This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 12
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 18
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 18
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
PC_three_145255.09 20384.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 12
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 23
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_274.55 5875.23 4872.48 15582.34 7753.34 15577.87 13881.46 10457.80 15075.49 3786.81 8462.22 1377.75 25471.09 6782.02 9386.34 80
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 22
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13560.76 1586.56 7467.86 8487.87 4186.06 93
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6059.34 11979.37 1989.76 4559.84 1687.62 4976.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
sasdasda74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
canonicalmvs74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DELS-MVS74.76 5274.46 5575.65 7477.84 17952.25 17675.59 19484.17 4663.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5887.89 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 57
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7376.46 22051.83 18479.67 11085.08 3165.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7390.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4386.57 73
nrg03072.96 7273.01 6972.84 14875.41 23550.24 20680.02 10182.89 8558.36 13774.44 5586.73 8758.90 2480.83 20265.84 10674.46 18387.44 46
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6265.37 1378.78 2290.64 1958.63 2587.24 5379.00 1290.37 1485.26 130
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6177.08 2690.18 1587.87 30
casdiffmvspermissive74.80 5174.89 5274.53 9975.59 23250.37 20578.17 13285.06 3362.80 5874.40 5687.86 7057.88 2783.61 13969.46 7582.79 8689.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net72.45 8073.34 6869.81 21677.77 18243.21 28875.84 19181.18 11959.59 11575.45 3886.64 9057.74 2877.94 24963.92 12281.90 9588.30 15
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline74.61 5674.70 5374.34 10375.70 22849.99 21377.54 14884.63 4062.73 5973.98 6287.79 7357.67 3083.82 13569.49 7382.74 8789.20 6
patch_mono-269.85 13071.09 9566.16 26379.11 13954.80 13571.97 25874.31 24153.50 23270.90 10684.17 14957.63 3163.31 34266.17 10082.02 9380.38 249
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6577.39 2389.52 21
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10385.71 2256.59 16972.46 9186.76 8556.89 3487.86 4566.36 9988.91 2583.64 184
UniMVSNet_NR-MVSNet71.11 10371.00 9771.44 17979.20 13544.13 27876.02 18782.60 8866.48 1168.20 14684.60 14256.82 3582.82 15954.62 19270.43 24187.36 52
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Effi-MVS+73.31 6872.54 7475.62 7577.87 17753.64 14779.62 11279.61 14361.63 7772.02 9882.61 18156.44 3785.97 8963.99 12179.07 13187.25 54
alignmvs73.86 6473.99 5973.45 13578.20 16550.50 20478.57 12482.43 8959.40 11776.57 3286.71 8956.42 3881.23 19265.84 10681.79 9688.62 8
test_prior281.75 8060.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
ZD-MVS86.64 2160.38 4382.70 8757.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 49
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7978.57 16458.58 13274.32 5884.51 14555.94 4187.22 5467.11 9484.48 6885.52 115
MVS_Test72.45 8072.46 7572.42 15974.88 24148.50 23476.28 17983.14 8159.40 11772.46 9184.68 13755.66 4281.12 19365.98 10579.66 11987.63 40
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4388.32 3473.48 5387.03 4684.83 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4486.38 76
FIs70.82 11171.43 8668.98 22978.33 16238.14 33176.96 16583.59 6561.02 8367.33 16886.73 8755.07 4581.64 18154.61 19479.22 12787.14 56
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 7087.27 7955.06 4686.30 8471.78 6284.58 6589.25 4
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11370.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4885.58 9876.12 3184.94 6386.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7567.78 370.09 11386.34 10354.92 4988.90 2572.68 5784.55 6687.76 36
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6663.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmconf_n73.01 7172.59 7374.27 10671.28 30255.88 11478.21 13175.56 21854.31 22274.86 4887.80 7254.72 5180.23 21678.07 2178.48 14086.70 67
mvs_anonymous68.03 17567.51 16469.59 21972.08 28744.57 27671.99 25775.23 22551.67 24767.06 17382.57 18254.68 5277.94 24956.56 17475.71 17686.26 88
test1277.76 4384.52 5858.41 7583.36 7372.93 8354.61 5388.05 3988.12 3586.81 64
FC-MVSNet-test69.80 13270.58 10467.46 24577.61 19234.73 36276.05 18583.19 7960.84 8565.88 19886.46 10054.52 5480.76 20552.52 20878.12 14486.91 60
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
segment_acmp54.23 56
MVS_111021_HR74.02 6273.46 6675.69 7283.01 7260.63 4077.29 15778.40 17561.18 8270.58 10885.97 11554.18 5784.00 13267.52 8982.98 8182.45 210
Fast-Effi-MVS+70.28 12269.12 13173.73 12178.50 15351.50 18675.01 20779.46 14756.16 17968.59 13979.55 24853.97 5884.05 12853.34 20377.53 15085.65 112
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 5988.68 2776.48 2889.63 2087.16 55
UniMVSNet (Re)70.63 11470.20 11071.89 16578.55 15245.29 26975.94 18882.92 8363.68 4068.16 14983.59 16353.89 6083.49 14253.97 19771.12 23486.89 61
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 10386.03 11353.83 6186.36 8267.74 8586.91 5088.19 20
test_fmvsmconf0.1_n72.81 7372.33 7674.24 10769.89 32255.81 11578.22 13075.40 22154.17 22475.00 4488.03 6853.82 6280.23 21678.08 2078.34 14386.69 68
fmvsm_l_conf0.5_n70.99 10670.82 9971.48 17771.45 29554.40 13877.18 16070.46 27448.67 28675.17 4086.86 8253.77 6376.86 26976.33 3077.51 15183.17 197
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 8088.88 5553.72 6489.06 2368.27 7888.04 3887.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST985.58 4361.59 2481.62 8281.26 11655.65 19174.93 4588.81 5653.70 6584.68 119
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11655.86 18274.93 4588.81 5653.70 6584.68 11975.24 3888.33 3083.65 183
test_885.40 4660.96 3481.54 8581.18 11955.86 18274.81 4988.80 5853.70 6584.45 123
ETV-MVS74.46 5973.84 6276.33 6079.27 13355.24 12979.22 11685.00 3664.97 2172.65 8879.46 25053.65 6887.87 4467.45 9082.91 8285.89 100
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17474.05 6188.98 5453.34 6987.92 4369.23 7688.42 2887.59 42
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6390.50 2453.20 7088.35 3374.02 4887.05 4586.13 91
EC-MVSNet75.84 4575.87 4275.74 7178.86 14452.65 16683.73 5086.08 1763.47 4272.77 8687.25 8053.13 7187.93 4271.97 6185.57 6186.66 70
test_fmvsm_n_192071.73 9471.14 9473.50 13272.52 27956.53 10175.60 19376.16 20748.11 29577.22 2885.56 12553.10 7277.43 25874.86 4077.14 15886.55 74
fmvsm_l_conf0.5_n_a70.50 11770.27 10971.18 18971.30 30154.09 14076.89 16869.87 27747.90 29974.37 5786.49 9953.07 7376.69 27475.41 3577.11 15982.76 204
EI-MVSNet-Vis-set72.42 8271.59 8274.91 8578.47 15554.02 14177.05 16379.33 14965.03 1871.68 10179.35 25352.75 7484.89 11566.46 9874.23 18785.83 102
fmvsm_s_conf0.5_n_a69.54 14168.74 13871.93 16472.47 28153.82 14478.25 12862.26 33749.78 27473.12 7886.21 10652.66 7576.79 27175.02 3968.88 27385.18 131
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 7688.53 3074.79 4288.34 2986.63 72
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7788.39 3279.34 890.52 1386.78 66
PCF-MVS61.88 870.95 10869.49 12375.35 7977.63 18755.71 11776.04 18681.81 9850.30 26869.66 12485.40 13152.51 7784.89 11551.82 21680.24 11285.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 7986.78 6880.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CLD-MVS73.33 6772.68 7275.29 8278.82 14653.33 15678.23 12984.79 3961.30 8170.41 11081.04 21852.41 8087.12 5964.61 11782.49 8985.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE71.01 10570.15 11273.60 13079.57 12752.17 17778.93 11878.12 18058.02 14367.76 16383.87 15752.36 8182.72 16156.90 17275.79 17485.92 97
NR-MVSNet69.54 14168.85 13471.59 17678.05 17243.81 28274.20 22280.86 12765.18 1462.76 24884.52 14352.35 8283.59 14050.96 22470.78 23687.37 50
fmvsm_s_conf0.5_n69.58 13968.84 13571.79 16972.31 28552.90 16277.90 13762.43 33549.97 27272.85 8485.90 11852.21 8376.49 27775.75 3370.26 24785.97 95
EI-MVSNet-UG-set71.92 9071.06 9674.52 10077.98 17553.56 14976.62 17279.16 15064.40 2771.18 10478.95 25852.19 8484.66 12165.47 11073.57 19885.32 126
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31046.21 25873.98 22578.68 16255.07 20666.05 19277.80 27652.16 8581.31 18961.53 14769.32 26583.67 180
EIA-MVS71.78 9270.60 10275.30 8179.85 12253.54 15077.27 15883.26 7857.92 14766.49 18479.39 25152.07 8686.69 7060.05 15479.14 13085.66 111
fmvsm_s_conf0.1_n_a69.32 14968.44 14771.96 16370.91 30653.78 14578.12 13362.30 33649.35 27873.20 7486.55 9851.99 8776.79 27174.83 4168.68 27885.32 126
c3_l68.33 16967.56 16070.62 20070.87 30746.21 25874.47 21978.80 15856.22 17866.19 19078.53 26551.88 8881.40 18662.08 13769.04 27184.25 156
PAPM_NR72.63 7771.80 8075.13 8481.72 8553.42 15479.91 10583.28 7759.14 12166.31 18985.90 11851.86 8986.06 8557.45 16980.62 10485.91 98
test_fmvsmvis_n_192070.84 10970.38 10772.22 16271.16 30355.39 12775.86 18972.21 26149.03 28273.28 7286.17 10851.83 9077.29 26175.80 3278.05 14583.98 165
MG-MVS73.96 6373.89 6174.16 10885.65 4249.69 21881.59 8481.29 11561.45 7871.05 10588.11 6351.77 9187.73 4761.05 14883.09 7785.05 136
EPP-MVSNet72.16 8871.31 9174.71 8978.68 15049.70 21682.10 7681.65 10060.40 9365.94 19485.84 12051.74 9286.37 8155.93 17879.55 12288.07 25
fmvsm_s_conf0.1_n69.41 14768.60 14171.83 16771.07 30452.88 16377.85 14062.44 33449.58 27672.97 8186.22 10551.68 9376.48 27875.53 3470.10 25086.14 90
TranMVSNet+NR-MVSNet70.36 12070.10 11471.17 19078.64 15142.97 29176.53 17481.16 12166.95 668.53 14285.42 13051.61 9483.07 14852.32 20969.70 26187.46 45
diffmvspermissive70.69 11370.43 10571.46 17869.45 32748.95 22872.93 24278.46 17057.27 15571.69 10083.97 15651.48 9577.92 25170.70 6977.95 14787.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 15168.44 14771.73 17174.47 25249.39 22375.20 20278.45 17159.60 11269.16 13576.51 29751.29 9682.50 16759.86 15971.45 23183.30 189
IterMVS-LS69.22 15368.48 14371.43 18174.44 25449.40 22276.23 18077.55 18959.60 11265.85 19981.59 21051.28 9781.58 18459.87 15869.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32774.66 21675.08 23358.90 12561.79 26482.63 18051.18 9878.07 24843.63 28855.87 35880.99 240
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33045.98 26072.85 24478.41 17451.38 25465.65 20175.98 30551.17 9981.25 19060.82 14969.32 26583.29 191
VNet69.68 13670.19 11168.16 23979.73 12441.63 30470.53 27777.38 19360.37 9670.69 10786.63 9251.08 10077.09 26453.61 20181.69 10185.75 108
VPA-MVSNet69.02 15469.47 12467.69 24377.42 19841.00 30974.04 22479.68 14160.06 10469.26 13384.81 13651.06 10177.58 25654.44 19574.43 18584.48 151
PAPR71.72 9570.82 9974.41 10281.20 9751.17 18979.55 11383.33 7455.81 18666.93 17784.61 14150.95 10286.06 8555.79 18179.20 12886.00 94
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10388.54 2970.79 6889.71 1787.79 35
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7989.97 4150.90 10487.48 5175.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33577.57 14682.11 9462.03 7362.65 25182.48 18750.57 10579.46 22442.91 29564.01 31284.79 144
EPNet73.09 7072.16 7775.90 6775.95 22656.28 10483.05 5672.39 25966.53 1065.27 20987.00 8150.40 10685.47 10362.48 13586.32 5785.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS68.47 16768.47 14568.44 23680.20 11339.84 31573.75 23476.07 21064.68 2268.11 15183.63 16250.39 10779.14 23449.78 22969.66 26286.34 80
test_fmvsmconf0.01_n72.17 8671.50 8474.16 10867.96 33955.58 12378.06 13574.67 23654.19 22374.54 5488.23 6150.35 10880.24 21578.07 2177.46 15286.65 71
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 7090.58 2149.90 10988.21 3673.78 5087.03 4686.29 87
UA-Net73.13 6972.93 7073.76 11883.58 6451.66 18578.75 11977.66 18767.75 472.61 8989.42 4749.82 11083.29 14453.61 20183.14 7686.32 84
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6890.56 2249.80 11188.24 3574.02 4887.03 4686.32 84
API-MVS72.17 8671.41 8774.45 10181.95 8357.22 8984.03 4580.38 13459.89 11068.40 14382.33 19049.64 11287.83 4651.87 21584.16 7278.30 273
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30170.41 28076.14 20953.99 22665.98 19383.51 16649.48 11376.24 28248.60 24273.46 20284.14 160
v870.33 12169.28 12873.49 13373.15 26650.22 20778.62 12380.78 12860.79 8666.45 18682.11 19949.35 11484.98 11263.58 12768.71 27685.28 128
IS-MVSNet71.57 9671.00 9773.27 14178.86 14445.63 26680.22 9978.69 16164.14 3566.46 18587.36 7649.30 11585.60 9650.26 22883.71 7588.59 9
XXY-MVS60.68 27161.67 25257.70 32970.43 31238.45 32964.19 32866.47 30448.05 29763.22 24080.86 22449.28 11660.47 35145.25 27767.28 28874.19 323
cdsmvs_eth3d_5k17.50 37323.34 3720.00 3930.00 4160.00 4170.00 40478.63 1630.00 4110.00 41282.18 19349.25 1170.00 4100.00 4110.00 4080.00 408
PVSNet_Blended_VisFu71.45 10070.39 10674.65 9382.01 8058.82 7179.93 10480.35 13555.09 20365.82 20082.16 19649.17 11882.64 16460.34 15278.62 13982.50 209
PVSNet_BlendedMVS68.56 16667.72 15671.07 19377.03 20850.57 20074.50 21881.52 10153.66 23164.22 23379.72 24449.13 11982.87 15555.82 17973.92 19179.77 261
PVSNet_Blended68.59 16267.72 15671.19 18877.03 20850.57 20072.51 25081.52 10151.91 24664.22 23377.77 27949.13 11982.87 15555.82 17979.58 12080.14 253
DU-MVS70.01 12669.53 12271.44 17978.05 17244.13 27875.01 20781.51 10364.37 2868.20 14684.52 14349.12 12182.82 15954.62 19270.43 24187.37 50
Baseline_NR-MVSNet67.05 19767.56 16065.50 27575.65 22937.70 33775.42 19774.65 23759.90 10768.14 15083.15 17349.12 12177.20 26252.23 21069.78 25881.60 223
VPNet67.52 18668.11 15265.74 27279.18 13636.80 34672.17 25572.83 25662.04 7267.79 16185.83 12148.88 12376.60 27651.30 22072.97 21183.81 172
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21080.97 12565.13 1575.77 3690.88 1748.63 12486.66 7177.23 2488.17 3384.81 143
原ACMM174.69 9085.39 4759.40 5483.42 7051.47 25370.27 11286.61 9348.61 12586.51 7753.85 19987.96 3978.16 275
v14868.24 17267.19 18071.40 18270.43 31247.77 24375.76 19277.03 19858.91 12467.36 16780.10 23748.60 12681.89 17760.01 15566.52 29484.53 149
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6161.71 7672.45 9390.34 2948.48 12788.13 3772.32 5886.85 5185.78 103
Test By Simon48.33 128
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6962.44 6472.68 8790.50 2448.18 12987.34 5273.59 5285.71 5984.76 146
MVS67.37 18866.33 19470.51 20375.46 23450.94 19273.95 22781.85 9741.57 35462.54 25478.57 26447.98 13085.47 10352.97 20682.05 9275.14 309
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9590.01 4047.95 13188.01 4071.55 6586.74 5386.37 78
X-MVStestdata70.21 12367.28 17479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 956.49 40547.95 13188.01 4071.55 6586.74 5386.37 78
SDMVSNet68.03 17568.10 15367.84 24177.13 20448.72 23265.32 32079.10 15158.02 14365.08 21682.55 18347.83 13373.40 29363.92 12273.92 19181.41 226
MAR-MVS71.51 9770.15 11275.60 7681.84 8459.39 5581.38 8682.90 8454.90 21168.08 15278.70 25947.73 13485.51 10051.68 21984.17 7181.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM67.92 17966.69 18471.63 17578.09 17049.02 22677.09 16281.24 11851.04 26060.91 27283.98 15547.71 13584.99 11040.81 30779.32 12680.90 241
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9259.99 10675.10 4190.35 2847.66 13686.52 7671.64 6482.99 7984.47 152
cl2267.47 18766.45 18770.54 20269.85 32346.49 25473.85 23277.35 19455.07 20665.51 20477.92 27247.64 13781.10 19461.58 14569.32 26584.01 164
v1070.21 12369.02 13273.81 11573.51 26350.92 19478.74 12081.39 10660.05 10566.39 18781.83 20447.58 13885.41 10662.80 13268.86 27585.09 135
v114470.42 11969.31 12673.76 11873.22 26450.64 19977.83 14181.43 10558.58 13269.40 12981.16 21547.53 13985.29 10864.01 12070.64 23785.34 125
v2v48270.50 11769.45 12573.66 12572.62 27650.03 21277.58 14580.51 13259.90 10769.52 12582.14 19747.53 13984.88 11765.07 11370.17 24886.09 92
pm-mvs165.24 22564.97 21566.04 26772.38 28239.40 32172.62 24775.63 21655.53 19362.35 26083.18 17247.45 14176.47 27949.06 23966.54 29382.24 214
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30669.96 28474.43 23849.29 27961.66 26680.92 22247.43 14276.68 27544.91 27871.69 22781.94 219
cl____67.18 19366.26 19869.94 21170.20 31545.74 26273.30 23776.83 20155.10 20165.27 20979.57 24747.39 14380.53 20759.41 16369.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31545.74 26273.29 23876.83 20155.10 20165.27 20979.58 24647.38 14480.53 20759.43 16269.22 26983.54 185
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29348.33 23673.68 23577.88 18255.80 18765.91 19578.62 26347.35 14582.88 15459.45 16166.25 29583.81 172
OPM-MVS74.73 5374.25 5776.19 6180.81 10259.01 6782.60 6683.64 6363.74 3972.52 9087.49 7447.18 14685.88 9169.47 7480.78 10283.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline163.81 24063.87 22463.62 28976.29 22136.36 34971.78 26167.29 29856.05 18164.23 23282.95 17447.11 14774.41 29047.30 25361.85 33180.10 254
pcd_1.5k_mvsjas3.92 3795.23 3820.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 41147.05 1480.00 4100.00 4110.00 4080.00 408
PS-MVSNAJss72.24 8471.21 9275.31 8078.50 15355.93 11281.63 8182.12 9356.24 17770.02 11785.68 12447.05 14884.34 12565.27 11174.41 18685.67 110
PS-MVSNAJ70.51 11669.70 11972.93 14681.52 8755.79 11674.92 21079.00 15355.04 20869.88 12178.66 26047.05 14882.19 17261.61 14379.58 12080.83 242
WTY-MVS59.75 27860.39 26657.85 32772.32 28437.83 33461.05 34664.18 32145.95 32261.91 26279.11 25647.01 15160.88 35042.50 29869.49 26474.83 315
xiu_mvs_v2_base70.52 11569.75 11772.84 14881.21 9655.63 12075.11 20478.92 15554.92 21069.96 12079.68 24547.00 15282.09 17461.60 14479.37 12380.81 243
v14419269.71 13368.51 14273.33 14073.10 26750.13 20977.54 14880.64 12956.65 16368.57 14180.55 22846.87 15384.96 11462.98 13069.66 26284.89 141
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34877.03 16480.42 13362.95 5062.51 25684.03 15346.69 15479.07 23544.22 27963.08 32285.51 116
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9162.90 5271.77 9990.26 3146.61 15586.55 7571.71 6385.66 6084.97 139
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35176.83 17179.52 14562.45 6362.54 25483.47 16846.32 15678.37 24345.47 27463.43 31985.45 119
V4268.65 16167.35 17272.56 15368.93 33350.18 20872.90 24379.47 14656.92 16069.45 12880.26 23446.29 15782.99 14964.07 11867.82 28384.53 149
1112_ss64.00 23963.36 23265.93 26979.28 13242.58 29371.35 26472.36 26046.41 31560.55 27477.89 27446.27 15873.28 29446.18 26269.97 25381.92 220
MSLP-MVS++73.77 6573.47 6574.66 9283.02 7159.29 5882.30 7481.88 9659.34 11971.59 10286.83 8345.94 15983.65 13865.09 11285.22 6281.06 238
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35376.94 16679.61 14362.36 6562.43 25883.66 16145.69 16078.37 24345.35 27663.26 32085.42 122
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 7658.41 13573.71 6690.14 3345.62 16185.99 8869.64 7282.85 8585.78 103
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 35976.43 17679.38 14862.55 6161.66 26683.83 15845.60 16279.15 23341.64 30660.88 33785.00 137
BH-w/o66.85 20165.83 20369.90 21479.29 13152.46 17374.66 21676.65 20454.51 21964.85 22278.12 26645.59 16382.95 15143.26 29175.54 17874.27 322
h-mvs3372.71 7671.49 8576.40 5881.99 8259.58 5276.92 16776.74 20360.40 9374.81 4985.95 11745.54 16485.76 9470.41 7070.61 23983.86 171
hse-mvs271.04 10469.86 11674.60 9679.58 12657.12 9673.96 22675.25 22460.40 9374.81 4981.95 20145.54 16482.90 15270.41 7066.83 29183.77 176
HQP2-MVS45.46 166
HQP-MVS73.45 6672.80 7175.40 7880.66 10354.94 13182.31 7183.90 5462.10 6867.85 15585.54 12845.46 16686.93 6367.04 9580.35 11084.32 154
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 12389.74 4645.43 16887.16 5772.01 6082.87 8485.14 132
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS71.40 10170.60 10273.78 11676.60 21653.15 15879.74 10979.78 13958.37 13668.75 13886.45 10145.43 16880.60 20662.58 13377.73 14887.58 43
BH-untuned68.27 17067.29 17371.21 18779.74 12353.22 15776.06 18477.46 19257.19 15666.10 19181.61 20845.37 17083.50 14145.42 27576.68 16676.91 296
v119269.97 12868.68 13973.85 11373.19 26550.94 19277.68 14481.36 10857.51 15368.95 13780.85 22545.28 17185.33 10762.97 13170.37 24385.27 129
HQP_MVS74.31 6073.73 6376.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 13186.10 11045.26 17287.21 5568.16 8180.58 10684.65 147
plane_prior681.20 9756.24 10645.26 172
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33236.93 34567.60 30172.80 25755.67 19059.95 28076.63 29345.01 17472.22 30039.74 31462.09 33080.74 244
SR-MVS-dyc-post74.57 5773.90 6076.58 5683.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3444.74 17585.84 9268.20 7981.76 9784.03 162
v192192069.47 14468.17 15173.36 13973.06 26850.10 21077.39 15180.56 13056.58 17068.59 13980.37 23044.72 17684.98 11262.47 13669.82 25785.00 137
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38071.16 26963.64 32556.32 17459.80 28384.99 13344.51 17775.46 28539.12 31680.62 10482.92 200
DP-MVS Recon72.15 8970.73 10176.40 5886.57 2457.99 7981.15 8982.96 8257.03 15866.78 17885.56 12544.50 17888.11 3851.77 21780.23 11383.10 198
TAMVS66.78 20465.27 21271.33 18679.16 13853.67 14673.84 23369.59 28152.32 24465.28 20881.72 20644.49 17977.40 26042.32 29978.66 13882.92 200
Vis-MVSNetpermissive72.18 8571.37 8974.61 9581.29 9355.41 12680.90 9178.28 17760.73 8869.23 13488.09 6444.36 18082.65 16357.68 16781.75 9985.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验183.04 7053.15 15867.52 29587.85 7144.08 18180.76 10378.03 280
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14039.53 32068.17 29670.17 27543.25 34359.03 29379.90 23944.08 18171.24 30543.79 28768.42 27981.25 232
MVSFormer71.50 9970.38 10774.88 8678.76 14757.15 9482.79 6178.48 16851.26 25769.49 12683.22 17043.99 18383.24 14566.06 10179.37 12384.23 157
lupinMVS69.57 14068.28 15073.44 13678.76 14757.15 9476.57 17373.29 25346.19 31769.49 12682.18 19343.99 18379.23 22864.66 11579.37 12383.93 166
v7n69.01 15567.36 17173.98 11172.51 28052.65 16678.54 12681.30 11460.26 10262.67 25081.62 20743.61 18584.49 12257.01 17168.70 27784.79 144
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14153.13 16073.27 23971.07 26952.15 24564.72 22380.23 23543.56 18677.10 26345.48 27378.88 13283.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason69.65 13768.39 14973.43 13778.27 16456.88 9877.12 16173.71 24946.53 31469.34 13083.22 17043.37 18779.18 22964.77 11479.20 12884.23 157
jason: jason.
v124069.24 15267.91 15473.25 14373.02 27049.82 21477.21 15980.54 13156.43 17268.34 14580.51 22943.33 18884.99 11062.03 14069.77 26084.95 140
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 37961.42 34158.14 35258.71 12953.02 34779.55 24843.07 18976.80 27045.69 26777.96 14682.11 218
RE-MVS-def73.71 6483.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3443.06 19068.20 7981.76 9784.03 162
baseline263.42 24361.26 25969.89 21572.55 27847.62 24571.54 26268.38 29250.11 26954.82 32975.55 31043.06 19080.96 19748.13 24767.16 28981.11 236
FA-MVS(test-final)69.82 13168.48 14373.84 11478.44 15650.04 21175.58 19678.99 15458.16 13967.59 16482.14 19742.66 19285.63 9556.60 17376.19 17085.84 101
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11752.53 17174.26 22176.29 20658.48 13468.38 14484.20 14842.59 19383.83 13446.53 25975.91 17282.56 205
LFMVS71.78 9271.59 8272.32 16083.40 6746.38 25579.75 10871.08 26864.18 3272.80 8588.64 5942.58 19483.72 13657.41 17084.49 6786.86 62
test_yl69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
DCV-MVSNet69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
3Dnovator64.47 572.49 7971.39 8875.79 6877.70 18358.99 6880.66 9583.15 8062.24 6665.46 20586.59 9442.38 19785.52 9959.59 16084.72 6482.85 203
VDD-MVS72.50 7872.09 7873.75 12081.58 8649.69 21877.76 14377.63 18863.21 4773.21 7389.02 5342.14 19883.32 14361.72 14282.50 8888.25 17
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 19989.38 1964.07 11886.50 5689.69 2
MVS_111021_LR69.50 14368.78 13771.65 17478.38 15859.33 5674.82 21270.11 27658.08 14067.83 15984.68 13741.96 20076.34 28165.62 10977.54 14979.30 266
CPTT-MVS72.78 7472.08 7974.87 8784.88 5761.41 2684.15 4377.86 18355.27 19867.51 16688.08 6541.93 20181.85 17869.04 7780.01 11581.35 231
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29076.11 18277.47 19056.62 16665.22 21582.17 19541.85 20280.18 21847.05 25772.72 21683.20 193
CostFormer64.04 23862.51 24268.61 23471.88 29045.77 26171.30 26670.60 27347.55 30364.31 22976.61 29541.63 20579.62 22349.74 23169.00 27280.42 247
AdaColmapbinary69.99 12768.66 14073.97 11284.94 5457.83 8082.63 6578.71 16056.28 17664.34 22784.14 15041.57 20687.06 6246.45 26078.88 13277.02 292
Effi-MVS+-dtu69.64 13867.53 16375.95 6576.10 22462.29 1580.20 10076.06 21159.83 11165.26 21277.09 28641.56 20784.02 13160.60 15171.09 23581.53 224
QAPM70.05 12568.81 13673.78 11676.54 21853.43 15383.23 5483.48 6752.89 23865.90 19686.29 10441.55 20886.49 7851.01 22278.40 14281.42 225
VDDNet71.81 9171.33 9073.26 14282.80 7547.60 24678.74 12075.27 22359.59 11572.94 8289.40 4841.51 20983.91 13358.75 16482.99 7988.26 16
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24440.53 35963.16 24378.65 26141.30 21077.80 25345.80 26674.09 18881.40 228
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11186.64 9041.29 21175.23 28649.72 23281.75 9975.93 301
tpmrst58.24 28758.70 27856.84 33166.97 34434.32 36469.57 28861.14 34347.17 31058.58 29971.60 33741.28 21260.41 35249.20 23762.84 32375.78 303
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32371.22 26773.72 24855.22 20060.21 27580.09 23841.26 21376.98 26730.02 37168.09 28178.97 270
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29662.67 33472.11 26258.02 14365.08 21682.55 18341.22 21469.88 31447.32 25273.92 19181.41 226
HPM-MVS_fast74.30 6173.46 6676.80 5284.45 6059.04 6683.65 5281.05 12260.15 10370.43 10989.84 4341.09 21585.59 9767.61 8882.90 8385.77 106
114514_t70.83 11069.56 12074.64 9486.21 3154.63 13682.34 7081.81 9848.22 29363.01 24685.83 12140.92 21687.10 6057.91 16679.79 11682.18 215
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35669.34 29064.28 32046.88 31261.76 26575.79 30640.61 21765.20 33732.16 35471.21 23277.70 282
HyFIR lowres test65.67 21863.01 23773.67 12479.97 11955.65 11969.07 29275.52 21942.68 34863.53 23877.95 27040.43 21881.64 18146.01 26471.91 22583.73 178
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34746.25 25656.29 36675.70 21550.68 26361.27 26975.48 31140.21 21968.03 32356.31 17665.25 30282.18 215
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29474.98 20977.15 19755.83 18565.04 21881.16 21539.91 22080.14 21947.18 25472.76 21382.90 202
Syy-MVS56.00 30656.23 29955.32 33874.69 24726.44 39465.52 31557.49 35650.97 26156.52 31372.18 33039.89 22168.09 32124.20 38764.59 30971.44 350
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17878.53 16650.59 26656.47 31578.65 26139.84 22282.68 16244.10 28372.12 22472.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TR-MVS66.59 20965.07 21471.17 19079.18 13649.63 22073.48 23675.20 22752.95 23667.90 15380.33 23339.81 22383.68 13743.20 29273.56 19980.20 251
pmmvs663.69 24162.82 24066.27 26170.63 30939.27 32273.13 24075.47 22052.69 24059.75 28582.30 19139.71 22477.03 26547.40 25164.35 31182.53 207
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15254.77 21266.99 17486.01 11439.57 22578.21 24662.54 13473.33 20483.37 188
Anonymous2023121169.28 15068.47 14571.73 17180.28 10947.18 25079.98 10282.37 9054.61 21567.24 16984.01 15439.43 22682.41 17055.45 18672.83 21285.62 113
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 19957.60 15261.97 26176.85 29039.31 22780.49 21054.72 19170.28 24682.17 217
dmvs_testset50.16 33651.90 32644.94 36966.49 34911.78 40761.01 34751.50 37451.17 25950.30 36167.44 36339.28 22860.29 35322.38 38957.49 35162.76 374
ACMP63.53 672.30 8371.20 9375.59 7780.28 10957.54 8482.74 6382.84 8660.58 9065.24 21386.18 10739.25 22986.03 8766.95 9776.79 16483.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052969.91 12969.02 13272.56 15380.19 11447.65 24477.56 14780.99 12455.45 19669.88 12186.76 8539.24 23082.18 17354.04 19677.10 16087.85 31
LPG-MVS_test72.74 7571.74 8175.76 6980.22 11157.51 8682.55 6783.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
LGP-MVS_train75.76 6980.22 11157.51 8683.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23076.52 17580.04 13850.64 26565.24 21384.93 13439.15 23178.54 24236.77 32976.88 16385.14 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft61.03 968.85 15667.56 16072.70 15274.26 25853.99 14281.21 8881.34 11252.70 23962.75 24985.55 12738.86 23484.14 12748.41 24483.01 7879.97 255
sss56.17 30556.57 29554.96 34066.93 34536.32 35257.94 35861.69 34041.67 35258.64 29775.32 31338.72 23556.25 37342.04 30166.19 29672.31 341
ACMM61.98 770.80 11269.73 11874.02 11080.59 10858.59 7482.68 6482.02 9555.46 19567.18 17184.39 14738.51 23683.17 14760.65 15076.10 17180.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER67.16 19565.58 20871.88 16670.37 31449.70 21670.25 28278.45 17151.52 25169.16 13580.37 23038.45 23782.50 16760.19 15371.46 23083.44 187
test_djsdf69.45 14567.74 15574.58 9774.57 25154.92 13382.79 6178.48 16851.26 25765.41 20683.49 16738.37 23883.24 14566.06 10169.25 26885.56 114
tpm262.07 26060.10 26867.99 24072.79 27343.86 28171.05 27366.85 30243.14 34562.77 24775.39 31238.32 23980.80 20341.69 30368.88 27379.32 265
tpm cat159.25 28256.95 29166.15 26472.19 28646.96 25168.09 29765.76 30940.03 36357.81 30470.56 34438.32 23974.51 28938.26 32061.50 33477.00 293
CNLPA65.43 22164.02 22169.68 21778.73 14958.07 7877.82 14270.71 27251.49 25261.57 26883.58 16538.23 24170.82 30643.90 28570.10 25080.16 252
131464.61 23263.21 23568.80 23171.87 29147.46 24773.95 22778.39 17642.88 34759.97 27976.60 29638.11 24279.39 22654.84 19072.32 22079.55 262
testdata64.66 28381.52 8752.93 16165.29 31346.09 31873.88 6487.46 7538.08 24366.26 33353.31 20478.48 14074.78 317
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28577.31 15477.83 18456.45 17164.60 22682.70 17738.08 24380.33 21246.08 26372.31 22183.92 167
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29574.18 22375.59 21760.37 9666.77 17986.06 11237.64 24578.93 24152.16 21173.49 20086.32 84
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31675.85 19065.62 31155.09 20354.56 33379.36 25237.59 24667.02 32839.80 31376.95 16178.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 28950.80 19771.15 27069.63 28045.71 32360.61 27377.93 27137.45 24765.99 33455.67 18363.50 31879.42 264
SCA60.49 27258.38 28166.80 25174.14 26048.06 23963.35 33163.23 32849.13 28159.33 29172.10 33237.45 24774.27 29144.17 28062.57 32578.05 277
tt080567.77 18267.24 17869.34 22474.87 24240.08 31277.36 15381.37 10755.31 19766.33 18884.65 13937.35 24982.55 16655.65 18472.28 22285.39 124
IterMVS62.79 25261.27 25867.35 24869.37 32852.04 18171.17 26868.24 29352.63 24159.82 28276.91 28937.32 25072.36 29752.80 20763.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20679.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20681.36 229
tpm57.34 29458.16 28354.86 34171.80 29234.77 36067.47 30456.04 36548.20 29460.10 27776.92 28837.17 25353.41 38240.76 30865.01 30376.40 299
mvsmamba71.15 10269.54 12175.99 6377.61 19253.46 15281.95 7875.11 22957.73 15166.95 17685.96 11637.14 25487.56 5067.94 8375.49 17986.97 58
test22283.14 6858.68 7372.57 24963.45 32641.78 35067.56 16586.12 10937.13 25578.73 13774.98 313
AUN-MVS68.45 16866.41 19174.57 9879.53 12857.08 9773.93 22975.23 22554.44 22066.69 18181.85 20337.10 25682.89 15362.07 13866.84 29083.75 177
thres20062.20 25961.16 26165.34 27875.38 23639.99 31469.60 28769.29 28655.64 19261.87 26376.99 28737.07 25778.96 24031.28 36673.28 20577.06 291
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32672.65 24569.11 28857.07 15762.45 25781.03 21937.01 25879.17 23031.84 35873.25 20679.83 258
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32472.35 25269.11 28856.98 15962.37 25980.96 22137.01 25879.00 23931.43 36573.05 21081.36 229
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9473.16 25453.06 23559.09 29282.35 18936.79 26085.94 9032.82 35269.96 25472.45 336
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 15755.24 19967.79 16185.81 12336.54 26178.28 24562.04 13975.74 17583.19 194
ECVR-MVScopyleft67.72 18367.51 16468.35 23779.46 12936.29 35474.79 21366.93 30158.72 12767.19 17088.05 6636.10 26281.38 18752.07 21284.25 6987.39 48
test111167.21 19067.14 18167.42 24679.24 13434.76 36173.89 23165.65 31058.71 12966.96 17587.95 6936.09 26380.53 20752.03 21383.79 7486.97 58
pmmvs461.48 26859.39 27167.76 24271.57 29453.86 14371.42 26365.34 31244.20 33459.46 28777.92 27235.90 26474.71 28843.87 28664.87 30574.71 318
CR-MVSNet59.91 27657.90 28665.96 26869.96 32052.07 17965.31 32163.15 32942.48 34959.36 28874.84 31535.83 26570.75 30745.50 27264.65 30775.06 310
Patchmtry57.16 29556.47 29659.23 31469.17 33134.58 36362.98 33263.15 32944.53 33056.83 31074.84 31535.83 26568.71 31840.03 31160.91 33674.39 321
dmvs_re56.77 29856.83 29356.61 33269.23 32941.02 30658.37 35564.18 32150.59 26657.45 30771.42 33835.54 26758.94 36037.23 32567.45 28669.87 363
RPMNet61.53 26658.42 28070.86 19569.96 32052.07 17965.31 32181.36 10843.20 34459.36 28870.15 34935.37 26885.47 10336.42 33664.65 30775.06 310
CANet_DTU68.18 17367.71 15869.59 21974.83 24346.24 25778.66 12276.85 20059.60 11263.45 23982.09 20035.25 26977.41 25959.88 15778.76 13685.14 132
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19176.89 16874.25 24353.67 23065.59 20381.76 20535.15 27085.50 10155.94 17772.47 21786.47 75
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19677.86 13973.99 24654.54 21864.64 22582.53 18635.06 27185.50 10155.71 18269.91 25586.67 69
test_040263.25 24761.01 26269.96 21080.00 11854.37 13976.86 17072.02 26354.58 21758.71 29580.79 22735.00 27284.36 12426.41 38464.71 30671.15 354
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22171.32 26573.12 25549.39 27763.82 23576.50 29934.95 27384.84 11853.20 20575.49 17984.13 161
sam_mvs134.74 27478.05 277
pmmvs556.47 30155.68 30358.86 31861.41 37436.71 34766.37 30862.75 33140.38 36053.70 34076.62 29434.56 27567.05 32740.02 31265.27 30172.83 331
patchmatchnet-post64.03 37534.50 27674.27 291
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25369.42 28962.18 33847.55 30358.88 29471.96 33434.49 27769.16 31642.99 29463.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test49.08 33948.28 34151.50 35964.40 36030.85 38145.68 38748.46 38335.60 37146.10 37372.10 33234.47 27846.37 39227.08 38260.65 34077.27 288
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17872.05 25674.05 24546.41 31557.42 30874.36 31934.35 27977.57 25745.62 26973.67 19566.26 371
tpmvs58.47 28556.95 29163.03 29670.20 31541.21 30567.90 29967.23 29949.62 27554.73 33170.84 34234.14 28076.24 28236.64 33361.29 33571.64 346
testing9164.46 23463.80 22566.47 25678.43 15740.06 31367.63 30069.59 28159.06 12263.18 24278.05 26834.05 28176.99 26648.30 24575.87 17382.37 212
PMMVS53.96 31753.26 32356.04 33462.60 36950.92 19461.17 34456.09 36432.81 37453.51 34566.84 36834.04 28259.93 35544.14 28268.18 28057.27 383
Patchmatch-RL test58.16 28855.49 30466.15 26467.92 34048.89 22960.66 34851.07 37747.86 30059.36 28862.71 37934.02 28372.27 29956.41 17559.40 34477.30 287
WB-MVS43.26 34843.41 34942.83 37363.32 36510.32 40958.17 35745.20 38945.42 32440.44 38567.26 36634.01 28458.98 35911.96 40124.88 39659.20 377
test_post3.55 40733.90 28566.52 330
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12477.47 19048.51 28955.71 31881.89 20233.71 28679.71 22041.66 30470.37 24377.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20474.74 23452.91 23760.03 27880.12 23633.68 28782.64 16461.86 14176.34 16885.78 103
GA-MVS65.53 22063.70 22771.02 19470.87 30748.10 23870.48 27874.40 23956.69 16264.70 22476.77 29133.66 28881.10 19455.42 18770.32 24583.87 170
LS3D64.71 23062.50 24371.34 18579.72 12555.71 11779.82 10674.72 23548.50 29056.62 31184.62 14033.59 28982.34 17129.65 37375.23 18175.97 300
sam_mvs33.43 290
PatchT53.17 32553.44 32252.33 35668.29 33825.34 39858.21 35654.41 36844.46 33254.56 33369.05 35733.32 29160.94 34936.93 32861.76 33370.73 357
test20.0353.87 31954.02 31853.41 35161.47 37328.11 38761.30 34259.21 34851.34 25652.09 34977.43 28333.29 29258.55 36229.76 37260.27 34273.58 327
our_test_356.49 30054.42 31262.68 29869.51 32545.48 26766.08 31061.49 34144.11 33750.73 35769.60 35433.05 29368.15 32038.38 31956.86 35374.40 320
anonymousdsp67.00 19964.82 21673.57 13170.09 31856.13 10776.35 17777.35 19448.43 29164.99 22180.84 22633.01 29480.34 21164.66 11567.64 28584.23 157
MDTV_nov1_ep13_2view25.89 39661.22 34340.10 36251.10 35232.97 29538.49 31878.61 272
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16573.09 24175.13 22855.69 18958.48 30073.73 32332.86 29686.32 8350.63 22570.11 24981.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
Anonymous2023120655.10 31455.30 30654.48 34369.81 32433.94 36862.91 33362.13 33941.08 35655.18 32575.65 30832.75 30056.59 37230.32 37067.86 28272.91 329
UGNet68.81 15767.39 16973.06 14478.33 16254.47 13779.77 10775.40 22160.45 9263.22 24084.40 14632.71 30180.91 20151.71 21880.56 10883.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SSC-MVS41.96 35241.99 35241.90 37462.46 3709.28 41157.41 36244.32 39243.38 34138.30 38966.45 36932.67 30258.42 36310.98 40221.91 39957.99 381
test-LLR58.15 28958.13 28558.22 32368.57 33444.80 27265.46 31757.92 35350.08 27055.44 32169.82 35132.62 30357.44 36649.66 23373.62 19672.41 338
test0.0.03 153.32 32453.59 32152.50 35562.81 36829.45 38359.51 35154.11 36950.08 27054.40 33574.31 32032.62 30355.92 37530.50 36963.95 31472.15 343
MDTV_nov1_ep1357.00 29072.73 27438.26 33065.02 32464.73 31744.74 32855.46 32072.48 32832.61 30570.47 30837.47 32367.75 284
testing9964.05 23763.29 23466.34 25878.17 16939.76 31767.33 30568.00 29458.60 13163.03 24578.10 26732.57 30676.94 26848.22 24675.58 17782.34 213
cascas65.98 21463.42 23173.64 12777.26 20252.58 16972.26 25477.21 19648.56 28761.21 27074.60 31832.57 30685.82 9350.38 22776.75 16582.52 208
test_post168.67 2943.64 40632.39 30869.49 31544.17 280
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32575.20 20268.74 29031.15 37658.24 30176.51 29732.39 30868.58 31949.77 23065.84 29875.81 302
ppachtmachnet_test58.06 29055.38 30566.10 26669.51 32548.99 22768.01 29866.13 30844.50 33154.05 33870.74 34332.09 31072.34 29836.68 33256.71 35676.99 295
MIMVSNet57.35 29357.07 28958.22 32374.21 25937.18 34062.46 33560.88 34448.88 28455.29 32475.99 30431.68 31162.04 34731.87 35772.35 21975.43 308
testing1162.81 25161.90 25065.54 27478.38 15840.76 31067.59 30266.78 30355.48 19460.13 27677.11 28531.67 31276.79 27145.53 27174.45 18479.06 267
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36243.14 28967.49 30366.36 30640.22 36165.89 19771.95 33531.04 31359.75 35659.94 15664.90 30471.85 345
PVSNet_043.31 2047.46 34445.64 34752.92 35367.60 34244.65 27454.06 37154.64 36641.59 35346.15 37258.75 38230.99 31458.66 36132.18 35324.81 39755.46 385
RRT_MVS69.42 14667.49 16675.21 8378.01 17452.56 17082.23 7578.15 17955.84 18465.65 20185.07 13230.86 31586.83 6661.56 14670.00 25286.24 89
gg-mvs-nofinetune57.86 29156.43 29762.18 30072.62 27635.35 35766.57 30656.33 36250.65 26457.64 30557.10 38530.65 31676.36 28037.38 32478.88 13274.82 316
D2MVS62.30 25760.29 26768.34 23866.46 35048.42 23565.70 31273.42 25147.71 30158.16 30275.02 31430.51 31777.71 25553.96 19871.68 22878.90 271
bld_raw_dy_0_6470.97 10769.31 12675.95 6579.93 12051.43 18880.93 9075.96 21253.39 23372.29 9483.29 16930.48 31888.53 3067.40 9180.11 11487.89 26
GG-mvs-BLEND62.34 29971.36 30037.04 34469.20 29157.33 35854.73 33165.48 37330.37 31977.82 25234.82 34274.93 18272.17 342
MDA-MVSNet-bldmvs53.87 31950.81 33163.05 29566.25 35148.58 23356.93 36463.82 32348.09 29641.22 38270.48 34730.34 32068.00 32434.24 34445.92 38072.57 334
EPMVS53.96 31753.69 32054.79 34266.12 35331.96 37862.34 33749.05 38044.42 33355.54 31971.33 34030.22 32156.70 36941.65 30562.54 32675.71 304
YYNet150.73 33448.96 33656.03 33561.10 37641.78 30051.94 37556.44 36040.94 35844.84 37467.80 36130.08 32255.08 37836.77 32950.71 37171.22 352
MDA-MVSNet_test_wron50.71 33548.95 33756.00 33661.17 37541.84 29951.90 37656.45 35940.96 35744.79 37567.84 36030.04 32355.07 37936.71 33150.69 37271.11 355
test_cas_vis1_n_192056.91 29756.71 29457.51 33059.13 38245.40 26863.58 33061.29 34236.24 37067.14 17271.85 33629.89 32456.69 37057.65 16863.58 31770.46 358
Anonymous20240521166.84 20265.99 20169.40 22380.19 11442.21 29771.11 27171.31 26758.80 12667.90 15386.39 10229.83 32579.65 22149.60 23578.78 13586.33 82
iter_conf05_1171.51 9770.02 11575.99 6379.93 12051.46 18777.37 15278.24 17854.95 20972.06 9782.87 17529.55 32688.61 2867.40 9187.81 4287.89 26
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35864.94 32559.35 34754.06 22561.08 27176.67 29229.54 32771.87 30232.16 35474.07 18978.01 281
MSDG61.81 26459.23 27269.55 22272.64 27552.63 16870.45 27975.81 21351.38 25453.70 34076.11 30129.52 32881.08 19637.70 32265.79 29974.93 314
CMPMVSbinary42.80 2157.81 29255.97 30063.32 29160.98 37747.38 24864.66 32669.50 28332.06 37546.83 36977.80 27629.50 32971.36 30448.68 24173.75 19471.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24159.92 35076.39 20554.35 22158.67 29682.46 18829.44 33081.49 18542.12 30071.14 23377.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UnsupCasMVSNet_eth53.16 32652.47 32455.23 33959.45 38133.39 37259.43 35269.13 28745.98 31950.35 36072.32 32929.30 33158.26 36442.02 30244.30 38174.05 324
CHOSEN 280x42047.83 34246.36 34652.24 35867.37 34349.78 21538.91 39543.11 39435.00 37243.27 38063.30 37828.95 33249.19 38936.53 33460.80 33857.76 382
pmmvs-eth3d58.81 28456.31 29866.30 26067.61 34152.42 17572.30 25364.76 31643.55 34054.94 32874.19 32128.95 33272.60 29643.31 28957.21 35273.88 326
dp51.89 32951.60 32852.77 35468.44 33732.45 37662.36 33654.57 36744.16 33549.31 36267.91 35928.87 33456.61 37133.89 34554.89 36069.24 368
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18372.62 24775.81 21353.70 22965.31 20778.96 25728.81 33586.39 8043.93 28473.48 20182.55 206
iter_conf0569.40 14867.62 15974.73 8877.84 17951.13 19079.28 11573.71 24954.62 21468.17 14883.59 16328.68 33687.16 5765.74 10876.95 16185.91 98
testing22262.29 25861.31 25765.25 28077.87 17738.53 32868.34 29566.31 30756.37 17363.15 24477.58 28228.47 33776.18 28437.04 32776.65 16781.05 239
KD-MVS_self_test55.22 31253.89 31959.21 31557.80 38527.47 39057.75 36074.32 24047.38 30550.90 35470.00 35028.45 33870.30 31240.44 30957.92 34979.87 257
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9278.51 16752.33 24364.33 22884.11 15128.28 33981.81 18063.48 12870.62 23883.67 180
RPSCF55.80 30854.22 31760.53 31065.13 35742.91 29264.30 32757.62 35536.84 36958.05 30382.28 19228.01 34056.24 37437.14 32658.61 34782.44 211
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14878.12 13376.16 20747.97 29852.41 34881.61 20827.87 34178.11 24740.07 31066.66 29277.00 293
K. test v360.47 27357.11 28870.56 20173.74 26248.22 23775.10 20662.55 33258.27 13853.62 34376.31 30027.81 34281.59 18347.42 25039.18 38881.88 221
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18152.83 16480.39 9678.03 18157.30 15457.47 30682.55 18327.68 34384.17 12645.54 27069.78 25879.90 256
UnsupCasMVSNet_bld50.07 33748.87 33853.66 34860.97 37833.67 37057.62 36164.56 31839.47 36547.38 36664.02 37727.47 34459.32 35734.69 34343.68 38267.98 370
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9378.56 16552.48 24264.27 23084.10 15227.45 34581.84 17963.45 12970.56 24083.69 179
lessismore_v069.91 21371.42 29847.80 24150.90 37850.39 35975.56 30927.43 34681.33 18845.91 26534.10 39480.59 245
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 36969.04 29363.82 32348.56 28764.27 23077.64 28127.20 34770.40 31133.56 34976.24 16979.83 258
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17152.01 18279.48 11479.69 14055.75 18856.59 31280.98 22027.12 34880.94 19842.90 29671.58 22977.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 24975.59 19469.68 27954.61 21554.11 33779.26 25427.07 34982.96 15043.27 29049.79 37580.41 248
PVSNet50.76 1958.40 28657.39 28761.42 30575.53 23344.04 28061.43 34063.45 32647.04 31156.91 30973.61 32427.00 35064.76 33839.12 31672.40 21875.47 307
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31144.82 27175.33 19870.86 27145.04 32656.06 31676.00 30226.89 35179.65 22135.36 34167.29 28772.60 333
ADS-MVSNet251.33 33248.76 33959.07 31766.02 35444.60 27550.90 37759.76 34636.90 36750.74 35566.18 37126.38 35263.11 34327.17 38054.76 36169.50 365
ADS-MVSNet48.48 34147.77 34250.63 36066.02 35429.92 38250.90 37750.87 37936.90 36750.74 35566.18 37126.38 35252.47 38427.17 38054.76 36169.50 365
N_pmnet39.35 35740.28 35536.54 38063.76 3621.62 41549.37 3800.76 41434.62 37343.61 37966.38 37026.25 35442.57 39626.02 38551.77 36865.44 372
MVS-HIRNet45.52 34544.48 34848.65 36368.49 33634.05 36759.41 35344.50 39127.03 38337.96 39050.47 39326.16 35564.10 33926.74 38359.52 34347.82 392
test250665.33 22464.61 21767.50 24479.46 12934.19 36674.43 22051.92 37358.72 12766.75 18088.05 6625.99 35680.92 20051.94 21484.25 6987.39 48
FMVSNet555.86 30754.93 30758.66 32071.05 30536.35 35064.18 32962.48 33346.76 31350.66 35874.73 31725.80 35764.04 34033.11 35065.57 30075.59 305
new-patchmatchnet47.56 34347.73 34347.06 36458.81 3839.37 41048.78 38159.21 34843.28 34244.22 37768.66 35825.67 35857.20 36831.57 36449.35 37674.62 319
MIMVSNet155.17 31354.31 31557.77 32870.03 31932.01 37765.68 31364.81 31549.19 28046.75 37076.00 30225.53 35964.04 34028.65 37662.13 32977.26 289
PatchMatch-RL56.25 30454.55 31161.32 30877.06 20756.07 10965.57 31454.10 37044.13 33653.49 34671.27 34125.20 36066.78 32936.52 33563.66 31561.12 375
JIA-IIPM51.56 33047.68 34463.21 29364.61 35950.73 19847.71 38358.77 35042.90 34648.46 36451.72 38924.97 36170.24 31336.06 33853.89 36468.64 369
EU-MVSNet55.61 30954.41 31359.19 31665.41 35633.42 37172.44 25171.91 26428.81 37851.27 35173.87 32224.76 36269.08 31743.04 29358.20 34875.06 310
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15177.99 13678.82 15653.37 23456.03 31777.41 28424.75 36384.04 12946.37 26173.42 20373.14 328
TESTMET0.1,155.28 31154.90 30856.42 33366.56 34843.67 28365.46 31756.27 36339.18 36653.83 33967.44 36324.21 36455.46 37748.04 24873.11 20970.13 361
mvsany_test139.38 35638.16 35943.02 37249.05 39234.28 36544.16 39125.94 40722.74 39146.57 37162.21 38023.85 36541.16 39933.01 35135.91 39153.63 386
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17278.42 12773.30 25249.92 27350.96 35381.51 21123.06 36679.40 22531.63 36265.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi51.90 32852.37 32550.51 36160.39 38023.55 40158.42 35458.15 35149.03 28251.83 35079.21 25522.39 36755.59 37629.24 37562.64 32472.40 340
DSMNet-mixed39.30 35838.72 35741.03 37551.22 39119.66 40445.53 38831.35 40315.83 40039.80 38767.42 36522.19 36845.13 39322.43 38852.69 36758.31 380
test-mter56.42 30255.82 30258.22 32368.57 33444.80 27265.46 31757.92 35339.94 36455.44 32169.82 35121.92 36957.44 36649.66 23373.62 19672.41 338
KD-MVS_2432*160053.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
miper_refine_blended53.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
myMVS_eth3d54.86 31554.61 31055.61 33774.69 24727.31 39165.52 31557.49 35650.97 26156.52 31372.18 33021.87 37268.09 32127.70 37964.59 30971.44 350
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28848.06 23973.93 22972.51 25847.23 30954.74 33080.92 22221.49 37381.24 19148.57 24356.22 35779.53 263
testing356.54 29955.92 30158.41 32177.52 19527.93 38869.72 28656.36 36154.75 21358.63 29877.80 27620.88 37471.75 30325.31 38662.25 32875.53 306
ITE_SJBPF62.09 30166.16 35244.55 27764.32 31947.36 30655.31 32380.34 23219.27 37562.68 34536.29 33762.39 32779.04 268
AllTest57.08 29654.65 30964.39 28671.44 29649.03 22469.92 28567.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
TestCases64.39 28671.44 29649.03 22467.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
Anonymous2024052155.30 31054.41 31357.96 32660.92 37941.73 30171.09 27271.06 27041.18 35548.65 36373.31 32516.93 37859.25 35842.54 29764.01 31272.90 330
test_fmvs151.32 33350.48 33353.81 34753.57 38737.51 33860.63 34951.16 37528.02 38263.62 23769.23 35616.41 37953.93 38151.01 22260.70 33969.99 362
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28352.45 17470.80 27578.45 17153.84 22859.87 28181.10 21716.24 38079.32 22755.64 18571.76 22680.47 246
tmp_tt9.43 37511.14 3784.30 3902.38 4134.40 41313.62 40216.08 4110.39 40715.89 40213.06 40415.80 3815.54 40912.63 40010.46 4062.95 404
USDC56.35 30354.24 31662.69 29764.74 35840.31 31165.05 32373.83 24743.93 33847.58 36577.71 28015.36 38275.05 28738.19 32161.81 33272.70 332
test_fmvs1_n51.37 33150.35 33454.42 34552.85 38837.71 33661.16 34551.93 37228.15 38063.81 23669.73 35313.72 38353.95 38051.16 22160.65 34071.59 347
test_vis1_n49.89 33848.69 34053.50 35053.97 38637.38 33961.53 33947.33 38628.54 37959.62 28667.10 36713.52 38452.27 38549.07 23857.52 35070.84 356
EGC-MVSNET42.47 35038.48 35854.46 34474.33 25648.73 23170.33 28151.10 3760.03 4080.18 40967.78 36213.28 38566.49 33118.91 39350.36 37348.15 390
ANet_high41.38 35337.47 36053.11 35239.73 40424.45 39956.94 36369.69 27847.65 30226.04 39652.32 38812.44 38662.38 34621.80 39010.61 40572.49 335
FPMVS42.18 35141.11 35445.39 36658.03 38441.01 30849.50 37953.81 37130.07 37733.71 39164.03 37511.69 38752.08 38714.01 39755.11 35943.09 394
TinyColmap54.14 31651.72 32761.40 30666.84 34641.97 29866.52 30768.51 29144.81 32742.69 38175.77 30711.66 38872.94 29531.96 35656.77 35569.27 367
test_fmvs248.69 34047.49 34552.29 35748.63 39433.06 37457.76 35948.05 38425.71 38659.76 28469.60 35411.57 38952.23 38649.45 23656.86 35371.58 348
TDRefinement53.44 32350.72 33261.60 30364.31 36146.96 25170.89 27465.27 31441.78 35044.61 37677.98 26911.52 39066.36 33228.57 37751.59 36971.49 349
ambc65.13 28163.72 36437.07 34347.66 38478.78 15954.37 33671.42 33811.24 39180.94 19845.64 26853.85 36577.38 286
test_vis1_rt41.35 35439.45 35647.03 36546.65 39737.86 33347.76 38238.65 39723.10 38944.21 37851.22 39111.20 39244.08 39439.27 31553.02 36659.14 378
pmmvs344.92 34641.95 35353.86 34652.58 39043.55 28462.11 33846.90 38826.05 38540.63 38360.19 38111.08 39357.91 36531.83 36146.15 37960.11 376
new_pmnet34.13 36234.29 36333.64 38252.63 38918.23 40644.43 39033.90 40222.81 39030.89 39353.18 38710.48 39435.72 40320.77 39139.51 38746.98 393
LF4IMVS42.95 34942.26 35145.04 36748.30 39532.50 37554.80 36948.49 38228.03 38140.51 38470.16 3489.24 39543.89 39531.63 36249.18 37758.72 379
PM-MVS52.33 32750.19 33558.75 31962.10 37145.14 27065.75 31140.38 39643.60 33953.52 34472.65 3279.16 39665.87 33550.41 22654.18 36365.24 373
EMVS22.97 37021.84 37426.36 38640.20 40319.53 40541.95 39334.64 40117.09 3979.73 40722.83 4037.29 39742.22 3989.18 40613.66 40317.32 402
E-PMN23.77 36922.73 37326.90 38542.02 40020.67 40342.66 39235.70 40017.43 39610.28 40625.05 4026.42 39842.39 39710.28 40414.71 40217.63 401
test_method19.68 37218.10 37524.41 38713.68 4123.11 41412.06 40342.37 3952.00 40611.97 40436.38 3985.77 39929.35 40615.06 39523.65 39840.76 397
mvsany_test332.62 36330.57 36738.77 37836.16 40724.20 40038.10 39620.63 40919.14 39540.36 38657.43 3845.06 40036.63 40229.59 37428.66 39555.49 384
test_f31.86 36531.05 36634.28 38132.33 41021.86 40232.34 39730.46 40416.02 39939.78 38855.45 3864.80 40132.36 40430.61 36837.66 39048.64 388
Gipumacopyleft34.77 36131.91 36543.33 37162.05 37237.87 33220.39 40067.03 30023.23 38818.41 40125.84 4014.24 40262.73 34414.71 39651.32 37029.38 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs344.30 34742.55 35049.55 36242.83 39827.15 39353.03 37344.93 39022.03 39353.69 34264.94 3744.21 40349.63 38847.47 24949.82 37471.88 344
PMMVS227.40 36825.91 37131.87 38439.46 4056.57 41231.17 39828.52 40523.96 38720.45 40048.94 3964.20 40437.94 40016.51 39419.97 40051.09 387
LCM-MVSNet40.30 35535.88 36153.57 34942.24 39929.15 38445.21 38960.53 34522.23 39228.02 39450.98 3923.72 40561.78 34831.22 36738.76 38969.78 364
DeepMVS_CXcopyleft12.03 38917.97 41110.91 40810.60 4127.46 40411.07 40528.36 4003.28 40611.29 4088.01 4079.74 40713.89 403
APD_test137.39 35934.94 36244.72 37048.88 39333.19 37352.95 37444.00 39319.49 39427.28 39558.59 3833.18 40752.84 38318.92 39241.17 38648.14 391
PMVScopyleft28.69 2236.22 36033.29 36445.02 36836.82 40635.98 35554.68 37048.74 38126.31 38421.02 39951.61 3902.88 40860.10 3549.99 40547.58 37838.99 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt32.09 36430.20 36837.76 37935.36 40827.48 38940.60 39428.29 40616.69 39832.52 39240.53 3971.96 40937.40 40133.64 34842.21 38548.39 389
MVEpermissive17.77 2321.41 37117.77 37632.34 38334.34 40925.44 39716.11 40124.11 40811.19 40313.22 40331.92 3991.58 41030.95 40510.47 40317.03 40140.62 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf131.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
APD_test231.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
wuyk23d13.32 37412.52 37715.71 38847.54 39626.27 39531.06 3991.98 4134.93 4055.18 4081.94 4080.45 41318.54 4076.81 40812.83 4042.33 405
test1234.73 3776.30 3800.02 3910.01 4140.01 41656.36 3650.00 4150.01 4090.04 4100.21 4100.01 4140.00 4100.03 4100.00 4080.04 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
testmvs4.52 3786.03 3810.01 3920.01 4140.00 41753.86 3720.00 4150.01 4090.04 4100.27 4090.00 4150.00 4100.04 4090.00 4080.03 407
ab-mvs-re6.49 3768.65 3790.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 41277.89 2740.00 4150.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
WAC-MVS27.31 39127.77 378
FOURS186.12 3660.82 3788.18 183.61 6460.87 8481.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
eth-test20.00 416
eth-test0.00 416
IU-MVS87.77 459.15 6085.53 2553.93 22784.64 379.07 1190.87 588.37 14
save fliter86.17 3361.30 2883.98 4779.66 14259.00 123
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 41
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
MTGPAbinary80.97 125
MTMP86.03 1917.08 410
gm-plane-assit71.40 29941.72 30348.85 28573.31 32582.48 16948.90 240
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
agg_prior85.04 5059.96 4781.04 12374.68 5284.04 129
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7986.38 76
旧先验276.08 18345.32 32576.55 3365.56 33658.75 164
新几何276.12 181
无先验79.66 11174.30 24248.40 29280.78 20453.62 20079.03 269
原ACMM279.02 117
testdata272.18 30146.95 258
testdata172.65 24560.50 91
plane_prior781.41 9055.96 111
plane_prior584.01 4987.21 5568.16 8180.58 10684.65 147
plane_prior486.10 110
plane_prior356.09 10863.92 3669.27 131
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 109
n20.00 415
nn0.00 415
door-mid47.19 387
test1183.47 68
door47.60 385
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 155
ACMP_Plane80.66 10382.31 7162.10 6867.85 155
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6384.32 154
HQP3-MVS83.90 5480.35 110
NP-MVS80.98 10056.05 11085.54 128
ACMMP++_ref74.07 189
ACMMP++72.16 223