942.03 18389.38 1764.07 10386.50 5389.69 2
DELS-MVS74.76 5074.46 5275.65 7077.84 17152.25 16575.59 17984.17 4663.76 3673.15 6382.79 16159.58 1986.80 6467.24 7886.04 5587.89 22
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVS_3200maxsize74.96 4774.39 5376.67 5282.20 7858.24 7683.67 4983.29 7458.41 12973.71 5690.14 3145.62 14585.99 8569.64 5982.85 8285.78 91
OPM-MVS74.73 5174.25 5476.19 5980.81 10059.01 6682.60 6483.64 6163.74 3772.52 7587.49 6947.18 13085.88 8869.47 6180.78 9783.66 168
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.74.90 4874.15 5577.17 4782.00 8058.77 7181.80 7778.57 15958.58 12674.32 4984.51 13055.94 3887.22 5067.11 7984.48 6585.52 104
alignmvs73.86 6173.99 5673.45 12778.20 15950.50 19078.57 12182.43 8759.40 11376.57 2986.71 8356.42 3581.23 18865.84 9081.79 9188.62 6
SR-MVS-dyc-post74.57 5473.90 5776.58 5483.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3244.74 15985.84 8968.20 6681.76 9284.03 149
MG-MVS73.96 6073.89 5874.16 10385.65 4249.69 20481.59 8281.29 11261.45 7671.05 8888.11 6051.77 7887.73 4361.05 13283.09 7485.05 123
ETV-MVS74.46 5673.84 5976.33 5879.27 13055.24 12279.22 11385.00 3664.97 1972.65 7379.46 23353.65 6187.87 4067.45 7782.91 7985.89 88
HQP_MVS74.31 5773.73 6076.06 6081.41 8956.31 9984.22 3884.01 4964.52 2369.27 11486.10 9745.26 15687.21 5168.16 6880.58 10184.65 134
RE-MVS-def73.71 6183.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3243.06 17468.20 6681.76 9284.03 149
MSLP-MVS++73.77 6273.47 6274.66 8983.02 7159.29 5782.30 7281.88 9459.34 11571.59 8586.83 7745.94 14383.65 13565.09 9785.22 5981.06 219
HPM-MVS_fast74.30 5873.46 6376.80 5084.45 6059.04 6583.65 5081.05 11860.15 10070.43 9289.84 4141.09 19885.59 9467.61 7582.90 8085.77 94
MVS_111021_HR74.02 5973.46 6375.69 6883.01 7260.63 4077.29 14778.40 17061.18 8070.58 9185.97 10254.18 5284.00 12967.52 7682.98 7882.45 194
nrg03072.96 6873.01 6572.84 14075.41 22150.24 19280.02 9882.89 8358.36 13174.44 4786.73 8158.90 2380.83 19865.84 9074.46 16787.44 40
UA-Net73.13 6672.93 6673.76 11283.58 6451.66 17478.75 11677.66 18167.75 272.61 7489.42 4549.82 9583.29 14153.61 18483.14 7386.32 74
HQP-MVS73.45 6372.80 6775.40 7480.66 10154.94 12482.31 6983.90 5362.10 6667.85 13985.54 11345.46 15086.93 6067.04 8080.35 10584.32 141
CLD-MVS73.33 6472.68 6875.29 7878.82 14253.33 14578.23 12584.79 3961.30 7970.41 9381.04 20152.41 7087.12 5664.61 10282.49 8685.41 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+73.31 6572.54 6975.62 7177.87 17053.64 13679.62 10979.61 13961.63 7572.02 8182.61 16656.44 3485.97 8663.99 10679.07 12587.25 48
MVS_Test72.45 7572.46 7072.42 15174.88 22648.50 21976.28 16783.14 7959.40 11372.46 7684.68 12255.66 3981.12 18965.98 8979.66 11387.63 34
EPNet73.09 6772.16 7175.90 6375.95 21256.28 10183.05 5472.39 24966.53 865.27 19287.00 7650.40 9285.47 10062.48 11986.32 5485.94 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VDD-MVS72.50 7372.09 7273.75 11481.58 8549.69 20477.76 13477.63 18263.21 4573.21 6289.02 5142.14 18283.32 14061.72 12682.50 8588.25 13
CPTT-MVS72.78 6972.08 7374.87 8484.88 5761.41 2684.15 4177.86 17755.27 18867.51 15088.08 6241.93 18581.85 17469.04 6480.01 10981.35 212
PAPM_NR72.63 7271.80 7475.13 8181.72 8453.42 14379.91 10283.28 7559.14 11766.31 17285.90 10551.86 7786.06 8257.45 15280.62 9985.91 86
LPG-MVS_test72.74 7071.74 7575.76 6580.22 10957.51 8482.55 6583.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
EI-MVSNet-Vis-set72.42 7671.59 7674.91 8278.47 15154.02 13277.05 15279.33 14565.03 1671.68 8479.35 23652.75 6584.89 11266.46 8374.23 17085.83 90
LFMVS71.78 8571.59 7672.32 15283.40 6746.38 24079.75 10571.08 25664.18 3072.80 7088.64 5742.58 17883.72 13357.41 15384.49 6486.86 56
h-mvs3372.71 7171.49 7876.40 5681.99 8159.58 5176.92 15676.74 19760.40 9174.81 4285.95 10445.54 14885.76 9170.41 5770.61 21983.86 157
FIs70.82 9971.43 7968.98 21478.33 15638.14 30976.96 15483.59 6361.02 8167.33 15286.73 8155.07 4281.64 17754.61 17779.22 12187.14 50
API-MVS72.17 8071.41 8074.45 9881.95 8257.22 8784.03 4380.38 13059.89 10768.40 12682.33 17349.64 9787.83 4251.87 19884.16 6978.30 251
3Dnovator64.47 572.49 7471.39 8175.79 6477.70 17458.99 6780.66 9283.15 7862.24 6465.46 18886.59 8742.38 18185.52 9659.59 14484.72 6182.85 188
Vis-MVSNetpermissive72.18 7971.37 8274.61 9281.29 9255.41 12080.90 8878.28 17260.73 8669.23 11788.09 6144.36 16482.65 16057.68 15181.75 9485.77 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDDNet71.81 8471.33 8373.26 13482.80 7547.60 23178.74 11775.27 21359.59 11272.94 6889.40 4641.51 19383.91 13058.75 14882.99 7688.26 12
EPP-MVSNet72.16 8171.31 8474.71 8678.68 14649.70 20282.10 7481.65 9860.40 9165.94 17785.84 10651.74 7986.37 7855.93 16179.55 11688.07 21
PS-MVSNAJss72.24 7871.21 8575.31 7678.50 14955.93 10981.63 7982.12 9156.24 16870.02 10085.68 11047.05 13284.34 12265.27 9674.41 16985.67 98
ACMP63.53 672.30 7771.20 8675.59 7380.28 10757.54 8282.74 6182.84 8460.58 8865.24 19686.18 9539.25 20986.03 8466.95 8276.79 15283.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
patch_mono-269.85 11771.09 8766.16 24579.11 13654.80 12871.97 24374.31 23053.50 21770.90 8984.17 13457.63 2963.31 31666.17 8582.02 8980.38 229
EI-MVSNet-UG-set71.92 8371.06 8874.52 9777.98 16853.56 13876.62 16079.16 14664.40 2571.18 8778.95 24152.19 7384.66 11865.47 9473.57 17885.32 115
UniMVSNet_NR-MVSNet71.11 9471.00 8971.44 16579.20 13244.13 26276.02 17582.60 8666.48 968.20 12984.60 12756.82 3282.82 15654.62 17570.43 22187.36 46
IS-MVSNet71.57 8871.00 8973.27 13378.86 14045.63 25180.22 9578.69 15664.14 3366.46 16887.36 7149.30 10085.60 9350.26 21183.71 7288.59 7
PAPR71.72 8770.82 9174.41 9981.20 9651.17 17679.55 11083.33 7255.81 17766.93 16084.61 12650.95 8886.06 8255.79 16479.20 12286.00 83
DP-MVS Recon72.15 8270.73 9276.40 5686.57 2457.99 7881.15 8782.96 8057.03 15066.78 16185.56 11144.50 16288.11 3451.77 20080.23 10883.10 183
EIA-MVS71.78 8570.60 9375.30 7779.85 11853.54 13977.27 14883.26 7657.92 13966.49 16779.39 23452.07 7586.69 6760.05 13879.14 12485.66 99
OMC-MVS71.40 9270.60 9373.78 11076.60 20253.15 14879.74 10679.78 13558.37 13068.75 12186.45 9145.43 15280.60 20262.58 11777.73 13987.58 37
FC-MVSNet-test69.80 12070.58 9567.46 22977.61 18234.73 33876.05 17383.19 7760.84 8365.88 18186.46 9054.52 4980.76 20152.52 19178.12 13686.91 54
diffmvspermissive70.69 10170.43 9671.46 16469.45 30248.95 21472.93 22778.46 16557.27 14771.69 8383.97 14151.48 8177.92 24370.70 5677.95 13887.53 38
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu71.45 9170.39 9774.65 9082.01 7958.82 7079.93 10180.35 13155.09 19365.82 18382.16 17949.17 10382.64 16160.34 13678.62 13382.50 193
MVSFormer71.50 9070.38 9874.88 8378.76 14357.15 9282.79 5978.48 16351.26 24169.49 10983.22 15543.99 16783.24 14266.06 8679.37 11784.23 144
UniMVSNet (Re)70.63 10270.20 9971.89 15478.55 14845.29 25375.94 17682.92 8163.68 3868.16 13283.59 14853.89 5583.49 13953.97 18071.12 21486.89 55
VNet69.68 12470.19 10068.16 22479.73 12041.63 28770.53 26277.38 18760.37 9470.69 9086.63 8551.08 8677.09 25453.61 18481.69 9685.75 96
GeoE71.01 9670.15 10173.60 12379.57 12352.17 16678.93 11578.12 17458.02 13767.76 14783.87 14252.36 7182.72 15856.90 15575.79 15985.92 85
MAR-MVS71.51 8970.15 10175.60 7281.84 8359.39 5481.38 8482.90 8254.90 20168.08 13578.70 24247.73 11885.51 9751.68 20284.17 6881.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TranMVSNet+NR-MVSNet70.36 10770.10 10371.17 17578.64 14742.97 27476.53 16281.16 11766.95 468.53 12585.42 11551.61 8083.07 14552.32 19269.70 23987.46 39
hse-mvs271.04 9569.86 10474.60 9379.58 12257.12 9473.96 21175.25 21460.40 9174.81 4281.95 18445.54 14882.90 14970.41 5766.83 26783.77 162
xiu_mvs_v2_base70.52 10369.75 10572.84 14081.21 9555.63 11575.11 18978.92 15054.92 20069.96 10379.68 22847.00 13682.09 17161.60 12879.37 11780.81 223
ACMM61.98 770.80 10069.73 10674.02 10480.59 10658.59 7382.68 6282.02 9355.46 18567.18 15584.39 13238.51 21683.17 14460.65 13476.10 15780.30 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJ70.51 10469.70 10772.93 13881.52 8655.79 11174.92 19579.00 14855.04 19869.88 10478.66 24347.05 13282.19 16961.61 12779.58 11480.83 222
114514_t70.83 9869.56 10874.64 9186.21 3154.63 12982.34 6881.81 9648.22 26863.01 22385.83 10740.92 19987.10 5757.91 15079.79 11082.18 197
mvsmamba71.15 9369.54 10975.99 6177.61 18253.46 14181.95 7675.11 21957.73 14366.95 15985.96 10337.14 23487.56 4667.94 7075.49 16386.97 52
DU-MVS70.01 11369.53 11071.44 16578.05 16544.13 26275.01 19281.51 10164.37 2668.20 12984.52 12849.12 10682.82 15654.62 17570.43 22187.37 44
PCF-MVS61.88 870.95 9769.49 11175.35 7577.63 17755.71 11276.04 17481.81 9650.30 25069.66 10785.40 11652.51 6784.89 11251.82 19980.24 10785.45 108
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet69.02 13869.47 11267.69 22777.42 18641.00 29174.04 20979.68 13760.06 10169.26 11684.81 12151.06 8777.58 24854.44 17874.43 16884.48 138
v2v48270.50 10569.45 11373.66 11872.62 26050.03 19877.58 13680.51 12859.90 10469.52 10882.14 18047.53 12384.88 11465.07 9870.17 22786.09 81
v114470.42 10669.31 11473.76 11273.22 24850.64 18677.83 13281.43 10358.58 12669.40 11281.16 19847.53 12385.29 10564.01 10570.64 21785.34 114
v870.33 10869.28 11573.49 12573.15 25050.22 19378.62 12080.78 12460.79 8466.45 16982.11 18249.35 9984.98 10963.58 11068.71 25385.28 116
test_yl69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
DCV-MVSNet69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
Fast-Effi-MVS+70.28 10969.12 11873.73 11578.50 14951.50 17575.01 19279.46 14356.16 17068.59 12279.55 23153.97 5384.05 12553.34 18677.53 14285.65 100
Anonymous2024052969.91 11669.02 11972.56 14580.19 11247.65 22977.56 13880.99 12055.45 18669.88 10486.76 7939.24 21082.18 17054.04 17977.10 14887.85 25
v1070.21 11069.02 11973.81 10973.51 24750.92 18178.74 11781.39 10460.05 10266.39 17081.83 18747.58 12285.41 10362.80 11668.86 25285.09 122
NR-MVSNet69.54 12868.85 12171.59 16378.05 16543.81 26674.20 20780.86 12365.18 1262.76 22584.52 12852.35 7283.59 13750.96 20770.78 21687.37 44
QAPM70.05 11268.81 12273.78 11076.54 20453.43 14283.23 5283.48 6552.89 22265.90 17986.29 9441.55 19286.49 7551.01 20578.40 13581.42 208
MVS_111021_LR69.50 12968.78 12371.65 16178.38 15359.33 5574.82 19770.11 26358.08 13467.83 14384.68 12241.96 18476.34 26265.62 9377.54 14179.30 245
v119269.97 11568.68 12473.85 10773.19 24950.94 17977.68 13581.36 10657.51 14568.95 12080.85 20845.28 15585.33 10462.97 11570.37 22385.27 117
AdaColmapbinary69.99 11468.66 12573.97 10684.94 5457.83 7982.63 6378.71 15556.28 16764.34 20884.14 13541.57 19087.06 5946.45 24078.88 12677.02 268
v14419269.71 12168.51 12673.33 13273.10 25150.13 19577.54 13980.64 12556.65 15568.57 12480.55 21146.87 13784.96 11162.98 11469.66 24084.89 128
FA-MVS(test-final)69.82 11868.48 12773.84 10878.44 15250.04 19775.58 18178.99 14958.16 13367.59 14882.14 18042.66 17685.63 9256.60 15676.19 15685.84 89
IterMVS-LS69.22 13768.48 12771.43 16774.44 23849.40 20876.23 16877.55 18359.60 10965.85 18281.59 19351.28 8381.58 18059.87 14269.90 23483.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121169.28 13468.47 12971.73 15880.28 10747.18 23579.98 9982.37 8854.61 20467.24 15384.01 13939.43 20782.41 16755.45 16972.83 19285.62 102
WR-MVS68.47 15168.47 12968.44 22180.20 11139.84 29573.75 21976.07 20364.68 2068.11 13483.63 14750.39 9379.14 22749.78 21269.66 24086.34 70
EI-MVSNet69.27 13568.44 13171.73 15874.47 23649.39 20975.20 18778.45 16659.60 10969.16 11876.51 27351.29 8282.50 16459.86 14371.45 21283.30 175
jason69.65 12568.39 13273.43 12978.27 15856.88 9677.12 15073.71 23946.53 28669.34 11383.22 15543.37 17179.18 22264.77 9979.20 12284.23 144
jason: jason.
lupinMVS69.57 12768.28 13373.44 12878.76 14357.15 9276.57 16173.29 24346.19 28969.49 10982.18 17643.99 16779.23 22164.66 10079.37 11783.93 152
v192192069.47 13068.17 13473.36 13173.06 25250.10 19677.39 14280.56 12656.58 16268.59 12280.37 21344.72 16084.98 10962.47 12069.82 23585.00 124
VPNet67.52 16968.11 13565.74 25479.18 13336.80 32472.17 24072.83 24662.04 7067.79 14585.83 10748.88 10876.60 25951.30 20372.97 19183.81 158
iter_conf_final69.82 11868.02 13675.23 7979.38 12752.91 15280.11 9773.96 23654.99 19968.04 13683.59 14829.05 30287.16 5365.41 9577.62 14085.63 101
v124069.24 13667.91 13773.25 13573.02 25449.82 20077.21 14980.54 12756.43 16468.34 12880.51 21243.33 17284.99 10762.03 12469.77 23884.95 127
test_djsdf69.45 13167.74 13874.58 9474.57 23554.92 12682.79 5978.48 16351.26 24165.41 18983.49 15338.37 21883.24 14266.06 8669.25 24685.56 103
PVSNet_BlendedMVS68.56 15067.72 13971.07 17877.03 19450.57 18774.50 20381.52 9953.66 21664.22 21379.72 22749.13 10482.87 15255.82 16273.92 17379.77 240
PVSNet_Blended68.59 14667.72 13971.19 17477.03 19450.57 18772.51 23581.52 9951.91 23064.22 21377.77 25949.13 10482.87 15255.82 16279.58 11480.14 233
CANet_DTU68.18 15767.71 14169.59 20474.83 22846.24 24278.66 11976.85 19459.60 10963.45 21982.09 18335.25 24877.41 25059.88 14178.76 13085.14 119
iter_conf0569.40 13367.62 14274.73 8577.84 17151.13 17779.28 11273.71 23954.62 20368.17 13183.59 14828.68 30787.16 5365.74 9276.95 14985.91 86
c3_l68.33 15367.56 14370.62 18570.87 28246.21 24374.47 20478.80 15356.22 16966.19 17378.53 24851.88 7681.40 18262.08 12169.04 24984.25 143
Baseline_NR-MVSNet67.05 18067.56 14365.50 25675.65 21537.70 31575.42 18274.65 22659.90 10468.14 13383.15 15849.12 10677.20 25252.23 19369.78 23681.60 206
OpenMVScopyleft61.03 968.85 14067.56 14372.70 14474.26 24253.99 13381.21 8681.34 11052.70 22362.75 22685.55 11238.86 21484.14 12448.41 22783.01 7579.97 235
Effi-MVS+-dtu69.64 12667.53 14675.95 6276.10 21062.29 1580.20 9676.06 20459.83 10865.26 19577.09 26341.56 19184.02 12860.60 13571.09 21581.53 207
ECVR-MVScopyleft67.72 16667.51 14768.35 22279.46 12536.29 33274.79 19866.93 28558.72 12267.19 15488.05 6336.10 24281.38 18352.07 19584.25 6687.39 42
mvs_anonymous68.03 15967.51 14769.59 20472.08 26844.57 26071.99 24275.23 21551.67 23167.06 15682.57 16754.68 4777.94 24256.56 15775.71 16186.26 78
RRT_MVS69.42 13267.49 14975.21 8078.01 16752.56 15982.23 7378.15 17355.84 17565.65 18485.07 11730.86 28986.83 6361.56 13070.00 23086.24 79
XVG-OURS-SEG-HR68.81 14167.47 15072.82 14274.40 23956.87 9770.59 26179.04 14754.77 20266.99 15786.01 10139.57 20678.21 23962.54 11873.33 18483.37 174
BH-RMVSNet68.81 14167.42 15172.97 13780.11 11552.53 16074.26 20676.29 20058.48 12868.38 12784.20 13342.59 17783.83 13146.53 23975.91 15882.56 189
UGNet68.81 14167.39 15273.06 13678.33 15654.47 13079.77 10475.40 21260.45 9063.22 22084.40 13132.71 27880.91 19751.71 20180.56 10383.81 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 14467.37 15372.90 13974.32 24157.22 8770.09 26878.81 15255.24 18967.79 14585.81 10936.54 24178.28 23862.04 12375.74 16083.19 180
v7n69.01 13967.36 15473.98 10572.51 26352.65 15578.54 12381.30 11160.26 9962.67 22781.62 19043.61 16984.49 11957.01 15468.70 25484.79 131
V4268.65 14567.35 15572.56 14568.93 30750.18 19472.90 22879.47 14256.92 15269.45 11180.26 21746.29 14182.99 14664.07 10367.82 26084.53 136
BH-untuned68.27 15467.29 15671.21 17379.74 11953.22 14776.06 17277.46 18657.19 14866.10 17481.61 19145.37 15483.50 13845.42 25476.68 15476.91 272
xiu_mvs_v1_base_debu68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base_debi68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
X-MVStestdata70.21 11067.28 15779.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 796.49 37447.95 11688.01 3671.55 5286.74 5086.37 68
tt080567.77 16567.24 16169.34 20974.87 22740.08 29377.36 14381.37 10555.31 18766.33 17184.65 12437.35 22982.55 16355.65 16772.28 20385.39 113
miper_ehance_all_eth68.03 15967.24 16170.40 18970.54 28546.21 24373.98 21078.68 15755.07 19666.05 17577.80 25752.16 7481.31 18561.53 13169.32 24383.67 166
v14868.24 15667.19 16371.40 16870.43 28747.77 22875.76 17877.03 19258.91 11967.36 15180.10 22048.60 11181.89 17360.01 13966.52 27084.53 136
test111167.21 17367.14 16467.42 23079.24 13134.76 33773.89 21665.65 29258.71 12466.96 15887.95 6536.09 24380.53 20352.03 19683.79 7186.97 52
UniMVSNet_ETH3D67.60 16867.07 16569.18 21377.39 18742.29 27874.18 20875.59 20960.37 9466.77 16286.06 9937.64 22578.93 23452.16 19473.49 18086.32 74
WR-MVS_H67.02 18166.92 16667.33 23377.95 16937.75 31377.57 13782.11 9262.03 7162.65 22882.48 17050.57 9179.46 21742.91 27464.01 28684.79 131
PAPM67.92 16266.69 16771.63 16278.09 16349.02 21277.09 15181.24 11551.04 24460.91 24783.98 14047.71 11984.99 10740.81 28779.32 12080.90 221
GBi-Net67.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
test167.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
cl2267.47 17066.45 17070.54 18769.85 29846.49 23973.85 21777.35 18855.07 19665.51 18777.92 25347.64 12181.10 19061.58 12969.32 24384.01 151
jajsoiax68.25 15566.45 17073.66 11875.62 21655.49 11980.82 8978.51 16252.33 22764.33 20984.11 13628.28 30981.81 17663.48 11170.62 21883.67 166
PEN-MVS66.60 19066.45 17067.04 23477.11 19236.56 32677.03 15380.42 12962.95 4862.51 23384.03 13846.69 13879.07 22844.22 25863.08 29585.51 105
ab-mvs66.65 18966.42 17367.37 23176.17 20941.73 28470.41 26576.14 20253.99 21165.98 17683.51 15249.48 9876.24 26348.60 22573.46 18284.14 147
AUN-MVS68.45 15266.41 17474.57 9579.53 12457.08 9573.93 21475.23 21554.44 20966.69 16481.85 18637.10 23682.89 15062.07 12266.84 26683.75 163
CP-MVSNet66.49 19366.41 17466.72 23677.67 17636.33 32976.83 15979.52 14162.45 6162.54 23183.47 15446.32 14078.37 23645.47 25363.43 29285.45 108
mvs_tets68.18 15766.36 17673.63 12175.61 21755.35 12180.77 9078.56 16052.48 22664.27 21184.10 13727.45 31581.84 17563.45 11270.56 22083.69 165
MVS67.37 17166.33 17770.51 18875.46 22050.94 17973.95 21281.85 9541.57 32462.54 23178.57 24747.98 11585.47 10052.97 18982.05 8875.14 284
PS-CasMVS66.42 19466.32 17866.70 23877.60 18436.30 33176.94 15579.61 13962.36 6362.43 23583.66 14645.69 14478.37 23645.35 25563.26 29385.42 111
FMVSNet266.93 18366.31 17968.79 21777.63 17742.98 27376.11 17077.47 18456.62 15865.22 19882.17 17841.85 18680.18 21147.05 23772.72 19683.20 179
eth_miper_zixun_eth67.63 16766.28 18071.67 16071.60 27448.33 22173.68 22077.88 17655.80 17865.91 17878.62 24647.35 12982.88 15159.45 14566.25 27183.81 158
cl____67.18 17666.26 18169.94 19670.20 29045.74 24773.30 22276.83 19555.10 19165.27 19279.57 23047.39 12780.53 20359.41 14769.22 24783.53 172
DIV-MVS_self_test67.18 17666.26 18169.94 19670.20 29045.74 24773.29 22376.83 19555.10 19165.27 19279.58 22947.38 12880.53 20359.43 14669.22 24783.54 171
miper_enhance_ethall67.11 17966.09 18370.17 19369.21 30445.98 24572.85 22978.41 16951.38 23865.65 18475.98 28151.17 8581.25 18660.82 13369.32 24383.29 177
Anonymous20240521166.84 18565.99 18469.40 20880.19 11242.21 27971.11 25671.31 25558.80 12167.90 13786.39 9229.83 29779.65 21449.60 21878.78 12986.33 72
FMVSNet166.70 18865.87 18569.19 21077.49 18543.33 26977.31 14477.83 17856.45 16364.60 20782.70 16238.08 22380.33 20846.08 24372.31 20283.92 153
BH-w/o66.85 18465.83 18669.90 19979.29 12852.46 16274.66 20176.65 19854.51 20864.85 20378.12 24945.59 14782.95 14843.26 27075.54 16274.27 297
thisisatest053067.92 16265.78 18774.33 10176.29 20751.03 17876.89 15774.25 23253.67 21565.59 18681.76 18835.15 24985.50 9855.94 16072.47 19786.47 65
ET-MVSNet_ETH3D67.96 16165.72 18874.68 8876.67 20055.62 11775.11 18974.74 22452.91 22160.03 25380.12 21933.68 26482.64 16161.86 12576.34 15585.78 91
tttt051767.83 16465.66 18974.33 10176.69 19950.82 18377.86 13173.99 23554.54 20764.64 20682.53 16935.06 25085.50 9855.71 16569.91 23386.67 61
FMVSNet366.32 19565.61 19068.46 22076.48 20542.34 27774.98 19477.15 19155.83 17665.04 19981.16 19839.91 20280.14 21247.18 23472.76 19382.90 187
MVSTER67.16 17865.58 19171.88 15570.37 28949.70 20270.25 26778.45 16651.52 23569.16 11880.37 21338.45 21782.50 16460.19 13771.46 21183.44 173
CDS-MVSNet66.80 18665.37 19271.10 17778.98 13853.13 15073.27 22471.07 25752.15 22964.72 20480.23 21843.56 17077.10 25345.48 25278.88 12683.05 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DTE-MVSNet65.58 20265.34 19366.31 24176.06 21134.79 33576.43 16479.38 14462.55 5961.66 24283.83 14345.60 14679.15 22641.64 28660.88 30985.00 124
Fast-Effi-MVS+-dtu67.37 17165.33 19473.48 12672.94 25557.78 8177.47 14176.88 19357.60 14461.97 23876.85 26739.31 20880.49 20654.72 17470.28 22682.17 199
TAMVS66.78 18765.27 19571.33 17279.16 13553.67 13573.84 21869.59 26752.32 22865.28 19181.72 18944.49 16377.40 25142.32 27878.66 13282.92 185
TAPA-MVS59.36 1066.60 19065.20 19670.81 18176.63 20148.75 21676.52 16380.04 13450.64 24865.24 19684.93 11939.15 21178.54 23536.77 30776.88 15185.14 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 19265.07 19771.17 17579.18 13349.63 20673.48 22175.20 21752.95 22067.90 13780.33 21639.81 20483.68 13443.20 27173.56 17980.20 231
pm-mvs165.24 20864.97 19866.04 24972.38 26439.40 30072.62 23275.63 20855.53 18462.35 23783.18 15747.45 12576.47 26049.06 22266.54 26982.24 196
anonymousdsp67.00 18264.82 19973.57 12470.09 29356.13 10476.35 16577.35 18848.43 26664.99 20280.84 20933.01 27180.34 20764.66 10067.64 26284.23 144
test250665.33 20764.61 20067.50 22879.46 12534.19 34274.43 20551.92 34558.72 12266.75 16388.05 6325.99 32580.92 19651.94 19784.25 6687.39 42
TransMVSNet (Re)64.72 21364.33 20165.87 25375.22 22338.56 30674.66 20175.08 22358.90 12061.79 24182.63 16551.18 8478.07 24143.63 26755.87 32980.99 220
ACMH+57.40 1166.12 19664.06 20272.30 15377.79 17352.83 15380.39 9378.03 17557.30 14657.47 28082.55 16827.68 31384.17 12345.54 25069.78 23679.90 236
CNLPA65.43 20464.02 20369.68 20278.73 14558.07 7777.82 13370.71 26051.49 23661.57 24483.58 15138.23 22170.82 28443.90 26470.10 22980.16 232
HY-MVS56.14 1364.55 21763.89 20466.55 23974.73 23241.02 28969.96 26974.43 22749.29 25761.66 24280.92 20547.43 12676.68 25844.91 25771.69 20881.94 202
Vis-MVSNet (Re-imp)63.69 22263.88 20563.14 27374.75 23131.04 35571.16 25463.64 30556.32 16559.80 25884.99 11844.51 16175.46 26539.12 29680.62 9982.92 185
baseline163.81 22163.87 20663.62 26876.29 20736.36 32771.78 24667.29 28256.05 17264.23 21282.95 16047.11 13174.41 27047.30 23361.85 30380.10 234
MVP-Stereo65.41 20563.80 20770.22 19077.62 18155.53 11876.30 16678.53 16150.59 24956.47 28678.65 24439.84 20382.68 15944.10 26272.12 20572.44 313
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS65.53 20363.70 20871.02 17970.87 28248.10 22370.48 26374.40 22856.69 15464.70 20576.77 26833.66 26581.10 19055.42 17070.32 22583.87 156
DP-MVS65.68 20063.66 20971.75 15784.93 5556.87 9780.74 9173.16 24453.06 21959.09 26782.35 17236.79 24085.94 8732.82 32969.96 23272.45 312
ACMH55.70 1565.20 20963.57 21070.07 19478.07 16452.01 17179.48 11179.69 13655.75 17956.59 28580.98 20327.12 31780.94 19442.90 27571.58 21077.25 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest051565.83 19963.50 21172.82 14273.75 24549.50 20771.32 25073.12 24549.39 25663.82 21576.50 27534.95 25284.84 11553.20 18875.49 16384.13 148
cascas65.98 19763.42 21273.64 12077.26 19052.58 15872.26 23977.21 19048.56 26361.21 24674.60 29332.57 28285.82 9050.38 21076.75 15382.52 192
1112_ss64.00 22063.36 21365.93 25179.28 12942.58 27671.35 24972.36 25046.41 28760.55 24977.89 25546.27 14273.28 27446.18 24269.97 23181.92 203
FE-MVS65.91 19863.33 21473.63 12177.36 18851.95 17272.62 23275.81 20553.70 21465.31 19078.96 24028.81 30686.39 7743.93 26373.48 18182.55 190
bld_raw_dy_0_6464.87 21263.22 21569.83 20174.79 23053.32 14678.15 12762.02 31651.20 24360.17 25183.12 15924.15 33474.20 27363.08 11372.33 20081.96 201
131464.61 21663.21 21668.80 21671.87 27247.46 23273.95 21278.39 17142.88 31759.97 25476.60 27238.11 22279.39 21954.84 17372.32 20179.55 241
PLCcopyleft56.13 1465.09 21063.21 21670.72 18481.04 9854.87 12778.57 12177.47 18448.51 26455.71 28981.89 18533.71 26379.71 21341.66 28470.37 22377.58 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test65.67 20163.01 21873.67 11779.97 11755.65 11469.07 27675.52 21042.68 31863.53 21877.95 25140.43 20081.64 17746.01 24471.91 20683.73 164
EG-PatchMatch MVS64.71 21462.87 21970.22 19077.68 17553.48 14077.99 12978.82 15153.37 21856.03 28877.41 26224.75 33284.04 12646.37 24173.42 18373.14 304
CHOSEN 1792x268865.08 21162.84 22071.82 15681.49 8856.26 10266.32 28874.20 23340.53 32963.16 22278.65 24441.30 19477.80 24545.80 24674.09 17181.40 209
pmmvs663.69 22262.82 22166.27 24370.63 28439.27 30173.13 22575.47 21152.69 22459.75 26082.30 17439.71 20577.03 25547.40 23264.35 28582.53 191
IB-MVS56.42 1265.40 20662.73 22273.40 13074.89 22552.78 15473.09 22675.13 21855.69 18058.48 27473.73 29932.86 27386.32 8050.63 20870.11 22881.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer64.04 21962.51 22368.61 21971.88 27145.77 24671.30 25170.60 26147.55 27664.31 21076.61 27141.63 18979.62 21649.74 21469.00 25080.42 227
LS3D64.71 21462.50 22471.34 17179.72 12155.71 11279.82 10374.72 22548.50 26556.62 28484.62 12533.59 26682.34 16829.65 34875.23 16575.97 276
thres100view90063.28 22762.41 22565.89 25277.31 18938.66 30572.65 23069.11 27357.07 14962.45 23481.03 20237.01 23879.17 22331.84 33373.25 18679.83 238
thres600view763.30 22662.27 22666.41 24077.18 19138.87 30372.35 23769.11 27356.98 15162.37 23680.96 20437.01 23879.00 23231.43 34073.05 19081.36 210
XVG-ACMP-BASELINE64.36 21862.23 22770.74 18372.35 26552.45 16370.80 26078.45 16653.84 21359.87 25681.10 20016.24 34979.32 22055.64 16871.76 20780.47 226
tfpn200view963.18 22962.18 22866.21 24476.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18679.83 238
thres40063.31 22562.18 22866.72 23676.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18681.36 210
EPNet_dtu61.90 24161.97 23061.68 28272.89 25639.78 29675.85 17765.62 29355.09 19354.56 30479.36 23537.59 22667.02 30339.80 29376.95 14978.25 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res62.32 23661.77 23164.00 26779.08 13739.53 29968.17 27870.17 26243.25 31359.03 26879.90 22244.08 16571.24 28343.79 26668.42 25681.25 213
XXY-MVS60.68 25061.67 23257.70 30570.43 28738.45 30764.19 30366.47 28748.05 27163.22 22080.86 20749.28 10160.47 32545.25 25667.28 26474.19 298
tfpnnormal62.47 23461.63 23364.99 26274.81 22939.01 30271.22 25273.72 23855.22 19060.21 25080.09 22141.26 19776.98 25630.02 34668.09 25878.97 248
IterMVS-SCA-FT62.49 23361.52 23465.40 25871.99 27050.80 18471.15 25569.63 26645.71 29560.61 24877.93 25237.45 22765.99 30955.67 16663.50 29179.42 243
MS-PatchMatch62.42 23561.46 23565.31 26075.21 22452.10 16772.05 24174.05 23446.41 28757.42 28174.36 29434.35 25877.57 24945.62 24973.67 17566.26 343
LCM-MVSNet-Re61.88 24261.35 23663.46 26974.58 23431.48 35461.42 31458.14 32758.71 12453.02 31979.55 23143.07 17376.80 25745.69 24777.96 13782.11 200
IterMVS62.79 23261.27 23767.35 23269.37 30352.04 17071.17 25368.24 27852.63 22559.82 25776.91 26637.32 23072.36 27752.80 19063.19 29477.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline263.42 22461.26 23869.89 20072.55 26247.62 23071.54 24768.38 27750.11 25154.82 30075.55 28543.06 17480.96 19348.13 22867.16 26581.11 217
LTVRE_ROB55.42 1663.15 23061.23 23968.92 21576.57 20347.80 22659.92 32276.39 19954.35 21058.67 27182.46 17129.44 30081.49 18142.12 28071.14 21377.46 261
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20062.20 23861.16 24065.34 25975.38 22239.99 29469.60 27169.29 27155.64 18361.87 24076.99 26437.07 23778.96 23331.28 34173.28 18577.06 267
test_040263.25 22861.01 24169.96 19580.00 11654.37 13176.86 15872.02 25154.58 20658.71 27080.79 21035.00 25184.36 12126.41 35764.71 28271.15 328
CL-MVSNet_self_test61.53 24560.94 24263.30 27168.95 30636.93 32367.60 28272.80 24755.67 18159.95 25576.63 26945.01 15872.22 28039.74 29462.09 30280.74 224
miper_lstm_enhance62.03 24060.88 24365.49 25766.71 32046.25 24156.29 33575.70 20750.68 24661.27 24575.48 28640.21 20168.03 29856.31 15965.25 27882.18 197
F-COLMAP63.05 23160.87 24469.58 20676.99 19653.63 13778.12 12876.16 20147.97 27252.41 32081.61 19127.87 31178.11 24040.07 29066.66 26877.00 269
WTY-MVS59.75 25660.39 24557.85 30372.32 26637.83 31261.05 31964.18 30345.95 29461.91 23979.11 23947.01 13560.88 32442.50 27769.49 24274.83 290
D2MVS62.30 23760.29 24668.34 22366.46 32248.42 22065.70 29173.42 24147.71 27458.16 27675.02 28930.51 29177.71 24753.96 18171.68 20978.90 249
tpm262.07 23960.10 24767.99 22572.79 25743.86 26571.05 25866.85 28643.14 31562.77 22475.39 28738.32 21980.80 19941.69 28368.88 25179.32 244
pmmvs461.48 24759.39 24867.76 22671.57 27553.86 13471.42 24865.34 29544.20 30559.46 26277.92 25335.90 24474.71 26843.87 26564.87 28174.71 293
MSDG61.81 24359.23 24969.55 20772.64 25952.63 15770.45 26475.81 20551.38 23853.70 31176.11 27729.52 29881.08 19237.70 30265.79 27574.93 289
CVMVSNet59.63 25759.14 25061.08 28774.47 23638.84 30475.20 18768.74 27531.15 34558.24 27576.51 27332.39 28368.58 29649.77 21365.84 27475.81 278
test_vis1_n_192058.86 25959.06 25158.25 29863.76 33443.14 27267.49 28366.36 28940.22 33165.89 18071.95 30931.04 28759.75 32959.94 14064.90 28071.85 321
COLMAP_ROBcopyleft52.97 1761.27 24958.81 25268.64 21874.63 23352.51 16178.42 12473.30 24249.92 25450.96 32581.51 19423.06 33679.40 21831.63 33765.85 27374.01 300
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo61.65 24458.80 25370.20 19275.80 21347.22 23475.59 17969.68 26554.61 20454.11 30879.26 23727.07 31882.96 14743.27 26949.79 34680.41 228
tpmrst58.24 26458.70 25456.84 30666.97 31734.32 34069.57 27261.14 31947.17 28358.58 27371.60 31041.28 19660.41 32649.20 22062.84 29675.78 279
OurMVSNet-221017-061.37 24858.63 25569.61 20372.05 26948.06 22473.93 21472.51 24847.23 28254.74 30180.92 20521.49 34381.24 18748.57 22656.22 32879.53 242
RPMNet61.53 24558.42 25670.86 18069.96 29652.07 16865.31 29781.36 10643.20 31459.36 26370.15 32135.37 24785.47 10036.42 31464.65 28375.06 285
SCA60.49 25158.38 25766.80 23574.14 24448.06 22463.35 30563.23 30849.13 25959.33 26672.10 30637.45 22774.27 27144.17 25962.57 29878.05 255
PatchmatchNetpermissive59.84 25558.24 25864.65 26473.05 25346.70 23869.42 27362.18 31447.55 27658.88 26971.96 30834.49 25669.16 29342.99 27363.60 29078.07 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm57.34 27158.16 25954.86 31371.80 27334.77 33667.47 28456.04 33748.20 26960.10 25276.92 26537.17 23353.41 35140.76 28865.01 27976.40 275
OpenMVS_ROBcopyleft52.78 1860.03 25358.14 26065.69 25570.47 28644.82 25575.33 18370.86 25945.04 29756.06 28776.00 27826.89 32079.65 21435.36 31967.29 26372.60 309
test-LLR58.15 26658.13 26158.22 29968.57 30844.80 25665.46 29457.92 32850.08 25255.44 29269.82 32332.62 27957.44 33649.66 21673.62 17672.41 314
CR-MVSNet59.91 25457.90 26265.96 25069.96 29652.07 16865.31 29763.15 30942.48 31959.36 26374.84 29035.83 24570.75 28545.50 25164.65 28375.06 285
PVSNet50.76 1958.40 26357.39 26361.42 28475.53 21944.04 26461.43 31363.45 30647.04 28456.91 28273.61 30027.00 31964.76 31239.12 29672.40 19875.47 282
MVS_030458.51 26157.36 26461.96 28170.04 29441.83 28269.40 27465.46 29450.73 24553.30 31874.06 29722.65 33770.18 29142.16 27968.44 25573.86 302
K. test v360.47 25257.11 26570.56 18673.74 24648.22 22275.10 19162.55 31258.27 13253.62 31476.31 27627.81 31281.59 17947.42 23139.18 35981.88 204
MIMVSNet57.35 27057.07 26658.22 29974.21 24337.18 31862.46 30860.88 32048.88 26155.29 29575.99 28031.68 28662.04 32131.87 33272.35 19975.43 283
MDTV_nov1_ep1357.00 26772.73 25838.26 30865.02 30064.73 30044.74 29955.46 29172.48 30432.61 28170.47 28637.47 30367.75 261
tpmvs58.47 26256.95 26863.03 27570.20 29041.21 28867.90 28167.23 28349.62 25554.73 30270.84 31434.14 25976.24 26336.64 31161.29 30771.64 322
tpm cat159.25 25856.95 26866.15 24672.19 26746.96 23668.09 27965.76 29140.03 33357.81 27870.56 31638.32 21974.51 26938.26 30061.50 30677.00 269
sss56.17 27956.57 27054.96 31266.93 31836.32 33057.94 32861.69 31741.67 32258.64 27275.32 28838.72 21556.25 34242.04 28166.19 27272.31 317
Patchmtry57.16 27256.47 27159.23 29169.17 30534.58 33962.98 30663.15 30944.53 30156.83 28374.84 29035.83 24568.71 29540.03 29160.91 30874.39 296
gg-mvs-nofinetune57.86 26856.43 27262.18 27972.62 26035.35 33466.57 28556.33 33450.65 24757.64 27957.10 35430.65 29076.36 26137.38 30478.88 12674.82 291
pmmvs-eth3d58.81 26056.31 27366.30 24267.61 31452.42 16472.30 23864.76 29943.55 31154.94 29974.19 29628.95 30372.60 27643.31 26857.21 32373.88 301
CMPMVSbinary42.80 2157.81 26955.97 27463.32 27060.98 34747.38 23364.66 30169.50 26832.06 34446.83 34077.80 25729.50 29971.36 28248.68 22473.75 17471.21 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-mter56.42 27655.82 27558.22 29968.57 30844.80 25665.46 29457.92 32839.94 33455.44 29269.82 32321.92 34057.44 33649.66 21673.62 17672.41 314
pmmvs556.47 27555.68 27658.86 29561.41 34436.71 32566.37 28762.75 31140.38 33053.70 31176.62 27034.56 25467.05 30240.02 29265.27 27772.83 307
Patchmatch-RL test58.16 26555.49 27766.15 24667.92 31348.89 21560.66 32051.07 34847.86 27359.36 26362.71 34834.02 26172.27 27956.41 15859.40 31677.30 263
ppachtmachnet_test58.06 26755.38 27866.10 24869.51 30048.99 21368.01 28066.13 29044.50 30254.05 30970.74 31532.09 28572.34 27836.68 31056.71 32776.99 271
Anonymous2023120655.10 28755.30 27954.48 31569.81 29933.94 34462.91 30762.13 31541.08 32655.18 29675.65 28332.75 27756.59 34130.32 34567.86 25972.91 305
FMVSNet555.86 28054.93 28058.66 29771.05 28136.35 32864.18 30462.48 31346.76 28550.66 33074.73 29225.80 32664.04 31433.11 32765.57 27675.59 281
TESTMET0.1,155.28 28454.90 28156.42 30766.56 32143.67 26765.46 29456.27 33539.18 33653.83 31067.44 33524.21 33355.46 34648.04 22973.11 18970.13 334
AllTest57.08 27354.65 28264.39 26571.44 27649.03 21069.92 27067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
PatchMatch-RL56.25 27854.55 28361.32 28677.06 19356.07 10665.57 29354.10 34244.13 30753.49 31771.27 31325.20 32966.78 30436.52 31363.66 28961.12 346
our_test_356.49 27454.42 28462.68 27769.51 30045.48 25266.08 28961.49 31844.11 30850.73 32969.60 32633.05 27068.15 29738.38 29956.86 32474.40 295
Anonymous2024052155.30 28354.41 28557.96 30260.92 34941.73 28471.09 25771.06 25841.18 32548.65 33473.31 30116.93 34759.25 33142.54 27664.01 28672.90 306
EU-MVSNet55.61 28254.41 28559.19 29365.41 32833.42 34672.44 23671.91 25228.81 34751.27 32373.87 29824.76 33169.08 29443.04 27258.20 32075.06 285
MIMVSNet155.17 28654.31 28757.77 30470.03 29532.01 35265.68 29264.81 29849.19 25846.75 34176.00 27825.53 32864.04 31428.65 35162.13 30177.26 265
USDC56.35 27754.24 28862.69 27664.74 33040.31 29265.05 29973.83 23743.93 30947.58 33677.71 26015.36 35175.05 26738.19 30161.81 30472.70 308
RPSCF55.80 28154.22 28960.53 28865.13 32942.91 27564.30 30257.62 33036.84 33958.05 27782.28 17528.01 31056.24 34337.14 30558.61 31982.44 195
test20.0353.87 29154.02 29053.41 32361.47 34328.11 36261.30 31559.21 32351.34 24052.09 32177.43 26133.29 26958.55 33329.76 34760.27 31473.58 303
KD-MVS_self_test55.22 28553.89 29159.21 29257.80 35427.47 36457.75 33074.32 22947.38 27850.90 32670.00 32228.45 30870.30 28940.44 28957.92 32179.87 237
EPMVS53.96 28953.69 29254.79 31466.12 32531.96 35362.34 31049.05 35144.42 30455.54 29071.33 31230.22 29456.70 33941.65 28562.54 29975.71 280
test0.0.03 153.32 29653.59 29352.50 32762.81 33929.45 35859.51 32354.11 34150.08 25254.40 30674.31 29532.62 27955.92 34430.50 34463.95 28872.15 319
PatchT53.17 29753.44 29452.33 32868.29 31225.34 36958.21 32754.41 34044.46 30354.56 30469.05 32933.32 26860.94 32336.93 30661.76 30570.73 331
PMMVS53.96 28953.26 29556.04 30862.60 34050.92 18161.17 31756.09 33632.81 34353.51 31666.84 33834.04 26059.93 32844.14 26168.18 25757.27 352
UnsupCasMVSNet_eth53.16 29852.47 29655.23 31159.45 35133.39 34759.43 32469.13 27245.98 29150.35 33272.32 30529.30 30158.26 33442.02 28244.30 35274.05 299
testgi51.90 30052.37 29750.51 33360.39 35023.55 37258.42 32658.15 32649.03 26051.83 32279.21 23822.39 33855.59 34529.24 35062.64 29772.40 316
TinyColmap54.14 28851.72 29861.40 28566.84 31941.97 28066.52 28668.51 27644.81 29842.69 35275.77 28211.66 35772.94 27531.96 33156.77 32669.27 339
dp51.89 30151.60 29952.77 32668.44 31132.45 35162.36 30954.57 33944.16 30649.31 33367.91 33128.87 30556.61 34033.89 32354.89 33169.24 340
KD-MVS_2432*160053.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
miper_refine_blended53.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
MDA-MVSNet-bldmvs53.87 29150.81 30263.05 27466.25 32348.58 21856.93 33363.82 30448.09 27041.22 35370.48 31930.34 29368.00 29934.24 32245.92 35172.57 310
TDRefinement53.44 29550.72 30361.60 28364.31 33346.96 23670.89 25965.27 29741.78 32044.61 34777.98 25011.52 35966.36 30728.57 35251.59 34071.49 325
test_fmvs151.32 30550.48 30453.81 31953.57 35637.51 31660.63 32151.16 34628.02 35163.62 21769.23 32816.41 34853.93 35051.01 20560.70 31169.99 335
test_fmvs1_n51.37 30350.35 30554.42 31752.85 35737.71 31461.16 31851.93 34428.15 34963.81 21669.73 32513.72 35253.95 34951.16 20460.65 31271.59 323
PM-MVS52.33 29950.19 30658.75 29662.10 34145.14 25465.75 29040.38 36543.60 31053.52 31572.65 3039.16 36565.87 31050.41 20954.18 33465.24 345
YYNet150.73 30648.96 30756.03 30961.10 34641.78 28351.94 34456.44 33340.94 32844.84 34567.80 33330.08 29555.08 34736.77 30750.71 34271.22 326
MDA-MVSNet_test_wron50.71 30748.95 30856.00 31061.17 34541.84 28151.90 34556.45 33240.96 32744.79 34667.84 33230.04 29655.07 34836.71 30950.69 34371.11 329
UnsupCasMVSNet_bld50.07 30848.87 30953.66 32060.97 34833.67 34557.62 33164.56 30139.47 33547.38 33764.02 34627.47 31459.32 33034.69 32143.68 35367.98 342
ADS-MVSNet251.33 30448.76 31059.07 29466.02 32644.60 25950.90 34659.76 32236.90 33750.74 32766.18 34026.38 32163.11 31727.17 35354.76 33269.50 337
test_vis1_n49.89 30948.69 31153.50 32253.97 35537.38 31761.53 31247.33 35728.54 34859.62 26167.10 33713.52 35352.27 35449.07 22157.52 32270.84 330
Patchmatch-test49.08 31048.28 31251.50 33164.40 33230.85 35645.68 35648.46 35435.60 34046.10 34472.10 30634.47 25746.37 36127.08 35560.65 31277.27 264
ADS-MVSNet48.48 31247.77 31350.63 33266.02 32629.92 35750.90 34650.87 35036.90 33750.74 32766.18 34026.38 32152.47 35327.17 35354.76 33269.50 337
new-patchmatchnet47.56 31447.73 31447.06 33658.81 3529.37 37948.78 35059.21 32343.28 31244.22 34868.66 33025.67 32757.20 33831.57 33949.35 34774.62 294
JIA-IIPM51.56 30247.68 31563.21 27264.61 33150.73 18547.71 35258.77 32542.90 31648.46 33551.72 35824.97 33070.24 29036.06 31653.89 33568.64 341
test_fmvs248.69 31147.49 31652.29 32948.63 36333.06 34957.76 32948.05 35525.71 35559.76 25969.60 32611.57 35852.23 35549.45 21956.86 32471.58 324
CHOSEN 280x42047.83 31346.36 31752.24 33067.37 31649.78 20138.91 36443.11 36335.00 34143.27 35163.30 34728.95 30349.19 35836.53 31260.80 31057.76 351
PVSNet_043.31 2047.46 31545.64 31852.92 32567.60 31544.65 25854.06 34054.64 33841.59 32346.15 34358.75 35130.99 28858.66 33232.18 33024.81 36755.46 354
MVS-HIRNet45.52 31644.48 31948.65 33568.49 31034.05 34359.41 32544.50 36127.03 35237.96 35950.47 36226.16 32464.10 31326.74 35659.52 31547.82 361
test_fmvs344.30 31842.55 32049.55 33442.83 36727.15 36553.03 34244.93 36022.03 36253.69 31364.94 3434.21 37249.63 35747.47 23049.82 34571.88 320
LF4IMVS42.95 31942.26 32145.04 33948.30 36432.50 35054.80 33848.49 35328.03 35040.51 35570.16 3209.24 36443.89 36431.63 33749.18 34858.72 349
pmmvs344.92 31741.95 32253.86 31852.58 35943.55 26862.11 31146.90 35926.05 35440.63 35460.19 35011.08 36257.91 33531.83 33646.15 35060.11 347
FPMVS42.18 32141.11 32345.39 33858.03 35341.01 29049.50 34853.81 34330.07 34633.71 36064.03 34411.69 35652.08 35614.01 36755.11 33043.09 363
N_pmnet39.35 32640.28 32436.54 34963.76 3341.62 38349.37 3490.76 38334.62 34243.61 35066.38 33926.25 32342.57 36526.02 35851.77 33965.44 344
test_vis1_rt41.35 32339.45 32547.03 33746.65 36637.86 31147.76 35138.65 36623.10 35844.21 34951.22 36011.20 36144.08 36339.27 29553.02 33759.14 348
DSMNet-mixed39.30 32738.72 32641.03 34451.22 36019.66 37545.53 35731.35 37215.83 36939.80 35767.42 33622.19 33945.13 36222.43 35952.69 33858.31 350
EGC-MVSNET42.47 32038.48 32754.46 31674.33 24048.73 21770.33 26651.10 3470.03 3770.18 37867.78 33413.28 35466.49 30618.91 36350.36 34448.15 359
mvsany_test139.38 32538.16 32843.02 34349.05 36134.28 34144.16 36025.94 37622.74 36046.57 34262.21 34923.85 33541.16 36833.01 32835.91 36253.63 355
ANet_high41.38 32237.47 32953.11 32439.73 37324.45 37056.94 33269.69 26447.65 27526.04 36552.32 35712.44 35562.38 32021.80 36010.61 37472.49 311
LCM-MVSNet40.30 32435.88 33053.57 32142.24 36829.15 35945.21 35860.53 32122.23 36128.02 36350.98 3613.72 37461.78 32231.22 34238.76 36069.78 336
APD_test137.39 32834.94 33144.72 34148.88 36233.19 34852.95 34344.00 36219.49 36327.28 36458.59 3523.18 37652.84 35218.92 36241.17 35748.14 360
new_pmnet34.13 33134.29 33233.64 35152.63 35818.23 37744.43 35933.90 37122.81 35930.89 36253.18 35610.48 36335.72 37220.77 36139.51 35846.98 362
PMVScopyleft28.69 2236.22 32933.29 33345.02 34036.82 37535.98 33354.68 33948.74 35226.31 35321.02 36851.61 3592.88 37760.10 3279.99 37347.58 34938.99 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 33031.91 33443.33 34262.05 34237.87 31020.39 36967.03 28423.23 35718.41 37025.84 3704.24 37162.73 31814.71 36651.32 34129.38 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f31.86 33431.05 33534.28 35032.33 37921.86 37332.34 36630.46 37316.02 36839.78 35855.45 3554.80 37032.36 37330.61 34337.66 36148.64 357
mvsany_test332.62 33230.57 33638.77 34736.16 37624.20 37138.10 36520.63 37819.14 36440.36 35657.43 3535.06 36936.63 37129.59 34928.66 36655.49 353
test_vis3_rt32.09 33330.20 33737.76 34835.36 37727.48 36340.60 36328.29 37516.69 36732.52 36140.53 3661.96 37837.40 37033.64 32642.21 35648.39 358
testf131.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
APD_test231.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
PMMVS227.40 33725.91 34031.87 35339.46 3746.57 38031.17 36728.52 37423.96 35620.45 36948.94 3654.20 37337.94 36916.51 36419.97 36951.09 356
cdsmvs_eth3d_5k17.50 34223.34 3410.00 3620.00 3850.00 3850.00 37378.63 1580.00 3800.00 38182.18 17649.25 1020.00 3790.00 3790.00 3770.00 377
E-PMN23.77 33822.73 34226.90 35442.02 36920.67 37442.66 36135.70 36917.43 36510.28 37525.05 3716.42 36742.39 36610.28 37214.71 37117.63 370
EMVS22.97 33921.84 34326.36 35540.20 37219.53 37641.95 36234.64 37017.09 3669.73 37622.83 3727.29 36642.22 3679.18 37413.66 37217.32 371
test_method19.68 34118.10 34424.41 35613.68 3813.11 38212.06 37242.37 3642.00 37511.97 37336.38 3675.77 36829.35 37515.06 36523.65 36840.76 366
MVEpermissive17.77 2321.41 34017.77 34532.34 35234.34 37825.44 36816.11 37024.11 37711.19 37213.22 37231.92 3681.58 37930.95 37410.47 37117.03 37040.62 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d13.32 34312.52 34615.71 35747.54 36526.27 36631.06 3681.98 3824.93 3745.18 3771.94 3770.45 38218.54 3766.81 37612.83 3732.33 374
tmp_tt9.43 34411.14 3474.30 3592.38 3824.40 38113.62 37116.08 3800.39 37615.89 37113.06 37315.80 3505.54 37812.63 37010.46 3752.95 373
ab-mvs-re6.49 3458.65 3480.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 38177.89 2550.00 3840.00 3790.00 3790.00 3770.00 377
test1234.73 3466.30 3490.02 3600.01 3830.01 38456.36 3340.00 3840.01 3780.04 3790.21 3790.01 3830.00 3790.03 3780.00 3770.04 375
testmvs4.52 3476.03 3500.01 3610.01 3830.00 38553.86 3410.00 3840.01 3780.04 3790.27 3780.00 3840.00 3790.04 3770.00 3770.03 376
pcd_1.5k_mvsjas3.92 3485.23 3510.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 38047.05 1320.00 3790.00 3790.00 3770.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
FOURS186.12 3660.82 3788.18 183.61 6260.87 8281.50 16
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
PC_three_145255.09 19384.46 489.84 4166.68 589.41 1674.24 3191.38 288.42 9
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
test_one_060187.58 959.30 5686.84 765.01 1883.80 1191.86 664.03 11
eth-test20.00 385
eth-test0.00 385
ZD-MVS86.64 2160.38 4382.70 8557.95 13878.10 2490.06 3456.12 3788.84 2474.05 3487.00 46
IU-MVS87.77 459.15 5985.53 2553.93 21284.64 379.07 990.87 588.37 11
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4067.01 190.33 1173.16 4191.15 488.23 14
test_241102_TWO86.73 1264.18 3084.26 591.84 865.19 690.83 578.63 1590.70 787.65 33
test_241102_ONE87.77 458.90 6886.78 1064.20 2985.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4579.66 13859.00 118
test_0728_THIRD65.04 1483.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1390.61 1187.62 35
test072687.75 759.07 6387.86 486.83 864.26 2784.19 791.92 564.82 8
GSMVS78.05 255
test_part287.58 960.47 4283.42 12
sam_mvs134.74 25378.05 255
sam_mvs33.43 267
ambc65.13 26163.72 33637.07 32147.66 35378.78 15454.37 30771.42 31111.24 36080.94 19445.64 24853.85 33677.38 262
MTGPAbinary80.97 121
test_post168.67 2773.64 37532.39 28369.49 29244.17 259
test_post3.55 37633.90 26266.52 305
patchmatchnet-post64.03 34434.50 25574.27 271
GG-mvs-BLEND62.34 27871.36 28037.04 32269.20 27557.33 33154.73 30265.48 34230.37 29277.82 24434.82 32074.93 16672.17 318
MTMP86.03 1817.08 379
gm-plane-assit71.40 27941.72 28648.85 26273.31 30182.48 16648.90 223
test9_res75.28 2788.31 3283.81 158
TEST985.58 4361.59 2481.62 8081.26 11355.65 18274.93 3988.81 5453.70 5884.68 116
test_885.40 4660.96 3481.54 8381.18 11655.86 17374.81 4288.80 5653.70 5884.45 120
agg_prior273.09 4287.93 3884.33 140
agg_prior85.04 5059.96 4681.04 11974.68 4584.04 126
TestCases64.39 26571.44 27649.03 21067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
test_prior462.51 1482.08 75
test_prior281.75 7860.37 9475.01 3889.06 5056.22 3672.19 4688.96 24
test_prior76.69 5184.20 6157.27 8684.88 3786.43 7686.38 66
旧先验276.08 17145.32 29676.55 3065.56 31158.75 148
新几何276.12 169
新几何170.76 18285.66 4161.13 3066.43 28844.68 30070.29 9486.64 8441.29 19575.23 26649.72 21581.75 9475.93 277
旧先验183.04 7053.15 14867.52 27987.85 6744.08 16580.76 9878.03 258
无先验79.66 10874.30 23148.40 26780.78 20053.62 18379.03 247
原ACMM279.02 114
原ACMM174.69 8785.39 4759.40 5383.42 6851.47 23770.27 9586.61 8648.61 11086.51 7453.85 18287.96 3778.16 253
test22283.14 6858.68 7272.57 23463.45 30641.78 32067.56 14986.12 9637.13 23578.73 13174.98 288
testdata272.18 28146.95 238
segment_acmp54.23 51
testdata64.66 26381.52 8652.93 15165.29 29646.09 29073.88 5487.46 7038.08 22366.26 30853.31 18778.48 13474.78 292
testdata172.65 23060.50 89
test1277.76 4184.52 5858.41 7483.36 7172.93 6954.61 4888.05 3588.12 3486.81 58
plane_prior781.41 8955.96 108
plane_prior681.20 9656.24 10345.26 156
plane_prior584.01 4987.21 5168.16 6880.58 10184.65 134
plane_prior486.10 97
plane_prior356.09 10563.92 3469.27 114
plane_prior284.22 3864.52 23
plane_prior181.27 94
plane_prior56.31 9983.58 5163.19 4680.48 104
n20.00 384
nn0.00 384
door-mid47.19 358
lessismore_v069.91 19871.42 27847.80 22650.90 34950.39 33175.56 28427.43 31681.33 18445.91 24534.10 36580.59 225
LGP-MVS_train75.76 6580.22 10957.51 8483.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
test1183.47 66
door47.60 356
HQP5-MVS54.94 124
HQP-NCC80.66 10182.31 6962.10 6667.85 139
ACMP_Plane80.66 10182.31 6962.10 6667.85 139
BP-MVS67.04 80
HQP4-MVS67.85 13986.93 6084.32 141
HQP3-MVS83.90 5380.35 105
HQP2-MVS45.46 150
NP-MVS80.98 9956.05 10785.54 113
MDTV_nov1_ep13_2view25.89 36761.22 31640.10 33251.10 32432.97 27238.49 29878.61 250
ACMMP++_ref74.07 172
ACMMP++72.16 204
Test By Simon48.33 113
ITE_SJBPF62.09 28066.16 32444.55 26164.32 30247.36 27955.31 29480.34 21519.27 34462.68 31936.29 31562.39 30079.04 246
DeepMVS_CXcopyleft12.03 35817.97 38010.91 37810.60 3817.46 37311.07 37428.36 3693.28 37511.29 3778.01 3759.74 37613.89 372