DVP-MVS | | | 95.56 2 | 96.26 2 | 94.73 2 | 96.93 16 | 98.19 1 | 96.62 6 | 92.81 4 | 96.15 1 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 2 | 94.77 7 | 96.90 4 | 98.46 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 95.23 4 | 95.69 5 | 94.70 4 | 97.12 10 | 97.81 5 | 97.19 2 | 92.83 3 | 95.06 5 | 90.98 10 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 8 | 94.21 15 | 96.68 8 | 98.17 4 |
|
DPE-MVS |  | | 95.53 3 | 96.13 3 | 94.82 1 | 96.81 22 | 98.05 3 | 97.42 1 | 93.09 1 | 94.31 8 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 5 | 94.58 11 | 96.86 6 | 98.25 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + MP. | | | 94.48 10 | 94.97 8 | 93.90 13 | 95.53 37 | 97.01 15 | 96.69 5 | 90.71 24 | 94.24 9 | 90.92 11 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 14 | 93.60 26 | 96.51 13 | 97.97 8 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 94.37 11 | 94.47 15 | 94.26 6 | 97.18 8 | 96.99 16 | 96.53 7 | 92.68 5 | 92.45 24 | 89.96 17 | 94.53 11 | 91.63 20 | 92.89 5 | 94.58 20 | 93.82 22 | 96.31 17 | 97.26 18 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SED-MVS | | | 95.61 1 | 96.36 1 | 94.73 2 | 96.84 19 | 98.15 2 | 97.08 3 | 92.92 2 | 95.64 2 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 6 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 2 |
|
MSP-MVS | | | 95.12 5 | 95.83 4 | 94.30 5 | 96.82 21 | 97.94 4 | 96.98 4 | 92.37 11 | 95.40 3 | 90.59 13 | 96.16 3 | 93.71 5 | 92.70 7 | 94.80 15 | 94.77 7 | 96.37 14 | 97.99 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 94.60 8 | 94.91 10 | 94.24 7 | 97.86 1 | 96.53 32 | 96.14 8 | 92.51 8 | 93.87 15 | 90.76 12 | 93.45 18 | 93.84 4 | 92.62 8 | 95.11 11 | 94.08 18 | 95.58 50 | 97.48 13 |
|
CNVR-MVS | | | 94.37 11 | 94.65 11 | 94.04 11 | 97.29 6 | 97.11 10 | 96.00 10 | 92.43 10 | 93.45 16 | 89.85 19 | 90.92 25 | 93.04 8 | 92.59 9 | 95.77 4 | 94.82 5 | 96.11 21 | 97.42 15 |
|
HFP-MVS | | | 94.02 14 | 94.22 17 | 93.78 14 | 97.25 7 | 96.85 20 | 95.81 20 | 90.94 23 | 94.12 10 | 90.29 16 | 94.09 14 | 89.98 31 | 92.52 10 | 93.94 32 | 93.49 33 | 95.87 29 | 97.10 23 |
|
ACMMPR | | | 93.72 18 | 93.94 19 | 93.48 18 | 97.07 11 | 96.93 17 | 95.78 21 | 90.66 26 | 93.88 14 | 89.24 21 | 93.53 16 | 89.08 38 | 92.24 11 | 93.89 34 | 93.50 31 | 95.88 27 | 96.73 31 |
|
NCCC | | | 93.69 19 | 93.66 22 | 93.72 16 | 97.37 5 | 96.66 29 | 95.93 16 | 92.50 9 | 93.40 19 | 88.35 25 | 87.36 35 | 92.33 14 | 92.18 12 | 94.89 13 | 94.09 17 | 96.00 23 | 96.91 26 |
|
zzz-MVS | | | 93.80 17 | 93.45 25 | 94.20 8 | 97.53 3 | 96.43 36 | 95.88 17 | 91.12 20 | 94.09 11 | 92.74 3 | 87.68 33 | 90.77 25 | 92.04 13 | 94.74 17 | 93.56 28 | 95.91 26 | 96.85 27 |
|
MCST-MVS | | | 93.81 16 | 94.06 18 | 93.53 17 | 96.79 23 | 96.85 20 | 95.95 13 | 91.69 16 | 92.20 26 | 87.17 32 | 90.83 27 | 93.41 6 | 91.96 14 | 94.49 23 | 93.50 31 | 97.61 1 | 97.12 22 |
|
xxxxxxxxxxxxxcwj | | | 92.95 24 | 91.88 33 | 94.20 8 | 96.75 24 | 97.07 11 | 95.82 18 | 92.60 6 | 93.98 12 | 91.09 8 | 95.89 5 | 71.01 126 | 91.93 15 | 94.40 25 | 93.56 28 | 97.04 2 | 97.27 16 |
|
SF-MVS | | | 94.61 7 | 94.96 9 | 94.20 8 | 96.75 24 | 97.07 11 | 95.82 18 | 92.60 6 | 93.98 12 | 91.09 8 | 95.89 5 | 92.54 12 | 91.93 15 | 94.40 25 | 93.56 28 | 97.04 2 | 97.27 16 |
|
CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 21 | 96.84 19 | 96.51 33 | 95.52 24 | 90.61 27 | 92.37 25 | 88.88 22 | 90.91 26 | 89.52 34 | 91.91 17 | 93.64 36 | 92.78 44 | 95.69 41 | 97.09 24 |
|
SMA-MVS |  | | 94.70 6 | 95.35 6 | 93.93 12 | 97.57 2 | 97.57 7 | 95.98 11 | 91.91 13 | 94.50 6 | 90.35 14 | 93.46 17 | 92.72 11 | 91.89 18 | 95.89 3 | 95.22 1 | 95.88 27 | 98.10 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 94.06 13 | 94.65 11 | 93.38 19 | 96.97 15 | 97.36 8 | 96.12 9 | 91.78 14 | 92.05 28 | 87.34 30 | 94.42 12 | 90.87 24 | 91.87 19 | 95.47 7 | 94.59 10 | 96.21 19 | 97.77 10 |
Skip Steuart: Steuart Systems R&D Blog. |
SD-MVS | | | 94.53 9 | 95.22 7 | 93.73 15 | 95.69 36 | 97.03 14 | 95.77 22 | 91.95 12 | 94.41 7 | 91.35 7 | 94.97 8 | 93.34 7 | 91.80 20 | 94.72 18 | 93.99 19 | 95.82 34 | 98.07 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 92.76 26 | 93.03 28 | 92.45 28 | 97.03 13 | 96.67 28 | 95.73 23 | 87.92 42 | 90.15 43 | 86.53 36 | 92.97 20 | 88.33 44 | 91.69 21 | 93.62 37 | 93.03 39 | 95.83 33 | 96.41 37 |
|
CPTT-MVS | | | 91.39 37 | 90.95 40 | 91.91 32 | 95.06 39 | 95.24 51 | 95.02 30 | 88.98 36 | 91.02 35 | 86.71 34 | 84.89 43 | 88.58 43 | 91.60 22 | 90.82 81 | 89.67 92 | 94.08 116 | 96.45 35 |
|
MSLP-MVS++ | | | 92.02 34 | 91.40 37 | 92.75 24 | 96.01 32 | 95.88 44 | 93.73 40 | 89.00 34 | 89.89 44 | 90.31 15 | 81.28 56 | 88.85 39 | 91.45 23 | 92.88 47 | 94.24 14 | 96.00 23 | 96.76 30 |
|
DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 22 | 97.13 9 | 96.51 33 | 95.35 26 | 91.19 19 | 93.14 21 | 88.14 26 | 85.26 41 | 89.49 35 | 91.45 23 | 95.17 9 | 95.07 2 | 95.85 32 | 96.48 34 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 92.71 28 | 93.91 20 | 91.30 35 | 91.96 72 | 96.00 41 | 93.43 41 | 87.94 41 | 92.53 22 | 86.27 40 | 93.57 15 | 91.94 18 | 91.44 25 | 93.29 40 | 92.89 43 | 96.78 7 | 97.15 21 |
|
ACMMP_NAP | | | 93.94 15 | 94.49 14 | 93.30 20 | 97.03 13 | 97.31 9 | 95.96 12 | 91.30 18 | 93.41 18 | 88.55 24 | 93.00 19 | 90.33 28 | 91.43 26 | 95.53 6 | 94.41 13 | 95.53 52 | 97.47 14 |
|
MP-MVS |  | | 93.35 20 | 93.59 23 | 93.08 23 | 97.39 4 | 96.82 22 | 95.38 25 | 90.71 24 | 90.82 36 | 88.07 27 | 92.83 21 | 90.29 29 | 91.32 27 | 94.03 29 | 93.19 38 | 95.61 48 | 97.16 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
AdaColmap |  | | 90.29 43 | 88.38 57 | 92.53 26 | 96.10 31 | 95.19 53 | 92.98 46 | 91.40 17 | 89.08 47 | 88.65 23 | 78.35 71 | 81.44 69 | 91.30 28 | 90.81 82 | 90.21 76 | 94.72 89 | 93.59 88 |
|
DeepC-MVS | | 87.86 3 | 92.26 31 | 91.86 34 | 92.73 25 | 96.18 29 | 96.87 19 | 95.19 28 | 91.76 15 | 92.17 27 | 86.58 35 | 81.79 50 | 85.85 50 | 90.88 29 | 94.57 21 | 94.61 9 | 95.80 35 | 97.18 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 86.06 4 | 91.60 36 | 90.86 42 | 92.47 27 | 96.00 33 | 96.50 35 | 94.70 32 | 87.83 43 | 90.49 39 | 89.92 18 | 74.68 90 | 89.35 36 | 90.66 30 | 94.02 30 | 94.14 16 | 95.67 43 | 96.85 27 |
|
train_agg | | | 92.87 25 | 93.53 24 | 92.09 30 | 96.88 18 | 95.38 49 | 95.94 14 | 90.59 28 | 90.65 38 | 83.65 51 | 94.31 13 | 91.87 19 | 90.30 31 | 93.38 39 | 92.42 46 | 95.17 69 | 96.73 31 |
|
ACMMP |  | | 92.03 33 | 92.16 31 | 91.87 34 | 95.88 34 | 96.55 31 | 94.47 35 | 89.49 33 | 91.71 31 | 85.26 42 | 91.52 24 | 84.48 55 | 90.21 32 | 92.82 48 | 91.63 52 | 95.92 25 | 96.42 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 88.51 2 | 92.64 29 | 94.42 16 | 90.56 41 | 94.84 44 | 96.92 18 | 91.31 61 | 89.61 32 | 95.16 4 | 84.55 46 | 89.91 29 | 91.45 21 | 90.15 33 | 95.12 10 | 94.81 6 | 92.90 148 | 97.58 12 |
|
PLC |  | 83.76 9 | 88.61 56 | 86.83 73 | 90.70 39 | 94.22 49 | 92.63 92 | 91.50 59 | 87.19 47 | 89.16 46 | 86.87 33 | 75.51 85 | 80.87 71 | 89.98 34 | 90.01 92 | 89.20 103 | 94.41 108 | 90.45 142 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNLPA | | | 88.40 57 | 87.00 71 | 90.03 45 | 93.73 55 | 94.28 65 | 89.56 79 | 85.81 54 | 91.87 29 | 87.55 29 | 69.53 118 | 81.49 68 | 89.23 35 | 89.45 101 | 88.59 113 | 94.31 112 | 93.82 83 |
|
X-MVS | | | 92.36 30 | 92.75 30 | 91.90 33 | 96.89 17 | 96.70 25 | 95.25 27 | 90.48 29 | 91.50 33 | 83.95 48 | 88.20 31 | 88.82 40 | 89.11 36 | 93.75 35 | 93.43 34 | 95.75 39 | 96.83 29 |
|
OMC-MVS | | | 90.23 44 | 90.40 43 | 90.03 45 | 93.45 57 | 95.29 50 | 91.89 56 | 86.34 52 | 93.25 20 | 84.94 45 | 81.72 52 | 86.65 49 | 88.90 37 | 91.69 62 | 90.27 75 | 94.65 93 | 93.95 80 |
|
ETV-MVS | | | 89.22 50 | 89.76 47 | 88.60 60 | 91.60 73 | 94.61 63 | 89.48 81 | 83.46 81 | 85.20 62 | 81.58 60 | 82.75 46 | 82.59 64 | 88.80 38 | 94.57 21 | 93.28 37 | 96.68 8 | 95.31 55 |
|
OPM-MVS | | | 87.56 67 | 85.80 83 | 89.62 50 | 93.90 53 | 94.09 69 | 94.12 36 | 88.18 39 | 75.40 127 | 77.30 87 | 76.41 79 | 77.93 91 | 88.79 39 | 92.20 56 | 90.82 63 | 95.40 57 | 93.72 86 |
|
CS-MVS | | | 88.97 52 | 89.44 51 | 88.41 64 | 91.45 75 | 95.24 51 | 90.03 70 | 82.43 96 | 84.08 68 | 81.16 64 | 81.02 58 | 83.83 58 | 88.74 40 | 94.25 28 | 92.73 45 | 96.67 10 | 94.95 60 |
|
TSAR-MVS + ACMM | | | 92.97 23 | 94.51 13 | 91.16 37 | 95.88 34 | 96.59 30 | 95.09 29 | 90.45 30 | 93.42 17 | 83.01 53 | 94.68 10 | 90.74 26 | 88.74 40 | 94.75 16 | 93.78 23 | 93.82 129 | 97.63 11 |
|
CSCG | | | 92.76 26 | 93.16 27 | 92.29 29 | 96.30 28 | 97.74 6 | 94.67 33 | 88.98 36 | 92.46 23 | 89.73 20 | 86.67 37 | 92.15 17 | 88.69 42 | 92.26 54 | 92.92 42 | 95.40 57 | 97.89 9 |
|
3Dnovator | | 85.17 5 | 90.48 42 | 89.90 46 | 91.16 37 | 94.88 43 | 95.74 46 | 93.82 37 | 85.36 57 | 89.28 45 | 87.81 28 | 74.34 92 | 87.40 48 | 88.56 43 | 93.07 43 | 93.74 25 | 96.53 12 | 95.71 47 |
|
ACMM | | 83.27 10 | 87.68 66 | 86.09 79 | 89.54 51 | 93.26 58 | 92.19 98 | 91.43 60 | 86.74 49 | 86.02 57 | 82.85 55 | 75.63 84 | 75.14 101 | 88.41 44 | 90.68 86 | 89.99 81 | 94.59 96 | 92.97 95 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPM-MVS | | | 91.72 35 | 91.48 35 | 92.00 31 | 95.53 37 | 95.75 45 | 95.94 14 | 91.07 21 | 91.20 34 | 85.58 41 | 81.63 54 | 90.74 26 | 88.40 45 | 93.40 38 | 93.75 24 | 95.45 56 | 93.85 82 |
|
abl_6 | | | | | 90.66 40 | 94.65 47 | 96.27 37 | 92.21 50 | 86.94 48 | 90.23 41 | 86.38 37 | 85.50 40 | 92.96 9 | 88.37 46 | | | 95.40 57 | 95.46 53 |
|
canonicalmvs | | | 89.36 49 | 89.92 44 | 88.70 58 | 91.38 76 | 95.92 43 | 91.81 57 | 82.61 94 | 90.37 40 | 82.73 57 | 82.09 48 | 79.28 84 | 88.30 47 | 91.17 70 | 93.59 27 | 95.36 60 | 97.04 25 |
|
TAPA-MVS | | 84.37 7 | 88.91 53 | 88.93 53 | 88.89 55 | 93.00 63 | 94.85 59 | 92.00 53 | 84.84 61 | 91.68 32 | 80.05 71 | 79.77 63 | 84.56 54 | 88.17 48 | 90.11 91 | 89.00 109 | 95.30 64 | 92.57 110 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MVS_111021_LR | | | 90.14 45 | 90.89 41 | 89.26 53 | 93.23 59 | 94.05 70 | 90.43 66 | 84.65 62 | 90.16 42 | 84.52 47 | 90.14 28 | 83.80 59 | 87.99 49 | 92.50 52 | 90.92 61 | 94.74 87 | 94.70 67 |
|
QAPM | | | 89.49 48 | 89.58 49 | 89.38 52 | 94.73 45 | 95.94 42 | 92.35 49 | 85.00 60 | 85.69 60 | 80.03 72 | 76.97 78 | 87.81 46 | 87.87 50 | 92.18 58 | 92.10 48 | 96.33 15 | 96.40 38 |
|
MAR-MVS | | | 88.39 59 | 88.44 56 | 88.33 65 | 94.90 42 | 95.06 55 | 90.51 65 | 83.59 75 | 85.27 61 | 79.07 76 | 77.13 76 | 82.89 63 | 87.70 51 | 92.19 57 | 92.32 47 | 94.23 113 | 94.20 78 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_111021_HR | | | 90.56 41 | 91.29 39 | 89.70 49 | 94.71 46 | 95.63 47 | 91.81 57 | 86.38 51 | 87.53 52 | 81.29 62 | 87.96 32 | 85.43 52 | 87.69 52 | 93.90 33 | 92.93 41 | 96.33 15 | 95.69 48 |
|
PHI-MVS | | | 92.05 32 | 93.74 21 | 90.08 44 | 94.96 41 | 97.06 13 | 93.11 45 | 87.71 44 | 90.71 37 | 80.78 68 | 92.40 22 | 91.03 22 | 87.68 53 | 94.32 27 | 94.48 12 | 96.21 19 | 96.16 40 |
|
TSAR-MVS + COLMAP | | | 88.40 57 | 89.09 52 | 87.60 70 | 92.72 67 | 93.92 72 | 92.21 50 | 85.57 56 | 91.73 30 | 73.72 99 | 91.75 23 | 73.22 118 | 87.64 54 | 91.49 64 | 89.71 91 | 93.73 132 | 91.82 123 |
|
MVS_0304 | | | 90.88 40 | 91.35 38 | 90.34 42 | 93.91 52 | 96.79 23 | 94.49 34 | 86.54 50 | 86.57 55 | 82.85 55 | 81.68 53 | 89.70 33 | 87.57 55 | 94.64 19 | 93.93 20 | 96.67 10 | 96.15 41 |
|
EIA-MVS | | | 87.94 64 | 88.05 61 | 87.81 67 | 91.46 74 | 95.00 57 | 88.67 93 | 82.81 86 | 82.53 73 | 80.81 67 | 80.04 61 | 80.20 75 | 87.48 56 | 92.58 51 | 91.61 53 | 95.63 45 | 94.36 72 |
|
LS3D | | | 85.96 77 | 84.37 92 | 87.81 67 | 94.13 50 | 93.27 80 | 90.26 69 | 89.00 34 | 84.91 65 | 72.84 106 | 71.74 104 | 72.47 120 | 87.45 57 | 89.53 100 | 89.09 105 | 93.20 144 | 89.60 145 |
|
PCF-MVS | | 84.60 6 | 88.66 54 | 87.75 67 | 89.73 48 | 93.06 62 | 96.02 40 | 93.22 44 | 90.00 31 | 82.44 76 | 80.02 73 | 77.96 74 | 85.16 53 | 87.36 58 | 88.54 110 | 88.54 114 | 94.72 89 | 95.61 50 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CANet | | | 91.33 38 | 91.46 36 | 91.18 36 | 95.01 40 | 96.71 24 | 93.77 38 | 87.39 46 | 87.72 51 | 87.26 31 | 81.77 51 | 89.73 32 | 87.32 59 | 94.43 24 | 93.86 21 | 96.31 17 | 96.02 43 |
|
CDPH-MVS | | | 91.14 39 | 92.01 32 | 90.11 43 | 96.18 29 | 96.18 39 | 94.89 31 | 88.80 38 | 88.76 48 | 77.88 84 | 89.18 30 | 87.71 47 | 87.29 60 | 93.13 42 | 93.31 36 | 95.62 46 | 95.84 45 |
|
HQP-MVS | | | 89.13 51 | 89.58 49 | 88.60 60 | 93.53 56 | 93.67 73 | 93.29 43 | 87.58 45 | 88.53 49 | 75.50 89 | 87.60 34 | 80.32 74 | 87.07 61 | 90.66 87 | 89.95 84 | 94.62 95 | 96.35 39 |
|
ET-MVSNet_ETH3D | | | 84.65 86 | 85.58 84 | 83.56 105 | 74.99 206 | 92.62 94 | 90.29 68 | 80.38 110 | 82.16 78 | 73.01 105 | 83.41 44 | 71.10 125 | 87.05 62 | 87.77 119 | 90.17 77 | 95.62 46 | 91.82 123 |
|
ACMP | | 83.90 8 | 88.32 60 | 88.06 60 | 88.62 59 | 92.18 70 | 93.98 71 | 91.28 62 | 85.24 58 | 86.69 54 | 81.23 63 | 85.62 39 | 75.13 102 | 87.01 63 | 89.83 94 | 89.77 89 | 94.79 83 | 95.43 54 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Fast-Effi-MVS+ | | | 83.77 96 | 82.98 99 | 84.69 85 | 87.98 113 | 91.87 100 | 88.10 101 | 77.70 146 | 78.10 113 | 73.04 104 | 69.13 120 | 68.51 137 | 86.66 64 | 90.49 89 | 89.85 87 | 94.67 92 | 92.88 97 |
|
LGP-MVS_train | | | 88.25 61 | 88.55 54 | 87.89 66 | 92.84 66 | 93.66 74 | 93.35 42 | 85.22 59 | 85.77 58 | 74.03 98 | 86.60 38 | 76.29 98 | 86.62 65 | 91.20 68 | 90.58 71 | 95.29 65 | 95.75 46 |
|
Effi-MVS+ | | | 85.33 81 | 85.08 87 | 85.63 80 | 89.69 99 | 93.42 78 | 89.90 73 | 80.31 115 | 79.32 104 | 72.48 108 | 73.52 98 | 74.03 109 | 86.55 66 | 90.99 77 | 89.98 82 | 94.83 82 | 94.27 77 |
|
casdiffmvs | | | 87.45 68 | 87.15 70 | 87.79 69 | 90.15 96 | 94.22 66 | 89.96 72 | 83.93 69 | 85.08 63 | 80.91 65 | 75.81 83 | 77.88 92 | 86.08 67 | 91.86 61 | 90.86 62 | 95.74 40 | 94.37 71 |
|
PatchMatch-RL | | | 83.34 99 | 81.36 111 | 85.65 79 | 90.33 93 | 89.52 136 | 84.36 147 | 81.82 100 | 80.87 94 | 79.29 74 | 74.04 93 | 62.85 157 | 86.05 68 | 88.40 113 | 87.04 130 | 92.04 157 | 86.77 167 |
|
CLD-MVS | | | 88.66 54 | 88.52 55 | 88.82 56 | 91.37 77 | 94.22 66 | 92.82 48 | 82.08 98 | 88.27 50 | 85.14 43 | 81.86 49 | 78.53 88 | 85.93 69 | 91.17 70 | 90.61 69 | 95.55 51 | 95.00 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 82.53 11 | 87.71 65 | 86.84 72 | 88.73 57 | 94.42 48 | 95.06 55 | 91.02 63 | 83.49 78 | 82.50 75 | 82.24 59 | 67.62 129 | 85.48 51 | 85.56 70 | 91.19 69 | 91.30 55 | 95.67 43 | 94.75 65 |
|
MVS_Test | | | 86.93 70 | 87.24 69 | 86.56 74 | 90.10 97 | 93.47 77 | 90.31 67 | 80.12 117 | 83.55 70 | 78.12 80 | 79.58 64 | 79.80 79 | 85.45 71 | 90.17 90 | 90.59 70 | 95.29 65 | 93.53 89 |
|
DI_MVS_plusplus_trai | | | 86.41 73 | 85.54 85 | 87.42 71 | 89.24 102 | 93.13 81 | 92.16 52 | 82.65 92 | 82.30 77 | 80.75 69 | 68.30 125 | 80.41 73 | 85.01 72 | 90.56 88 | 90.07 79 | 94.70 91 | 94.01 79 |
|
ACMH+ | | 79.08 13 | 81.84 114 | 80.06 129 | 83.91 100 | 89.92 98 | 90.62 109 | 86.21 127 | 83.48 80 | 73.88 140 | 65.75 136 | 66.38 133 | 65.30 146 | 84.63 73 | 85.90 146 | 87.25 126 | 93.45 140 | 91.13 135 |
|
ACMH | | 78.52 14 | 81.86 113 | 80.45 124 | 83.51 107 | 90.51 89 | 91.22 104 | 85.62 135 | 84.23 65 | 70.29 164 | 62.21 159 | 69.04 122 | 64.05 150 | 84.48 74 | 87.57 121 | 88.45 116 | 94.01 120 | 92.54 112 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DELS-MVS | | | 89.71 46 | 89.68 48 | 89.74 47 | 93.75 54 | 96.22 38 | 93.76 39 | 85.84 53 | 82.53 73 | 85.05 44 | 78.96 68 | 84.24 56 | 84.25 75 | 94.91 12 | 94.91 4 | 95.78 38 | 96.02 43 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
diffmvs | | | 86.52 72 | 86.76 75 | 86.23 76 | 88.31 112 | 92.63 92 | 89.58 78 | 81.61 102 | 86.14 56 | 80.26 70 | 79.00 67 | 77.27 94 | 83.58 76 | 88.94 106 | 89.06 106 | 94.05 118 | 94.29 73 |
|
HyFIR lowres test | | | 81.62 119 | 79.45 139 | 84.14 97 | 91.00 81 | 93.38 79 | 88.27 99 | 78.19 140 | 76.28 121 | 70.18 114 | 48.78 198 | 73.69 113 | 83.52 77 | 87.05 126 | 87.83 121 | 93.68 135 | 89.15 148 |
|
GeoE | | | 84.62 87 | 83.98 94 | 85.35 82 | 89.34 101 | 92.83 88 | 88.34 98 | 78.95 132 | 79.29 105 | 77.16 88 | 68.10 126 | 74.56 105 | 83.40 78 | 89.31 103 | 89.23 102 | 94.92 78 | 94.57 70 |
|
Anonymous20231211 | | | 84.42 92 | 83.02 98 | 86.05 77 | 88.85 107 | 92.70 90 | 88.92 92 | 83.40 83 | 79.99 98 | 78.31 79 | 55.83 185 | 78.92 86 | 83.33 79 | 89.06 105 | 89.76 90 | 93.50 139 | 94.90 61 |
|
Anonymous202405211 | | | | 82.75 102 | | 89.58 100 | 92.97 86 | 89.04 89 | 84.13 67 | 78.72 109 | | 57.18 181 | 76.64 97 | 83.13 80 | 89.55 99 | 89.92 85 | 93.38 142 | 94.28 76 |
|
MSDG | | | 83.87 94 | 81.02 116 | 87.19 72 | 92.17 71 | 89.80 128 | 89.15 84 | 85.72 55 | 80.61 95 | 79.24 75 | 66.66 132 | 68.75 136 | 82.69 81 | 87.95 117 | 87.44 123 | 94.19 114 | 85.92 174 |
|
PVSNet_BlendedMVS | | | 88.19 62 | 88.00 62 | 88.42 62 | 92.71 68 | 94.82 60 | 89.08 86 | 83.81 70 | 84.91 65 | 86.38 37 | 79.14 65 | 78.11 89 | 82.66 82 | 93.05 44 | 91.10 56 | 95.86 30 | 94.86 63 |
|
PVSNet_Blended | | | 88.19 62 | 88.00 62 | 88.42 62 | 92.71 68 | 94.82 60 | 89.08 86 | 83.81 70 | 84.91 65 | 86.38 37 | 79.14 65 | 78.11 89 | 82.66 82 | 93.05 44 | 91.10 56 | 95.86 30 | 94.86 63 |
|
RPSCF | | | 83.46 98 | 83.36 97 | 83.59 104 | 87.75 115 | 87.35 160 | 84.82 144 | 79.46 127 | 83.84 69 | 78.12 80 | 82.69 47 | 79.87 77 | 82.60 84 | 82.47 180 | 81.13 183 | 88.78 185 | 86.13 172 |
|
DCV-MVSNet | | | 85.88 79 | 86.17 77 | 85.54 81 | 89.10 105 | 89.85 126 | 89.34 82 | 80.70 108 | 83.04 71 | 78.08 82 | 76.19 81 | 79.00 85 | 82.42 85 | 89.67 97 | 90.30 74 | 93.63 137 | 95.12 56 |
|
test_part1 | | | 83.23 101 | 80.55 123 | 86.35 75 | 88.60 109 | 90.61 110 | 90.78 64 | 81.13 106 | 70.89 158 | 83.01 53 | 55.72 186 | 74.60 104 | 82.19 86 | 87.79 118 | 89.26 100 | 92.39 153 | 95.01 57 |
|
PMMVS | | | 81.65 116 | 84.05 93 | 78.86 149 | 78.56 197 | 82.63 191 | 83.10 155 | 67.22 193 | 81.39 84 | 70.11 115 | 84.91 42 | 79.74 80 | 82.12 87 | 87.31 122 | 85.70 153 | 92.03 158 | 86.67 170 |
|
EPP-MVSNet | | | 86.55 71 | 87.76 66 | 85.15 83 | 90.52 87 | 94.41 64 | 87.24 113 | 82.32 97 | 81.79 82 | 73.60 100 | 78.57 70 | 82.41 65 | 82.07 88 | 91.23 66 | 90.39 73 | 95.14 72 | 95.48 52 |
|
Effi-MVS+-dtu | | | 82.05 110 | 81.76 106 | 82.38 116 | 87.72 116 | 90.56 111 | 86.90 121 | 78.05 142 | 73.85 141 | 66.85 130 | 71.29 106 | 71.90 122 | 82.00 89 | 86.64 136 | 85.48 155 | 92.76 150 | 92.58 109 |
|
CHOSEN 1792x2688 | | | 82.16 109 | 80.91 119 | 83.61 103 | 91.14 78 | 92.01 99 | 89.55 80 | 79.15 131 | 79.87 99 | 70.29 112 | 52.51 194 | 72.56 119 | 81.39 90 | 88.87 108 | 88.17 117 | 90.15 178 | 92.37 117 |
|
LTVRE_ROB | | 74.41 16 | 75.78 179 | 74.72 185 | 77.02 165 | 85.88 134 | 89.22 141 | 82.44 161 | 77.17 149 | 50.57 210 | 45.45 204 | 65.44 139 | 52.29 203 | 81.25 91 | 85.50 152 | 87.42 124 | 89.94 180 | 92.62 106 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
USDC | | | 80.69 123 | 79.89 132 | 81.62 124 | 86.48 130 | 89.11 145 | 86.53 124 | 78.86 134 | 81.15 89 | 63.48 151 | 72.98 100 | 59.12 181 | 81.16 92 | 87.10 124 | 85.01 159 | 93.23 143 | 84.77 179 |
|
CHOSEN 280x420 | | | 80.28 126 | 81.66 107 | 78.67 153 | 82.92 176 | 79.24 203 | 85.36 138 | 66.79 195 | 78.11 112 | 70.32 111 | 75.03 89 | 79.87 77 | 81.09 93 | 89.07 104 | 83.16 173 | 85.54 200 | 87.17 164 |
|
EPNet | | | 89.60 47 | 89.91 45 | 89.24 54 | 96.45 27 | 93.61 75 | 92.95 47 | 88.03 40 | 85.74 59 | 83.36 52 | 87.29 36 | 83.05 62 | 80.98 94 | 92.22 55 | 91.85 50 | 93.69 134 | 95.58 51 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v2v482 | | | 79.84 131 | 78.07 151 | 81.90 120 | 83.75 163 | 90.21 118 | 87.17 115 | 79.85 123 | 70.65 160 | 65.93 135 | 61.93 156 | 60.07 170 | 80.82 95 | 85.25 155 | 86.71 134 | 93.88 126 | 91.70 128 |
|
IterMVS-LS | | | 83.28 100 | 82.95 100 | 83.65 102 | 88.39 111 | 88.63 151 | 86.80 122 | 78.64 137 | 76.56 119 | 73.43 101 | 72.52 103 | 75.35 100 | 80.81 96 | 86.43 141 | 88.51 115 | 93.84 128 | 92.66 105 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TinyColmap | | | 76.73 163 | 73.95 187 | 79.96 142 | 85.16 148 | 85.64 174 | 82.34 162 | 78.19 140 | 70.63 161 | 62.06 161 | 60.69 165 | 49.61 206 | 80.81 96 | 85.12 160 | 83.69 171 | 91.22 170 | 82.27 187 |
|
CANet_DTU | | | 85.43 80 | 87.72 68 | 82.76 112 | 90.95 83 | 93.01 85 | 89.99 71 | 75.46 163 | 82.67 72 | 64.91 143 | 83.14 45 | 80.09 76 | 80.68 98 | 92.03 60 | 91.03 58 | 94.57 98 | 92.08 118 |
|
MVSTER | | | 86.03 76 | 86.12 78 | 85.93 78 | 88.62 108 | 89.93 124 | 89.33 83 | 79.91 122 | 81.87 81 | 81.35 61 | 81.07 57 | 74.91 103 | 80.66 99 | 92.13 59 | 90.10 78 | 95.68 42 | 92.80 100 |
|
thres400 | | | 82.68 105 | 81.15 114 | 84.47 89 | 90.52 87 | 92.89 87 | 88.95 91 | 82.71 88 | 74.33 135 | 69.22 121 | 65.31 140 | 62.61 158 | 80.63 100 | 90.96 79 | 89.50 96 | 94.79 83 | 92.45 116 |
|
thres200 | | | 82.77 104 | 81.25 113 | 84.54 87 | 90.38 91 | 93.05 83 | 89.13 85 | 82.67 90 | 74.40 134 | 69.53 118 | 65.69 138 | 63.03 155 | 80.63 100 | 91.15 72 | 89.42 97 | 94.88 80 | 92.04 120 |
|
v1192 | | | 78.94 144 | 77.33 158 | 80.82 133 | 83.25 169 | 89.90 125 | 86.91 120 | 77.72 145 | 68.63 171 | 62.61 157 | 59.17 173 | 57.53 185 | 80.62 102 | 86.89 128 | 86.47 140 | 93.79 131 | 92.75 103 |
|
v10 | | | 79.62 134 | 78.19 149 | 81.28 129 | 83.73 164 | 89.69 132 | 87.27 112 | 76.86 153 | 70.50 162 | 65.46 137 | 60.58 166 | 60.47 168 | 80.44 103 | 86.91 127 | 86.63 137 | 93.93 122 | 92.55 111 |
|
thres600view7 | | | 82.53 108 | 81.02 116 | 84.28 93 | 90.61 86 | 93.05 83 | 88.57 96 | 82.67 90 | 74.12 138 | 68.56 124 | 65.09 143 | 62.13 163 | 80.40 104 | 91.15 72 | 89.02 108 | 94.88 80 | 92.59 108 |
|
tfpn200view9 | | | 82.86 102 | 81.46 109 | 84.48 88 | 90.30 94 | 93.09 82 | 89.05 88 | 82.71 88 | 75.14 128 | 69.56 116 | 65.72 136 | 63.13 152 | 80.38 105 | 91.15 72 | 89.51 95 | 94.91 79 | 92.50 114 |
|
UniMVSNet_NR-MVSNet | | | 81.87 112 | 81.33 112 | 82.50 114 | 85.31 144 | 91.30 103 | 85.70 132 | 84.25 64 | 75.89 123 | 64.21 145 | 66.95 131 | 64.65 148 | 80.22 106 | 87.07 125 | 89.18 104 | 95.27 67 | 94.29 73 |
|
DU-MVS | | | 81.20 121 | 80.30 125 | 82.25 117 | 84.98 151 | 90.94 107 | 85.70 132 | 83.58 76 | 75.74 124 | 64.21 145 | 65.30 141 | 59.60 176 | 80.22 106 | 86.89 128 | 89.31 98 | 94.77 85 | 94.29 73 |
|
baseline | | | 84.89 85 | 86.06 80 | 83.52 106 | 87.25 123 | 89.67 133 | 87.76 103 | 75.68 162 | 84.92 64 | 78.40 78 | 80.10 60 | 80.98 70 | 80.20 108 | 86.69 135 | 87.05 129 | 91.86 160 | 92.99 94 |
|
v1921920 | | | 78.57 150 | 76.99 163 | 80.41 140 | 82.93 175 | 89.63 135 | 86.38 126 | 77.14 150 | 68.31 172 | 61.80 165 | 58.89 177 | 56.79 188 | 80.19 109 | 86.50 140 | 86.05 149 | 94.02 119 | 92.76 102 |
|
v1144 | | | 79.38 140 | 77.83 154 | 81.18 130 | 83.62 165 | 90.23 116 | 87.15 117 | 78.35 139 | 69.13 167 | 64.02 148 | 60.20 168 | 59.41 177 | 80.14 110 | 86.78 131 | 86.57 138 | 93.81 130 | 92.53 113 |
|
v144192 | | | 78.81 145 | 77.22 160 | 80.67 135 | 82.95 174 | 89.79 129 | 86.40 125 | 77.42 147 | 68.26 173 | 63.13 153 | 59.50 171 | 58.13 182 | 80.08 111 | 85.93 145 | 86.08 147 | 94.06 117 | 92.83 99 |
|
thisisatest0530 | | | 85.15 83 | 85.86 81 | 84.33 91 | 89.19 104 | 92.57 95 | 87.22 114 | 80.11 118 | 82.15 79 | 74.41 95 | 78.15 72 | 73.80 112 | 79.90 112 | 90.99 77 | 89.58 93 | 95.13 73 | 93.75 85 |
|
tttt0517 | | | 85.11 84 | 85.81 82 | 84.30 92 | 89.24 102 | 92.68 91 | 87.12 118 | 80.11 118 | 81.98 80 | 74.31 97 | 78.08 73 | 73.57 114 | 79.90 112 | 91.01 76 | 89.58 93 | 95.11 75 | 93.77 84 |
|
v1240 | | | 78.15 152 | 76.53 166 | 80.04 141 | 82.85 178 | 89.48 138 | 85.61 136 | 76.77 154 | 67.05 175 | 61.18 172 | 58.37 179 | 56.16 192 | 79.89 114 | 86.11 144 | 86.08 147 | 93.92 123 | 92.47 115 |
|
v8 | | | 79.90 130 | 78.39 147 | 81.66 123 | 83.97 162 | 89.81 127 | 87.16 116 | 77.40 148 | 71.49 153 | 67.71 126 | 61.24 159 | 62.49 159 | 79.83 115 | 85.48 153 | 86.17 145 | 93.89 125 | 92.02 122 |
|
GBi-Net | | | 84.51 89 | 84.80 88 | 84.17 95 | 84.20 158 | 89.95 121 | 89.70 75 | 80.37 111 | 81.17 86 | 75.50 89 | 69.63 114 | 79.69 81 | 79.75 116 | 90.73 83 | 90.72 64 | 95.52 53 | 91.71 125 |
|
test1 | | | 84.51 89 | 84.80 88 | 84.17 95 | 84.20 158 | 89.95 121 | 89.70 75 | 80.37 111 | 81.17 86 | 75.50 89 | 69.63 114 | 79.69 81 | 79.75 116 | 90.73 83 | 90.72 64 | 95.52 53 | 91.71 125 |
|
FMVSNet2 | | | 83.87 94 | 83.73 96 | 84.05 99 | 84.20 158 | 89.95 121 | 89.70 75 | 80.21 116 | 79.17 107 | 74.89 93 | 65.91 134 | 77.49 93 | 79.75 116 | 90.87 80 | 91.00 60 | 95.52 53 | 91.71 125 |
|
thres100view900 | | | 82.55 107 | 81.01 118 | 84.34 90 | 90.30 94 | 92.27 96 | 89.04 89 | 82.77 87 | 75.14 128 | 69.56 116 | 65.72 136 | 63.13 152 | 79.62 119 | 89.97 93 | 89.26 100 | 94.73 88 | 91.61 130 |
|
FMVSNet3 | | | 84.44 91 | 84.64 90 | 84.21 94 | 84.32 157 | 90.13 119 | 89.85 74 | 80.37 111 | 81.17 86 | 75.50 89 | 69.63 114 | 79.69 81 | 79.62 119 | 89.72 96 | 90.52 72 | 95.59 49 | 91.58 131 |
|
pmmvs4 | | | 79.99 128 | 78.08 150 | 82.22 118 | 83.04 173 | 87.16 163 | 84.95 140 | 78.80 136 | 78.64 110 | 74.53 94 | 64.61 147 | 59.41 177 | 79.45 121 | 84.13 169 | 84.54 166 | 92.53 152 | 88.08 157 |
|
FMVSNet1 | | | 81.64 117 | 80.61 121 | 82.84 111 | 82.36 183 | 89.20 142 | 88.67 93 | 79.58 125 | 70.79 159 | 72.63 107 | 58.95 176 | 72.26 121 | 79.34 122 | 90.73 83 | 90.72 64 | 94.47 104 | 91.62 129 |
|
SCA | | | 79.51 137 | 80.15 128 | 78.75 151 | 86.58 129 | 87.70 157 | 83.07 156 | 68.53 188 | 81.31 85 | 66.40 132 | 73.83 94 | 75.38 99 | 79.30 123 | 80.49 187 | 79.39 188 | 88.63 187 | 82.96 186 |
|
PVSNet_Blended_VisFu | | | 87.40 69 | 87.80 64 | 86.92 73 | 92.86 64 | 95.40 48 | 88.56 97 | 83.45 82 | 79.55 103 | 82.26 58 | 74.49 91 | 84.03 57 | 79.24 124 | 92.97 46 | 91.53 54 | 95.15 71 | 96.65 33 |
|
FC-MVSNet-train | | | 85.18 82 | 85.31 86 | 85.03 84 | 90.67 84 | 91.62 102 | 87.66 105 | 83.61 73 | 79.75 101 | 74.37 96 | 78.69 69 | 71.21 124 | 78.91 125 | 91.23 66 | 89.96 83 | 94.96 77 | 94.69 68 |
|
UniMVSNet_ETH3D | | | 79.24 141 | 76.47 167 | 82.48 115 | 85.66 139 | 90.97 106 | 86.08 129 | 81.63 101 | 64.48 188 | 68.94 123 | 54.47 188 | 57.65 184 | 78.83 126 | 85.20 159 | 88.91 110 | 93.72 133 | 93.60 87 |
|
dps | | | 78.02 153 | 75.94 175 | 80.44 139 | 86.06 133 | 86.62 166 | 82.58 158 | 69.98 183 | 75.14 128 | 77.76 86 | 69.08 121 | 59.93 172 | 78.47 127 | 79.47 191 | 77.96 192 | 87.78 189 | 83.40 183 |
|
V42 | | | 79.59 135 | 78.43 146 | 80.94 132 | 82.79 179 | 89.71 131 | 86.66 123 | 76.73 155 | 71.38 154 | 67.42 127 | 61.01 161 | 62.30 161 | 78.39 128 | 85.56 151 | 86.48 139 | 93.65 136 | 92.60 107 |
|
CostFormer | | | 80.94 122 | 80.21 126 | 81.79 121 | 87.69 117 | 88.58 152 | 87.47 108 | 70.66 179 | 80.02 97 | 77.88 84 | 73.03 99 | 71.40 123 | 78.24 129 | 79.96 189 | 79.63 185 | 88.82 184 | 88.84 149 |
|
PatchmatchNet |  | | 78.67 148 | 78.85 142 | 78.46 156 | 86.85 128 | 86.03 168 | 83.77 152 | 68.11 191 | 80.88 93 | 66.19 133 | 72.90 101 | 73.40 116 | 78.06 130 | 79.25 193 | 77.71 193 | 87.75 190 | 81.75 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Baseline_NR-MVSNet | | | 79.84 131 | 78.37 148 | 81.55 125 | 84.98 151 | 86.66 165 | 85.06 139 | 83.49 78 | 75.57 126 | 63.31 152 | 58.22 180 | 60.97 166 | 78.00 131 | 86.89 128 | 87.13 127 | 94.47 104 | 93.15 92 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 125 | 78.49 144 | 82.85 110 | 90.96 82 | 89.65 134 | 86.20 128 | 83.40 83 | 77.15 117 | 66.54 131 | 62.27 154 | 65.62 145 | 77.89 132 | 85.23 156 | 84.70 163 | 92.11 156 | 84.83 178 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
baseline1 | | | 84.54 88 | 84.43 91 | 84.67 86 | 90.62 85 | 91.16 105 | 88.63 95 | 83.75 72 | 79.78 100 | 71.16 109 | 75.14 87 | 74.10 108 | 77.84 133 | 91.56 63 | 90.67 68 | 96.04 22 | 88.58 151 |
|
Fast-Effi-MVS+-dtu | | | 79.95 129 | 80.69 120 | 79.08 147 | 86.36 131 | 89.14 144 | 85.85 130 | 72.28 173 | 72.85 150 | 59.32 179 | 70.43 112 | 68.42 138 | 77.57 134 | 86.14 143 | 86.44 141 | 93.11 146 | 91.39 133 |
|
TranMVSNet+NR-MVSNet | | | 80.52 124 | 79.84 133 | 81.33 128 | 84.92 153 | 90.39 113 | 85.53 137 | 84.22 66 | 74.27 136 | 60.68 174 | 64.93 145 | 59.96 171 | 77.48 135 | 86.75 133 | 89.28 99 | 95.12 74 | 93.29 90 |
|
baseline2 | | | 82.80 103 | 82.86 101 | 82.73 113 | 87.68 118 | 90.50 112 | 84.92 142 | 78.93 133 | 78.07 114 | 73.06 103 | 75.08 88 | 69.77 131 | 77.31 136 | 88.90 107 | 86.94 131 | 94.50 101 | 90.74 136 |
|
CR-MVSNet | | | 78.71 147 | 78.86 141 | 78.55 154 | 85.85 137 | 85.15 178 | 82.30 163 | 68.23 189 | 74.71 131 | 65.37 139 | 64.39 148 | 69.59 133 | 77.18 137 | 85.10 161 | 84.87 160 | 92.34 155 | 88.21 155 |
|
PatchT | | | 76.42 169 | 77.81 155 | 74.80 181 | 78.46 198 | 84.30 183 | 71.82 201 | 65.03 202 | 73.89 139 | 65.37 139 | 61.58 157 | 66.70 141 | 77.18 137 | 85.10 161 | 84.87 160 | 90.94 173 | 88.21 155 |
|
MS-PatchMatch | | | 81.79 115 | 81.44 110 | 82.19 119 | 90.35 92 | 89.29 140 | 88.08 102 | 75.36 164 | 77.60 115 | 69.00 122 | 64.37 149 | 78.87 87 | 77.14 139 | 88.03 116 | 85.70 153 | 93.19 145 | 86.24 171 |
|
IS_MVSNet | | | 86.18 74 | 88.18 59 | 83.85 101 | 91.02 80 | 94.72 62 | 87.48 107 | 82.46 95 | 81.05 90 | 70.28 113 | 76.98 77 | 82.20 67 | 76.65 140 | 93.97 31 | 93.38 35 | 95.18 68 | 94.97 59 |
|
tpm cat1 | | | 77.78 156 | 75.28 182 | 80.70 134 | 87.14 125 | 85.84 171 | 85.81 131 | 70.40 180 | 77.44 116 | 78.80 77 | 63.72 150 | 64.01 151 | 76.55 141 | 75.60 201 | 75.21 199 | 85.51 201 | 85.12 176 |
|
GA-MVS | | | 79.52 136 | 79.71 136 | 79.30 146 | 85.68 138 | 90.36 114 | 84.55 145 | 78.44 138 | 70.47 163 | 57.87 184 | 68.52 124 | 61.38 164 | 76.21 142 | 89.40 102 | 87.89 118 | 93.04 147 | 89.96 144 |
|
anonymousdsp | | | 77.94 154 | 79.00 140 | 76.71 167 | 79.03 195 | 87.83 156 | 79.58 179 | 72.87 171 | 65.80 183 | 58.86 183 | 65.82 135 | 62.48 160 | 75.99 143 | 86.77 132 | 88.66 112 | 93.92 123 | 95.68 49 |
|
tpmrst | | | 76.55 167 | 75.99 174 | 77.20 162 | 87.32 122 | 83.05 187 | 82.86 157 | 65.62 198 | 78.61 111 | 67.22 129 | 69.19 119 | 65.71 144 | 75.87 144 | 76.75 199 | 75.33 198 | 84.31 203 | 83.28 184 |
|
MDTV_nov1_ep13 | | | 79.14 142 | 79.49 138 | 78.74 152 | 85.40 142 | 86.89 164 | 84.32 149 | 70.29 181 | 78.85 108 | 69.42 119 | 75.37 86 | 73.29 117 | 75.64 145 | 80.61 186 | 79.48 187 | 87.36 191 | 81.91 188 |
|
IterMVS-SCA-FT | | | 79.41 139 | 80.20 127 | 78.49 155 | 85.88 134 | 86.26 167 | 83.95 150 | 71.94 174 | 73.55 145 | 61.94 162 | 70.48 111 | 70.50 127 | 75.23 146 | 85.81 148 | 84.61 165 | 91.99 159 | 90.18 143 |
|
v148 | | | 78.59 149 | 76.84 165 | 80.62 136 | 83.61 166 | 89.16 143 | 83.65 153 | 79.24 130 | 69.38 166 | 69.34 120 | 59.88 170 | 60.41 169 | 75.19 147 | 83.81 171 | 84.63 164 | 92.70 151 | 90.63 139 |
|
UniMVSNet (Re) | | | 81.22 120 | 81.08 115 | 81.39 126 | 85.35 143 | 91.76 101 | 84.93 141 | 82.88 85 | 76.13 122 | 65.02 142 | 64.94 144 | 63.09 154 | 75.17 148 | 87.71 120 | 89.04 107 | 94.97 76 | 94.88 62 |
|
gm-plane-assit | | | 70.29 193 | 70.65 195 | 69.88 194 | 85.03 149 | 78.50 204 | 58.41 211 | 65.47 199 | 50.39 211 | 40.88 209 | 49.60 197 | 50.11 205 | 75.14 149 | 91.43 65 | 89.78 88 | 94.32 111 | 84.73 180 |
|
v7n | | | 77.22 160 | 76.23 170 | 78.38 157 | 81.89 186 | 89.10 146 | 82.24 165 | 76.36 156 | 65.96 182 | 61.21 171 | 56.56 183 | 55.79 193 | 75.07 150 | 86.55 137 | 86.68 135 | 93.52 138 | 92.95 96 |
|
tfpnnormal | | | 77.46 159 | 74.86 184 | 80.49 138 | 86.34 132 | 88.92 148 | 84.33 148 | 81.26 104 | 61.39 196 | 61.70 166 | 51.99 195 | 53.66 201 | 74.84 151 | 88.63 109 | 87.38 125 | 94.50 101 | 92.08 118 |
|
PM-MVS | | | 74.17 187 | 73.10 188 | 75.41 176 | 76.07 203 | 82.53 192 | 77.56 190 | 71.69 175 | 71.04 155 | 61.92 163 | 61.23 160 | 47.30 209 | 74.82 152 | 81.78 183 | 79.80 184 | 90.42 175 | 88.05 158 |
|
SixPastTwentyTwo | | | 76.02 175 | 75.72 177 | 76.36 170 | 83.38 167 | 87.54 158 | 75.50 194 | 76.22 157 | 65.50 185 | 57.05 185 | 70.64 108 | 53.97 200 | 74.54 153 | 80.96 185 | 82.12 180 | 91.44 164 | 89.35 147 |
|
TDRefinement | | | 79.05 143 | 77.05 162 | 81.39 126 | 88.45 110 | 89.00 147 | 86.92 119 | 82.65 92 | 74.21 137 | 64.41 144 | 59.17 173 | 59.16 179 | 74.52 154 | 85.23 156 | 85.09 158 | 91.37 166 | 87.51 163 |
|
IterMVS | | | 78.79 146 | 79.71 136 | 77.71 159 | 85.26 145 | 85.91 170 | 84.54 146 | 69.84 185 | 73.38 146 | 61.25 170 | 70.53 110 | 70.35 128 | 74.43 155 | 85.21 158 | 83.80 170 | 90.95 172 | 88.77 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EPMVS | | | 77.53 158 | 78.07 151 | 76.90 166 | 86.89 127 | 84.91 181 | 82.18 166 | 66.64 196 | 81.00 91 | 64.11 147 | 72.75 102 | 69.68 132 | 74.42 156 | 79.36 192 | 78.13 191 | 87.14 193 | 80.68 195 |
|
test-mter | | | 77.79 155 | 80.02 130 | 75.18 178 | 81.18 191 | 82.85 189 | 80.52 177 | 62.03 207 | 73.62 144 | 62.16 160 | 73.55 97 | 73.83 111 | 73.81 157 | 84.67 164 | 83.34 172 | 91.37 166 | 88.31 154 |
|
RPMNet | | | 77.07 161 | 77.63 157 | 76.42 169 | 85.56 141 | 85.15 178 | 81.37 168 | 65.27 200 | 74.71 131 | 60.29 175 | 63.71 151 | 66.59 142 | 73.64 158 | 82.71 178 | 82.12 180 | 92.38 154 | 88.39 153 |
|
test-LLR | | | 79.47 138 | 79.84 133 | 79.03 148 | 87.47 120 | 82.40 194 | 81.24 171 | 78.05 142 | 73.72 142 | 62.69 155 | 73.76 95 | 74.42 106 | 73.49 159 | 84.61 165 | 82.99 175 | 91.25 168 | 87.01 165 |
|
TESTMET0.1,1 | | | 77.78 156 | 79.84 133 | 75.38 177 | 80.86 192 | 82.40 194 | 81.24 171 | 62.72 206 | 73.72 142 | 62.69 155 | 73.76 95 | 74.42 106 | 73.49 159 | 84.61 165 | 82.99 175 | 91.25 168 | 87.01 165 |
|
tpm | | | 76.30 173 | 76.05 173 | 76.59 168 | 86.97 126 | 83.01 188 | 83.83 151 | 67.06 194 | 71.83 152 | 63.87 149 | 69.56 117 | 62.88 156 | 73.41 161 | 79.79 190 | 78.59 189 | 84.41 202 | 86.68 168 |
|
pmmvs5 | | | 76.93 162 | 76.33 169 | 77.62 160 | 81.97 185 | 88.40 154 | 81.32 170 | 74.35 167 | 65.42 186 | 61.42 168 | 63.07 152 | 57.95 183 | 73.23 162 | 85.60 150 | 85.35 157 | 93.41 141 | 88.55 152 |
|
pmmvs-eth3d | | | 74.32 186 | 71.96 192 | 77.08 164 | 77.33 200 | 82.71 190 | 78.41 186 | 76.02 160 | 66.65 177 | 65.98 134 | 54.23 190 | 49.02 208 | 73.14 163 | 82.37 181 | 82.69 177 | 91.61 163 | 86.05 173 |
|
NR-MVSNet | | | 80.25 127 | 79.98 131 | 80.56 137 | 85.20 146 | 90.94 107 | 85.65 134 | 83.58 76 | 75.74 124 | 61.36 169 | 65.30 141 | 56.75 189 | 72.38 164 | 88.46 112 | 88.80 111 | 95.16 70 | 93.87 81 |
|
gg-mvs-nofinetune | | | 75.64 180 | 77.26 159 | 73.76 185 | 87.92 114 | 92.20 97 | 87.32 110 | 64.67 203 | 51.92 209 | 35.35 213 | 46.44 201 | 77.05 96 | 71.97 165 | 92.64 50 | 91.02 59 | 95.34 62 | 89.53 146 |
|
MVS-HIRNet | | | 68.83 195 | 66.39 199 | 71.68 191 | 77.58 199 | 75.52 206 | 66.45 206 | 65.05 201 | 62.16 194 | 62.84 154 | 44.76 205 | 56.60 191 | 71.96 166 | 78.04 196 | 75.06 200 | 86.18 199 | 72.56 205 |
|
CMPMVS |  | 56.49 17 | 73.84 188 | 71.73 194 | 76.31 172 | 85.20 146 | 85.67 173 | 75.80 193 | 73.23 170 | 62.26 193 | 65.40 138 | 53.40 192 | 59.70 174 | 71.77 167 | 80.25 188 | 79.56 186 | 86.45 197 | 81.28 191 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UA-Net | | | 86.07 75 | 87.78 65 | 84.06 98 | 92.85 65 | 95.11 54 | 87.73 104 | 84.38 63 | 73.22 147 | 73.18 102 | 79.99 62 | 89.22 37 | 71.47 168 | 93.22 41 | 93.03 39 | 94.76 86 | 90.69 137 |
|
ADS-MVSNet | | | 74.53 185 | 75.69 178 | 73.17 188 | 81.57 189 | 80.71 199 | 79.27 183 | 63.03 205 | 79.27 106 | 59.94 177 | 67.86 127 | 68.32 140 | 71.08 169 | 77.33 197 | 76.83 195 | 84.12 205 | 79.53 196 |
|
thisisatest0515 | | | 79.76 133 | 80.59 122 | 78.80 150 | 84.40 156 | 88.91 149 | 79.48 180 | 76.94 152 | 72.29 151 | 67.33 128 | 67.82 128 | 65.99 143 | 70.80 170 | 88.50 111 | 87.84 119 | 93.86 127 | 92.75 103 |
|
pm-mvs1 | | | 78.51 151 | 77.75 156 | 79.40 145 | 84.83 154 | 89.30 139 | 83.55 154 | 79.38 128 | 62.64 192 | 63.68 150 | 58.73 178 | 64.68 147 | 70.78 171 | 89.79 95 | 87.84 119 | 94.17 115 | 91.28 134 |
|
Vis-MVSNet |  | | 84.38 93 | 86.68 76 | 81.70 122 | 87.65 119 | 94.89 58 | 88.14 100 | 80.90 107 | 74.48 133 | 68.23 125 | 77.53 75 | 80.72 72 | 69.98 172 | 92.68 49 | 91.90 49 | 95.33 63 | 94.58 69 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13_2view | | | 73.21 189 | 72.91 189 | 73.56 187 | 80.01 193 | 84.28 184 | 78.62 185 | 66.43 197 | 68.64 170 | 59.12 180 | 60.39 167 | 59.69 175 | 69.81 173 | 78.82 195 | 77.43 194 | 87.36 191 | 81.11 193 |
|
pmmvs6 | | | 74.83 183 | 72.89 190 | 77.09 163 | 82.11 184 | 87.50 159 | 80.88 175 | 76.97 151 | 52.79 208 | 61.91 164 | 46.66 200 | 60.49 167 | 69.28 174 | 86.74 134 | 85.46 156 | 91.39 165 | 90.56 140 |
|
IB-MVS | | 79.09 12 | 82.60 106 | 82.19 104 | 83.07 109 | 91.08 79 | 93.55 76 | 80.90 174 | 81.35 103 | 76.56 119 | 80.87 66 | 64.81 146 | 69.97 130 | 68.87 175 | 85.64 149 | 90.06 80 | 95.36 60 | 94.74 66 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
FMVSNet5 | | | 75.50 181 | 76.07 171 | 74.83 180 | 76.16 202 | 81.19 197 | 81.34 169 | 70.21 182 | 73.20 148 | 61.59 167 | 58.97 175 | 68.33 139 | 68.50 176 | 85.87 147 | 85.85 151 | 91.18 171 | 79.11 198 |
|
EG-PatchMatch MVS | | | 76.40 171 | 75.47 180 | 77.48 161 | 85.86 136 | 90.22 117 | 82.45 160 | 73.96 169 | 59.64 201 | 59.60 178 | 52.75 193 | 62.20 162 | 68.44 177 | 88.23 114 | 87.50 122 | 94.55 99 | 87.78 161 |
|
CDS-MVSNet | | | 81.63 118 | 82.09 105 | 81.09 131 | 87.21 124 | 90.28 115 | 87.46 109 | 80.33 114 | 69.06 168 | 70.66 110 | 71.30 105 | 73.87 110 | 67.99 178 | 89.58 98 | 89.87 86 | 92.87 149 | 90.69 137 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 76.42 169 | 77.16 161 | 75.56 175 | 83.05 172 | 85.55 175 | 80.58 176 | 71.43 176 | 65.40 187 | 61.04 173 | 67.27 130 | 69.22 135 | 67.99 178 | 84.88 163 | 84.78 162 | 89.28 183 | 83.01 185 |
|
CP-MVSNet | | | 76.36 172 | 76.41 168 | 76.32 171 | 82.73 180 | 88.64 150 | 79.39 181 | 79.62 124 | 67.21 174 | 53.70 189 | 60.72 164 | 55.22 195 | 67.91 180 | 83.52 173 | 86.34 143 | 94.55 99 | 93.19 91 |
|
CVMVSNet | | | 76.70 164 | 78.46 145 | 74.64 183 | 83.34 168 | 84.48 182 | 81.83 167 | 74.58 165 | 68.88 169 | 51.23 197 | 69.77 113 | 70.05 129 | 67.49 181 | 84.27 168 | 83.81 169 | 89.38 182 | 87.96 159 |
|
MDA-MVSNet-bldmvs | | | 66.22 198 | 64.49 201 | 68.24 196 | 61.67 210 | 82.11 196 | 70.07 203 | 76.16 158 | 59.14 202 | 47.94 201 | 54.35 189 | 35.82 216 | 67.33 182 | 64.94 208 | 75.68 197 | 86.30 198 | 79.36 197 |
|
PS-CasMVS | | | 75.90 177 | 75.86 176 | 75.96 173 | 82.59 181 | 88.46 153 | 79.23 184 | 79.56 126 | 66.00 181 | 52.77 191 | 59.48 172 | 54.35 199 | 67.14 183 | 83.37 174 | 86.23 144 | 94.47 104 | 93.10 93 |
|
PEN-MVS | | | 76.02 175 | 76.07 171 | 75.95 174 | 83.17 171 | 87.97 155 | 79.65 178 | 80.07 121 | 66.57 178 | 51.45 195 | 60.94 162 | 55.47 194 | 66.81 184 | 82.72 177 | 86.80 133 | 94.59 96 | 92.03 121 |
|
UGNet | | | 85.90 78 | 88.23 58 | 83.18 108 | 88.96 106 | 94.10 68 | 87.52 106 | 83.60 74 | 81.66 83 | 77.90 83 | 80.76 59 | 83.19 61 | 66.70 185 | 91.13 75 | 90.71 67 | 94.39 109 | 96.06 42 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TransMVSNet (Re) | | | 76.57 166 | 75.16 183 | 78.22 158 | 85.60 140 | 87.24 161 | 82.46 159 | 81.23 105 | 59.80 200 | 59.05 182 | 57.07 182 | 59.14 180 | 66.60 186 | 88.09 115 | 86.82 132 | 94.37 110 | 87.95 160 |
|
MIMVSNet | | | 74.69 184 | 75.60 179 | 73.62 186 | 76.02 204 | 85.31 177 | 81.21 173 | 67.43 192 | 71.02 156 | 59.07 181 | 54.48 187 | 64.07 149 | 66.14 187 | 86.52 139 | 86.64 136 | 91.83 161 | 81.17 192 |
|
Vis-MVSNet (Re-imp) | | | 83.65 97 | 86.81 74 | 79.96 142 | 90.46 90 | 92.71 89 | 84.84 143 | 82.00 99 | 80.93 92 | 62.44 158 | 76.29 80 | 82.32 66 | 65.54 188 | 92.29 53 | 91.66 51 | 94.49 103 | 91.47 132 |
|
DTE-MVSNet | | | 75.14 182 | 75.44 181 | 74.80 181 | 83.18 170 | 87.19 162 | 78.25 189 | 80.11 118 | 66.05 180 | 48.31 200 | 60.88 163 | 54.67 196 | 64.54 189 | 82.57 179 | 86.17 145 | 94.43 107 | 90.53 141 |
|
pmmvs3 | | | 61.89 202 | 61.74 204 | 62.06 203 | 64.30 209 | 70.83 210 | 64.22 207 | 52.14 211 | 48.78 212 | 44.47 205 | 41.67 207 | 41.70 214 | 63.03 190 | 76.06 200 | 76.02 196 | 84.18 204 | 77.14 202 |
|
pmnet_mix02 | | | 71.95 190 | 71.83 193 | 72.10 190 | 81.40 190 | 80.63 200 | 73.78 197 | 72.85 172 | 70.90 157 | 54.89 187 | 62.17 155 | 57.42 186 | 62.92 191 | 76.80 198 | 73.98 202 | 86.74 196 | 80.87 194 |
|
EPNet_dtu | | | 81.98 111 | 83.82 95 | 79.83 144 | 94.10 51 | 85.97 169 | 87.29 111 | 84.08 68 | 80.61 95 | 59.96 176 | 81.62 55 | 77.19 95 | 62.91 192 | 87.21 123 | 86.38 142 | 90.66 174 | 87.77 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
WR-MVS | | | 76.63 165 | 78.02 153 | 75.02 179 | 84.14 161 | 89.76 130 | 78.34 187 | 80.64 109 | 69.56 165 | 52.32 193 | 61.26 158 | 61.24 165 | 60.66 193 | 84.45 167 | 87.07 128 | 93.99 121 | 92.77 101 |
|
WR-MVS_H | | | 75.84 178 | 76.93 164 | 74.57 184 | 82.86 177 | 89.50 137 | 78.34 187 | 79.36 129 | 66.90 176 | 52.51 192 | 60.20 168 | 59.71 173 | 59.73 194 | 83.61 172 | 85.77 152 | 94.65 93 | 92.84 98 |
|
ambc | | | | 61.92 203 | | 70.98 208 | 73.54 208 | 63.64 209 | | 60.06 198 | 52.23 194 | 38.44 208 | 19.17 219 | 57.12 195 | 82.33 182 | 75.03 201 | 83.21 206 | 84.89 177 |
|
test0.0.03 1 | | | 76.03 174 | 78.51 143 | 73.12 189 | 87.47 120 | 85.13 180 | 76.32 192 | 78.05 142 | 73.19 149 | 50.98 198 | 70.64 108 | 69.28 134 | 55.53 196 | 85.33 154 | 84.38 167 | 90.39 176 | 81.63 190 |
|
N_pmnet | | | 66.85 197 | 66.63 198 | 67.11 199 | 78.73 196 | 74.66 207 | 70.53 202 | 71.07 177 | 66.46 179 | 46.54 202 | 51.68 196 | 51.91 204 | 55.48 197 | 74.68 202 | 72.38 203 | 80.29 208 | 74.65 204 |
|
EU-MVSNet | | | 69.98 194 | 72.30 191 | 67.28 198 | 75.67 205 | 79.39 202 | 73.12 199 | 69.94 184 | 63.59 191 | 42.80 207 | 62.93 153 | 56.71 190 | 55.07 198 | 79.13 194 | 78.55 190 | 87.06 194 | 85.82 175 |
|
Anonymous20231206 | | | 70.80 192 | 70.59 196 | 71.04 192 | 81.60 188 | 82.49 193 | 74.64 196 | 75.87 161 | 64.17 189 | 49.27 199 | 44.85 204 | 53.59 202 | 54.68 199 | 83.07 175 | 82.34 179 | 90.17 177 | 83.65 182 |
|
FC-MVSNet-test | | | 76.53 168 | 81.62 108 | 70.58 193 | 84.99 150 | 85.73 172 | 74.81 195 | 78.85 135 | 77.00 118 | 39.13 211 | 75.90 82 | 73.50 115 | 54.08 200 | 86.54 138 | 85.99 150 | 91.65 162 | 86.68 168 |
|
DeepMVS_CX |  | | | | | | 48.31 215 | 48.03 213 | 26.08 214 | 56.42 205 | 25.77 216 | 47.51 199 | 31.31 217 | 51.30 201 | 48.49 212 | | 53.61 214 | 61.52 209 |
|
FPMVS | | | 63.63 201 | 60.08 206 | 67.78 197 | 80.01 193 | 71.50 209 | 72.88 200 | 69.41 187 | 61.82 195 | 53.11 190 | 45.12 203 | 42.11 213 | 50.86 202 | 66.69 206 | 63.84 207 | 80.41 207 | 69.46 207 |
|
new_pmnet | | | 59.28 203 | 61.47 205 | 56.73 205 | 61.66 211 | 68.29 211 | 59.57 210 | 54.91 208 | 60.83 197 | 34.38 214 | 44.66 206 | 43.65 211 | 49.90 203 | 71.66 204 | 71.56 205 | 79.94 209 | 69.67 206 |
|
testgi | | | 71.92 191 | 74.20 186 | 69.27 195 | 84.58 155 | 83.06 186 | 73.40 198 | 74.39 166 | 64.04 190 | 46.17 203 | 68.90 123 | 57.15 187 | 48.89 204 | 84.07 170 | 83.08 174 | 88.18 188 | 79.09 199 |
|
MIMVSNet1 | | | 65.00 199 | 66.24 200 | 63.55 202 | 58.41 213 | 80.01 201 | 69.00 204 | 74.03 168 | 55.81 206 | 41.88 208 | 36.81 209 | 49.48 207 | 47.89 205 | 81.32 184 | 82.40 178 | 90.08 179 | 77.88 200 |
|
new-patchmatchnet | | | 63.80 200 | 63.31 202 | 64.37 201 | 76.49 201 | 75.99 205 | 63.73 208 | 70.99 178 | 57.27 204 | 43.08 206 | 45.86 202 | 43.80 210 | 45.13 206 | 73.20 203 | 70.68 206 | 86.80 195 | 76.34 203 |
|
test20.03 | | | 68.31 196 | 70.05 197 | 66.28 200 | 82.41 182 | 80.84 198 | 67.35 205 | 76.11 159 | 58.44 203 | 40.80 210 | 53.77 191 | 54.54 197 | 42.28 207 | 83.07 175 | 81.96 182 | 88.73 186 | 77.76 201 |
|
Gipuma |  | | 49.17 206 | 47.05 209 | 51.65 206 | 59.67 212 | 48.39 214 | 41.98 215 | 63.47 204 | 55.64 207 | 33.33 215 | 14.90 213 | 13.78 220 | 41.34 208 | 69.31 205 | 72.30 204 | 70.11 211 | 55.00 212 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 50.48 18 | 55.81 205 | 51.93 207 | 60.33 204 | 72.90 207 | 49.34 213 | 48.78 212 | 69.51 186 | 43.49 213 | 54.25 188 | 36.26 210 | 41.04 215 | 39.71 209 | 65.07 207 | 60.70 208 | 76.85 210 | 67.58 208 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 41.78 207 | 48.10 208 | 34.42 210 | 10.74 219 | 19.78 220 | 44.64 214 | 17.73 215 | 59.83 199 | 38.67 212 | 35.82 211 | 54.41 198 | 34.94 210 | 62.87 209 | 43.13 212 | 59.81 213 | 60.82 210 |
|
EMVS | | | 30.49 211 | 25.44 213 | 36.39 209 | 51.47 214 | 29.89 218 | 20.17 219 | 54.00 210 | 26.49 215 | 12.02 219 | 13.94 216 | 8.84 221 | 34.37 211 | 25.04 215 | 34.37 214 | 46.29 217 | 39.53 215 |
|
E-PMN | | | 31.40 209 | 26.80 212 | 36.78 208 | 51.39 215 | 29.96 217 | 20.20 218 | 54.17 209 | 25.93 216 | 12.75 218 | 14.73 214 | 8.58 222 | 34.10 212 | 27.36 214 | 37.83 213 | 48.07 216 | 43.18 214 |
|
MVE |  | 30.17 19 | 30.88 210 | 33.52 211 | 27.80 213 | 23.78 218 | 39.16 216 | 18.69 220 | 46.90 213 | 21.88 217 | 15.39 217 | 14.37 215 | 7.31 223 | 24.41 213 | 41.63 213 | 56.22 210 | 37.64 218 | 54.07 213 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 41.68 208 | 44.74 210 | 38.10 207 | 46.97 216 | 52.32 212 | 40.63 216 | 48.08 212 | 35.51 214 | 7.36 220 | 26.86 212 | 24.64 218 | 16.72 214 | 55.24 211 | 59.03 209 | 68.85 212 | 59.59 211 |
|
tmp_tt | | | | | 32.73 211 | 43.96 217 | 21.15 219 | 26.71 217 | 8.99 216 | 65.67 184 | 51.39 196 | 56.01 184 | 42.64 212 | 11.76 215 | 56.60 210 | 50.81 211 | 53.55 215 | |
|
test123 | | | 0.87 213 | 1.40 215 | 0.25 215 | 0.03 222 | 0.25 222 | 0.35 223 | 0.08 219 | 1.21 219 | 0.05 223 | 2.84 218 | 0.03 225 | 0.89 216 | 0.43 217 | 1.16 216 | 0.13 220 | 3.87 216 |
|
testmvs | | | 1.03 212 | 1.63 214 | 0.34 214 | 0.09 221 | 0.35 221 | 0.61 222 | 0.16 217 | 1.49 218 | 0.10 222 | 3.15 217 | 0.15 224 | 0.86 217 | 1.32 216 | 1.18 215 | 0.20 219 | 3.76 217 |
|
GG-mvs-BLEND | | | 57.56 204 | 82.61 103 | 28.34 212 | 0.22 220 | 90.10 120 | 79.37 182 | 0.14 218 | 79.56 102 | 0.40 221 | 71.25 107 | 83.40 60 | 0.30 218 | 86.27 142 | 83.87 168 | 89.59 181 | 83.83 181 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 56.08 186 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 92.16 16 | | | | | |
|
SR-MVS | | | | | | 96.58 26 | | | 90.99 22 | | | | 92.40 13 | | | | | |
|
our_test_3 | | | | | | 81.81 187 | 83.96 185 | 76.61 191 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 22 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 221 | | | | | | | | | | |
|
XVS | | | | | | 93.11 60 | 96.70 25 | 91.91 54 | | | 83.95 48 | | 88.82 40 | | | | 95.79 36 | |
|
X-MVStestdata | | | | | | 93.11 60 | 96.70 25 | 91.91 54 | | | 83.95 48 | | 88.82 40 | | | | 95.79 36 | |
|
mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 45 | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 53 | | | | | | | | |
|
Patchmtry | | | | | | | 85.54 176 | 82.30 163 | 68.23 189 | | 65.37 139 | | | | | | | |
|