This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4278.66 1968.67 7081.04 4477.81 1885.19 4684.88 4389.19 5591.31 36
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8494.34 9
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4178.18 2064.78 8577.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3674.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3386.06 5184.95 4971.96 3379.39 4675.51 3163.16 9168.84 9576.51 2983.55 6182.85 5888.13 7486.46 76
CS-MVS79.22 5181.11 4877.01 5481.36 7584.03 6580.35 6663.25 9673.43 6470.37 5374.10 4676.03 5876.40 3086.32 3783.95 4990.34 3189.93 47
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 3871.53 4874.23 4581.49 4076.31 3182.85 6981.87 6588.79 6392.26 29
EC-MVSNet79.44 4881.35 4577.22 5282.95 6384.67 6281.31 6063.65 9272.47 6768.75 5773.15 4778.33 4975.99 3286.06 4083.96 4890.67 1790.79 41
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5489.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test78.79 5780.72 5076.53 5781.11 8083.88 6879.69 7563.72 9173.80 6169.95 5575.40 3876.17 5674.85 3584.50 5382.78 5989.87 3988.54 58
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9193.67 17
CNLPA77.20 6477.54 6876.80 5682.63 6584.31 6479.77 7264.64 8185.17 2373.18 3956.37 12969.81 8674.53 3781.12 9078.69 11586.04 13187.29 68
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5370.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
OPM-MVS79.68 4779.28 6080.15 3787.99 3986.77 4688.52 2872.72 2964.55 9867.65 6367.87 7474.33 6574.31 3986.37 3585.25 4089.73 4489.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5987.35 4184.43 5265.54 7578.29 4773.97 3563.00 9375.62 6074.07 4085.00 4785.34 3990.11 3589.04 54
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6481.26 9479.94 7066.10 7077.15 5066.86 6859.13 11268.53 9773.73 4280.38 10079.04 11087.13 9981.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM72.26 878.86 5678.13 6479.71 3986.89 4483.40 7586.02 4070.50 3975.28 5371.49 4963.01 9269.26 8973.57 4384.11 5683.98 4789.76 4287.84 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS77.32 6378.81 6175.58 6282.24 7083.64 7379.98 6864.02 8869.64 7463.90 7870.89 5869.94 8573.41 4485.39 4583.91 5089.92 3788.31 59
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5383.25 5665.05 7987.32 1872.42 4172.04 5278.97 4773.30 4583.86 5781.60 6988.15 7388.83 56
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5185.17 5883.45 5569.28 4974.08 6070.31 5474.31 4475.26 6173.13 4686.46 3485.15 4189.53 4789.81 49
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 3965.67 7081.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5082.65 3373.02 4886.37 3586.91 1990.03 3689.62 51
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5174.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 45
QAPM78.47 5880.22 5676.43 5885.03 5686.75 4780.62 6566.00 7273.77 6265.35 7265.54 8178.02 5172.69 5083.71 5983.36 5588.87 6190.41 46
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7981.50 9080.28 6765.25 7776.09 5271.32 5076.49 3572.87 7172.21 5182.79 7081.29 7186.59 11787.91 62
MAR-MVS79.21 5280.32 5577.92 4987.46 4088.15 3883.95 5367.48 6374.28 5768.25 5964.70 8677.04 5372.17 5285.42 4385.00 4288.22 7087.62 65
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 20081.17 9579.90 7162.46 11764.52 9957.52 10171.49 5659.15 13072.08 5378.61 12681.11 7388.16 7283.29 113
ACMP73.23 779.79 4480.53 5278.94 4285.61 5285.68 5285.61 4369.59 4677.33 4971.00 5174.45 4369.16 9071.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8484.52 6381.36 5963.14 9984.77 2664.82 7568.72 6875.91 5971.86 5581.62 7679.55 10487.80 8685.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4367.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 6088.17 3786.08 3969.85 4375.23 5568.43 5868.03 7378.38 4871.76 5781.26 8780.65 8788.56 6691.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3771.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5586.95 3570.47 4081.31 4066.91 6779.24 3076.63 5471.67 5984.43 5483.78 5189.19 5592.05 33
EIA-MVS75.64 7176.60 7874.53 7182.43 6883.84 6978.32 9062.28 11965.96 8863.28 8268.95 6667.54 10071.61 6082.55 7181.63 6889.24 5285.72 81
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9285.01 5981.73 5865.93 7484.75 2761.68 8485.79 1966.27 10571.39 6182.91 6880.78 7886.01 13285.98 78
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4885.36 5786.76 3669.59 4677.34 4865.14 7375.68 3670.79 7971.37 6284.60 5084.01 4690.18 3390.74 42
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 51
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 11080.88 10078.55 8758.83 15765.19 9260.36 8759.98 10662.42 11771.22 6481.66 7580.61 8988.20 7184.88 98
LS3D74.08 7873.39 9374.88 6785.05 5582.62 8479.71 7468.66 5272.82 6558.80 9257.61 12361.31 12071.07 6580.32 10178.87 11486.00 13380.18 142
Effi-MVS+75.28 7376.20 7974.20 7381.15 7883.24 7881.11 6163.13 10066.37 8460.27 8864.30 8968.88 9470.93 6681.56 7881.69 6788.61 6487.35 66
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5784.79 6078.99 8362.07 12071.27 6867.88 6257.91 12272.36 7270.15 6782.23 7481.41 7088.12 7587.78 64
DELS-MVS79.15 5481.07 4976.91 5583.54 6187.31 4284.45 5164.92 8069.98 6969.34 5671.62 5476.26 5569.84 6886.57 3285.90 3489.39 4989.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
PatchMatch-RL67.78 13766.65 15769.10 10973.01 15272.69 16968.49 16561.85 12362.93 11260.20 8956.83 12850.42 18769.52 7075.62 15274.46 16281.51 16773.62 184
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8983.73 7280.65 6463.24 9773.58 6366.11 6969.39 6574.09 6669.49 7182.52 7279.35 10988.84 6286.52 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10481.55 8880.97 6262.54 11468.59 7565.13 7461.43 9674.81 6269.32 7281.01 9279.59 10287.64 8985.89 79
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7284.70 6182.12 5764.26 8774.27 5867.93 6170.83 5974.66 6369.19 7383.33 6581.94 6489.29 5187.14 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.37 7277.13 7573.31 7779.07 9881.32 9379.98 6860.12 14269.72 7264.11 7770.53 6073.22 6868.90 7480.14 10779.48 10687.67 8885.50 85
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9980.47 10378.55 8761.67 12760.68 12855.49 11058.48 11665.48 10768.85 7576.92 14375.55 15587.35 9385.46 86
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6782.47 8577.78 9468.13 5456.19 15746.06 16754.30 14151.20 18368.68 7680.66 9680.72 8086.07 12784.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6681.13 9678.56 8668.04 5561.55 12252.52 13151.50 17154.14 15668.56 7778.85 12379.50 10586.82 10783.94 107
CLD-MVS79.35 5081.23 4677.16 5385.01 5786.92 4585.87 4160.89 13180.07 4575.35 3272.96 4873.21 6968.43 7885.41 4484.63 4487.41 9285.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE74.23 7774.84 8573.52 7580.42 8881.46 9179.77 7261.06 12967.23 8163.67 7959.56 10968.74 9667.90 7980.25 10579.37 10888.31 6787.26 69
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11882.93 8276.63 10660.17 14059.00 13754.03 11840.54 20165.23 10867.89 8076.54 14978.30 12085.03 14980.07 143
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10280.46 10478.92 8454.79 17069.71 7365.37 7162.04 9466.89 10367.10 8180.72 9479.87 9788.10 7784.97 95
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8586.58 4879.24 7966.18 6964.81 9568.18 6065.61 7971.45 7467.05 8284.16 5581.80 6688.90 5990.92 40
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
v1070.22 10969.76 12270.74 8674.79 13580.30 10879.22 8059.81 14557.71 14556.58 10754.22 14755.31 14966.95 8578.28 12977.47 13387.12 10185.07 93
v119269.50 11768.83 13370.29 9474.49 13880.92 9978.55 8760.54 13555.04 16554.21 11552.79 16352.33 17666.92 8677.88 13377.35 13787.04 10285.51 84
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11778.93 11777.27 10060.12 14261.86 12054.42 11442.54 19661.61 11966.91 8778.55 12778.14 12279.23 17783.23 114
v192192069.03 12268.32 14169.86 10074.03 14380.37 10577.55 9560.25 13954.62 16953.59 12352.36 16751.50 18266.75 8877.17 14076.69 14686.96 10385.56 83
v14419269.34 11968.68 13770.12 9774.06 14280.54 10278.08 9360.54 13554.99 16754.13 11752.92 16152.80 17466.73 8977.13 14176.72 14487.15 9585.63 82
v124068.64 12767.89 14769.51 10573.89 14580.26 10976.73 10559.97 14453.43 17753.08 12651.82 17050.84 18566.62 9076.79 14576.77 14386.78 10985.34 88
v114469.93 11369.36 12770.61 9074.89 13480.93 9779.11 8160.64 13355.97 15955.31 11253.85 14954.14 15666.54 9178.10 13177.44 13487.14 9885.09 92
diffmvspermissive74.86 7577.37 7271.93 8175.62 12780.35 10679.42 7860.15 14172.81 6664.63 7671.51 5573.11 7066.53 9279.02 12177.98 12385.25 14686.83 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48270.05 11269.46 12670.74 8674.62 13780.32 10779.00 8260.62 13457.41 14756.89 10455.43 13655.14 15166.39 9377.25 13977.14 13986.90 10483.57 112
v870.23 10869.86 12070.67 8974.69 13679.82 11078.79 8559.18 15058.80 13858.20 9855.00 13857.33 13866.31 9477.51 13676.71 14586.82 10783.88 108
IterMVS-LS71.69 9472.82 10070.37 9377.54 11276.34 14875.13 11760.46 13761.53 12357.57 10064.89 8467.33 10166.04 9577.09 14277.37 13685.48 14285.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG71.52 9669.87 11973.44 7682.21 7179.35 11479.52 7664.59 8266.15 8661.87 8353.21 15656.09 14665.85 9678.94 12278.50 11786.60 11676.85 165
V4268.76 12669.63 12367.74 12164.93 19678.01 12778.30 9156.48 16658.65 13956.30 10854.26 14557.03 14164.85 9777.47 13777.01 14185.60 14084.96 96
EPNet79.08 5580.62 5177.28 5188.90 3583.17 8083.65 5472.41 3174.41 5667.15 6676.78 3374.37 6464.43 9883.70 6083.69 5287.15 9588.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053071.48 9773.01 9669.70 10373.83 14678.62 12374.53 12459.12 15164.13 10158.63 9464.60 8758.63 13264.27 9980.28 10380.17 9587.82 8584.64 101
tttt051771.41 9872.95 9769.60 10473.70 14878.70 12274.42 12859.12 15163.89 10558.35 9764.56 8858.39 13464.27 9980.29 10280.17 9587.74 8784.69 100
RPSCF67.64 14171.25 10963.43 16261.86 20270.73 17667.26 17050.86 18974.20 5958.91 9167.49 7569.33 8864.10 10171.41 17668.45 19077.61 18177.17 162
LTVRE_ROB59.44 1661.82 18262.64 18460.87 17172.83 15777.19 14064.37 18758.97 15333.56 21628.00 20352.59 16642.21 20863.93 10274.52 15876.28 14977.15 18482.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSTER72.06 9074.24 8669.51 10570.39 17675.97 15176.91 10357.36 16464.64 9761.39 8668.86 6763.76 11263.46 10381.44 8079.70 9987.56 9085.31 89
PMMVS65.06 15769.17 13060.26 17455.25 21463.43 20166.71 17643.01 20962.41 11550.64 13969.44 6467.04 10263.29 10474.36 16073.54 16682.68 16473.99 183
IterMVS-SCA-FT66.89 15069.22 12964.17 15571.30 17175.64 15371.33 15453.17 17657.63 14649.08 14960.72 10060.05 12663.09 10574.99 15673.92 16377.07 18581.57 128
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8683.91 6774.99 11962.68 11265.06 9349.77 14568.68 6972.09 7363.06 10682.49 7380.73 7989.12 5788.91 55
CHOSEN 280x42058.70 19161.88 19054.98 19455.45 21350.55 21664.92 18440.36 21055.21 16238.13 19048.31 18363.76 11263.03 10773.73 16468.58 18868.00 21273.04 185
TinyColmap62.84 16861.03 19364.96 15169.61 18171.69 17268.48 16659.76 14655.41 16147.69 15747.33 18634.20 21662.76 10874.52 15872.59 17181.44 16871.47 187
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 13077.97 13377.12 10155.40 16957.87 14046.68 16256.17 13060.39 12262.36 10976.32 15076.25 15185.35 14581.34 129
Anonymous2023121171.90 9172.48 10271.21 8480.14 9181.53 8976.92 10262.89 10364.46 10058.94 9043.80 19270.98 7862.22 11080.70 9580.19 9486.18 12485.73 80
DCV-MVSNet73.65 8175.78 8171.16 8580.19 9079.27 11577.45 9961.68 12666.73 8358.72 9365.31 8269.96 8462.19 11181.29 8680.97 7586.74 11086.91 71
USDC67.36 14567.90 14666.74 14271.72 16375.23 15971.58 15360.28 13867.45 8050.54 14160.93 9845.20 20462.08 11276.56 14874.50 16184.25 15575.38 175
Anonymous20240521172.16 10580.85 8381.85 8776.88 10465.40 7662.89 11346.35 18867.99 9962.05 11381.15 8980.38 9185.97 13484.50 102
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8277.97 13377.51 9658.95 15462.33 11655.22 11353.14 15765.90 10662.03 11479.08 12077.11 14084.08 15777.91 157
baseline269.69 11470.27 11669.01 11075.72 12677.13 14173.82 13958.94 15561.35 12457.09 10361.68 9557.17 14061.99 11578.10 13176.58 14786.48 12079.85 144
v14867.85 13567.53 14868.23 11673.25 15177.57 13974.26 13257.36 16455.70 16057.45 10253.53 15055.42 14861.96 11675.23 15473.92 16385.08 14881.32 130
pmmvs467.89 13467.39 15268.48 11571.60 16773.57 16674.45 12560.98 13064.65 9657.97 9954.95 13951.73 18161.88 11773.78 16375.11 15783.99 15977.91 157
CostFormer68.92 12369.58 12468.15 11775.98 12376.17 15078.22 9251.86 18465.80 8961.56 8563.57 9062.83 11561.85 11870.40 18968.67 18679.42 17579.62 148
tpm cat165.41 15463.81 17767.28 13275.61 12872.88 16875.32 11152.85 17862.97 11163.66 8053.24 15553.29 17161.83 11965.54 20064.14 20274.43 19774.60 178
CANet_DTU73.29 8376.96 7669.00 11177.04 11682.06 8679.49 7756.30 16767.85 7953.29 12571.12 5770.37 8361.81 12081.59 7780.96 7686.09 12684.73 99
baseline70.45 10674.09 8866.20 14570.95 17375.67 15274.26 13253.57 17268.33 7658.42 9569.87 6371.45 7461.55 12174.84 15774.76 16078.42 17983.72 110
SCA65.40 15566.58 15864.02 15770.65 17473.37 16767.35 16953.46 17463.66 10654.14 11660.84 9960.20 12561.50 12269.96 19068.14 19177.01 18669.91 190
GA-MVS68.14 12969.17 13066.93 13973.77 14778.50 12574.45 12558.28 15955.11 16448.44 15160.08 10453.99 15961.50 12278.43 12877.57 13085.13 14780.54 137
anonymousdsp65.28 15667.98 14462.13 16558.73 20873.98 16567.10 17250.69 19148.41 19547.66 15854.27 14352.75 17561.45 12476.71 14780.20 9387.13 9989.53 53
v7n67.05 14966.94 15467.17 13372.35 15878.97 11673.26 14858.88 15651.16 18850.90 13848.21 18450.11 18960.96 12577.70 13477.38 13586.68 11485.05 94
CR-MVSNet64.83 15865.54 16364.01 15870.64 17569.41 18065.97 18052.74 17957.81 14252.65 12854.27 14356.31 14560.92 12672.20 17273.09 16881.12 17075.69 172
PatchT61.97 17864.04 17559.55 17960.49 20467.40 18856.54 20548.65 19956.69 15152.65 12851.10 17452.14 17960.92 12672.20 17273.09 16878.03 18075.69 172
dps64.00 16462.99 18065.18 14873.29 15072.07 17168.98 16453.07 17757.74 14458.41 9655.55 13447.74 19760.89 12869.53 19267.14 19576.44 18971.19 188
IterMVS66.36 15168.30 14264.10 15669.48 18374.61 16373.41 14650.79 19057.30 14848.28 15360.64 10159.92 12760.85 12974.14 16172.66 17081.80 16678.82 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TDRefinement66.09 15265.03 16967.31 13069.73 18076.75 14475.33 11064.55 8360.28 13249.72 14645.63 19042.83 20760.46 13075.75 15175.95 15284.08 15778.04 156
PatchmatchNetpermissive64.21 16364.65 17163.69 15971.29 17268.66 18469.63 16051.70 18663.04 11053.77 12159.83 10858.34 13560.23 13168.54 19666.06 19875.56 19268.08 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gm-plane-assit57.00 19457.62 20156.28 19076.10 12062.43 20747.62 21546.57 20533.84 21523.24 20937.52 20240.19 21259.61 13279.81 10977.55 13184.55 15472.03 186
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9782.83 8372.61 14961.77 12459.66 13463.44 8153.26 15459.65 12859.16 13376.78 14682.11 6387.90 8187.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250671.72 9372.95 9770.29 9481.49 7383.27 7675.74 10867.59 6168.19 7749.81 14461.15 9749.73 19158.82 13484.76 4882.94 5688.27 6880.63 136
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7383.27 7675.74 10867.59 6168.19 7749.31 14855.77 13162.00 11858.82 13484.76 4882.94 5688.27 6880.41 140
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 11080.72 10173.81 14069.65 4561.99 11843.23 17760.54 10257.50 13758.57 13679.56 11381.07 7489.34 5083.97 105
DU-MVS69.63 11570.91 11168.13 11875.99 12179.54 11173.81 14069.20 5061.20 12643.23 17758.52 11453.50 16358.57 13679.22 11880.45 9087.97 7983.97 105
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15668.70 11380.49 8777.98 13175.29 11262.95 10263.62 10749.96 14247.32 18750.72 18658.57 13676.87 14475.50 15684.94 15175.33 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PM-MVS60.48 18660.94 19459.94 17558.85 20766.83 19164.27 18851.39 18755.03 16648.03 15450.00 17940.79 21158.26 13969.20 19467.13 19678.84 17877.60 159
SixPastTwentyTwo61.84 18062.45 18661.12 17069.20 18472.20 17062.03 19557.40 16246.54 20038.03 19157.14 12741.72 20958.12 14069.67 19171.58 17481.94 16578.30 155
thisisatest051567.40 14468.78 13465.80 14770.02 17875.24 15869.36 16257.37 16354.94 16853.67 12255.53 13554.85 15258.00 14178.19 13078.91 11386.39 12183.78 109
test111171.56 9573.44 9269.38 10781.16 7782.95 8174.99 11967.68 5966.89 8246.33 16455.19 13760.91 12157.99 14284.59 5182.70 6088.12 7580.85 133
CMPMVSbinary47.78 1762.49 17262.52 18562.46 16470.01 17970.66 17762.97 19251.84 18551.98 18456.71 10642.87 19453.62 16057.80 14372.23 17070.37 17875.45 19475.91 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GBi-Net70.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
test170.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
FMVSNet270.39 10772.67 10167.72 12272.95 15378.00 12875.15 11462.69 11163.29 10951.25 13755.64 13268.49 9857.59 14480.91 9380.35 9286.70 11182.02 119
FMVSNet370.49 10572.90 9967.67 12472.88 15677.98 13174.96 12262.72 10764.13 10151.44 13358.37 11769.02 9157.43 14779.43 11679.57 10386.59 11781.81 126
MDTV_nov1_ep1364.37 16165.24 16563.37 16368.94 18570.81 17572.40 15250.29 19360.10 13353.91 12060.07 10559.15 13057.21 14869.43 19367.30 19377.47 18269.78 192
FMVSNet168.84 12470.47 11566.94 13871.35 17077.68 13674.71 12362.35 11856.93 15049.94 14350.01 17764.59 10957.07 14981.33 8380.72 8086.25 12282.00 122
UniMVSNet_ETH3D67.18 14867.03 15367.36 12974.44 13978.12 12674.07 13566.38 6752.22 18246.87 15948.64 18251.84 18056.96 15077.29 13878.53 11685.42 14382.59 116
pmmvs-eth3d63.52 16562.44 18764.77 15266.82 19170.12 17969.41 16159.48 14854.34 17352.71 12746.24 18944.35 20656.93 15172.37 16773.77 16583.30 16175.91 169
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8178.79 12173.74 14265.23 7866.10 8753.34 12470.36 6163.40 11456.92 15281.44 8080.96 7687.93 8084.46 103
tfpn200view968.11 13068.72 13667.40 12877.83 10878.93 11774.28 13062.81 10456.64 15246.82 16052.65 16453.47 16656.59 15380.41 9778.43 11886.11 12580.52 138
thres40067.95 13368.62 13867.17 13377.90 10578.59 12474.27 13162.72 10756.34 15645.77 16953.00 15953.35 16956.46 15480.21 10678.43 11885.91 13680.43 139
thres20067.98 13268.55 13967.30 13177.89 10778.86 11974.18 13462.75 10556.35 15546.48 16352.98 16053.54 16256.46 15480.41 9777.97 12486.05 12979.78 146
MVS-HIRNet54.41 20052.10 20757.11 18858.99 20656.10 21349.68 21349.10 19646.18 20152.15 13233.18 20946.11 20156.10 15663.19 20659.70 20976.64 18860.25 209
Baseline_NR-MVSNet67.53 14368.77 13566.09 14675.99 12174.75 16272.43 15168.41 5361.33 12538.33 18951.31 17254.13 15856.03 15779.22 11878.19 12185.37 14482.45 117
thres100view90067.60 14268.02 14367.12 13577.83 10877.75 13573.90 13762.52 11556.64 15246.82 16052.65 16453.47 16655.92 15878.77 12477.62 12985.72 13779.23 150
test-mter60.84 18564.62 17256.42 18955.99 21264.18 19665.39 18234.23 21454.39 17246.21 16657.40 12659.49 12955.86 15971.02 18269.65 18080.87 17276.20 168
tpmrst62.00 17762.35 18861.58 16771.62 16664.14 19769.07 16348.22 20362.21 11753.93 11958.26 12155.30 15055.81 16063.22 20562.62 20470.85 20670.70 189
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11579.46 11373.48 14569.66 4460.43 13139.56 18558.82 11353.48 16555.74 16179.59 11181.21 7288.89 6082.70 115
thres600view767.68 13868.43 14066.80 14077.90 10578.86 11973.84 13862.75 10556.07 15844.70 17552.85 16252.81 17355.58 16280.41 9777.77 12686.05 12980.28 141
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 14184.01 6676.61 10761.69 12560.62 13050.61 14070.25 6271.31 7755.57 16383.85 5882.28 6186.90 10488.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EG-PatchMatch MVS67.24 14666.94 15467.60 12578.73 10081.35 9273.28 14759.49 14746.89 19951.42 13643.65 19353.49 16455.50 16481.38 8280.66 8687.15 9581.17 131
test-LLR64.42 16064.36 17364.49 15475.02 13263.93 19866.61 17761.96 12154.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
TESTMET0.1,161.10 18464.36 17357.29 18657.53 20963.93 19866.61 17736.22 21354.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
dmvs_re67.22 14767.92 14566.40 14475.94 12470.55 17874.97 12163.87 8957.07 14944.75 17354.29 14256.72 14354.65 16779.53 11477.51 13284.20 15679.78 146
UA-Net74.47 7677.80 6670.59 9185.33 5385.40 5673.54 14365.98 7360.65 12956.00 10972.11 5179.15 4654.63 16883.13 6782.25 6288.04 7881.92 125
IS_MVSNet73.33 8277.34 7368.65 11481.29 7683.47 7474.45 12563.58 9465.75 9048.49 15067.11 7870.61 8054.63 16884.51 5283.58 5389.48 4886.34 77
baseline170.10 11172.17 10467.69 12379.74 9376.80 14373.91 13664.38 8462.74 11448.30 15264.94 8364.08 11154.17 17081.46 7978.92 11285.66 13976.22 167
tpm62.41 17363.15 17961.55 16872.24 15963.79 20071.31 15546.12 20757.82 14155.33 11159.90 10754.74 15353.63 17167.24 19964.29 20170.65 20774.25 182
MDTV_nov1_ep13_2view60.16 18760.51 19559.75 17665.39 19369.05 18368.00 16748.29 20151.99 18345.95 16848.01 18549.64 19253.39 17268.83 19566.52 19777.47 18269.55 193
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11980.93 9772.59 15068.03 5661.75 12141.68 18258.34 12057.23 13953.27 17379.53 11480.62 8888.57 6584.90 97
RPMNet61.71 18362.88 18160.34 17369.51 18269.41 18063.48 19049.23 19557.81 14245.64 17050.51 17550.12 18853.13 17468.17 19868.49 18981.07 17175.62 174
tfpnnormal64.27 16263.64 17865.02 15075.84 12575.61 15471.24 15662.52 11547.79 19642.97 17942.65 19544.49 20552.66 17578.77 12476.86 14284.88 15279.29 149
MDA-MVSNet-bldmvs53.37 20353.01 20653.79 19843.67 21867.95 18759.69 20157.92 16043.69 20332.41 19841.47 19727.89 22152.38 17656.97 21365.99 19976.68 18767.13 197
NR-MVSNet68.79 12570.56 11366.71 14377.48 11379.54 11173.52 14469.20 5061.20 12639.76 18458.52 11450.11 18951.37 17780.26 10480.71 8488.97 5883.59 111
EPMVS60.00 18861.97 18957.71 18568.46 18663.17 20464.54 18648.23 20263.30 10844.72 17460.19 10356.05 14750.85 17865.27 20362.02 20569.44 20963.81 203
CVMVSNet62.55 17065.89 15958.64 18266.95 18969.15 18266.49 17956.29 16852.46 18132.70 19759.27 11158.21 13650.09 17971.77 17571.39 17579.31 17678.99 152
pmmvs562.37 17664.04 17560.42 17265.03 19471.67 17367.17 17152.70 18150.30 18944.80 17254.23 14651.19 18449.37 18072.88 16673.48 16783.45 16074.55 179
UGNet72.78 8577.67 6767.07 13671.65 16583.24 7875.20 11363.62 9364.93 9456.72 10571.82 5373.30 6749.02 18181.02 9180.70 8586.22 12388.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pm-mvs165.62 15367.42 15063.53 16173.66 14976.39 14769.66 15960.87 13249.73 19243.97 17651.24 17357.00 14248.16 18279.89 10877.84 12584.85 15379.82 145
gg-mvs-nofinetune62.55 17065.05 16859.62 17878.72 10177.61 13770.83 15753.63 17139.71 21122.04 21336.36 20564.32 11047.53 18381.16 8879.03 11185.00 15077.17 162
pmmvs662.41 17362.88 18161.87 16671.38 16975.18 16167.76 16859.45 14941.64 20742.52 18137.33 20352.91 17246.87 18477.67 13576.26 15083.23 16279.18 151
ADS-MVSNet55.94 19758.01 19853.54 19962.48 20158.48 21059.12 20346.20 20659.65 13542.88 18052.34 16853.31 17046.31 18562.00 20760.02 20864.23 21460.24 210
pmmvs347.65 20649.08 21145.99 20644.61 21654.79 21450.04 21131.95 21733.91 21429.90 19930.37 21033.53 21746.31 18563.50 20463.67 20373.14 20263.77 204
TransMVSNet (Re)64.74 15965.66 16263.66 16077.40 11475.33 15769.86 15862.67 11347.63 19741.21 18350.01 17752.33 17645.31 18779.57 11277.69 12885.49 14177.07 164
CDS-MVSNet67.65 14069.83 12165.09 14975.39 12976.55 14674.42 12863.75 9053.55 17549.37 14759.41 11062.45 11644.44 18879.71 11079.82 9883.17 16377.36 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS59.58 18962.81 18355.81 19166.03 19265.64 19563.86 18948.74 19849.95 19137.07 19354.77 14058.54 13344.44 18872.29 16971.79 17274.70 19666.66 198
EPNet_dtu68.08 13171.00 11064.67 15379.64 9468.62 18575.05 11863.30 9566.36 8545.27 17167.40 7666.84 10443.64 19075.37 15374.98 15981.15 16977.44 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet557.24 19360.02 19653.99 19756.45 21162.74 20565.27 18347.03 20455.14 16339.55 18640.88 19853.42 16841.83 19172.35 16871.10 17773.79 19964.50 202
ambc53.42 20464.99 19563.36 20249.96 21247.07 19837.12 19228.97 21216.36 22441.82 19275.10 15567.34 19271.55 20575.72 171
FPMVS51.87 20450.00 20954.07 19666.83 19057.25 21160.25 20050.91 18850.25 19034.36 19536.04 20632.02 21841.49 19358.98 21156.07 21070.56 20859.36 211
CP-MVSNet62.68 16965.49 16459.40 18071.84 16175.34 15662.87 19367.04 6552.64 17927.19 20453.38 15248.15 19541.40 19471.26 17775.68 15386.07 12782.00 122
PS-CasMVS62.38 17565.06 16759.25 18171.73 16275.21 16062.77 19466.99 6651.94 18626.96 20552.00 16947.52 19841.06 19571.16 18075.60 15485.97 13481.97 124
PEN-MVS62.96 16765.77 16159.70 17773.98 14475.45 15563.39 19167.61 6052.49 18025.49 20653.39 15149.12 19340.85 19671.94 17477.26 13886.86 10680.72 135
MIMVSNet58.52 19261.34 19255.22 19360.76 20367.01 19066.81 17449.02 19756.43 15438.90 18740.59 20054.54 15540.57 19773.16 16571.65 17375.30 19566.00 199
pmnet_mix0255.30 19857.01 20253.30 20064.14 19759.09 20958.39 20450.24 19453.47 17638.68 18849.75 18045.86 20240.14 19865.38 20260.22 20768.19 21165.33 200
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16978.37 10376.72 14566.80 17562.96 10165.50 9134.17 19667.19 7769.68 8739.20 19979.39 11779.44 10785.68 13876.73 166
DTE-MVSNet61.85 17964.96 17058.22 18374.32 14074.39 16461.01 19767.85 5851.76 18721.91 21453.28 15348.17 19437.74 20072.22 17176.44 14886.52 11978.49 154
EU-MVSNet54.63 19958.69 19749.90 20356.99 21062.70 20656.41 20650.64 19245.95 20223.14 21050.42 17646.51 20036.63 20165.51 20164.85 20075.57 19174.91 177
Anonymous2023120656.36 19657.80 20054.67 19570.08 17766.39 19260.46 19957.54 16149.50 19429.30 20133.86 20846.64 19935.18 20270.44 18768.88 18575.47 19368.88 195
WR-MVS63.03 16667.40 15157.92 18475.14 13177.60 13860.56 19866.10 7054.11 17423.88 20753.94 14853.58 16134.50 20373.93 16277.71 12787.35 9380.94 132
WR-MVS_H61.83 18165.87 16057.12 18771.72 16376.87 14261.45 19666.19 6851.97 18522.92 21153.13 15852.30 17833.80 20471.03 18175.00 15886.65 11580.78 134
PMVScopyleft39.38 1846.06 21043.30 21249.28 20462.93 19838.75 21841.88 21753.50 17333.33 21735.46 19428.90 21331.01 21933.04 20558.61 21254.63 21368.86 21057.88 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test0.0.03 158.80 19061.58 19155.56 19275.02 13268.45 18659.58 20261.96 12152.74 17829.57 20049.75 18054.56 15431.46 20671.19 17869.77 17975.75 19064.57 201
N_pmnet47.35 20750.13 20844.11 20859.98 20551.64 21551.86 21044.80 20849.58 19320.76 21540.65 19940.05 21329.64 20759.84 20955.15 21157.63 21554.00 213
DeepMVS_CXcopyleft18.74 22418.55 2228.02 21926.96 2187.33 22223.81 21613.05 22525.99 20825.17 21922.45 22436.25 218
MIMVSNet149.27 20553.25 20544.62 20744.61 21661.52 20853.61 20852.18 18241.62 20818.68 21728.14 21441.58 21025.50 20968.46 19769.04 18373.15 20162.37 207
Gipumacopyleft36.38 21235.80 21437.07 21045.76 21533.90 21929.81 21948.47 20039.91 21018.02 2188.00 2228.14 22625.14 21059.29 21061.02 20655.19 21740.31 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testgi54.39 20157.86 19950.35 20271.59 16867.24 18954.95 20753.25 17543.36 20423.78 20844.64 19147.87 19624.96 21170.45 18668.66 18773.60 20062.78 206
new_pmnet38.40 21142.64 21333.44 21137.54 22145.00 21736.60 21832.72 21640.27 20912.72 22029.89 21128.90 22024.78 21253.17 21452.90 21456.31 21648.34 214
FC-MVSNet-test56.90 19565.20 16647.21 20566.98 18863.20 20349.11 21458.60 15859.38 13611.50 22165.60 8056.68 14424.66 21371.17 17971.36 17672.38 20369.02 194
test20.0353.93 20256.28 20351.19 20172.19 16065.83 19353.20 20961.08 12842.74 20522.08 21237.07 20445.76 20324.29 21470.44 18769.04 18374.31 19863.05 205
EMVS20.98 21617.15 21925.44 21339.51 22019.37 22312.66 22339.59 21219.10 2206.62 2249.27 2204.40 22822.43 21517.99 22124.40 21931.81 22125.53 220
E-PMN21.77 21518.24 21825.89 21240.22 21919.58 22212.46 22439.87 21118.68 2216.71 2239.57 2194.31 22922.36 21619.89 22027.28 21833.73 22028.34 219
new-patchmatchnet46.97 20849.47 21044.05 20962.82 19956.55 21245.35 21652.01 18342.47 20617.04 21935.73 20735.21 21521.84 21761.27 20854.83 21265.26 21360.26 208
test_method22.26 21425.94 21617.95 2163.24 2257.17 22523.83 2207.27 22037.35 21320.44 21621.87 21739.16 21418.67 21834.56 21620.84 22034.28 21920.64 221
MVEpermissive19.12 1920.47 21723.27 21717.20 21712.66 22425.41 22110.52 22534.14 21514.79 2226.53 2258.79 2214.68 22716.64 21929.49 21841.63 21522.73 22338.11 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 21329.75 21520.76 21528.00 22230.93 22023.10 22129.18 21823.14 2191.46 22618.23 21816.54 2235.08 22040.22 21541.40 21637.76 21837.79 217
tmp_tt14.50 21814.68 2237.17 22510.46 2262.21 22137.73 21228.71 20225.26 21516.98 2224.37 22131.49 21729.77 21726.56 222
GG-mvs-BLEND46.86 20967.51 14922.75 2140.05 22676.21 14964.69 1850.04 22261.90 1190.09 22755.57 13371.32 760.08 22270.54 18567.19 19471.58 20469.86 191
test1230.09 2180.14 2210.02 2190.00 2280.02 2270.02 2290.01 2230.09 2240.00 2290.30 2230.00 2310.08 2220.03 2230.09 2220.01 2250.45 222
testmvs0.09 2180.15 2200.02 2190.01 2270.02 2270.05 2280.01 2230.11 2230.01 2280.26 2240.01 2300.06 2240.10 2220.10 2210.01 2250.43 223
uanet_test0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def46.24 165
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
our_test_367.93 18770.99 17466.89 173
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 227
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 44
Patchmtry65.80 19465.97 18052.74 17952.65 128