ETH3D-3000-0.1 | | | 78.58 16 | 78.91 14 | 77.61 48 | 83.06 79 | 57.86 92 | 84.14 45 | 88.31 1 | 60.37 101 | 79.14 22 | 90.35 29 | 57.76 28 | 87.00 65 | 77.16 22 | 89.90 18 | 87.97 20 |
|
9.14 | | | | 78.75 16 | | 83.10 78 | | 84.15 43 | 88.26 2 | 59.90 113 | 78.57 27 | 90.36 28 | 57.51 31 | 86.86 68 | 77.39 18 | 89.52 25 | |
|
SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 49 | 82.88 84 | 57.83 93 | 84.99 32 | 88.13 3 | 61.86 78 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 62 | 77.08 23 | 90.18 15 | 87.87 23 |
|
ETH3 D test6400 | | | 79.14 11 | 79.32 10 | 78.61 32 | 86.34 31 | 58.11 89 | 84.65 34 | 87.66 4 | 58.56 138 | 78.87 24 | 89.54 53 | 63.67 13 | 89.57 16 | 74.60 36 | 89.98 17 | 88.14 15 |
|
ETH3D cwj APD-0.16 | | | 78.02 25 | 78.13 25 | 77.71 47 | 82.10 89 | 58.65 82 | 82.72 70 | 87.55 5 | 58.33 143 | 78.05 30 | 90.06 40 | 58.35 24 | 87.65 51 | 76.15 28 | 89.86 19 | 86.82 59 |
|
DVP-MVS++. | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 68 | 88.18 1 | 87.15 6 | 65.04 20 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 7 |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 71 | 87.85 5 | 87.15 6 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 36 |
|
test_part1 | | | 74.74 61 | 74.42 62 | 75.70 81 | 81.69 96 | 51.26 186 | 83.98 48 | 87.05 8 | 65.31 16 | 73.10 78 | 86.20 101 | 53.94 62 | 88.06 39 | 65.32 106 | 73.17 194 | 87.77 30 |
|
MCST-MVS | | | 77.48 33 | 77.45 30 | 77.54 50 | 86.67 22 | 58.36 86 | 83.22 60 | 86.93 9 | 56.91 162 | 74.91 48 | 88.19 69 | 59.15 21 | 87.68 50 | 73.67 45 | 87.45 47 | 86.57 66 |
|
DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 24 | 79.83 6 | 83.60 72 | 61.62 26 | 84.17 42 | 86.85 10 | 63.23 49 | 73.84 67 | 90.25 35 | 57.68 29 | 89.96 13 | 74.62 35 | 89.03 26 | 87.89 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_one_0601 | | | | | | 87.58 9 | 59.30 65 | | 86.84 11 | 65.01 23 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
test0726 | | | | | | 87.75 7 | 59.07 72 | 87.86 4 | 86.83 12 | 64.26 32 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 34 | 62.73 12 | 86.09 17 | 86.83 12 | 65.51 14 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 1 | 88.44 32 | 88.09 17 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 77 | 87.82 7 | 86.78 14 | 64.18 35 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 12 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 77 | | 86.78 14 | 64.20 34 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
test_241102_TWO | | | | | | | | | 86.73 16 | 64.18 35 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 34 |
|
CSCG | | | 76.92 38 | 76.75 37 | 77.41 52 | 83.96 71 | 59.60 59 | 82.95 63 | 86.50 17 | 60.78 91 | 75.27 41 | 84.83 124 | 60.76 15 | 86.56 79 | 67.86 84 | 87.87 46 | 86.06 84 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 48 | 85.71 26 | 86.42 18 | 63.28 47 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 27 | 89.67 22 | 86.84 58 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 23 | 60.02 53 | 88.12 3 | 86.42 18 | 62.94 54 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 11 | 88.32 36 | 86.79 61 |
|
3Dnovator+ | | 66.72 4 | 75.84 50 | 74.57 60 | 79.66 8 | 82.40 87 | 59.92 56 | 85.83 22 | 86.32 20 | 66.92 8 | 67.80 157 | 89.24 58 | 42.03 194 | 89.38 18 | 64.07 115 | 86.50 61 | 89.69 1 |
|
CS-MVS-test | | | 74.96 56 | 74.82 57 | 75.40 87 | 79.45 139 | 52.03 181 | 82.95 63 | 86.18 21 | 63.24 48 | 70.07 110 | 84.50 134 | 55.21 47 | 88.77 27 | 67.89 83 | 83.85 76 | 85.40 114 |
|
CS-MVS | | | 74.01 72 | 74.24 65 | 73.32 143 | 76.47 211 | 48.51 227 | 79.19 124 | 86.17 22 | 60.56 95 | 71.62 98 | 83.71 150 | 55.16 48 | 87.94 43 | 69.21 74 | 86.11 63 | 83.51 177 |
|
DROMVSNet | | | 75.84 50 | 75.87 47 | 75.74 78 | 78.86 150 | 52.65 166 | 83.73 53 | 86.08 23 | 63.47 45 | 72.77 84 | 87.25 81 | 53.13 74 | 87.93 44 | 71.97 56 | 85.57 67 | 86.66 64 |
|
ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 13 | 86.43 30 | 62.05 21 | 86.62 11 | 86.01 24 | 63.32 46 | 75.08 43 | 90.47 27 | 53.96 61 | 88.68 28 | 76.48 26 | 89.63 24 | 87.16 51 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 11 | 79.98 2 | 83.01 82 | 62.18 19 | 87.60 9 | 85.83 25 | 66.69 10 | 78.03 31 | 90.98 14 | 54.26 57 | 90.06 12 | 78.42 17 | 89.02 27 | 87.69 32 |
Skip Steuart: Steuart Systems R&D Blog. |
PHI-MVS | | | 75.87 49 | 75.36 50 | 77.41 52 | 80.62 116 | 55.91 127 | 84.28 39 | 85.78 26 | 56.08 183 | 73.41 72 | 86.58 94 | 50.94 99 | 88.54 29 | 70.79 63 | 89.71 21 | 87.79 29 |
|
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 25 | 61.95 22 | 86.33 13 | 85.75 27 | 62.49 65 | 82.20 15 | 92.28 1 | 56.53 34 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 75.47 53 | 75.00 52 | 76.88 59 | 81.38 103 | 59.16 67 | 79.94 110 | 85.71 28 | 56.59 170 | 72.46 89 | 86.76 84 | 56.89 32 | 87.86 47 | 66.36 96 | 88.91 30 | 83.64 174 |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 29 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 29 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 68 | | 85.53 31 | 53.93 220 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 9 |
|
MP-MVS-pluss | | | 78.35 22 | 78.46 18 | 78.03 43 | 84.96 60 | 59.52 61 | 82.93 65 | 85.39 32 | 62.15 70 | 76.41 36 | 91.51 11 | 52.47 79 | 86.78 71 | 80.66 2 | 89.64 23 | 87.80 28 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
testtj | | | 78.47 19 | 78.43 19 | 78.61 32 | 86.82 17 | 60.67 46 | 86.07 18 | 85.38 33 | 62.12 71 | 78.65 26 | 90.29 33 | 55.76 42 | 89.31 19 | 73.55 47 | 87.22 49 | 85.84 90 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 18 | 84.92 64 | 60.32 51 | 83.03 62 | 85.33 34 | 62.86 57 | 80.17 17 | 90.03 43 | 61.76 14 | 88.95 24 | 74.21 38 | 88.67 31 | 88.12 16 |
|
GST-MVS | | | 78.14 24 | 77.85 27 | 78.99 25 | 86.05 43 | 61.82 25 | 85.84 21 | 85.21 35 | 63.56 44 | 74.29 59 | 90.03 43 | 52.56 76 | 88.53 30 | 74.79 34 | 88.34 34 | 86.63 65 |
|
ACMMP_NAP | | | 78.77 15 | 78.78 15 | 78.74 30 | 85.44 52 | 61.04 36 | 83.84 52 | 85.16 36 | 62.88 56 | 78.10 28 | 91.26 13 | 52.51 77 | 88.39 31 | 79.34 6 | 90.52 13 | 86.78 62 |
|
HPM-MVS |  | | 77.28 34 | 76.85 36 | 78.54 34 | 85.00 59 | 60.81 43 | 82.91 66 | 85.08 37 | 62.57 63 | 73.09 79 | 89.97 46 | 50.90 100 | 87.48 53 | 75.30 30 | 86.85 56 | 87.33 48 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
casdiffmvs | | | 74.80 59 | 74.89 56 | 74.53 108 | 75.59 226 | 50.37 201 | 78.17 139 | 85.06 38 | 62.80 61 | 74.40 57 | 87.86 73 | 57.88 27 | 83.61 147 | 69.46 72 | 82.79 88 | 89.59 2 |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 36 | 87.75 7 | 59.07 72 | 87.85 5 | 85.03 39 | 64.26 32 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 109 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 20 | 84.37 36 | 85.03 39 | 66.96 5 | 77.58 32 | 90.06 40 | 59.47 20 | 89.13 22 | 78.67 12 | 89.73 20 | 87.03 54 |
|
ETV-MVS | | | 74.46 66 | 73.84 70 | 76.33 70 | 79.27 142 | 55.24 139 | 79.22 123 | 85.00 41 | 64.97 24 | 72.65 86 | 79.46 240 | 53.65 70 | 87.87 46 | 67.45 89 | 82.91 84 | 85.89 89 |
|
test_prior3 | | | 76.89 40 | 76.96 35 | 76.69 62 | 84.20 69 | 57.27 101 | 81.75 85 | 84.88 42 | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 38 | 86.43 84 | 72.19 53 | 88.96 28 | 86.38 68 |
|
test_prior | | | | | 76.69 62 | 84.20 69 | 57.27 101 | | 84.88 42 | | | | | 86.43 84 | | | 86.38 68 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 35 | 76.63 39 | 79.12 19 | 86.15 38 | 60.86 41 | 84.71 33 | 84.85 44 | 61.98 77 | 73.06 80 | 88.88 64 | 53.72 66 | 89.06 23 | 68.27 77 | 88.04 42 | 87.42 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CLD-MVS | | | 73.33 78 | 72.68 82 | 75.29 92 | 78.82 152 | 53.33 158 | 78.23 138 | 84.79 45 | 61.30 85 | 70.41 105 | 81.04 203 | 52.41 80 | 87.12 60 | 64.61 114 | 82.49 92 | 85.41 113 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 74.61 64 | 74.70 59 | 74.34 112 | 75.70 222 | 49.99 208 | 77.54 150 | 84.63 46 | 62.73 62 | 73.98 61 | 87.79 75 | 57.67 30 | 83.82 143 | 69.49 70 | 82.74 89 | 89.20 3 |
|
ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 41 | 85.20 56 | 61.91 23 | 85.49 30 | 84.44 47 | 63.04 52 | 69.80 120 | 89.74 52 | 45.43 163 | 87.16 59 | 72.01 55 | 82.87 86 | 85.14 120 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
NCCC | | | 78.58 16 | 78.31 20 | 79.39 11 | 87.51 12 | 62.61 16 | 85.20 31 | 84.42 48 | 66.73 9 | 74.67 54 | 89.38 56 | 55.30 46 | 89.18 21 | 74.19 39 | 87.34 48 | 86.38 68 |
|
APD-MVS |  | | 78.02 25 | 78.04 26 | 77.98 44 | 86.44 29 | 60.81 43 | 85.52 28 | 84.36 49 | 60.61 93 | 79.05 23 | 90.30 32 | 55.54 45 | 88.32 34 | 73.48 48 | 87.03 52 | 84.83 130 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 27 | 77.65 28 | 79.10 20 | 86.71 20 | 62.81 10 | 86.29 14 | 84.32 50 | 62.82 58 | 73.96 62 | 90.50 24 | 53.20 72 | 88.35 32 | 74.02 41 | 87.05 50 | 86.13 81 |
|
#test# | | | 77.83 28 | 77.41 31 | 79.10 20 | 86.71 20 | 62.81 10 | 85.69 27 | 84.32 50 | 61.61 81 | 73.96 62 | 90.50 24 | 53.20 72 | 88.35 32 | 73.68 44 | 87.05 50 | 86.13 81 |
|
ACMMPR | | | 77.71 29 | 77.23 33 | 79.16 16 | 86.75 19 | 62.93 9 | 86.29 14 | 84.24 52 | 62.82 58 | 73.55 71 | 90.56 22 | 49.80 106 | 88.24 35 | 74.02 41 | 87.03 52 | 86.32 76 |
|
DELS-MVS | | | 74.76 60 | 74.46 61 | 75.65 83 | 77.84 179 | 52.25 175 | 75.59 190 | 84.17 53 | 63.76 41 | 73.15 75 | 82.79 163 | 59.58 19 | 86.80 69 | 67.24 90 | 86.04 64 | 87.89 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
region2R | | | 77.67 31 | 77.18 34 | 79.15 17 | 86.76 18 | 62.95 8 | 86.29 14 | 84.16 54 | 62.81 60 | 73.30 73 | 90.58 21 | 49.90 104 | 88.21 36 | 73.78 43 | 87.03 52 | 86.29 79 |
|
CDPH-MVS | | | 76.31 44 | 75.67 49 | 78.22 40 | 85.35 55 | 59.14 70 | 81.31 94 | 84.02 55 | 56.32 175 | 74.05 60 | 88.98 62 | 53.34 71 | 87.92 45 | 69.23 73 | 88.42 33 | 87.59 37 |
|
HQP_MVS | | | 74.31 68 | 73.73 71 | 76.06 72 | 81.41 101 | 56.31 116 | 84.22 40 | 84.01 56 | 64.52 28 | 69.27 128 | 86.10 104 | 45.26 167 | 87.21 57 | 68.16 80 | 80.58 107 | 84.65 136 |
|
plane_prior5 | | | | | | | | | 84.01 56 | | | | | 87.21 57 | 68.16 80 | 80.58 107 | 84.65 136 |
|
XVS | | | 77.17 36 | 76.56 40 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 92 | 90.01 45 | 47.95 127 | 88.01 41 | 71.55 59 | 86.74 58 | 86.37 71 |
|
X-MVStestdata | | | 70.21 124 | 67.28 165 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 92 | 6.49 367 | 47.95 127 | 88.01 41 | 71.55 59 | 86.74 58 | 86.37 71 |
|
HQP3-MVS | | | | | | | | | 83.90 60 | | | | | | | 80.35 113 | |
|
HQP-MVS | | | 73.45 77 | 72.80 81 | 75.40 87 | 80.66 113 | 54.94 140 | 82.31 78 | 83.90 60 | 62.10 72 | 67.85 152 | 85.54 118 | 45.46 161 | 86.93 66 | 67.04 92 | 80.35 113 | 84.32 144 |
|
canonicalmvs | | | 74.67 63 | 74.98 54 | 73.71 127 | 78.94 149 | 50.56 199 | 80.23 105 | 83.87 62 | 60.30 107 | 77.15 33 | 86.56 95 | 59.65 17 | 82.00 183 | 66.01 99 | 82.12 93 | 88.58 6 |
|
SD-MVS | | | 77.70 30 | 77.62 29 | 77.93 45 | 84.47 67 | 61.88 24 | 84.55 35 | 83.87 62 | 60.37 101 | 79.89 18 | 89.38 56 | 54.97 50 | 85.58 103 | 76.12 29 | 84.94 69 | 86.33 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 78.44 20 | 78.28 21 | 78.90 26 | 84.96 60 | 61.41 29 | 84.03 46 | 83.82 64 | 59.34 126 | 79.37 19 | 89.76 51 | 59.84 16 | 87.62 52 | 76.69 25 | 86.74 58 | 87.68 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 76.77 41 | 76.06 43 | 78.88 27 | 86.14 39 | 62.73 12 | 82.55 74 | 83.74 65 | 61.71 79 | 72.45 91 | 90.34 31 | 48.48 123 | 88.13 37 | 72.32 52 | 86.85 56 | 85.78 92 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 66 | 65.37 15 | 78.78 25 | 90.64 19 | 58.63 23 | 87.24 55 | 79.00 10 | 90.37 14 | 85.26 119 |
|
OPM-MVS | | | 74.73 62 | 74.25 64 | 76.19 71 | 80.81 112 | 59.01 75 | 82.60 73 | 83.64 67 | 63.74 42 | 72.52 88 | 87.49 76 | 47.18 141 | 85.88 96 | 69.47 71 | 80.78 103 | 83.66 172 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
FOURS1 | | | | | | 86.12 40 | 60.82 42 | 88.18 1 | 83.61 68 | 60.87 88 | 81.50 16 | | | | | | |
|
FIs | | | 70.82 112 | 71.43 93 | 68.98 225 | 78.33 165 | 38.14 318 | 76.96 164 | 83.59 69 | 61.02 87 | 67.33 164 | 86.73 86 | 55.07 49 | 81.64 189 | 54.61 186 | 79.22 129 | 87.14 52 |
|
MP-MVS |  | | 78.35 22 | 78.26 22 | 78.64 31 | 86.54 27 | 63.47 5 | 86.02 20 | 83.55 70 | 63.89 40 | 73.60 70 | 90.60 20 | 54.85 53 | 86.72 72 | 77.20 21 | 88.06 41 | 85.74 98 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
QAPM | | | 70.05 126 | 68.81 134 | 73.78 121 | 76.54 209 | 53.43 156 | 83.23 59 | 83.48 71 | 52.89 229 | 65.90 188 | 86.29 100 | 41.55 205 | 86.49 83 | 51.01 211 | 78.40 143 | 81.42 214 |
|
test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
CP-MVS | | | 77.12 37 | 76.68 38 | 78.43 35 | 86.05 43 | 63.18 7 | 87.55 10 | 83.45 73 | 62.44 67 | 72.68 85 | 90.50 24 | 48.18 125 | 87.34 54 | 73.59 46 | 85.71 65 | 84.76 135 |
|
原ACMM1 | | | | | 74.69 99 | 85.39 54 | 59.40 62 | | 83.42 74 | 51.47 244 | 70.27 108 | 86.61 92 | 48.61 121 | 86.51 82 | 53.85 191 | 87.96 43 | 78.16 260 |
|
LPG-MVS_test | | | 72.74 84 | 71.74 89 | 75.76 76 | 80.22 122 | 57.51 99 | 82.55 74 | 83.40 75 | 61.32 83 | 66.67 173 | 87.33 79 | 39.15 225 | 86.59 77 | 67.70 85 | 77.30 153 | 83.19 186 |
|
LGP-MVS_train | | | | | 75.76 76 | 80.22 122 | 57.51 99 | | 83.40 75 | 61.32 83 | 66.67 173 | 87.33 79 | 39.15 225 | 86.59 77 | 67.70 85 | 77.30 153 | 83.19 186 |
|
test12 | | | | | 77.76 46 | 84.52 66 | 58.41 85 | | 83.36 77 | | 72.93 82 | | 54.61 55 | 88.05 40 | | 88.12 40 | 86.81 60 |
|
PAPR | | | 71.72 101 | 70.82 104 | 74.41 111 | 81.20 108 | 51.17 187 | 79.55 119 | 83.33 78 | 55.81 188 | 66.93 169 | 84.61 129 | 50.95 98 | 86.06 89 | 55.79 174 | 79.20 130 | 86.00 85 |
|
CANet | | | 76.46 43 | 75.93 45 | 78.06 42 | 81.29 104 | 57.53 98 | 82.35 76 | 83.31 79 | 67.78 3 | 70.09 109 | 86.34 99 | 54.92 51 | 88.90 25 | 72.68 51 | 84.55 71 | 87.76 31 |
|
APD-MVS_3200maxsize | | | 74.96 56 | 74.39 63 | 76.67 64 | 82.20 88 | 58.24 88 | 83.67 54 | 83.29 80 | 58.41 140 | 73.71 68 | 90.14 37 | 45.62 156 | 85.99 92 | 69.64 69 | 82.85 87 | 85.78 92 |
|
PAPM_NR | | | 72.63 86 | 71.80 88 | 75.13 93 | 81.72 95 | 53.42 157 | 79.91 112 | 83.28 81 | 59.14 128 | 66.31 181 | 85.90 110 | 51.86 87 | 86.06 89 | 57.45 163 | 80.62 105 | 85.91 88 |
|
EIA-MVS | | | 71.78 99 | 70.60 106 | 75.30 91 | 79.85 130 | 53.54 154 | 77.27 158 | 83.26 82 | 57.92 150 | 66.49 176 | 79.39 241 | 52.07 85 | 86.69 73 | 60.05 150 | 79.14 132 | 85.66 100 |
|
FC-MVSNet-test | | | 69.80 131 | 70.58 108 | 67.46 239 | 77.61 189 | 34.73 341 | 76.05 184 | 83.19 83 | 60.84 89 | 65.88 189 | 86.46 96 | 54.52 56 | 80.76 212 | 52.52 201 | 78.12 144 | 86.91 55 |
|
3Dnovator | | 64.47 5 | 72.49 88 | 71.39 95 | 75.79 75 | 77.70 181 | 58.99 76 | 80.66 101 | 83.15 84 | 62.24 69 | 65.46 195 | 86.59 93 | 42.38 192 | 85.52 105 | 59.59 155 | 84.72 70 | 82.85 195 |
|
MVS_Test | | | 72.45 89 | 72.46 84 | 72.42 162 | 74.88 234 | 48.50 228 | 76.28 178 | 83.14 85 | 59.40 124 | 72.46 89 | 84.68 126 | 55.66 44 | 81.12 200 | 65.98 100 | 79.66 121 | 87.63 35 |
|
DP-MVS Recon | | | 72.15 96 | 70.73 105 | 76.40 68 | 86.57 26 | 57.99 91 | 81.15 96 | 82.96 86 | 57.03 159 | 66.78 170 | 85.56 116 | 44.50 174 | 88.11 38 | 51.77 207 | 80.23 116 | 83.10 190 |
|
Regformer-2 | | | 75.63 52 | 74.99 53 | 77.54 50 | 80.43 118 | 58.32 87 | 79.50 120 | 82.92 87 | 67.84 1 | 75.94 37 | 80.75 213 | 55.73 43 | 86.80 69 | 71.44 61 | 80.38 111 | 87.50 40 |
|
UniMVSNet (Re) | | | 70.63 115 | 70.20 112 | 71.89 166 | 78.55 158 | 45.29 264 | 75.94 187 | 82.92 87 | 63.68 43 | 68.16 146 | 83.59 153 | 53.89 64 | 83.49 150 | 53.97 189 | 71.12 219 | 86.89 56 |
|
MAR-MVS | | | 71.51 103 | 70.15 114 | 75.60 85 | 81.84 94 | 59.39 63 | 81.38 93 | 82.90 89 | 54.90 210 | 68.08 149 | 78.70 248 | 47.73 129 | 85.51 106 | 51.68 209 | 84.17 74 | 81.88 210 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
nrg030 | | | 72.96 82 | 73.01 79 | 72.84 151 | 75.41 229 | 50.24 202 | 80.02 108 | 82.89 90 | 58.36 142 | 74.44 56 | 86.73 86 | 58.90 22 | 80.83 208 | 65.84 101 | 74.46 173 | 87.44 43 |
|
ACMP | | 63.53 6 | 72.30 91 | 71.20 100 | 75.59 86 | 80.28 120 | 57.54 97 | 82.74 69 | 82.84 91 | 60.58 94 | 65.24 202 | 86.18 102 | 39.25 223 | 86.03 91 | 66.95 94 | 76.79 160 | 83.22 184 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ZD-MVS | | | | | | 86.64 23 | 60.38 50 | | 82.70 92 | 57.95 149 | 78.10 28 | 90.06 40 | 56.12 40 | 88.84 26 | 74.05 40 | 87.00 55 | |
|
UniMVSNet_NR-MVSNet | | | 71.11 107 | 71.00 102 | 71.44 177 | 79.20 143 | 44.13 273 | 76.02 186 | 82.60 93 | 66.48 13 | 68.20 143 | 84.60 130 | 56.82 33 | 82.82 168 | 54.62 184 | 70.43 226 | 87.36 47 |
|
alignmvs | | | 73.86 75 | 73.99 67 | 73.45 137 | 78.20 168 | 50.50 200 | 78.57 132 | 82.43 94 | 59.40 124 | 76.57 34 | 86.71 88 | 56.42 37 | 81.23 199 | 65.84 101 | 81.79 95 | 88.62 4 |
|
Anonymous20231211 | | | 69.28 143 | 68.47 140 | 71.73 170 | 80.28 120 | 47.18 244 | 79.98 109 | 82.37 95 | 54.61 212 | 67.24 165 | 84.01 142 | 39.43 221 | 82.41 178 | 55.45 178 | 72.83 198 | 85.62 103 |
|
mPP-MVS | | | 76.54 42 | 75.93 45 | 78.34 39 | 86.47 28 | 63.50 4 | 85.74 25 | 82.28 96 | 62.90 55 | 71.77 95 | 90.26 34 | 46.61 150 | 86.55 80 | 71.71 57 | 85.66 66 | 84.97 127 |
|
SR-MVS | | | 76.13 46 | 75.70 48 | 77.40 54 | 85.87 45 | 61.20 33 | 85.52 28 | 82.19 97 | 59.99 112 | 75.10 42 | 90.35 29 | 47.66 131 | 86.52 81 | 71.64 58 | 82.99 81 | 84.47 141 |
|
Regformer-1 | | | 75.47 53 | 74.93 55 | 77.09 57 | 80.43 118 | 57.70 96 | 79.50 120 | 82.13 98 | 67.84 1 | 75.73 40 | 80.75 213 | 56.50 35 | 86.07 88 | 71.07 62 | 80.38 111 | 87.50 40 |
|
PS-MVSNAJss | | | 72.24 92 | 71.21 99 | 75.31 90 | 78.50 159 | 55.93 126 | 81.63 87 | 82.12 99 | 56.24 178 | 70.02 114 | 85.68 115 | 47.05 143 | 84.34 131 | 65.27 107 | 74.41 175 | 85.67 99 |
|
WR-MVS_H | | | 67.02 190 | 66.92 173 | 67.33 242 | 77.95 177 | 37.75 321 | 77.57 148 | 82.11 100 | 62.03 76 | 62.65 233 | 82.48 172 | 50.57 101 | 79.46 227 | 42.91 276 | 64.01 293 | 84.79 133 |
|
ACMM | | 61.98 7 | 70.80 113 | 69.73 119 | 74.02 116 | 80.59 117 | 58.59 83 | 82.68 71 | 82.02 101 | 55.46 196 | 67.18 166 | 84.39 136 | 38.51 230 | 83.17 155 | 60.65 145 | 76.10 164 | 80.30 235 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSLP-MVS++ | | | 73.77 76 | 73.47 75 | 74.66 101 | 83.02 81 | 59.29 66 | 82.30 81 | 81.88 102 | 59.34 126 | 71.59 99 | 86.83 83 | 45.94 154 | 83.65 146 | 65.09 109 | 85.22 68 | 81.06 225 |
|
abl_6 | | | 74.34 67 | 73.50 73 | 76.86 60 | 82.43 86 | 60.16 52 | 83.48 57 | 81.86 103 | 58.81 133 | 73.95 64 | 89.86 48 | 41.87 197 | 86.62 76 | 67.98 82 | 81.23 102 | 83.80 165 |
|
MVS | | | 67.37 181 | 66.33 186 | 70.51 201 | 75.46 228 | 50.94 189 | 73.95 220 | 81.85 104 | 41.57 332 | 62.54 236 | 78.57 253 | 47.98 126 | 85.47 109 | 52.97 199 | 82.05 94 | 75.14 292 |
|
RRT_test8_iter05 | | | 68.17 170 | 66.86 174 | 72.07 165 | 75.81 220 | 46.33 250 | 76.41 175 | 81.81 105 | 56.43 173 | 66.52 175 | 81.30 199 | 31.90 296 | 84.25 132 | 63.77 122 | 67.83 266 | 85.64 102 |
|
114514_t | | | 70.83 111 | 69.56 121 | 74.64 103 | 86.21 34 | 54.63 144 | 82.34 77 | 81.81 105 | 48.22 275 | 63.01 228 | 85.83 112 | 40.92 213 | 87.10 61 | 57.91 161 | 79.79 118 | 82.18 204 |
|
PCF-MVS | | 61.88 8 | 70.95 110 | 69.49 123 | 75.35 89 | 77.63 184 | 55.71 129 | 76.04 185 | 81.81 105 | 50.30 256 | 69.66 121 | 85.40 121 | 52.51 77 | 84.89 120 | 51.82 206 | 80.24 115 | 85.45 109 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EPP-MVSNet | | | 72.16 95 | 71.31 98 | 74.71 98 | 78.68 156 | 49.70 211 | 82.10 82 | 81.65 108 | 60.40 98 | 65.94 186 | 85.84 111 | 51.74 89 | 86.37 86 | 55.93 171 | 79.55 124 | 88.07 19 |
|
test1172 | | | 75.36 55 | 74.81 58 | 77.02 58 | 85.47 51 | 60.79 45 | 83.94 51 | 81.63 109 | 59.52 123 | 74.66 55 | 90.18 36 | 44.74 170 | 85.84 97 | 70.63 65 | 82.52 90 | 84.42 142 |
|
PVSNet_BlendedMVS | | | 68.56 160 | 67.72 150 | 71.07 191 | 77.03 199 | 50.57 197 | 74.50 212 | 81.52 110 | 53.66 223 | 64.22 220 | 79.72 234 | 49.13 114 | 82.87 164 | 55.82 172 | 73.92 179 | 79.77 247 |
|
PVSNet_Blended | | | 68.59 156 | 67.72 150 | 71.19 186 | 77.03 199 | 50.57 197 | 72.51 242 | 81.52 110 | 51.91 237 | 64.22 220 | 77.77 265 | 49.13 114 | 82.87 164 | 55.82 172 | 79.58 122 | 80.14 238 |
|
DU-MVS | | | 70.01 127 | 69.53 122 | 71.44 177 | 78.05 174 | 44.13 273 | 75.01 202 | 81.51 112 | 64.37 31 | 68.20 143 | 84.52 131 | 49.12 116 | 82.82 168 | 54.62 184 | 70.43 226 | 87.37 45 |
|
Regformer-4 | | | 74.25 70 | 73.48 74 | 76.57 67 | 79.75 131 | 56.54 115 | 78.54 134 | 81.49 113 | 66.93 7 | 73.90 65 | 80.30 221 | 53.84 65 | 85.98 93 | 69.76 68 | 76.84 158 | 87.17 50 |
|
v1144 | | | 70.42 120 | 69.31 126 | 73.76 123 | 73.22 253 | 50.64 196 | 77.83 143 | 81.43 114 | 58.58 136 | 69.40 126 | 81.16 200 | 47.53 134 | 85.29 114 | 64.01 117 | 70.64 222 | 85.34 115 |
|
v10 | | | 70.21 124 | 69.02 131 | 73.81 120 | 73.51 252 | 50.92 191 | 78.74 128 | 81.39 115 | 60.05 111 | 66.39 179 | 81.83 188 | 47.58 133 | 85.41 112 | 62.80 128 | 68.86 257 | 85.09 123 |
|
SR-MVS-dyc-post | | | 74.57 65 | 73.90 68 | 76.58 66 | 83.49 74 | 59.87 57 | 84.29 37 | 81.36 116 | 58.07 146 | 73.14 76 | 90.07 38 | 44.74 170 | 85.84 97 | 68.20 78 | 81.76 97 | 84.03 152 |
|
RE-MVS-def | | | | 73.71 72 | | 83.49 74 | 59.87 57 | 84.29 37 | 81.36 116 | 58.07 146 | 73.14 76 | 90.07 38 | 43.06 186 | | 68.20 78 | 81.76 97 | 84.03 152 |
|
v1192 | | | 69.97 129 | 68.68 136 | 73.85 119 | 73.19 254 | 50.94 189 | 77.68 146 | 81.36 116 | 57.51 154 | 68.95 134 | 80.85 210 | 45.28 166 | 85.33 113 | 62.97 127 | 70.37 228 | 85.27 118 |
|
RPMNet | | | 61.53 253 | 58.42 263 | 70.86 193 | 69.96 303 | 52.07 178 | 65.31 303 | 81.36 116 | 43.20 322 | 59.36 265 | 70.15 328 | 35.37 257 | 85.47 109 | 36.42 315 | 64.65 290 | 75.06 293 |
|
OpenMVS |  | 61.03 9 | 68.85 149 | 67.56 153 | 72.70 155 | 74.26 247 | 53.99 148 | 81.21 95 | 81.34 120 | 52.70 230 | 62.75 231 | 85.55 117 | 38.86 228 | 84.14 134 | 48.41 231 | 83.01 80 | 79.97 241 |
|
v7n | | | 69.01 148 | 67.36 162 | 73.98 117 | 72.51 268 | 52.65 166 | 78.54 134 | 81.30 121 | 60.26 108 | 62.67 232 | 81.62 191 | 43.61 181 | 84.49 128 | 57.01 165 | 68.70 259 | 84.79 133 |
|
MG-MVS | | | 73.96 73 | 73.89 69 | 74.16 115 | 85.65 47 | 49.69 213 | 81.59 90 | 81.29 122 | 61.45 82 | 71.05 101 | 88.11 70 | 51.77 88 | 87.73 49 | 61.05 143 | 83.09 79 | 85.05 124 |
|
TEST9 | | | | | | 85.58 49 | 61.59 27 | 81.62 88 | 81.26 123 | 55.65 193 | 74.93 46 | 88.81 65 | 53.70 67 | 84.68 124 | | | |
|
train_agg | | | 76.27 45 | 76.15 42 | 76.64 65 | 85.58 49 | 61.59 27 | 81.62 88 | 81.26 123 | 55.86 185 | 74.93 46 | 88.81 65 | 53.70 67 | 84.68 124 | 75.24 32 | 88.33 35 | 83.65 173 |
|
PAPM | | | 67.92 174 | 66.69 176 | 71.63 174 | 78.09 172 | 49.02 221 | 77.09 161 | 81.24 125 | 51.04 250 | 60.91 252 | 83.98 143 | 47.71 130 | 84.99 115 | 40.81 289 | 79.32 128 | 80.90 227 |
|
test_8 | | | | | | 85.40 53 | 60.96 39 | 81.54 91 | 81.18 126 | 55.86 185 | 74.81 49 | 88.80 67 | 53.70 67 | 84.45 129 | | | |
|
TranMVSNet+NR-MVSNet | | | 70.36 121 | 70.10 116 | 71.17 188 | 78.64 157 | 42.97 284 | 76.53 172 | 81.16 127 | 66.95 6 | 68.53 139 | 85.42 120 | 51.61 90 | 83.07 156 | 52.32 202 | 69.70 243 | 87.46 42 |
|
HPM-MVS_fast | | | 74.30 69 | 73.46 76 | 76.80 61 | 84.45 68 | 59.04 74 | 83.65 55 | 81.05 128 | 60.15 109 | 70.43 104 | 89.84 49 | 41.09 212 | 85.59 102 | 67.61 87 | 82.90 85 | 85.77 95 |
|
agg_prior1 | | | 75.94 48 | 76.01 44 | 75.72 79 | 85.04 57 | 59.96 54 | 81.44 92 | 81.04 129 | 56.14 181 | 74.68 52 | 88.90 63 | 53.91 63 | 84.04 136 | 75.01 33 | 87.92 45 | 83.16 189 |
|
agg_prior | | | | | | 85.04 57 | 59.96 54 | | 81.04 129 | | 74.68 52 | | | 84.04 136 | | | |
|
Anonymous20240529 | | | 69.91 130 | 69.02 131 | 72.56 157 | 80.19 125 | 47.65 238 | 77.56 149 | 80.99 131 | 55.45 197 | 69.88 118 | 86.76 84 | 39.24 224 | 82.18 181 | 54.04 188 | 77.10 155 | 87.85 25 |
|
zzz-MVS | | | 77.61 32 | 77.36 32 | 78.35 37 | 86.08 41 | 63.57 2 | 83.37 58 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 119 | 86.66 74 | 77.23 19 | 88.17 38 | 84.81 131 |
|
MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
MTAPA | | | 76.90 39 | 76.42 41 | 78.35 37 | 86.08 41 | 63.57 2 | 74.92 205 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 119 | 86.66 74 | 77.23 19 | 88.17 38 | 84.81 131 |
|
NR-MVSNet | | | 69.54 139 | 68.85 133 | 71.59 175 | 78.05 174 | 43.81 277 | 74.20 215 | 80.86 135 | 65.18 17 | 62.76 230 | 84.52 131 | 52.35 82 | 83.59 148 | 50.96 212 | 70.78 221 | 87.37 45 |
|
v8 | | | 70.33 122 | 69.28 127 | 73.49 135 | 73.15 255 | 50.22 203 | 78.62 131 | 80.78 136 | 60.79 90 | 66.45 178 | 82.11 183 | 49.35 109 | 84.98 117 | 63.58 123 | 68.71 258 | 85.28 117 |
|
v144192 | | | 69.71 132 | 68.51 138 | 73.33 142 | 73.10 256 | 50.13 205 | 77.54 150 | 80.64 137 | 56.65 164 | 68.57 138 | 80.55 215 | 46.87 148 | 84.96 119 | 62.98 126 | 69.66 244 | 84.89 129 |
|
v1921920 | | | 69.47 141 | 68.17 146 | 73.36 141 | 73.06 257 | 50.10 206 | 77.39 153 | 80.56 138 | 56.58 171 | 68.59 136 | 80.37 217 | 44.72 172 | 84.98 117 | 62.47 132 | 69.82 239 | 85.00 125 |
|
v1240 | | | 69.24 145 | 67.91 148 | 73.25 146 | 73.02 259 | 49.82 209 | 77.21 159 | 80.54 139 | 56.43 173 | 68.34 142 | 80.51 216 | 43.33 184 | 84.99 115 | 62.03 136 | 69.77 242 | 84.95 128 |
|
v2v482 | | | 70.50 118 | 69.45 125 | 73.66 129 | 72.62 265 | 50.03 207 | 77.58 147 | 80.51 140 | 59.90 113 | 69.52 122 | 82.14 182 | 47.53 134 | 84.88 122 | 65.07 110 | 70.17 232 | 86.09 83 |
|
PEN-MVS | | | 66.60 199 | 66.45 179 | 67.04 243 | 77.11 197 | 36.56 331 | 77.03 163 | 80.42 141 | 62.95 53 | 62.51 238 | 84.03 141 | 46.69 149 | 79.07 238 | 44.22 261 | 63.08 302 | 85.51 106 |
|
API-MVS | | | 72.17 94 | 71.41 94 | 74.45 110 | 81.95 93 | 57.22 103 | 84.03 46 | 80.38 142 | 59.89 116 | 68.40 140 | 82.33 175 | 49.64 107 | 87.83 48 | 51.87 205 | 84.16 75 | 78.30 258 |
|
PVSNet_Blended_VisFu | | | 71.45 105 | 70.39 110 | 74.65 102 | 82.01 90 | 58.82 79 | 79.93 111 | 80.35 143 | 55.09 203 | 65.82 191 | 82.16 181 | 49.17 113 | 82.64 173 | 60.34 148 | 78.62 141 | 82.50 200 |
|
test_yl | | | 69.69 133 | 69.13 128 | 71.36 181 | 78.37 163 | 45.74 258 | 74.71 208 | 80.20 144 | 57.91 151 | 70.01 115 | 83.83 146 | 42.44 190 | 82.87 164 | 54.97 180 | 79.72 119 | 85.48 107 |
|
DCV-MVSNet | | | 69.69 133 | 69.13 128 | 71.36 181 | 78.37 163 | 45.74 258 | 74.71 208 | 80.20 144 | 57.91 151 | 70.01 115 | 83.83 146 | 42.44 190 | 82.87 164 | 54.97 180 | 79.72 119 | 85.48 107 |
|
TAPA-MVS | | 59.36 10 | 66.60 199 | 65.20 205 | 70.81 194 | 76.63 206 | 48.75 225 | 76.52 173 | 80.04 146 | 50.64 254 | 65.24 202 | 84.93 123 | 39.15 225 | 78.54 245 | 36.77 308 | 76.88 157 | 85.14 120 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
xxxxxxxxxxxxxcwj | | | 78.37 21 | 78.25 23 | 78.76 29 | 86.17 36 | 61.30 31 | 83.98 48 | 79.95 147 | 59.00 129 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 62 | 77.08 23 | 90.18 15 | 87.87 23 |
|
Regformer-3 | | | 73.89 74 | 73.28 78 | 75.71 80 | 79.75 131 | 55.48 136 | 78.54 134 | 79.93 148 | 66.58 11 | 73.62 69 | 80.30 221 | 54.87 52 | 84.54 127 | 69.09 75 | 76.84 158 | 87.10 53 |
|
OMC-MVS | | | 71.40 106 | 70.60 106 | 73.78 121 | 76.60 207 | 53.15 160 | 79.74 116 | 79.78 149 | 58.37 141 | 68.75 135 | 86.45 97 | 45.43 163 | 80.60 213 | 62.58 129 | 77.73 147 | 87.58 38 |
|
ACMH | | 55.70 15 | 65.20 217 | 63.57 219 | 70.07 207 | 78.07 173 | 52.01 182 | 79.48 122 | 79.69 150 | 55.75 190 | 56.59 288 | 80.98 205 | 27.12 326 | 80.94 205 | 42.90 277 | 71.58 215 | 77.25 273 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPA-MVSNet | | | 69.02 147 | 69.47 124 | 67.69 238 | 77.42 192 | 41.00 301 | 74.04 217 | 79.68 151 | 60.06 110 | 69.26 130 | 84.81 125 | 51.06 97 | 77.58 258 | 54.44 187 | 74.43 174 | 84.48 140 |
|
save fliter | | | | | | 86.17 36 | 61.30 31 | 83.98 48 | 79.66 152 | 59.00 129 | | | | | | | |
|
Effi-MVS+ | | | 73.31 79 | 72.54 83 | 75.62 84 | 77.87 178 | 53.64 151 | 79.62 118 | 79.61 153 | 61.63 80 | 72.02 94 | 82.61 168 | 56.44 36 | 85.97 94 | 63.99 118 | 79.07 133 | 87.25 49 |
|
PS-CasMVS | | | 66.42 203 | 66.32 187 | 66.70 247 | 77.60 190 | 36.30 336 | 76.94 165 | 79.61 153 | 62.36 68 | 62.43 240 | 83.66 151 | 45.69 155 | 78.37 246 | 45.35 258 | 63.26 300 | 85.42 112 |
|
CP-MVSNet | | | 66.49 202 | 66.41 183 | 66.72 245 | 77.67 183 | 36.33 334 | 76.83 169 | 79.52 155 | 62.45 66 | 62.54 236 | 83.47 157 | 46.32 151 | 78.37 246 | 45.47 256 | 63.43 299 | 85.45 109 |
|
V42 | | | 68.65 155 | 67.35 163 | 72.56 157 | 68.93 314 | 50.18 204 | 72.90 236 | 79.47 156 | 56.92 161 | 69.45 125 | 80.26 223 | 46.29 152 | 82.99 157 | 64.07 115 | 67.82 267 | 84.53 138 |
|
Fast-Effi-MVS+ | | | 70.28 123 | 69.12 130 | 73.73 126 | 78.50 159 | 51.50 185 | 75.01 202 | 79.46 157 | 56.16 180 | 68.59 136 | 79.55 238 | 53.97 60 | 84.05 135 | 53.34 196 | 77.53 149 | 85.65 101 |
|
DTE-MVSNet | | | 65.58 210 | 65.34 202 | 66.31 250 | 76.06 217 | 34.79 339 | 76.43 174 | 79.38 158 | 62.55 64 | 61.66 247 | 83.83 146 | 45.60 157 | 79.15 236 | 41.64 288 | 60.88 316 | 85.00 125 |
|
EI-MVSNet-Vis-set | | | 72.42 90 | 71.59 90 | 74.91 95 | 78.47 161 | 54.02 147 | 77.05 162 | 79.33 159 | 65.03 22 | 71.68 97 | 79.35 243 | 52.75 75 | 84.89 120 | 66.46 95 | 74.23 176 | 85.83 91 |
|
EI-MVSNet-UG-set | | | 71.92 97 | 71.06 101 | 74.52 109 | 77.98 176 | 53.56 153 | 76.62 170 | 79.16 160 | 64.40 30 | 71.18 100 | 78.95 247 | 52.19 83 | 84.66 126 | 65.47 105 | 73.57 184 | 85.32 116 |
|
XVG-OURS-SEG-HR | | | 68.81 150 | 67.47 158 | 72.82 153 | 74.40 245 | 56.87 113 | 70.59 269 | 79.04 161 | 54.77 211 | 66.99 168 | 86.01 107 | 39.57 220 | 78.21 249 | 62.54 130 | 73.33 189 | 83.37 179 |
|
PS-MVSNAJ | | | 70.51 117 | 69.70 120 | 72.93 149 | 81.52 98 | 55.79 128 | 74.92 205 | 79.00 162 | 55.04 208 | 69.88 118 | 78.66 249 | 47.05 143 | 82.19 180 | 61.61 139 | 79.58 122 | 80.83 228 |
|
xiu_mvs_v2_base | | | 70.52 116 | 69.75 118 | 72.84 151 | 81.21 107 | 55.63 132 | 75.11 199 | 78.92 163 | 54.92 209 | 69.96 117 | 79.68 235 | 47.00 147 | 82.09 182 | 61.60 140 | 79.37 125 | 80.81 229 |
|
EG-PatchMatch MVS | | | 64.71 221 | 62.87 226 | 70.22 203 | 77.68 182 | 53.48 155 | 77.99 141 | 78.82 164 | 53.37 224 | 56.03 291 | 77.41 268 | 24.75 340 | 84.04 136 | 46.37 244 | 73.42 188 | 73.14 312 |
|
XVG-OURS | | | 68.76 154 | 67.37 161 | 72.90 150 | 74.32 246 | 57.22 103 | 70.09 275 | 78.81 165 | 55.24 199 | 67.79 158 | 85.81 114 | 36.54 253 | 78.28 248 | 62.04 135 | 75.74 167 | 83.19 186 |
|
cl_fuxian | | | 68.33 164 | 67.56 153 | 70.62 198 | 70.87 288 | 46.21 253 | 74.47 213 | 78.80 166 | 56.22 179 | 66.19 182 | 78.53 254 | 51.88 86 | 81.40 194 | 62.08 133 | 69.04 253 | 84.25 146 |
|
ambc | | | | | 65.13 269 | 63.72 342 | 37.07 326 | 47.66 352 | 78.78 167 | | 54.37 310 | 71.42 317 | 11.24 361 | 80.94 205 | 45.64 251 | 53.85 339 | 77.38 269 |
|
AdaColmap |  | | 69.99 128 | 68.66 137 | 73.97 118 | 84.94 62 | 57.83 93 | 82.63 72 | 78.71 168 | 56.28 177 | 64.34 215 | 84.14 138 | 41.57 202 | 87.06 64 | 46.45 243 | 78.88 134 | 77.02 275 |
|
IS-MVSNet | | | 71.57 102 | 71.00 102 | 73.27 144 | 78.86 150 | 45.63 262 | 80.22 106 | 78.69 169 | 64.14 38 | 66.46 177 | 87.36 78 | 49.30 110 | 85.60 101 | 50.26 216 | 83.71 77 | 88.59 5 |
|
miper_ehance_all_eth | | | 68.03 171 | 67.24 169 | 70.40 202 | 70.54 292 | 46.21 253 | 73.98 218 | 78.68 170 | 55.07 206 | 66.05 184 | 77.80 263 | 52.16 84 | 81.31 196 | 61.53 142 | 69.32 247 | 83.67 170 |
|
cdsmvs_eth3d_5k | | | 17.50 335 | 23.34 334 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 78.63 171 | 0.00 373 | 0.00 374 | 82.18 178 | 49.25 112 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
TSAR-MVS + GP. | | | 74.90 58 | 74.15 66 | 77.17 56 | 82.00 91 | 58.77 80 | 81.80 84 | 78.57 172 | 58.58 136 | 74.32 58 | 84.51 133 | 55.94 41 | 87.22 56 | 67.11 91 | 84.48 73 | 85.52 105 |
|
mvs_tets | | | 68.18 168 | 66.36 185 | 73.63 132 | 75.61 225 | 55.35 138 | 80.77 99 | 78.56 173 | 52.48 233 | 64.27 218 | 84.10 140 | 27.45 324 | 81.84 186 | 63.45 125 | 70.56 225 | 83.69 169 |
|
MVP-Stereo | | | 65.41 214 | 63.80 215 | 70.22 203 | 77.62 188 | 55.53 134 | 76.30 177 | 78.53 174 | 50.59 255 | 56.47 289 | 78.65 250 | 39.84 217 | 82.68 171 | 44.10 265 | 72.12 210 | 72.44 321 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
jajsoiax | | | 68.25 166 | 66.45 179 | 73.66 129 | 75.62 224 | 55.49 135 | 80.82 98 | 78.51 175 | 52.33 234 | 64.33 216 | 84.11 139 | 28.28 318 | 81.81 187 | 63.48 124 | 70.62 223 | 83.67 170 |
|
MVSFormer | | | 71.50 104 | 70.38 111 | 74.88 96 | 78.76 153 | 57.15 108 | 82.79 67 | 78.48 176 | 51.26 248 | 69.49 123 | 83.22 158 | 43.99 179 | 83.24 153 | 66.06 97 | 79.37 125 | 84.23 147 |
|
test_djsdf | | | 69.45 142 | 67.74 149 | 74.58 106 | 74.57 241 | 54.92 142 | 82.79 67 | 78.48 176 | 51.26 248 | 65.41 196 | 83.49 156 | 38.37 232 | 83.24 153 | 66.06 97 | 69.25 250 | 85.56 104 |
|
diffmvs | | | 70.69 114 | 70.43 109 | 71.46 176 | 69.45 309 | 48.95 223 | 72.93 235 | 78.46 178 | 57.27 156 | 71.69 96 | 83.97 144 | 51.48 91 | 77.92 253 | 70.70 64 | 77.95 146 | 87.53 39 |
|
EI-MVSNet | | | 69.27 144 | 68.44 142 | 71.73 170 | 74.47 242 | 49.39 218 | 75.20 197 | 78.45 179 | 59.60 119 | 69.16 132 | 76.51 279 | 51.29 92 | 82.50 175 | 59.86 154 | 71.45 217 | 83.30 181 |
|
XVG-ACMP-BASELINE | | | 64.36 225 | 62.23 234 | 70.74 196 | 72.35 270 | 52.45 173 | 70.80 268 | 78.45 179 | 53.84 221 | 59.87 260 | 81.10 202 | 16.24 354 | 79.32 230 | 55.64 177 | 71.76 212 | 80.47 232 |
|
MVSTER | | | 67.16 187 | 65.58 200 | 71.88 167 | 70.37 296 | 49.70 211 | 70.25 274 | 78.45 179 | 51.52 242 | 69.16 132 | 80.37 217 | 38.45 231 | 82.50 175 | 60.19 149 | 71.46 216 | 83.44 178 |
|
miper_enhance_ethall | | | 67.11 188 | 66.09 192 | 70.17 206 | 69.21 311 | 45.98 256 | 72.85 237 | 78.41 182 | 51.38 245 | 65.65 192 | 75.98 288 | 51.17 95 | 81.25 197 | 60.82 144 | 69.32 247 | 83.29 183 |
|
MVS_111021_HR | | | 74.02 71 | 73.46 76 | 75.69 82 | 83.01 82 | 60.63 47 | 77.29 157 | 78.40 183 | 61.18 86 | 70.58 103 | 85.97 108 | 54.18 59 | 84.00 140 | 67.52 88 | 82.98 83 | 82.45 201 |
|
1314 | | | 64.61 223 | 63.21 223 | 68.80 227 | 71.87 278 | 47.46 241 | 73.95 220 | 78.39 184 | 42.88 325 | 59.97 258 | 76.60 278 | 38.11 236 | 79.39 229 | 54.84 182 | 72.32 207 | 79.55 248 |
|
Vis-MVSNet |  | | 72.18 93 | 71.37 96 | 74.61 104 | 81.29 104 | 55.41 137 | 80.90 97 | 78.28 185 | 60.73 92 | 69.23 131 | 88.09 71 | 44.36 176 | 82.65 172 | 57.68 162 | 81.75 99 | 85.77 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 71.01 109 | 70.15 114 | 73.60 133 | 79.57 137 | 52.17 176 | 78.93 126 | 78.12 186 | 58.02 148 | 67.76 160 | 83.87 145 | 52.36 81 | 82.72 170 | 56.90 166 | 75.79 166 | 85.92 87 |
|
ACMH+ | | 57.40 11 | 66.12 205 | 64.06 210 | 72.30 164 | 77.79 180 | 52.83 164 | 80.39 104 | 78.03 187 | 57.30 155 | 57.47 283 | 82.55 170 | 27.68 322 | 84.17 133 | 45.54 253 | 69.78 240 | 79.90 242 |
|
eth_miper_zixun_eth | | | 67.63 177 | 66.28 189 | 71.67 172 | 71.60 280 | 48.33 230 | 73.68 228 | 77.88 188 | 55.80 189 | 65.91 187 | 78.62 252 | 47.35 140 | 82.88 163 | 59.45 156 | 66.25 278 | 83.81 161 |
|
CPTT-MVS | | | 72.78 83 | 72.08 87 | 74.87 97 | 84.88 65 | 61.41 29 | 84.15 43 | 77.86 189 | 55.27 198 | 67.51 162 | 88.08 72 | 41.93 196 | 81.85 185 | 69.04 76 | 80.01 117 | 81.35 218 |
|
GBi-Net | | | 67.21 183 | 66.55 177 | 69.19 221 | 77.63 184 | 43.33 280 | 77.31 154 | 77.83 190 | 56.62 167 | 65.04 206 | 82.70 164 | 41.85 198 | 80.33 218 | 47.18 237 | 72.76 200 | 83.92 156 |
|
test1 | | | 67.21 183 | 66.55 177 | 69.19 221 | 77.63 184 | 43.33 280 | 77.31 154 | 77.83 190 | 56.62 167 | 65.04 206 | 82.70 164 | 41.85 198 | 80.33 218 | 47.18 237 | 72.76 200 | 83.92 156 |
|
FMVSNet1 | | | 66.70 197 | 65.87 194 | 69.19 221 | 77.49 191 | 43.33 280 | 77.31 154 | 77.83 190 | 56.45 172 | 64.60 214 | 82.70 164 | 38.08 237 | 80.33 218 | 46.08 246 | 72.31 208 | 83.92 156 |
|
UA-Net | | | 73.13 80 | 72.93 80 | 73.76 123 | 83.58 73 | 51.66 184 | 78.75 127 | 77.66 193 | 67.75 4 | 72.61 87 | 89.42 54 | 49.82 105 | 83.29 152 | 53.61 194 | 83.14 78 | 86.32 76 |
|
VDD-MVS | | | 72.50 87 | 72.09 86 | 73.75 125 | 81.58 97 | 49.69 213 | 77.76 145 | 77.63 194 | 63.21 50 | 73.21 74 | 89.02 61 | 42.14 193 | 83.32 151 | 61.72 138 | 82.50 91 | 88.25 11 |
|
IterMVS-LS | | | 69.22 146 | 68.48 139 | 71.43 179 | 74.44 244 | 49.40 217 | 76.23 179 | 77.55 195 | 59.60 119 | 65.85 190 | 81.59 194 | 51.28 93 | 81.58 192 | 59.87 153 | 69.90 238 | 83.30 181 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 66.93 192 | 66.31 188 | 68.79 228 | 77.63 184 | 42.98 283 | 76.11 181 | 77.47 196 | 56.62 167 | 65.22 204 | 82.17 180 | 41.85 198 | 80.18 221 | 47.05 240 | 72.72 203 | 83.20 185 |
|
PLC |  | 56.13 14 | 65.09 218 | 63.21 223 | 70.72 197 | 81.04 110 | 54.87 143 | 78.57 132 | 77.47 196 | 48.51 271 | 55.71 292 | 81.89 186 | 33.71 273 | 79.71 223 | 41.66 286 | 70.37 228 | 77.58 267 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
BH-untuned | | | 68.27 165 | 67.29 164 | 71.21 185 | 79.74 133 | 53.22 159 | 76.06 183 | 77.46 198 | 57.19 157 | 66.10 183 | 81.61 192 | 45.37 165 | 83.50 149 | 45.42 257 | 76.68 162 | 76.91 279 |
|
VNet | | | 69.68 135 | 70.19 113 | 68.16 234 | 79.73 134 | 41.63 297 | 70.53 270 | 77.38 199 | 60.37 101 | 70.69 102 | 86.63 91 | 51.08 96 | 77.09 264 | 53.61 194 | 81.69 101 | 85.75 97 |
|
cl-mvsnet2 | | | 67.47 180 | 66.45 179 | 70.54 200 | 69.85 305 | 46.49 248 | 73.85 225 | 77.35 200 | 55.07 206 | 65.51 194 | 77.92 259 | 47.64 132 | 81.10 201 | 61.58 141 | 69.32 247 | 84.01 154 |
|
anonymousdsp | | | 67.00 191 | 64.82 208 | 73.57 134 | 70.09 300 | 56.13 121 | 76.35 176 | 77.35 200 | 48.43 273 | 64.99 209 | 80.84 211 | 33.01 281 | 80.34 217 | 64.66 112 | 67.64 269 | 84.23 147 |
|
cascas | | | 65.98 206 | 63.42 221 | 73.64 131 | 77.26 195 | 52.58 169 | 72.26 246 | 77.21 202 | 48.56 270 | 61.21 251 | 74.60 300 | 32.57 292 | 85.82 99 | 50.38 215 | 76.75 161 | 82.52 199 |
|
FMVSNet3 | | | 66.32 204 | 65.61 199 | 68.46 231 | 76.48 210 | 42.34 287 | 74.98 204 | 77.15 203 | 55.83 187 | 65.04 206 | 81.16 200 | 39.91 216 | 80.14 222 | 47.18 237 | 72.76 200 | 82.90 194 |
|
v148 | | | 68.24 167 | 67.19 170 | 71.40 180 | 70.43 294 | 47.77 237 | 75.76 189 | 77.03 204 | 58.91 131 | 67.36 163 | 80.10 226 | 48.60 122 | 81.89 184 | 60.01 151 | 66.52 277 | 84.53 138 |
|
Fast-Effi-MVS+-dtu | | | 67.37 181 | 65.33 203 | 73.48 136 | 72.94 260 | 57.78 95 | 77.47 152 | 76.88 205 | 57.60 153 | 61.97 243 | 76.85 273 | 39.31 222 | 80.49 216 | 54.72 183 | 70.28 231 | 82.17 206 |
|
CANet_DTU | | | 68.18 168 | 67.71 152 | 69.59 216 | 74.83 235 | 46.24 252 | 78.66 130 | 76.85 206 | 59.60 119 | 63.45 224 | 82.09 184 | 35.25 258 | 77.41 260 | 59.88 152 | 78.76 138 | 85.14 120 |
|
cl-mvsnet____ | | | 67.18 185 | 66.26 190 | 69.94 209 | 70.20 297 | 45.74 258 | 73.30 230 | 76.83 207 | 55.10 201 | 65.27 198 | 79.57 237 | 47.39 138 | 80.53 214 | 59.41 158 | 69.22 251 | 83.53 176 |
|
cl-mvsnet1 | | | 67.18 185 | 66.26 190 | 69.94 209 | 70.20 297 | 45.74 258 | 73.29 231 | 76.83 207 | 55.10 201 | 65.27 198 | 79.58 236 | 47.38 139 | 80.53 214 | 59.43 157 | 69.22 251 | 83.54 175 |
|
hse-mvs3 | | | 72.71 85 | 71.49 92 | 76.40 68 | 81.99 92 | 59.58 60 | 76.92 166 | 76.74 209 | 60.40 98 | 74.81 49 | 85.95 109 | 45.54 159 | 85.76 100 | 70.41 66 | 70.61 224 | 83.86 160 |
|
BH-w/o | | | 66.85 193 | 65.83 195 | 69.90 212 | 79.29 140 | 52.46 172 | 74.66 210 | 76.65 210 | 54.51 216 | 64.85 210 | 78.12 255 | 45.59 158 | 82.95 160 | 43.26 272 | 75.54 169 | 74.27 305 |
|
LTVRE_ROB | | 55.42 16 | 63.15 237 | 61.23 246 | 68.92 226 | 76.57 208 | 47.80 235 | 59.92 325 | 76.39 211 | 54.35 218 | 58.67 273 | 82.46 173 | 29.44 311 | 81.49 193 | 42.12 282 | 71.14 218 | 77.46 268 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
BH-RMVSNet | | | 68.81 150 | 67.42 159 | 72.97 148 | 80.11 127 | 52.53 170 | 74.26 214 | 76.29 212 | 58.48 139 | 68.38 141 | 84.20 137 | 42.59 188 | 83.83 142 | 46.53 242 | 75.91 165 | 82.56 197 |
|
F-COLMAP | | | 63.05 238 | 60.87 251 | 69.58 218 | 76.99 201 | 53.63 152 | 78.12 140 | 76.16 213 | 47.97 279 | 52.41 322 | 81.61 192 | 27.87 320 | 78.11 250 | 40.07 292 | 66.66 275 | 77.00 276 |
|
ab-mvs | | | 66.65 198 | 66.42 182 | 67.37 240 | 76.17 214 | 41.73 294 | 70.41 273 | 76.14 214 | 53.99 219 | 65.98 185 | 83.51 155 | 49.48 108 | 76.24 273 | 48.60 229 | 73.46 187 | 84.14 150 |
|
WR-MVS | | | 68.47 162 | 68.47 140 | 68.44 232 | 80.20 124 | 39.84 304 | 73.75 227 | 76.07 215 | 64.68 25 | 68.11 148 | 83.63 152 | 50.39 103 | 79.14 237 | 49.78 217 | 69.66 244 | 86.34 73 |
|
Effi-MVS+-dtu | | | 69.64 137 | 67.53 156 | 75.95 73 | 76.10 215 | 62.29 18 | 80.20 107 | 76.06 216 | 59.83 117 | 65.26 201 | 77.09 269 | 41.56 203 | 84.02 139 | 60.60 146 | 71.09 220 | 81.53 213 |
|
mvs-test1 | | | 70.44 119 | 68.19 145 | 77.18 55 | 76.10 215 | 63.22 6 | 80.59 102 | 76.06 216 | 59.83 117 | 66.32 180 | 79.87 229 | 41.56 203 | 85.53 104 | 60.60 146 | 72.77 199 | 82.80 196 |
|
RRT_MVS | | | 68.77 153 | 66.71 175 | 74.95 94 | 75.93 219 | 58.55 84 | 80.50 103 | 75.84 218 | 56.09 182 | 68.17 145 | 83.74 149 | 28.50 316 | 82.98 158 | 65.67 103 | 65.91 280 | 83.33 180 |
|
MSDG | | | 61.81 251 | 59.23 257 | 69.55 219 | 72.64 264 | 52.63 168 | 70.45 272 | 75.81 219 | 51.38 245 | 53.70 314 | 76.11 284 | 29.52 309 | 81.08 203 | 37.70 303 | 65.79 283 | 74.93 297 |
|
miper_lstm_enhance | | | 62.03 247 | 60.88 250 | 65.49 265 | 66.71 327 | 46.25 251 | 56.29 337 | 75.70 220 | 50.68 252 | 61.27 250 | 75.48 293 | 40.21 215 | 68.03 307 | 56.31 169 | 65.25 286 | 82.18 204 |
|
pm-mvs1 | | | 65.24 216 | 64.97 207 | 66.04 257 | 72.38 269 | 39.40 309 | 72.62 240 | 75.63 221 | 55.53 195 | 62.35 242 | 83.18 160 | 47.45 136 | 76.47 270 | 49.06 226 | 66.54 276 | 82.24 203 |
|
UniMVSNet_ETH3D | | | 67.60 178 | 67.07 172 | 69.18 224 | 77.39 193 | 42.29 288 | 74.18 216 | 75.59 222 | 60.37 101 | 66.77 171 | 86.06 106 | 37.64 239 | 78.93 244 | 52.16 204 | 73.49 186 | 86.32 76 |
|
HyFIR lowres test | | | 65.67 209 | 63.01 225 | 73.67 128 | 79.97 129 | 55.65 131 | 69.07 283 | 75.52 223 | 42.68 326 | 63.53 223 | 77.95 257 | 40.43 214 | 81.64 189 | 46.01 247 | 71.91 211 | 83.73 168 |
|
pmmvs6 | | | 63.69 229 | 62.82 228 | 66.27 252 | 70.63 291 | 39.27 310 | 73.13 233 | 75.47 224 | 52.69 231 | 59.75 263 | 82.30 176 | 39.71 219 | 77.03 265 | 47.40 235 | 64.35 292 | 82.53 198 |
|
UGNet | | | 68.81 150 | 67.39 160 | 73.06 147 | 78.33 165 | 54.47 145 | 79.77 114 | 75.40 225 | 60.45 97 | 63.22 225 | 84.40 135 | 32.71 288 | 80.91 207 | 51.71 208 | 80.56 109 | 83.81 161 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDDNet | | | 71.81 98 | 71.33 97 | 73.26 145 | 82.80 85 | 47.60 240 | 78.74 128 | 75.27 226 | 59.59 122 | 72.94 81 | 89.40 55 | 41.51 206 | 83.91 141 | 58.75 159 | 82.99 81 | 88.26 10 |
|
hse-mvs2 | | | 71.04 108 | 69.86 117 | 74.60 105 | 79.58 136 | 57.12 110 | 73.96 219 | 75.25 227 | 60.40 98 | 74.81 49 | 81.95 185 | 45.54 159 | 82.90 161 | 70.41 66 | 66.83 274 | 83.77 166 |
|
AUN-MVS | | | 68.45 163 | 66.41 183 | 74.57 107 | 79.53 138 | 57.08 111 | 73.93 223 | 75.23 228 | 54.44 217 | 66.69 172 | 81.85 187 | 37.10 248 | 82.89 162 | 62.07 134 | 66.84 273 | 83.75 167 |
|
mvs_anonymous | | | 68.03 171 | 67.51 157 | 69.59 216 | 72.08 273 | 44.57 271 | 71.99 249 | 75.23 228 | 51.67 238 | 67.06 167 | 82.57 169 | 54.68 54 | 77.94 252 | 56.56 167 | 75.71 168 | 86.26 80 |
|
TR-MVS | | | 66.59 201 | 65.07 206 | 71.17 188 | 79.18 144 | 49.63 215 | 73.48 229 | 75.20 230 | 52.95 227 | 67.90 150 | 80.33 220 | 39.81 218 | 83.68 145 | 43.20 273 | 73.56 185 | 80.20 236 |
|
IB-MVS | | 56.42 12 | 65.40 215 | 62.73 229 | 73.40 140 | 74.89 233 | 52.78 165 | 73.09 234 | 75.13 231 | 55.69 191 | 58.48 277 | 73.73 306 | 32.86 283 | 86.32 87 | 50.63 213 | 70.11 233 | 81.10 224 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
xiu_mvs_v1_base_debu | | | 68.58 157 | 67.28 165 | 72.48 159 | 78.19 169 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 239 | 70.04 111 | 81.41 196 | 32.79 284 | 79.02 239 | 63.81 119 | 77.31 150 | 81.22 220 |
|
xiu_mvs_v1_base | | | 68.58 157 | 67.28 165 | 72.48 159 | 78.19 169 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 239 | 70.04 111 | 81.41 196 | 32.79 284 | 79.02 239 | 63.81 119 | 77.31 150 | 81.22 220 |
|
xiu_mvs_v1_base_debi | | | 68.58 157 | 67.28 165 | 72.48 159 | 78.19 169 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 239 | 70.04 111 | 81.41 196 | 32.79 284 | 79.02 239 | 63.81 119 | 77.31 150 | 81.22 220 |
|
TransMVSNet (Re) | | | 64.72 220 | 64.33 209 | 65.87 261 | 75.22 231 | 38.56 315 | 74.66 210 | 75.08 235 | 58.90 132 | 61.79 246 | 82.63 167 | 51.18 94 | 78.07 251 | 43.63 269 | 55.87 332 | 80.99 226 |
|
ET-MVSNet_ETH3D | | | 67.96 173 | 65.72 197 | 74.68 100 | 76.67 205 | 55.62 133 | 75.11 199 | 74.74 236 | 52.91 228 | 60.03 257 | 80.12 225 | 33.68 274 | 82.64 173 | 61.86 137 | 76.34 163 | 85.78 92 |
|
LS3D | | | 64.71 221 | 62.50 231 | 71.34 183 | 79.72 135 | 55.71 129 | 79.82 113 | 74.72 237 | 48.50 272 | 56.62 287 | 84.62 128 | 33.59 276 | 82.34 179 | 29.65 346 | 75.23 171 | 75.97 283 |
|
Baseline_NR-MVSNet | | | 67.05 189 | 67.56 153 | 65.50 264 | 75.65 223 | 37.70 322 | 75.42 192 | 74.65 238 | 59.90 113 | 68.14 147 | 83.15 161 | 49.12 116 | 77.20 262 | 52.23 203 | 69.78 240 | 81.60 212 |
|
HY-MVS | | 56.14 13 | 64.55 224 | 63.89 212 | 66.55 248 | 74.73 238 | 41.02 299 | 69.96 276 | 74.43 239 | 49.29 264 | 61.66 247 | 80.92 207 | 47.43 137 | 76.68 268 | 44.91 260 | 71.69 213 | 81.94 208 |
|
GA-MVS | | | 65.53 212 | 63.70 216 | 71.02 192 | 70.87 288 | 48.10 232 | 70.48 271 | 74.40 240 | 56.69 163 | 64.70 212 | 76.77 274 | 33.66 275 | 81.10 201 | 55.42 179 | 70.32 230 | 83.87 159 |
|
DIV-MVS_2432*1600 | | | 55.22 292 | 53.89 298 | 59.21 300 | 57.80 360 | 27.47 360 | 57.75 332 | 74.32 241 | 47.38 285 | 50.90 328 | 70.00 329 | 28.45 317 | 70.30 298 | 40.44 291 | 57.92 326 | 79.87 243 |
|
无先验 | | | | | | | | 79.66 117 | 74.30 242 | 48.40 274 | | | | 80.78 210 | 53.62 192 | | 79.03 254 |
|
thisisatest0530 | | | 67.92 174 | 65.78 196 | 74.33 113 | 76.29 212 | 51.03 188 | 76.89 167 | 74.25 243 | 53.67 222 | 65.59 193 | 81.76 189 | 35.15 259 | 85.50 107 | 55.94 170 | 72.47 204 | 86.47 67 |
|
CHOSEN 1792x2688 | | | 65.08 219 | 62.84 227 | 71.82 168 | 81.49 100 | 56.26 119 | 66.32 294 | 74.20 244 | 40.53 337 | 63.16 227 | 78.65 250 | 41.30 208 | 77.80 255 | 45.80 249 | 74.09 177 | 81.40 215 |
|
MS-PatchMatch | | | 62.42 242 | 61.46 242 | 65.31 268 | 75.21 232 | 52.10 177 | 72.05 248 | 74.05 245 | 46.41 294 | 57.42 284 | 74.36 301 | 34.35 268 | 77.57 259 | 45.62 252 | 73.67 181 | 66.26 345 |
|
tttt0517 | | | 67.83 176 | 65.66 198 | 74.33 113 | 76.69 204 | 50.82 193 | 77.86 142 | 73.99 246 | 54.54 215 | 64.64 213 | 82.53 171 | 35.06 260 | 85.50 107 | 55.71 175 | 69.91 237 | 86.67 63 |
|
USDC | | | 56.35 284 | 54.24 295 | 62.69 284 | 64.74 337 | 40.31 302 | 65.05 305 | 73.83 247 | 43.93 317 | 47.58 338 | 77.71 266 | 15.36 356 | 75.05 277 | 38.19 302 | 61.81 311 | 72.70 316 |
|
tfpnnormal | | | 62.47 241 | 61.63 240 | 64.99 270 | 74.81 236 | 39.01 311 | 71.22 259 | 73.72 248 | 55.22 200 | 60.21 255 | 80.09 227 | 41.26 211 | 76.98 266 | 30.02 344 | 68.09 263 | 78.97 255 |
|
jason | | | 69.65 136 | 68.39 143 | 73.43 139 | 78.27 167 | 56.88 112 | 77.12 160 | 73.71 249 | 46.53 293 | 69.34 127 | 83.22 158 | 43.37 183 | 79.18 232 | 64.77 111 | 79.20 130 | 84.23 147 |
jason: jason. |
D2MVS | | | 62.30 244 | 60.29 253 | 68.34 233 | 66.46 329 | 48.42 229 | 65.70 297 | 73.42 250 | 47.71 281 | 58.16 279 | 75.02 296 | 30.51 301 | 77.71 256 | 53.96 190 | 71.68 214 | 78.90 256 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 257 | 58.81 259 | 68.64 229 | 74.63 239 | 52.51 171 | 78.42 137 | 73.30 251 | 49.92 261 | 50.96 327 | 81.51 195 | 23.06 342 | 79.40 228 | 31.63 336 | 65.85 281 | 74.01 308 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
lupinMVS | | | 69.57 138 | 68.28 144 | 73.44 138 | 78.76 153 | 57.15 108 | 76.57 171 | 73.29 252 | 46.19 296 | 69.49 123 | 82.18 178 | 43.99 179 | 79.23 231 | 64.66 112 | 79.37 125 | 83.93 155 |
|
DP-MVS | | | 65.68 208 | 63.66 218 | 71.75 169 | 84.93 63 | 56.87 113 | 80.74 100 | 73.16 253 | 53.06 226 | 59.09 269 | 82.35 174 | 36.79 252 | 85.94 95 | 32.82 328 | 69.96 236 | 72.45 320 |
|
thisisatest0515 | | | 65.83 207 | 63.50 220 | 72.82 153 | 73.75 250 | 49.50 216 | 71.32 257 | 73.12 254 | 49.39 263 | 63.82 222 | 76.50 281 | 34.95 262 | 84.84 123 | 53.20 198 | 75.49 170 | 84.13 151 |
|
VPNet | | | 67.52 179 | 68.11 147 | 65.74 262 | 79.18 144 | 36.80 329 | 72.17 247 | 72.83 255 | 62.04 75 | 67.79 158 | 85.83 112 | 48.88 118 | 76.60 269 | 51.30 210 | 72.97 197 | 83.81 161 |
|
CL-MVSNet_2432*1600 | | | 61.53 253 | 60.94 249 | 63.30 279 | 68.95 313 | 36.93 328 | 67.60 289 | 72.80 256 | 55.67 192 | 59.95 259 | 76.63 275 | 45.01 169 | 72.22 289 | 39.74 296 | 62.09 309 | 80.74 230 |
|
OurMVSNet-221017-0 | | | 61.37 256 | 58.63 262 | 69.61 215 | 72.05 274 | 48.06 233 | 73.93 223 | 72.51 257 | 47.23 289 | 54.74 304 | 80.92 207 | 21.49 349 | 81.24 198 | 48.57 230 | 56.22 331 | 79.53 249 |
|
EPNet | | | 73.09 81 | 72.16 85 | 75.90 74 | 75.95 218 | 56.28 118 | 83.05 61 | 72.39 258 | 66.53 12 | 65.27 198 | 87.00 82 | 50.40 102 | 85.47 109 | 62.48 131 | 86.32 62 | 85.94 86 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 64.00 227 | 63.36 222 | 65.93 259 | 79.28 141 | 42.58 286 | 71.35 256 | 72.36 259 | 46.41 294 | 60.55 254 | 77.89 261 | 46.27 153 | 73.28 283 | 46.18 245 | 69.97 235 | 81.92 209 |
|
test_0402 | | | 63.25 235 | 61.01 248 | 69.96 208 | 80.00 128 | 54.37 146 | 76.86 168 | 72.02 260 | 54.58 214 | 58.71 272 | 80.79 212 | 35.00 261 | 84.36 130 | 26.41 354 | 64.71 289 | 71.15 332 |
|
EU-MVSNet | | | 55.61 289 | 54.41 292 | 59.19 301 | 65.41 335 | 33.42 347 | 72.44 243 | 71.91 261 | 28.81 354 | 51.27 325 | 73.87 305 | 24.76 339 | 69.08 303 | 43.04 274 | 58.20 325 | 75.06 293 |
|
KD-MVS_2432*1600 | | | 53.45 300 | 51.50 307 | 59.30 297 | 62.82 343 | 37.14 324 | 55.33 338 | 71.79 262 | 47.34 287 | 55.09 300 | 70.52 324 | 21.91 347 | 70.45 296 | 35.72 318 | 42.97 354 | 70.31 335 |
|
miper_refine_blended | | | 53.45 300 | 51.50 307 | 59.30 297 | 62.82 343 | 37.14 324 | 55.33 338 | 71.79 262 | 47.34 287 | 55.09 300 | 70.52 324 | 21.91 347 | 70.45 296 | 35.72 318 | 42.97 354 | 70.31 335 |
|
Anonymous202405211 | | | 66.84 194 | 65.99 193 | 69.40 220 | 80.19 125 | 42.21 289 | 71.11 263 | 71.31 264 | 58.80 134 | 67.90 150 | 86.39 98 | 29.83 308 | 79.65 224 | 49.60 223 | 78.78 137 | 86.33 74 |
|
LFMVS | | | 71.78 99 | 71.59 90 | 72.32 163 | 83.40 76 | 46.38 249 | 79.75 115 | 71.08 265 | 64.18 35 | 72.80 83 | 88.64 68 | 42.58 189 | 83.72 144 | 57.41 164 | 84.49 72 | 86.86 57 |
|
CDS-MVSNet | | | 66.80 195 | 65.37 201 | 71.10 190 | 78.98 148 | 53.13 162 | 73.27 232 | 71.07 266 | 52.15 236 | 64.72 211 | 80.23 224 | 43.56 182 | 77.10 263 | 45.48 255 | 78.88 134 | 83.05 191 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Anonymous20240521 | | | 55.30 290 | 54.41 292 | 57.96 309 | 60.92 355 | 41.73 294 | 71.09 264 | 71.06 267 | 41.18 333 | 48.65 336 | 73.31 308 | 16.93 353 | 59.25 337 | 42.54 278 | 64.01 293 | 72.90 314 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 261 | 58.14 267 | 65.69 263 | 70.47 293 | 44.82 266 | 75.33 193 | 70.86 268 | 45.04 304 | 56.06 290 | 76.00 285 | 26.89 329 | 79.65 224 | 35.36 320 | 67.29 270 | 72.60 317 |
|
CNLPA | | | 65.43 213 | 64.02 211 | 69.68 214 | 78.73 155 | 58.07 90 | 77.82 144 | 70.71 269 | 51.49 243 | 61.57 249 | 83.58 154 | 38.23 235 | 70.82 293 | 43.90 266 | 70.10 234 | 80.16 237 |
|
CostFormer | | | 64.04 226 | 62.51 230 | 68.61 230 | 71.88 277 | 45.77 257 | 71.30 258 | 70.60 270 | 47.55 283 | 64.31 217 | 76.61 277 | 41.63 201 | 79.62 226 | 49.74 219 | 69.00 255 | 80.42 233 |
|
bset_n11_16_dypcd | | | 65.57 211 | 63.69 217 | 71.19 186 | 70.84 290 | 51.79 183 | 71.37 255 | 70.48 271 | 53.33 225 | 65.19 205 | 76.41 282 | 31.46 298 | 81.76 188 | 65.12 108 | 69.04 253 | 80.01 240 |
|
Test_1112_low_res | | | 62.32 243 | 61.77 238 | 64.00 275 | 79.08 147 | 39.53 308 | 68.17 285 | 70.17 272 | 43.25 321 | 59.03 270 | 79.90 228 | 44.08 177 | 71.24 292 | 43.79 268 | 68.42 261 | 81.25 219 |
|
MVS_111021_LR | | | 69.50 140 | 68.78 135 | 71.65 173 | 78.38 162 | 59.33 64 | 74.82 207 | 70.11 273 | 58.08 145 | 67.83 156 | 84.68 126 | 41.96 195 | 76.34 272 | 65.62 104 | 77.54 148 | 79.30 252 |
|
DWT-MVSNet_test | | | 61.90 248 | 59.93 255 | 67.83 236 | 71.98 276 | 46.09 255 | 71.03 266 | 69.71 274 | 50.09 258 | 58.51 276 | 70.62 322 | 30.21 305 | 77.63 257 | 49.28 224 | 67.91 264 | 79.78 246 |
|
ANet_high | | | 41.38 323 | 37.47 328 | 53.11 327 | 39.73 369 | 24.45 365 | 56.94 334 | 69.69 275 | 47.65 282 | 26.04 361 | 52.32 354 | 12.44 357 | 62.38 327 | 21.80 357 | 10.61 367 | 72.49 319 |
|
SixPastTwentyTwo | | | 61.65 252 | 58.80 260 | 70.20 205 | 75.80 221 | 47.22 243 | 75.59 190 | 69.68 276 | 54.61 212 | 54.11 311 | 79.26 244 | 27.07 327 | 82.96 159 | 43.27 271 | 49.79 346 | 80.41 234 |
|
IterMVS-SCA-FT | | | 62.49 240 | 61.52 241 | 65.40 266 | 71.99 275 | 50.80 194 | 71.15 262 | 69.63 277 | 45.71 302 | 60.61 253 | 77.93 258 | 37.45 241 | 65.99 317 | 55.67 176 | 63.50 298 | 79.42 250 |
|
TAMVS | | | 66.78 196 | 65.27 204 | 71.33 184 | 79.16 146 | 53.67 150 | 73.84 226 | 69.59 278 | 52.32 235 | 65.28 197 | 81.72 190 | 44.49 175 | 77.40 261 | 42.32 280 | 78.66 140 | 82.92 192 |
|
CMPMVS |  | 42.80 21 | 57.81 276 | 55.97 281 | 63.32 278 | 60.98 353 | 47.38 242 | 64.66 307 | 69.50 279 | 32.06 351 | 46.83 342 | 77.80 263 | 29.50 310 | 71.36 291 | 48.68 228 | 73.75 180 | 71.21 331 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
tfpn200view9 | | | 63.18 236 | 62.18 235 | 66.21 253 | 76.85 202 | 39.62 306 | 71.96 250 | 69.44 280 | 56.63 165 | 62.61 234 | 79.83 230 | 37.18 244 | 79.17 233 | 31.84 332 | 73.25 191 | 79.83 244 |
|
thres400 | | | 63.31 232 | 62.18 235 | 66.72 245 | 76.85 202 | 39.62 306 | 71.96 250 | 69.44 280 | 56.63 165 | 62.61 234 | 79.83 230 | 37.18 244 | 79.17 233 | 31.84 332 | 73.25 191 | 81.36 216 |
|
thres200 | | | 62.20 245 | 61.16 247 | 65.34 267 | 75.38 230 | 39.99 303 | 69.60 278 | 69.29 282 | 55.64 194 | 61.87 245 | 76.99 270 | 37.07 249 | 78.96 243 | 31.28 340 | 73.28 190 | 77.06 274 |
|
UnsupCasMVSNet_eth | | | 53.16 305 | 52.47 303 | 55.23 318 | 59.45 357 | 33.39 348 | 59.43 327 | 69.13 283 | 45.98 298 | 50.35 334 | 72.32 312 | 29.30 312 | 58.26 340 | 42.02 284 | 44.30 352 | 74.05 307 |
|
thres100view900 | | | 63.28 234 | 62.41 232 | 65.89 260 | 77.31 194 | 38.66 314 | 72.65 238 | 69.11 284 | 57.07 158 | 62.45 239 | 81.03 204 | 37.01 250 | 79.17 233 | 31.84 332 | 73.25 191 | 79.83 244 |
|
thres600view7 | | | 63.30 233 | 62.27 233 | 66.41 249 | 77.18 196 | 38.87 312 | 72.35 244 | 69.11 284 | 56.98 160 | 62.37 241 | 80.96 206 | 37.01 250 | 79.00 242 | 31.43 339 | 73.05 196 | 81.36 216 |
|
CVMVSNet | | | 59.63 265 | 59.14 258 | 61.08 295 | 74.47 242 | 38.84 313 | 75.20 197 | 68.74 286 | 31.15 352 | 58.24 278 | 76.51 279 | 32.39 293 | 68.58 305 | 49.77 218 | 65.84 282 | 75.81 286 |
|
TinyColmap | | | 54.14 295 | 51.72 305 | 61.40 293 | 66.84 326 | 41.97 290 | 66.52 292 | 68.51 287 | 44.81 305 | 42.69 352 | 75.77 289 | 11.66 359 | 72.94 284 | 31.96 330 | 56.77 329 | 69.27 341 |
|
baseline2 | | | 63.42 231 | 61.26 245 | 69.89 213 | 72.55 267 | 47.62 239 | 71.54 253 | 68.38 288 | 50.11 257 | 54.82 303 | 75.55 292 | 43.06 186 | 80.96 204 | 48.13 232 | 67.16 272 | 81.11 223 |
|
IterMVS | | | 62.79 239 | 61.27 244 | 67.35 241 | 69.37 310 | 52.04 180 | 71.17 260 | 68.24 289 | 52.63 232 | 59.82 261 | 76.91 272 | 37.32 243 | 72.36 286 | 52.80 200 | 63.19 301 | 77.66 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
旧先验1 | | | | | | 83.04 80 | 53.15 160 | | 67.52 290 | | | 87.85 74 | 44.08 177 | | | 80.76 104 | 78.03 265 |
|
AllTest | | | 57.08 280 | 54.65 289 | 64.39 273 | 71.44 282 | 49.03 219 | 69.92 277 | 67.30 291 | 45.97 299 | 47.16 340 | 79.77 232 | 17.47 351 | 67.56 309 | 33.65 325 | 59.16 322 | 76.57 280 |
|
TestCases | | | | | 64.39 273 | 71.44 282 | 49.03 219 | | 67.30 291 | 45.97 299 | 47.16 340 | 79.77 232 | 17.47 351 | 67.56 309 | 33.65 325 | 59.16 322 | 76.57 280 |
|
baseline1 | | | 63.81 228 | 63.87 214 | 63.62 276 | 76.29 212 | 36.36 332 | 71.78 252 | 67.29 293 | 56.05 184 | 64.23 219 | 82.95 162 | 47.11 142 | 74.41 280 | 47.30 236 | 61.85 310 | 80.10 239 |
|
tpmvs | | | 58.47 269 | 56.95 275 | 63.03 283 | 70.20 297 | 41.21 298 | 67.90 288 | 67.23 294 | 49.62 262 | 54.73 305 | 70.84 320 | 34.14 269 | 76.24 273 | 36.64 312 | 61.29 314 | 71.64 328 |
|
Gipuma |  | | 34.77 328 | 31.91 332 | 43.33 341 | 62.05 348 | 37.87 319 | 20.39 362 | 67.03 295 | 23.23 360 | 18.41 364 | 25.84 363 | 4.24 369 | 62.73 325 | 14.71 361 | 51.32 343 | 29.38 362 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tpm2 | | | 62.07 246 | 60.10 254 | 67.99 235 | 72.79 262 | 43.86 276 | 71.05 265 | 66.85 296 | 43.14 323 | 62.77 229 | 75.39 294 | 38.32 233 | 80.80 209 | 41.69 285 | 68.88 256 | 79.32 251 |
|
XXY-MVS | | | 60.68 258 | 61.67 239 | 57.70 312 | 70.43 294 | 38.45 316 | 64.19 309 | 66.47 297 | 48.05 278 | 63.22 225 | 80.86 209 | 49.28 111 | 60.47 332 | 45.25 259 | 67.28 271 | 74.19 306 |
|
1121 | | | 68.53 161 | 67.16 171 | 72.63 156 | 85.64 48 | 61.14 34 | 73.95 220 | 66.46 298 | 44.61 308 | 70.28 107 | 86.68 89 | 41.42 207 | 80.78 210 | 53.62 192 | 81.79 95 | 75.97 283 |
|
新几何1 | | | | | 70.76 195 | 85.66 46 | 61.13 35 | | 66.43 299 | 44.68 307 | 70.29 106 | 86.64 90 | 41.29 209 | 75.23 276 | 49.72 220 | 81.75 99 | 75.93 285 |
|
ppachtmachnet_test | | | 58.06 274 | 55.38 285 | 66.10 256 | 69.51 307 | 48.99 222 | 68.01 287 | 66.13 300 | 44.50 310 | 54.05 312 | 70.74 321 | 32.09 295 | 72.34 287 | 36.68 311 | 56.71 330 | 76.99 278 |
|
tpm cat1 | | | 59.25 266 | 56.95 275 | 66.15 254 | 72.19 272 | 46.96 245 | 68.09 286 | 65.76 301 | 40.03 340 | 57.81 281 | 70.56 323 | 38.32 233 | 74.51 279 | 38.26 301 | 61.50 313 | 77.00 276 |
|
EPNet_dtu | | | 61.90 248 | 61.97 237 | 61.68 290 | 72.89 261 | 39.78 305 | 75.85 188 | 65.62 302 | 55.09 203 | 54.56 307 | 79.36 242 | 37.59 240 | 67.02 312 | 39.80 295 | 76.95 156 | 78.25 259 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 58.51 268 | 57.36 271 | 61.96 289 | 70.04 301 | 41.83 292 | 69.40 281 | 65.46 303 | 50.73 251 | 53.30 320 | 74.06 304 | 22.65 343 | 70.18 300 | 42.16 281 | 68.44 260 | 73.86 310 |
|
pmmvs4 | | | 61.48 255 | 59.39 256 | 67.76 237 | 71.57 281 | 53.86 149 | 71.42 254 | 65.34 304 | 44.20 313 | 59.46 264 | 77.92 259 | 35.90 254 | 74.71 278 | 43.87 267 | 64.87 288 | 74.71 301 |
|
testdata | | | | | 64.66 271 | 81.52 98 | 52.93 163 | | 65.29 305 | 46.09 297 | 73.88 66 | 87.46 77 | 38.08 237 | 66.26 316 | 53.31 197 | 78.48 142 | 74.78 300 |
|
TDRefinement | | | 53.44 302 | 50.72 310 | 61.60 291 | 64.31 340 | 46.96 245 | 70.89 267 | 65.27 306 | 41.78 328 | 44.61 348 | 77.98 256 | 11.52 360 | 66.36 315 | 28.57 349 | 51.59 342 | 71.49 329 |
|
MIMVSNet1 | | | 55.17 293 | 54.31 294 | 57.77 311 | 70.03 302 | 32.01 351 | 65.68 298 | 64.81 307 | 49.19 265 | 46.75 343 | 76.00 285 | 25.53 336 | 64.04 322 | 28.65 348 | 62.13 308 | 77.26 272 |
|
pmmvs-eth3d | | | 58.81 267 | 56.31 280 | 66.30 251 | 67.61 321 | 52.42 174 | 72.30 245 | 64.76 308 | 43.55 319 | 54.94 302 | 74.19 303 | 28.95 313 | 72.60 285 | 43.31 270 | 57.21 327 | 73.88 309 |
|
MDTV_nov1_ep13 | | | | 57.00 274 | | 72.73 263 | 38.26 317 | 65.02 306 | 64.73 309 | 44.74 306 | 55.46 294 | 72.48 311 | 32.61 291 | 70.47 295 | 37.47 304 | 67.75 268 | |
|
UnsupCasMVSNet_bld | | | 50.07 313 | 48.87 314 | 53.66 324 | 60.97 354 | 33.67 346 | 57.62 333 | 64.56 310 | 39.47 342 | 47.38 339 | 64.02 347 | 27.47 323 | 59.32 336 | 34.69 322 | 43.68 353 | 67.98 344 |
|
ITE_SJBPF | | | | | 62.09 288 | 66.16 331 | 44.55 272 | | 64.32 311 | 47.36 286 | 55.31 297 | 80.34 219 | 19.27 350 | 62.68 326 | 36.29 316 | 62.39 307 | 79.04 253 |
|
WTY-MVS | | | 59.75 264 | 60.39 252 | 57.85 310 | 72.32 271 | 37.83 320 | 61.05 323 | 64.18 312 | 45.95 301 | 61.91 244 | 79.11 246 | 47.01 146 | 60.88 331 | 42.50 279 | 69.49 246 | 74.83 298 |
|
MDA-MVSNet-bldmvs | | | 53.87 298 | 50.81 309 | 63.05 282 | 66.25 330 | 48.58 226 | 56.93 335 | 63.82 313 | 48.09 277 | 41.22 353 | 70.48 326 | 30.34 303 | 68.00 308 | 34.24 323 | 45.92 351 | 72.57 318 |
|
Vis-MVSNet (Re-imp) | | | 63.69 229 | 63.88 213 | 63.14 281 | 74.75 237 | 31.04 354 | 71.16 261 | 63.64 314 | 56.32 175 | 59.80 262 | 84.99 122 | 44.51 173 | 75.46 275 | 39.12 297 | 80.62 105 | 82.92 192 |
|
test222 | | | | | | 83.14 77 | 58.68 81 | 72.57 241 | 63.45 315 | 41.78 328 | 67.56 161 | 86.12 103 | 37.13 247 | | | 78.73 139 | 74.98 296 |
|
PVSNet | | 50.76 19 | 58.40 270 | 57.39 270 | 61.42 292 | 75.53 227 | 44.04 275 | 61.43 318 | 63.45 315 | 47.04 291 | 56.91 285 | 73.61 307 | 27.00 328 | 64.76 320 | 39.12 297 | 72.40 205 | 75.47 290 |
|
SCA | | | 60.49 259 | 58.38 264 | 66.80 244 | 74.14 249 | 48.06 233 | 63.35 311 | 63.23 317 | 49.13 266 | 59.33 268 | 72.10 313 | 37.45 241 | 74.27 281 | 44.17 262 | 62.57 305 | 78.05 262 |
|
CR-MVSNet | | | 59.91 262 | 57.90 269 | 65.96 258 | 69.96 303 | 52.07 178 | 65.31 303 | 63.15 318 | 42.48 327 | 59.36 265 | 74.84 297 | 35.83 255 | 70.75 294 | 45.50 254 | 64.65 290 | 75.06 293 |
|
Patchmtry | | | 57.16 279 | 56.47 278 | 59.23 299 | 69.17 312 | 34.58 342 | 62.98 312 | 63.15 318 | 44.53 309 | 56.83 286 | 74.84 297 | 35.83 255 | 68.71 304 | 40.03 293 | 60.91 315 | 74.39 304 |
|
pmmvs5 | | | 56.47 282 | 55.68 283 | 58.86 303 | 61.41 350 | 36.71 330 | 66.37 293 | 62.75 320 | 40.38 338 | 53.70 314 | 76.62 276 | 34.56 264 | 67.05 311 | 40.02 294 | 65.27 285 | 72.83 315 |
|
K. test v3 | | | 60.47 260 | 57.11 272 | 70.56 199 | 73.74 251 | 48.22 231 | 75.10 201 | 62.55 321 | 58.27 144 | 53.62 316 | 76.31 283 | 27.81 321 | 81.59 191 | 47.42 234 | 39.18 357 | 81.88 210 |
|
FMVSNet5 | | | 55.86 287 | 54.93 287 | 58.66 305 | 71.05 287 | 36.35 333 | 64.18 310 | 62.48 322 | 46.76 292 | 50.66 332 | 74.73 299 | 25.80 334 | 64.04 322 | 33.11 327 | 65.57 284 | 75.59 289 |
|
PatchmatchNet |  | | 59.84 263 | 58.24 265 | 64.65 272 | 73.05 258 | 46.70 247 | 69.42 280 | 62.18 323 | 47.55 283 | 58.88 271 | 71.96 315 | 34.49 266 | 69.16 302 | 42.99 275 | 63.60 297 | 78.07 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Anonymous20231206 | | | 55.10 294 | 55.30 286 | 54.48 322 | 69.81 306 | 33.94 345 | 62.91 313 | 62.13 324 | 41.08 334 | 55.18 299 | 75.65 290 | 32.75 287 | 56.59 347 | 30.32 343 | 67.86 265 | 72.91 313 |
|
sss | | | 56.17 286 | 56.57 277 | 54.96 319 | 66.93 325 | 36.32 335 | 57.94 331 | 61.69 325 | 41.67 330 | 58.64 274 | 75.32 295 | 38.72 229 | 56.25 348 | 42.04 283 | 66.19 279 | 72.31 325 |
|
our_test_3 | | | 56.49 281 | 54.42 291 | 62.68 285 | 69.51 307 | 45.48 263 | 66.08 295 | 61.49 326 | 44.11 316 | 50.73 331 | 69.60 332 | 33.05 280 | 68.15 306 | 38.38 300 | 56.86 328 | 74.40 303 |
|
tpmrst | | | 58.24 271 | 58.70 261 | 56.84 313 | 66.97 324 | 34.32 343 | 69.57 279 | 61.14 327 | 47.17 290 | 58.58 275 | 71.60 316 | 41.28 210 | 60.41 333 | 49.20 225 | 62.84 303 | 75.78 287 |
|
MIMVSNet | | | 57.35 277 | 57.07 273 | 58.22 306 | 74.21 248 | 37.18 323 | 62.46 314 | 60.88 328 | 48.88 268 | 55.29 298 | 75.99 287 | 31.68 297 | 62.04 328 | 31.87 331 | 72.35 206 | 75.43 291 |
|
LCM-MVSNet | | | 40.30 324 | 35.88 329 | 53.57 325 | 42.24 366 | 29.15 358 | 45.21 355 | 60.53 329 | 22.23 362 | 28.02 360 | 50.98 357 | 3.72 371 | 61.78 329 | 31.22 341 | 38.76 358 | 69.78 338 |
|
ADS-MVSNet2 | | | 51.33 310 | 48.76 315 | 59.07 302 | 66.02 333 | 44.60 270 | 50.90 346 | 59.76 330 | 36.90 344 | 50.74 329 | 66.18 342 | 26.38 330 | 63.11 324 | 27.17 350 | 54.76 335 | 69.50 339 |
|
new-patchmatchnet | | | 47.56 317 | 47.73 318 | 47.06 337 | 58.81 358 | 9.37 372 | 48.78 350 | 59.21 331 | 43.28 320 | 44.22 349 | 68.66 334 | 25.67 335 | 57.20 344 | 31.57 338 | 49.35 347 | 74.62 302 |
|
test20.03 | | | 53.87 298 | 54.02 297 | 53.41 326 | 61.47 349 | 28.11 359 | 61.30 320 | 59.21 331 | 51.34 247 | 52.09 323 | 77.43 267 | 33.29 279 | 58.55 339 | 29.76 345 | 60.27 319 | 73.58 311 |
|
JIA-IIPM | | | 51.56 309 | 47.68 319 | 63.21 280 | 64.61 338 | 50.73 195 | 47.71 351 | 58.77 333 | 42.90 324 | 48.46 337 | 51.72 355 | 24.97 338 | 70.24 299 | 36.06 317 | 53.89 338 | 68.64 343 |
|
testgi | | | 51.90 307 | 52.37 304 | 50.51 335 | 60.39 356 | 23.55 366 | 58.42 329 | 58.15 334 | 49.03 267 | 51.83 324 | 79.21 245 | 22.39 344 | 55.59 351 | 29.24 347 | 62.64 304 | 72.40 324 |
|
LCM-MVSNet-Re | | | 61.88 250 | 61.35 243 | 63.46 277 | 74.58 240 | 31.48 353 | 61.42 319 | 58.14 335 | 58.71 135 | 53.02 321 | 79.55 238 | 43.07 185 | 76.80 267 | 45.69 250 | 77.96 145 | 82.11 207 |
|
test-LLR | | | 58.15 273 | 58.13 268 | 58.22 306 | 68.57 315 | 44.80 267 | 65.46 300 | 57.92 336 | 50.08 259 | 55.44 295 | 69.82 330 | 32.62 289 | 57.44 342 | 49.66 221 | 73.62 182 | 72.41 322 |
|
test-mter | | | 56.42 283 | 55.82 282 | 58.22 306 | 68.57 315 | 44.80 267 | 65.46 300 | 57.92 336 | 39.94 341 | 55.44 295 | 69.82 330 | 21.92 346 | 57.44 342 | 49.66 221 | 73.62 182 | 72.41 322 |
|
RPSCF | | | 55.80 288 | 54.22 296 | 60.53 296 | 65.13 336 | 42.91 285 | 64.30 308 | 57.62 338 | 36.84 346 | 58.05 280 | 82.28 177 | 28.01 319 | 56.24 349 | 37.14 306 | 58.61 324 | 82.44 202 |
|
GG-mvs-BLEND | | | | | 62.34 286 | 71.36 286 | 37.04 327 | 69.20 282 | 57.33 339 | | 54.73 305 | 65.48 344 | 30.37 302 | 77.82 254 | 34.82 321 | 74.93 172 | 72.17 326 |
|
MDA-MVSNet_test_wron | | | 50.71 312 | 48.95 313 | 56.00 317 | 61.17 351 | 41.84 291 | 51.90 345 | 56.45 340 | 40.96 335 | 44.79 347 | 67.84 336 | 30.04 307 | 55.07 354 | 36.71 310 | 50.69 345 | 71.11 333 |
|
YYNet1 | | | 50.73 311 | 48.96 312 | 56.03 316 | 61.10 352 | 41.78 293 | 51.94 344 | 56.44 341 | 40.94 336 | 44.84 346 | 67.80 337 | 30.08 306 | 55.08 353 | 36.77 308 | 50.71 344 | 71.22 330 |
|
gg-mvs-nofinetune | | | 57.86 275 | 56.43 279 | 62.18 287 | 72.62 265 | 35.35 338 | 66.57 291 | 56.33 342 | 50.65 253 | 57.64 282 | 57.10 352 | 30.65 300 | 76.36 271 | 37.38 305 | 78.88 134 | 74.82 299 |
|
TESTMET0.1,1 | | | 55.28 291 | 54.90 288 | 56.42 314 | 66.56 328 | 43.67 278 | 65.46 300 | 56.27 343 | 39.18 343 | 53.83 313 | 67.44 338 | 24.21 341 | 55.46 352 | 48.04 233 | 73.11 195 | 70.13 337 |
|
PMMVS | | | 53.96 296 | 53.26 302 | 56.04 315 | 62.60 346 | 50.92 191 | 61.17 322 | 56.09 344 | 32.81 350 | 53.51 318 | 66.84 340 | 34.04 270 | 59.93 335 | 44.14 264 | 68.18 262 | 57.27 353 |
|
tpm | | | 57.34 278 | 58.16 266 | 54.86 320 | 71.80 279 | 34.77 340 | 67.47 290 | 56.04 345 | 48.20 276 | 60.10 256 | 76.92 271 | 37.17 246 | 53.41 355 | 40.76 290 | 65.01 287 | 76.40 282 |
|
PVSNet_0 | | 43.31 20 | 47.46 318 | 45.64 321 | 52.92 328 | 67.60 322 | 44.65 269 | 54.06 342 | 54.64 346 | 41.59 331 | 46.15 344 | 58.75 351 | 30.99 299 | 58.66 338 | 32.18 329 | 24.81 360 | 55.46 354 |
|
dp | | | 51.89 308 | 51.60 306 | 52.77 329 | 68.44 318 | 32.45 350 | 62.36 315 | 54.57 347 | 44.16 314 | 49.31 335 | 67.91 335 | 28.87 315 | 56.61 346 | 33.89 324 | 54.89 334 | 69.24 342 |
|
PatchT | | | 53.17 304 | 53.44 301 | 52.33 331 | 68.29 319 | 25.34 364 | 58.21 330 | 54.41 348 | 44.46 311 | 54.56 307 | 69.05 333 | 33.32 278 | 60.94 330 | 36.93 307 | 61.76 312 | 70.73 334 |
|
test0.0.03 1 | | | 53.32 303 | 53.59 300 | 52.50 330 | 62.81 345 | 29.45 357 | 59.51 326 | 54.11 349 | 50.08 259 | 54.40 309 | 74.31 302 | 32.62 289 | 55.92 350 | 30.50 342 | 63.95 295 | 72.15 327 |
|
PatchMatch-RL | | | 56.25 285 | 54.55 290 | 61.32 294 | 77.06 198 | 56.07 123 | 65.57 299 | 54.10 350 | 44.13 315 | 53.49 319 | 71.27 319 | 25.20 337 | 66.78 313 | 36.52 314 | 63.66 296 | 61.12 348 |
|
FPMVS | | | 42.18 322 | 41.11 325 | 45.39 338 | 58.03 359 | 41.01 300 | 49.50 348 | 53.81 351 | 30.07 353 | 33.71 358 | 64.03 345 | 11.69 358 | 52.08 357 | 14.01 362 | 55.11 333 | 43.09 358 |
|
Patchmatch-RL test | | | 58.16 272 | 55.49 284 | 66.15 254 | 67.92 320 | 48.89 224 | 60.66 324 | 51.07 352 | 47.86 280 | 59.36 265 | 62.71 349 | 34.02 271 | 72.27 288 | 56.41 168 | 59.40 321 | 77.30 270 |
|
lessismore_v0 | | | | | 69.91 211 | 71.42 284 | 47.80 235 | | 50.90 353 | | 50.39 333 | 75.56 291 | 27.43 325 | 81.33 195 | 45.91 248 | 34.10 359 | 80.59 231 |
|
ADS-MVSNet | | | 48.48 315 | 47.77 317 | 50.63 334 | 66.02 333 | 29.92 356 | 50.90 346 | 50.87 354 | 36.90 344 | 50.74 329 | 66.18 342 | 26.38 330 | 52.47 356 | 27.17 350 | 54.76 335 | 69.50 339 |
|
EPMVS | | | 53.96 296 | 53.69 299 | 54.79 321 | 66.12 332 | 31.96 352 | 62.34 316 | 49.05 355 | 44.42 312 | 55.54 293 | 71.33 318 | 30.22 304 | 56.70 345 | 41.65 287 | 62.54 306 | 75.71 288 |
|
PMVS |  | 28.69 22 | 36.22 327 | 33.29 331 | 45.02 340 | 36.82 371 | 35.98 337 | 54.68 341 | 48.74 356 | 26.31 357 | 21.02 362 | 51.61 356 | 2.88 373 | 60.10 334 | 9.99 366 | 47.58 349 | 38.99 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
LF4IMVS | | | 42.95 321 | 42.26 323 | 45.04 339 | 48.30 364 | 32.50 349 | 54.80 340 | 48.49 357 | 28.03 355 | 40.51 355 | 70.16 327 | 9.24 364 | 43.89 361 | 31.63 336 | 49.18 348 | 58.72 350 |
|
Patchmatch-test | | | 49.08 314 | 48.28 316 | 51.50 333 | 64.40 339 | 30.85 355 | 45.68 353 | 48.46 358 | 35.60 347 | 46.10 345 | 72.10 313 | 34.47 267 | 46.37 359 | 27.08 352 | 60.65 318 | 77.27 271 |
|
door | | | | | | | | | 47.60 359 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 360 | | | | | | | | |
|
pmmvs3 | | | 44.92 320 | 41.95 324 | 53.86 323 | 52.58 362 | 43.55 279 | 62.11 317 | 46.90 361 | 26.05 358 | 40.63 354 | 60.19 350 | 11.08 362 | 57.91 341 | 31.83 335 | 46.15 350 | 60.11 349 |
|
MVS-HIRNet | | | 45.52 319 | 44.48 322 | 48.65 336 | 68.49 317 | 34.05 344 | 59.41 328 | 44.50 362 | 27.03 356 | 37.96 357 | 50.47 358 | 26.16 333 | 64.10 321 | 26.74 353 | 59.52 320 | 47.82 356 |
|
CHOSEN 280x420 | | | 47.83 316 | 46.36 320 | 52.24 332 | 67.37 323 | 49.78 210 | 38.91 359 | 43.11 363 | 35.00 348 | 43.27 351 | 63.30 348 | 28.95 313 | 49.19 358 | 36.53 313 | 60.80 317 | 57.76 352 |
|
test_method | | | 19.68 334 | 18.10 337 | 24.41 349 | 13.68 374 | 3.11 375 | 12.06 365 | 42.37 364 | 2.00 369 | 11.97 367 | 36.38 360 | 5.77 368 | 29.35 368 | 15.06 360 | 23.65 361 | 40.76 359 |
|
PM-MVS | | | 52.33 306 | 50.19 311 | 58.75 304 | 62.10 347 | 45.14 265 | 65.75 296 | 40.38 365 | 43.60 318 | 53.52 317 | 72.65 310 | 9.16 365 | 65.87 318 | 50.41 214 | 54.18 337 | 65.24 347 |
|
E-PMN | | | 23.77 331 | 22.73 335 | 26.90 347 | 42.02 367 | 20.67 367 | 42.66 357 | 35.70 366 | 17.43 363 | 10.28 369 | 25.05 364 | 6.42 367 | 42.39 363 | 10.28 365 | 14.71 364 | 17.63 363 |
|
EMVS | | | 22.97 332 | 21.84 336 | 26.36 348 | 40.20 368 | 19.53 369 | 41.95 358 | 34.64 367 | 17.09 364 | 9.73 370 | 22.83 365 | 7.29 366 | 42.22 364 | 9.18 367 | 13.66 365 | 17.32 364 |
|
new_pmnet | | | 34.13 329 | 34.29 330 | 33.64 344 | 52.63 361 | 18.23 370 | 44.43 356 | 33.90 368 | 22.81 361 | 30.89 359 | 53.18 353 | 10.48 363 | 35.72 366 | 20.77 358 | 39.51 356 | 46.98 357 |
|
DSMNet-mixed | | | 39.30 326 | 38.72 327 | 41.03 342 | 51.22 363 | 19.66 368 | 45.53 354 | 31.35 369 | 15.83 365 | 39.80 356 | 67.42 339 | 22.19 345 | 45.13 360 | 22.43 356 | 52.69 340 | 58.31 351 |
|
PMMVS2 | | | 27.40 330 | 25.91 333 | 31.87 346 | 39.46 370 | 6.57 373 | 31.17 360 | 28.52 370 | 23.96 359 | 20.45 363 | 48.94 359 | 4.20 370 | 37.94 365 | 16.51 359 | 19.97 362 | 51.09 355 |
|
MVE |  | 17.77 23 | 21.41 333 | 17.77 338 | 32.34 345 | 34.34 372 | 25.44 363 | 16.11 363 | 24.11 371 | 11.19 366 | 13.22 366 | 31.92 361 | 1.58 374 | 30.95 367 | 10.47 364 | 17.03 363 | 40.62 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 86.03 19 | 17.08 372 | | | | | | | | |
|
tmp_tt | | | 9.43 337 | 11.14 340 | 4.30 352 | 2.38 375 | 4.40 374 | 13.62 364 | 16.08 373 | 0.39 370 | 15.89 365 | 13.06 366 | 15.80 355 | 5.54 371 | 12.63 363 | 10.46 368 | 2.95 366 |
|
DeepMVS_CX |  | | | | 12.03 351 | 17.97 373 | 10.91 371 | | 10.60 374 | 7.46 367 | 11.07 368 | 28.36 362 | 3.28 372 | 11.29 370 | 8.01 368 | 9.74 369 | 13.89 365 |
|
wuyk23d | | | 13.32 336 | 12.52 339 | 15.71 350 | 47.54 365 | 26.27 361 | 31.06 361 | 1.98 375 | 4.93 368 | 5.18 371 | 1.94 370 | 0.45 375 | 18.54 369 | 6.81 369 | 12.83 366 | 2.33 367 |
|
N_pmnet | | | 39.35 325 | 40.28 326 | 36.54 343 | 63.76 341 | 1.62 376 | 49.37 349 | 0.76 376 | 34.62 349 | 43.61 350 | 66.38 341 | 26.25 332 | 42.57 362 | 26.02 355 | 51.77 341 | 65.44 346 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 3.92 341 | 5.23 344 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 47.05 143 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
testmvs | | | 4.52 340 | 6.03 343 | 0.01 354 | 0.01 376 | 0.00 378 | 53.86 343 | 0.00 377 | 0.01 371 | 0.04 372 | 0.27 371 | 0.00 377 | 0.00 372 | 0.04 370 | 0.00 370 | 0.03 369 |
|
test123 | | | 4.73 339 | 6.30 342 | 0.02 353 | 0.01 376 | 0.01 377 | 56.36 336 | 0.00 377 | 0.01 371 | 0.04 372 | 0.21 372 | 0.01 376 | 0.00 372 | 0.03 371 | 0.00 370 | 0.04 368 |
|
n2 | | | | | | | | | 0.00 377 | | | | | | | | |
|
nn | | | | | | | | | 0.00 377 | | | | | | | | |
|
ab-mvs-re | | | 6.49 338 | 8.65 341 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 77.89 261 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 377 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
PC_three_1452 | | | | | | | | | | 55.09 203 | 84.46 4 | 89.84 49 | 66.68 5 | 89.41 17 | 74.24 37 | 91.38 2 | 88.42 7 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 40 | 87.82 7 | | | | 89.89 47 | 67.01 1 | 90.33 11 | 73.16 49 | 91.15 4 | 88.23 12 |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 17 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 262 |
|
test_part2 | | | | | | 87.58 9 | 60.47 49 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 263 | | | | 78.05 262 |
|
sam_mvs | | | | | | | | | | | | | 33.43 277 | | | | |
|
test_post1 | | | | | | | | 68.67 284 | | | | 3.64 368 | 32.39 293 | 69.49 301 | 44.17 262 | | |
|
test_post | | | | | | | | | | | | 3.55 369 | 33.90 272 | 66.52 314 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 345 | 34.50 265 | 74.27 281 | | | |
|
gm-plane-assit | | | | | | 71.40 285 | 41.72 296 | | | 48.85 269 | | 73.31 308 | | 82.48 177 | 48.90 227 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 31 | 88.31 37 | 83.81 161 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 50 | 87.93 44 | 84.33 143 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 83 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 85 | | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 38 | | 72.19 53 | 88.96 28 | |
|
旧先验2 | | | | | | | | 76.08 182 | | 45.32 303 | 76.55 35 | | | 65.56 319 | 58.75 159 | | |
|
新几何2 | | | | | | | | 76.12 180 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 79.02 125 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 290 | 46.95 241 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 58 | | | | |
|
testdata1 | | | | | | | | 72.65 238 | | 60.50 96 | | | | | | | |
|
plane_prior7 | | | | | | 81.41 101 | 55.96 125 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 108 | 56.24 120 | | | | | | 45.26 167 | | | | |
|
plane_prior4 | | | | | | | | | | | | 86.10 104 | | | | | |
|
plane_prior3 | | | | | | | 56.09 122 | | | 63.92 39 | 69.27 128 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 40 | | 64.52 28 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 106 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 116 | 83.58 56 | | 63.19 51 | | | | | | 80.48 110 | |
|
HQP5-MVS | | | | | | | 54.94 140 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 113 | | 82.31 78 | | 62.10 72 | 67.85 152 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 113 | | 82.31 78 | | 62.10 72 | 67.85 152 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 92 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 152 | | | 86.93 66 | | | 84.32 144 |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 161 | | | | |
|
NP-MVS | | | | | | 80.98 111 | 56.05 124 | | | | | 85.54 118 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 362 | 61.22 321 | | 40.10 339 | 51.10 326 | | 32.97 282 | | 38.49 299 | | 78.61 257 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 178 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 209 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 124 | | | | |
|