This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2799.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 9099.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3398.35 7699.82 1599.71 90
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2399.24 1799.71 7499.76 61
PGM-MVS98.86 3299.35 2898.29 3699.77 199.63 3099.67 595.63 4798.66 12095.27 5499.11 2999.82 4399.67 499.33 2599.19 2199.73 5799.74 72
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3499.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3499.06 2899.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 699.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 2999.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2299.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2798.20 8799.64 11699.69 96
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS98.93 3099.37 2498.42 3399.67 1499.62 3499.60 1698.15 2599.08 7293.81 8498.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4499.78 3399.74 72
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9399.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 154
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6699.35 1699.97 899.55 1499.63 398.66 5799.70 8399.74 72
MP-MVScopyleft99.07 2499.36 2598.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1599.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 799.57 799.97 899.53 1699.65 299.25 1599.84 1199.77 56
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6399.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1798.93 5199.45 499.61 12499.76 61
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8799.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1799.42 1898.61 6099.73 5799.52 135
DROMVSNet98.22 5299.44 1796.79 7895.62 12399.56 5299.01 5192.22 10199.17 5494.51 6999.41 1399.62 5399.49 1999.16 3699.26 1499.91 299.94 1
CSCG98.90 3198.93 5498.85 2699.75 399.72 1299.49 2296.58 4499.38 2598.05 1798.97 3997.87 7899.49 1997.78 12898.92 3999.78 3399.90 6
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8199.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 1999.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS97.63 498.33 4998.57 6398.04 4398.62 5899.65 2299.45 2698.15 2599.51 1792.80 10295.74 12996.44 9399.46 2299.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7899.43 2998.21 2199.36 3097.66 2597.79 8199.90 3399.45 2399.17 3498.43 7099.77 3899.51 140
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8599.48 2497.96 3598.83 10293.86 8398.70 5699.86 3899.44 2499.08 4198.38 7399.61 12499.58 122
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8799.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2498.78 6499.30 1199.81 2199.67 102
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6899.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2698.87 5999.49 399.85 999.66 106
CS-MVS-test98.58 4399.42 2197.60 5498.52 5999.91 198.60 6694.60 6399.37 2794.62 6599.40 1499.16 6299.39 2799.36 2198.85 4799.90 399.92 3
TSAR-MVS + GP.98.66 4099.36 2597.85 4797.16 8499.46 6699.03 4994.59 6499.09 7097.19 3199.73 399.95 1899.39 2798.95 4998.69 5699.75 4499.65 109
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6499.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 2999.25 2898.37 7599.64 11699.66 106
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9899.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 2998.71 7098.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.41 499.64 199.14 899.69 899.75 999.64 898.33 699.67 498.10 1499.66 499.99 199.33 3199.62 598.86 4499.74 4999.90 6
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6499.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3198.79 6399.29 1399.75 4499.64 113
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3398.89 5699.39 799.79 3099.58 122
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1599.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3499.56 1098.96 3699.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 10099.03 4997.98 3499.34 3299.00 498.25 7099.71 5099.31 3498.80 6298.82 5299.48 16199.17 164
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 999.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3699.34 2499.05 2999.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft99.25 1399.38 2399.09 1299.69 899.58 4999.56 1898.32 898.85 9797.87 2198.91 4499.92 2999.30 3699.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.44 399.58 499.28 399.69 899.76 699.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3899.61 698.83 5099.70 8399.77 56
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9999.22 3696.70 4399.40 2497.77 2397.89 8099.80 4499.21 3999.02 4598.65 5899.57 14699.07 171
TAPA-MVS97.53 598.41 4698.84 5897.91 4699.08 4999.33 9099.15 4097.13 4299.34 3293.20 9497.75 8399.19 6199.20 4098.66 7298.13 9099.66 10899.48 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS98.56 4499.32 2997.68 5098.28 6499.89 298.71 6394.53 6699.41 2395.43 5199.05 3798.66 6799.19 4199.21 3199.07 2699.93 199.94 1
thres600view796.69 10196.43 14697.00 7596.28 10199.67 1898.41 7593.99 7797.85 16094.29 7695.96 12385.91 17399.19 4198.26 9697.63 11299.82 1599.73 76
LS3D97.79 6298.25 7497.26 6398.40 6199.63 3099.53 1998.63 199.25 4588.13 13096.93 10194.14 12399.19 4199.14 3799.23 1899.69 8699.42 148
thres40096.71 10096.45 14497.02 7296.28 10199.63 3098.41 7594.00 7697.82 16194.42 7395.74 12986.26 17099.18 4498.20 10097.79 10899.81 2199.70 92
thres20096.76 9696.53 13797.03 7096.31 9899.67 1898.37 7893.99 7797.68 16694.49 7095.83 12886.77 16399.18 4498.26 9697.82 10699.82 1599.66 106
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2799.20 3797.75 3998.82 10495.24 5598.85 4799.87 3799.17 4698.74 6997.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs97.31 7897.81 9596.72 7996.20 10499.45 6898.21 8791.60 11399.22 4795.39 5298.48 6190.95 14199.16 4797.66 13599.05 2999.76 4099.90 6
tfpn200view996.75 9796.51 13997.03 7096.31 9899.67 1898.41 7593.99 7797.35 17194.52 6795.90 12586.93 16199.14 4898.26 9697.80 10799.82 1599.70 92
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2199.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
MSDG98.27 5198.29 7298.24 3899.20 4699.22 10099.20 3797.82 3799.37 2794.43 7295.90 12597.31 8499.12 4998.76 6698.35 7699.67 10399.14 168
CDPH-MVS98.41 4699.10 4197.61 5399.32 4499.36 8299.49 2296.15 4698.82 10491.82 11398.41 6499.66 5299.10 5198.93 5198.97 3599.75 4499.58 122
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5899.52 3399.42 7398.91 5494.61 6198.87 9492.24 11194.61 14199.05 6599.10 5198.64 7499.05 2999.74 4999.51 140
thres100view90096.72 9996.47 14297.00 7596.31 9899.52 5998.28 8494.01 7597.35 17194.52 6795.90 12586.93 16199.09 5398.07 10997.87 10399.81 2199.63 115
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6699.44 2898.13 2899.65 592.30 10998.91 4499.95 1899.05 5499.42 1898.95 3799.58 14299.82 28
MVS_111021_LR98.67 3899.41 2297.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6199.56 899.69 5199.04 5599.36 2198.88 4299.60 13299.58 122
HyFIR lowres test95.99 11996.56 13595.32 11097.99 7099.65 2296.54 14088.86 15598.44 13289.77 12684.14 20897.05 8899.03 5698.55 8498.19 8899.73 5799.86 19
PCF-MVS97.50 698.18 5498.35 7197.99 4498.65 5799.36 8298.94 5398.14 2798.59 12293.62 8996.61 11099.76 4999.03 5697.77 12997.45 12399.57 14698.89 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR98.59 4299.36 2597.68 5099.42 3699.61 3998.14 9094.81 5699.31 3495.00 5999.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
EIA-MVS97.70 6798.78 5996.44 9095.72 11899.65 2298.14 9093.72 8498.30 13892.31 10898.63 5797.90 7798.97 5998.92 5398.30 8299.78 3399.80 35
casdiffmvs96.93 9297.43 10796.34 9195.70 11999.50 6297.75 10493.22 9498.98 8592.64 10394.97 13791.71 13998.93 6098.62 7698.52 6699.82 1599.72 87
xxxxxxxxxxxxxcwj98.14 5597.38 10999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2986.38 16998.92 6199.22 2998.84 4899.76 4099.56 128
SF-MVS99.18 1799.32 2999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
baseline197.58 7098.05 8597.02 7296.21 10399.45 6897.71 10593.71 8598.47 13195.75 4698.78 5093.20 13398.91 6398.52 8698.44 6899.81 2199.53 132
ETV-MVS98.05 5799.25 3496.65 8295.61 12499.61 3998.26 8693.52 8798.90 9393.74 8899.32 1799.20 6098.90 6499.21 3198.72 5599.87 899.79 42
Anonymous2023121197.10 8697.06 12397.14 6596.32 9799.52 5998.16 8993.76 8198.84 10195.98 4390.92 17094.58 11898.90 6497.72 13398.10 9399.71 7499.75 68
COLMAP_ROBcopyleft96.15 1297.78 6398.17 8097.32 5998.84 5299.45 6899.28 3495.43 5099.48 1991.80 11494.83 14098.36 7398.90 6498.09 10697.85 10499.68 9599.15 165
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250697.16 8396.68 13397.73 4996.95 8899.79 498.48 7094.42 6899.17 5497.74 2499.15 2580.93 20298.89 6799.03 4399.09 2499.88 499.62 117
ECVR-MVScopyleft97.27 8097.09 12097.48 5696.95 8899.79 498.48 7094.42 6899.17 5496.28 4093.54 15189.39 15198.89 6799.03 4399.09 2499.88 499.61 120
Anonymous20240521197.40 10896.45 9499.54 5598.08 9593.79 8098.24 14293.55 15094.41 11998.88 6998.04 11498.24 8599.75 4499.76 61
MAR-MVS97.71 6698.04 8697.32 5999.35 4298.91 11597.65 10891.68 11198.00 15097.01 3397.72 8594.83 11398.85 7098.44 9198.86 4499.41 17199.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test111197.09 8796.83 13097.39 5796.92 9099.81 398.44 7494.45 6799.17 5495.85 4592.10 16488.97 15298.78 7199.02 4599.11 2399.88 499.63 115
Fast-Effi-MVS+95.38 13296.52 13894.05 12894.15 15199.14 10597.24 12186.79 17598.53 12787.62 13694.51 14287.06 15898.76 7298.60 8098.04 9699.72 6499.77 56
abl_698.09 4199.33 4399.22 10098.79 6094.96 5598.52 12997.00 3497.30 9199.86 3898.76 7299.69 8699.41 149
DPM-MVS98.31 5098.53 6598.05 4298.76 5698.77 12299.13 4198.07 3199.10 6994.27 7796.70 10699.84 4298.70 7497.90 12298.11 9299.40 17399.28 157
Effi-MVS+95.81 12297.31 11694.06 12795.09 13999.35 8597.24 12188.22 16498.54 12685.38 15098.52 5988.68 15398.70 7498.32 9497.93 9899.74 4999.84 23
TSAR-MVS + COLMAP96.79 9596.55 13697.06 6897.70 7398.46 14699.07 4696.23 4599.38 2591.32 11798.80 4885.61 17598.69 7697.64 13896.92 13599.37 17599.06 172
EPP-MVSNet97.75 6598.71 6196.63 8495.68 12199.56 5297.51 11193.10 9799.22 4794.99 6097.18 9697.30 8598.65 7798.83 6098.93 3899.84 1199.92 3
CHOSEN 280x42097.99 5999.24 3596.53 8698.34 6299.61 3998.36 8089.80 14699.27 4095.08 5899.81 198.58 6998.64 7899.02 4598.92 3998.93 19099.48 144
ET-MVSNet_ETH3D96.17 11596.99 12595.21 11188.53 21298.54 14198.28 8492.61 9998.85 9793.60 9099.06 3690.39 14398.63 7995.98 18696.68 14099.61 12499.41 149
MVS_Test97.30 7998.54 6495.87 10195.74 11799.28 9498.19 8891.40 11899.18 5391.59 11598.17 7296.18 9898.63 7998.61 7798.55 6399.66 10899.78 48
DCV-MVSNet97.56 7198.36 7096.62 8596.44 9598.36 15598.37 7891.73 11099.11 6894.80 6298.36 6796.28 9698.60 8198.12 10398.44 6899.76 4099.87 16
GeoE95.98 12197.24 11894.51 11995.02 14199.38 7898.02 9787.86 16998.37 13587.86 13492.99 16393.54 12898.56 8298.61 7797.92 9999.73 5799.85 22
diffmvs96.83 9497.33 11296.25 9295.76 11699.34 8798.06 9693.22 9499.43 2292.30 10996.90 10289.83 14998.55 8398.00 11798.14 8999.64 11699.70 92
PMMVS97.52 7298.39 6996.51 8895.82 11598.73 12997.80 10193.05 9898.76 11494.39 7599.07 3597.03 8998.55 8398.31 9597.61 11399.43 16899.21 163
RPSCF97.61 6998.16 8196.96 7798.10 6599.00 10898.84 5893.76 8199.45 2094.78 6399.39 1599.31 5998.53 8596.61 16495.43 17497.74 20397.93 197
IS_MVSNet97.86 6198.86 5696.68 8096.02 10699.72 1298.35 8193.37 9198.75 11794.01 7896.88 10398.40 7298.48 8699.09 3999.42 599.83 1499.80 35
PatchMatch-RL97.77 6498.25 7497.21 6499.11 4899.25 9697.06 13194.09 7498.72 11895.14 5798.47 6296.29 9598.43 8798.65 7397.44 12499.45 16598.94 174
CANet98.46 4599.16 3897.64 5298.48 6099.64 2799.35 3294.71 5999.53 1495.17 5697.63 8799.59 5598.38 8898.88 5898.99 3499.74 4999.86 19
CHOSEN 1792x268896.41 10996.99 12595.74 10598.01 6999.72 1297.70 10690.78 13099.13 6790.03 12387.35 19895.36 10798.33 8998.59 8298.91 4199.59 13899.87 16
FA-MVS(training)96.52 10898.29 7294.45 12195.88 11399.52 5997.66 10781.47 19798.94 8893.79 8795.54 13599.11 6398.29 9098.89 5696.49 14799.63 12199.52 135
thisisatest053097.23 8198.25 7496.05 9695.60 12699.59 4696.96 13393.23 9299.17 5492.60 10598.75 5396.19 9798.17 9198.19 10196.10 16099.72 6499.77 56
tttt051797.23 8198.24 7796.04 9795.60 12699.60 4496.94 13493.23 9299.15 5992.56 10698.74 5496.12 10098.17 9198.21 9996.10 16099.73 5799.78 48
ACMM96.26 996.67 10396.69 13296.66 8197.29 8198.46 14696.48 14395.09 5299.21 4993.19 9598.78 5086.73 16498.17 9197.84 12696.32 15299.74 4999.49 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet195.77 12396.41 14795.03 11293.42 16397.86 17297.11 12889.89 14398.53 12792.00 11289.17 18293.23 13298.15 9498.07 10998.34 7899.61 12499.69 96
DI_MVS_plusplus_trai96.90 9397.49 10296.21 9395.61 12499.40 7798.72 6292.11 10299.14 6292.98 10193.08 16195.14 10998.13 9598.05 11397.91 10199.74 4999.73 76
MVS_030498.14 5599.03 4997.10 6698.05 6899.63 3099.27 3594.33 7199.63 793.06 9797.32 9099.05 6598.09 9698.82 6198.87 4399.81 2199.89 10
OPM-MVS96.22 11495.85 15596.65 8297.75 7198.54 14199.00 5295.53 4896.88 18489.88 12495.95 12486.46 16898.07 9797.65 13796.63 14299.67 10398.83 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_BlendedMVS97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
CLD-MVS96.74 9896.51 13997.01 7496.71 9298.62 13598.73 6194.38 7098.94 8894.46 7197.33 8987.03 15998.07 9797.20 15496.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline97.45 7598.70 6295.99 10095.89 11199.36 8298.29 8391.37 11999.21 4992.99 10098.40 6596.87 9097.96 10198.60 8098.60 6199.42 17099.86 19
test_part195.56 12795.38 15995.78 10296.07 10598.16 16297.57 10990.78 13097.43 17093.04 9889.12 18589.41 15097.93 10296.38 17297.38 12799.29 18099.78 48
DELS-MVS98.19 5398.77 6097.52 5598.29 6399.71 1599.12 4294.58 6598.80 10795.38 5396.24 11998.24 7597.92 10399.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net96.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
test196.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
FMVSNet296.64 10497.50 10195.63 10893.81 15697.98 16598.09 9290.87 12698.99 8493.48 9193.17 15895.25 10897.89 10498.63 7598.80 5399.68 9599.67 102
MDTV_nov1_ep1395.57 12697.48 10393.35 14695.43 13398.97 11297.19 12483.72 19598.92 9287.91 13397.75 8396.12 10097.88 10796.84 16395.64 17297.96 20198.10 193
UniMVSNet_ETH3D93.15 17192.33 20494.11 12693.91 15398.61 13794.81 17590.98 12597.06 18087.51 13782.27 21276.33 21897.87 10894.79 20197.47 12299.56 14999.81 33
IterMVS-LS96.12 11797.48 10394.53 11895.19 13897.56 19097.15 12589.19 15399.08 7288.23 12994.97 13794.73 11597.84 10997.86 12598.26 8499.60 13299.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train96.23 11396.89 12795.46 10997.32 7898.77 12298.81 5993.60 8698.58 12385.52 14899.08 3486.67 16597.83 11097.87 12497.51 11799.69 8699.73 76
SCA94.95 13997.44 10692.04 16195.55 12899.16 10396.26 14879.30 20799.02 8185.73 14798.18 7197.13 8797.69 11196.03 18494.91 18897.69 20697.65 199
HQP-MVS96.37 11096.58 13496.13 9597.31 8098.44 14898.45 7395.22 5198.86 9588.58 12898.33 6887.00 16097.67 11297.23 15296.56 14599.56 14999.62 117
FMVSNet397.02 8998.12 8395.73 10693.59 16297.98 16598.34 8291.32 12098.80 10793.92 8097.21 9395.94 10397.63 11398.61 7798.62 5999.61 12499.65 109
CostFormer94.25 15594.88 16593.51 14195.43 13398.34 15696.21 14980.64 20097.94 15594.01 7898.30 6986.20 17297.52 11492.71 20892.69 20497.23 21298.02 195
FMVSNet595.42 13096.47 14294.20 12492.26 17595.99 21195.66 15687.15 17397.87 15893.46 9296.68 10793.79 12797.52 11497.10 15897.21 13099.11 18796.62 211
EPMVS95.05 13796.86 12992.94 15195.84 11498.96 11396.68 13679.87 20399.05 7890.15 12197.12 9795.99 10297.49 11695.17 19594.75 19397.59 20796.96 207
FC-MVSNet-train97.04 8897.91 9296.03 9896.00 10898.41 15196.53 14293.42 8899.04 8093.02 9998.03 7694.32 12197.47 11797.93 12097.77 10999.75 4499.88 14
CANet_DTU96.64 10499.08 4293.81 13197.10 8599.42 7398.85 5790.01 14099.31 3479.98 18299.78 299.10 6497.42 11898.35 9398.05 9599.47 16399.53 132
PatchmatchNetpermissive94.70 14497.08 12291.92 16695.53 12998.85 11795.77 15479.54 20598.95 8685.98 14498.52 5996.45 9197.39 11995.32 19294.09 19897.32 20997.38 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 16395.88 15391.50 17395.69 12098.62 13595.64 15779.41 20698.80 10783.76 15795.63 13296.13 9997.25 12092.92 20792.31 20697.27 21096.74 208
DeepPCF-MVS97.74 398.34 4899.46 1397.04 6998.82 5399.33 9096.28 14797.47 4099.58 994.70 6498.99 3899.85 4197.24 12199.55 1199.34 997.73 20599.56 128
ACMP96.25 1096.62 10696.72 13196.50 8996.96 8798.75 12697.80 10194.30 7298.85 9793.12 9698.78 5086.61 16697.23 12297.73 13296.61 14399.62 12299.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet94.65 14697.04 12491.88 16995.68 12198.99 11095.89 15279.03 21099.15 5985.81 14696.96 9998.21 7697.10 12394.48 20394.24 19797.74 20397.21 203
tfpnnormal93.85 16494.12 17993.54 14093.22 16498.24 15995.45 16191.96 10794.61 21083.91 15390.74 17281.75 19997.04 12497.49 14396.16 15899.68 9599.84 23
ACMH95.42 1495.27 13595.96 15194.45 12196.83 9198.78 12194.72 17891.67 11298.95 8686.82 14196.42 11683.67 18697.00 12597.48 14496.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+95.51 1395.40 13196.00 14994.70 11696.33 9698.79 11996.79 13591.32 12098.77 11387.18 13895.60 13385.46 17696.97 12697.15 15596.59 14499.59 13899.65 109
MIMVSNet94.49 15297.59 10090.87 18691.74 18798.70 13194.68 18078.73 21297.98 15183.71 15897.71 8694.81 11496.96 12797.97 11897.92 9999.40 17398.04 194
RPMNet94.66 14597.16 11991.75 17094.98 14298.59 13897.00 13278.37 21497.98 15183.78 15596.27 11894.09 12696.91 12897.36 14796.73 13899.48 16199.09 170
MVSTER97.16 8397.71 9696.52 8795.97 11098.48 14498.63 6592.10 10398.68 11995.96 4499.23 2191.79 13896.87 12998.76 6697.37 12899.57 14699.68 101
CR-MVSNet94.57 15197.34 11191.33 17794.90 14398.59 13897.15 12579.14 20897.98 15180.42 17896.59 11393.50 13096.85 13098.10 10497.49 11999.50 16099.15 165
PatchT93.96 16097.36 11090.00 19394.76 14798.65 13390.11 20878.57 21397.96 15480.42 17896.07 12194.10 12596.85 13098.10 10497.49 11999.26 18299.15 165
USDC94.26 15494.83 16693.59 13796.02 10698.44 14897.84 9988.65 15998.86 9582.73 16794.02 14680.56 20396.76 13297.28 15196.15 15999.55 15198.50 185
Effi-MVS+-dtu95.74 12498.04 8693.06 14993.92 15299.16 10397.90 9888.16 16699.07 7782.02 17098.02 7794.32 12196.74 13398.53 8597.56 11599.61 12499.62 117
IterMVS-SCA-FT94.89 14197.87 9391.42 17494.86 14597.70 17697.24 12184.88 18998.93 9075.74 19894.26 14598.25 7496.69 13498.52 8697.68 11199.10 18899.73 76
TinyColmap94.00 15894.35 17593.60 13695.89 11198.26 15797.49 11288.82 15698.56 12583.21 16191.28 16980.48 20596.68 13597.34 14896.26 15599.53 15798.24 191
pmmvs495.09 13695.90 15294.14 12592.29 17497.70 17695.45 16190.31 13798.60 12190.70 11993.25 15689.90 14796.67 13697.13 15695.42 17599.44 16799.28 157
IterMVS94.81 14397.71 9691.42 17494.83 14697.63 18397.38 11485.08 18698.93 9075.67 19994.02 14697.64 8096.66 13798.45 8997.60 11498.90 19199.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB93.20 1692.84 17694.92 16390.43 19092.83 16598.63 13497.08 13087.87 16897.91 15668.42 21693.54 15179.46 21296.62 13897.55 14197.40 12699.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet94.59 14995.47 15893.55 13991.85 18497.89 17195.03 16692.00 10597.33 17386.12 14293.19 15787.29 15796.60 13996.12 18196.70 13999.72 6499.80 35
DU-MVS93.98 15994.44 17493.44 14291.66 18997.77 17395.03 16691.57 11497.17 17786.12 14293.13 15981.13 20196.60 13995.10 19797.01 13499.67 10399.80 35
tpm92.38 19094.79 16789.56 19794.30 15097.50 19394.24 19078.97 21197.72 16474.93 20397.97 7882.91 19196.60 13993.65 20694.81 19298.33 19798.98 173
SixPastTwentyTwo93.44 16895.32 16191.24 17992.11 17798.40 15292.77 19688.64 16098.09 14777.83 19193.51 15385.74 17496.52 14296.91 16194.89 19199.59 13899.73 76
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7499.76 696.02 15193.75 8399.26 4393.38 9393.73 14999.35 5896.47 14398.96 4898.46 6799.77 3899.90 6
baseline296.36 11197.82 9494.65 11794.60 14899.09 10696.45 14489.63 14898.36 13691.29 11897.60 8894.13 12496.37 14498.45 8997.70 11099.54 15599.41 149
Baseline_NR-MVSNet93.87 16293.98 18493.75 13291.66 18997.02 20395.53 15991.52 11797.16 17987.77 13587.93 19683.69 18596.35 14595.10 19797.23 12999.68 9599.73 76
dps94.63 14795.31 16293.84 13095.53 12998.71 13096.54 14080.12 20297.81 16397.21 3096.98 9892.37 13496.34 14692.46 21091.77 21097.26 21197.08 205
CDS-MVSNet96.59 10798.02 8894.92 11494.45 14998.96 11397.46 11391.75 10997.86 15990.07 12296.02 12297.25 8696.21 14798.04 11498.38 7399.60 13299.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS95.53 12896.50 14194.39 12393.86 15599.03 10796.67 13789.55 15097.33 17390.64 12093.02 16291.58 14096.21 14797.72 13397.43 12599.43 16899.36 154
MS-PatchMatch95.99 11997.26 11794.51 11997.46 7598.76 12597.27 11986.97 17499.09 7089.83 12593.51 15397.78 7996.18 14997.53 14295.71 17199.35 17698.41 187
TranMVSNet+NR-MVSNet93.67 16594.14 17793.13 14891.28 20397.58 18895.60 15891.97 10697.06 18084.05 15190.64 17582.22 19696.17 15094.94 20096.78 13799.69 8699.78 48
CP-MVSNet93.25 17094.00 18392.38 15591.65 19197.56 19094.38 18789.20 15296.05 20183.16 16289.51 18081.97 19796.16 15196.43 17096.56 14599.71 7499.89 10
UniMVSNet (Re)94.58 15095.34 16093.71 13492.25 17698.08 16494.97 16891.29 12497.03 18287.94 13293.97 14886.25 17196.07 15296.27 17895.97 16599.72 6499.79 42
tpm cat194.06 15694.90 16493.06 14995.42 13598.52 14396.64 13880.67 19997.82 16192.63 10493.39 15595.00 11196.06 15391.36 21391.58 21296.98 21396.66 210
v2v48292.77 18093.52 19491.90 16891.59 19497.63 18394.57 18590.31 13796.80 18879.22 18588.74 18881.55 20096.04 15495.26 19394.97 18799.66 10899.69 96
testgi95.67 12597.48 10393.56 13895.07 14099.00 10895.33 16488.47 16198.80 10786.90 14097.30 9192.33 13595.97 15597.66 13597.91 10199.60 13299.38 153
PS-CasMVS92.72 18193.36 19591.98 16491.62 19397.52 19294.13 19188.98 15495.94 20481.51 17387.35 19879.95 20995.91 15696.37 17396.49 14799.70 8399.89 10
v119292.43 18893.61 19091.05 18291.53 19597.43 19694.61 18387.99 16796.60 19276.72 19487.11 20082.74 19495.85 15796.35 17595.30 17899.60 13299.74 72
v192192092.36 19293.57 19190.94 18491.39 19997.39 19894.70 17987.63 17196.60 19276.63 19586.98 20182.89 19295.75 15896.26 17995.14 18399.55 15199.73 76
test0.0.03 196.69 10198.12 8395.01 11395.49 13198.99 11095.86 15390.82 12898.38 13492.54 10796.66 10897.33 8395.75 15897.75 13198.34 7899.60 13299.40 152
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10999.62 3497.82 10093.22 9498.82 10491.40 11696.94 10098.56 7095.70 16099.14 3799.41 699.79 3099.75 68
gm-plane-assit89.44 20592.82 20285.49 20891.37 20095.34 21479.55 22282.12 19691.68 21864.79 22087.98 19480.26 20695.66 16198.51 8897.56 11599.45 16598.41 187
v1092.79 17994.06 18191.31 17891.78 18697.29 20294.87 17386.10 18296.97 18379.82 18388.16 19284.56 18395.63 16296.33 17695.31 17799.65 11299.80 35
Fast-Effi-MVS+-dtu95.38 13298.20 7992.09 16093.91 15398.87 11697.35 11685.01 18899.08 7281.09 17498.10 7396.36 9495.62 16398.43 9297.03 13299.55 15199.50 142
PEN-MVS92.72 18193.20 19792.15 15991.29 20197.31 20094.67 18189.81 14496.19 19781.83 17188.58 18979.06 21395.61 16495.21 19496.27 15399.72 6499.82 28
pmmvs592.71 18394.27 17690.90 18591.42 19897.74 17593.23 19386.66 17895.99 20378.96 18891.45 16783.44 18895.55 16597.30 15095.05 18599.58 14298.93 175
test-LLR95.50 12997.32 11393.37 14495.49 13198.74 12796.44 14590.82 12898.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
TESTMET0.1,194.95 13997.32 11392.20 15892.62 16798.74 12796.44 14586.67 17798.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
v892.87 17593.87 18891.72 17292.05 17897.50 19394.79 17688.20 16596.85 18680.11 18190.01 17782.86 19395.48 16895.15 19694.90 18999.66 10899.80 35
EPNet98.05 5798.86 5697.10 6699.02 5099.43 7298.47 7294.73 5899.05 7895.62 4798.93 4297.62 8295.48 16898.59 8298.55 6399.29 18099.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter94.86 14297.32 11392.00 16392.41 17298.82 11896.18 15086.35 18198.05 14882.28 16896.48 11594.39 12095.46 17098.17 10296.20 15699.32 17899.13 169
v114492.81 17794.03 18291.40 17691.68 18897.60 18794.73 17788.40 16296.71 18978.48 18988.14 19384.46 18495.45 17196.31 17795.22 18099.65 11299.76 61
V4293.05 17393.90 18792.04 16191.91 18197.66 18094.91 17089.91 14296.85 18680.58 17789.66 17983.43 18995.37 17295.03 19994.90 18999.59 13899.78 48
v14419292.38 19093.55 19391.00 18391.44 19797.47 19594.27 18887.41 17296.52 19478.03 19087.50 19782.65 19595.32 17395.82 18995.15 18299.55 15199.78 48
v124091.99 19593.33 19690.44 18991.29 20197.30 20194.25 18986.79 17596.43 19575.49 20186.34 20481.85 19895.29 17496.42 17195.22 18099.52 15899.73 76
NR-MVSNet94.01 15794.51 17293.44 14292.56 16997.77 17395.67 15591.57 11497.17 17785.84 14593.13 15980.53 20495.29 17497.01 15996.17 15799.69 8699.75 68
anonymousdsp93.12 17295.86 15489.93 19591.09 20498.25 15895.12 16585.08 18697.44 16973.30 20690.89 17190.78 14295.25 17697.91 12195.96 16699.71 7499.82 28
gg-mvs-nofinetune90.85 19894.14 17787.02 20494.89 14499.25 9698.64 6476.29 21888.24 21957.50 22379.93 21495.45 10695.18 17798.77 6598.07 9499.62 12299.24 161
MVS-HIRNet92.51 18495.97 15088.48 20193.73 15998.37 15490.33 20675.36 22098.32 13777.78 19289.15 18394.87 11295.14 17897.62 13996.39 15098.51 19397.11 204
MDTV_nov1_ep13_2view92.44 18695.66 15688.68 19991.05 20597.92 16992.17 19979.64 20498.83 10276.20 19691.45 16793.51 12995.04 17995.68 19093.70 20197.96 20198.53 184
DTE-MVSNet92.42 18992.85 20091.91 16790.87 20696.97 20494.53 18689.81 14495.86 20681.59 17288.83 18777.88 21695.01 18094.34 20496.35 15199.64 11699.73 76
pm-mvs194.27 15395.57 15792.75 15292.58 16898.13 16394.87 17390.71 13396.70 19083.78 15589.94 17889.85 14894.96 18197.58 14097.07 13199.61 12499.72 87
pmnet_mix0292.44 18694.68 16989.83 19692.46 17197.65 18289.92 21090.49 13698.76 11473.05 20991.78 16590.08 14694.86 18294.53 20291.94 20998.21 19998.01 196
PM-MVS89.55 20490.30 20988.67 20087.06 21395.60 21290.88 20384.51 19296.14 19875.75 19786.89 20263.47 22494.64 18396.85 16293.89 19999.17 18699.29 156
FC-MVSNet-test96.07 11897.94 9193.89 12993.60 16198.67 13296.62 13990.30 13998.76 11488.62 12795.57 13497.63 8194.48 18497.97 11897.48 12199.71 7499.52 135
WR-MVS_H93.54 16694.67 17092.22 15691.95 18097.91 17094.58 18488.75 15796.64 19183.88 15490.66 17485.13 17994.40 18596.54 16895.91 16799.73 5799.89 10
GA-MVS93.93 16196.31 14891.16 18193.61 16098.79 11995.39 16390.69 13498.25 14173.28 20796.15 12088.42 15494.39 18697.76 13095.35 17699.58 14299.45 146
TransMVSNet (Re)93.45 16794.08 18092.72 15392.83 16597.62 18694.94 16991.54 11695.65 20783.06 16388.93 18683.53 18794.25 18797.41 14597.03 13299.67 10398.40 190
UGNet97.66 6899.07 4496.01 9997.19 8399.65 2297.09 12993.39 8999.35 3194.40 7498.79 4999.59 5594.24 18898.04 11498.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs691.90 19692.53 20391.17 18091.81 18597.63 18393.23 19388.37 16393.43 21580.61 17677.32 21687.47 15694.12 18996.58 16695.72 17098.88 19299.53 132
EPNet_dtu96.30 11298.53 6593.70 13598.97 5198.24 15997.36 11594.23 7398.85 9779.18 18699.19 2298.47 7194.09 19097.89 12398.21 8698.39 19698.85 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net97.13 8599.14 3994.78 11597.21 8299.38 7897.56 11092.04 10498.48 13088.03 13198.39 6699.91 3294.03 19199.33 2599.23 1899.81 2199.25 160
pmmvs-eth3d89.81 20389.65 21090.00 19386.94 21495.38 21391.08 20186.39 18094.57 21182.27 16983.03 21164.94 22193.96 19296.57 16793.82 20099.35 17699.24 161
WR-MVS93.43 16994.48 17392.21 15791.52 19697.69 17894.66 18289.98 14196.86 18583.43 15990.12 17685.03 18093.94 19396.02 18595.82 16899.71 7499.82 28
CVMVSNet95.33 13497.09 12093.27 14795.23 13798.39 15395.49 16092.58 10097.71 16583.00 16494.44 14493.28 13193.92 19497.79 12798.54 6599.41 17199.45 146
N_pmnet92.21 19494.60 17189.42 19891.88 18297.38 19989.15 21289.74 14797.89 15773.75 20587.94 19592.23 13693.85 19596.10 18293.20 20398.15 20097.43 201
v7n91.61 19792.95 19890.04 19290.56 20797.69 17893.74 19285.59 18495.89 20576.95 19386.60 20378.60 21593.76 19697.01 15994.99 18699.65 11299.87 16
Vis-MVSNetpermissive96.16 11698.22 7893.75 13295.33 13699.70 1797.27 11990.85 12798.30 13885.51 14995.72 13196.45 9193.69 19798.70 7199.00 3399.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051594.61 14896.89 12791.95 16592.00 17998.47 14592.01 20090.73 13298.18 14383.96 15294.51 14295.13 11093.38 19897.38 14694.74 19499.61 12499.79 42
new_pmnet90.45 20292.84 20187.66 20288.96 21196.16 21088.71 21384.66 19097.56 16771.91 21385.60 20686.58 16793.28 19996.07 18393.54 20298.46 19494.39 215
pmmvs388.19 20791.27 20684.60 21085.60 21693.66 21785.68 21781.13 19892.36 21763.66 22289.51 18077.10 21793.22 20096.37 17392.40 20598.30 19897.46 200
EG-PatchMatch MVS92.45 18593.92 18690.72 18792.56 16998.43 15094.88 17284.54 19197.18 17679.55 18486.12 20583.23 19093.15 20197.22 15396.00 16299.67 10399.27 159
v14892.36 19292.88 19991.75 17091.63 19297.66 18092.64 19790.55 13596.09 19983.34 16088.19 19180.00 20792.74 20293.98 20594.58 19599.58 14299.69 96
MDA-MVSNet-bldmvs87.84 20889.22 21186.23 20681.74 21896.77 20783.74 21889.57 14994.50 21272.83 21196.64 10964.47 22392.71 20381.43 21892.28 20796.81 21498.47 186
DeepMVS_CXcopyleft96.85 20587.43 21589.27 15198.30 13875.55 20095.05 13679.47 21192.62 20489.48 21495.18 21995.96 212
CMPMVSbinary70.31 1890.74 19991.06 20790.36 19197.32 7897.43 19692.97 19587.82 17093.50 21475.34 20283.27 21084.90 18192.19 20592.64 20991.21 21396.50 21694.46 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet92.80 17894.76 16890.51 18891.88 18296.74 20892.48 19888.69 15896.21 19679.00 18791.51 16687.82 15591.83 20695.87 18896.27 15399.21 18398.92 178
MIMVSNet188.61 20690.68 20886.19 20781.56 21995.30 21587.78 21485.98 18394.19 21372.30 21278.84 21578.90 21490.06 20796.59 16595.47 17399.46 16495.49 213
new-patchmatchnet86.12 21087.30 21284.74 20986.92 21595.19 21683.57 21984.42 19392.67 21665.66 21780.32 21364.72 22289.41 20892.33 21289.21 21498.43 19596.69 209
test_method87.27 20991.58 20582.25 21275.65 22387.52 22286.81 21672.60 22197.51 16873.20 20885.07 20779.97 20888.69 20997.31 14995.24 17996.53 21598.41 187
TDRefinement93.04 17493.57 19192.41 15496.58 9398.77 12297.78 10391.96 10798.12 14680.84 17589.13 18479.87 21087.78 21096.44 16994.50 19699.54 15598.15 192
Gipumacopyleft81.40 21281.78 21480.96 21483.21 21785.61 22379.73 22176.25 21997.33 17364.21 22155.32 22055.55 22586.04 21192.43 21192.20 20896.32 21793.99 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120690.70 20093.93 18586.92 20590.21 21096.79 20690.30 20786.61 17996.05 20169.25 21488.46 19084.86 18285.86 21297.11 15796.47 14999.30 17997.80 198
test20.0390.65 20193.71 18987.09 20390.44 20896.24 20989.74 21185.46 18595.59 20872.99 21090.68 17385.33 17784.41 21395.94 18795.10 18499.52 15897.06 206
IB-MVS93.96 1595.02 13896.44 14593.36 14597.05 8699.28 9490.43 20593.39 8998.02 14996.02 4294.92 13992.07 13783.52 21495.38 19195.82 16899.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc80.99 21580.04 22190.84 21890.91 20296.09 19974.18 20462.81 21930.59 23082.44 21596.25 18091.77 21095.91 21898.56 183
FPMVS83.82 21184.61 21382.90 21190.39 20990.71 21990.85 20484.10 19495.47 20965.15 21883.44 20974.46 21975.48 21681.63 21779.42 21991.42 22187.14 219
EMVS68.12 21768.11 21968.14 21875.51 22471.76 22555.38 22777.20 21677.78 22237.79 22753.59 22143.61 22774.72 21767.05 22276.70 22188.27 22486.24 220
E-PMN68.30 21668.43 21868.15 21774.70 22571.56 22655.64 22677.24 21577.48 22339.46 22651.95 22341.68 22873.28 21870.65 22179.51 21888.61 22386.20 221
MVEpermissive67.97 1965.53 21867.43 22063.31 21959.33 22674.20 22453.09 22870.43 22266.27 22443.13 22545.98 22430.62 22970.65 21979.34 22086.30 21683.25 22589.33 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS277.26 21379.47 21674.70 21676.00 22288.37 22174.22 22376.34 21778.31 22154.13 22469.96 21852.50 22670.14 22084.83 21688.71 21597.35 20893.58 217
tmp_tt82.25 21297.73 7288.71 22080.18 22068.65 22399.15 5986.98 13999.47 1085.31 17868.35 22187.51 21583.81 21791.64 220
PMVScopyleft72.60 1776.39 21477.66 21774.92 21581.04 22069.37 22768.47 22480.54 20185.39 22065.07 21973.52 21772.91 22065.67 22280.35 21976.81 22088.71 22285.25 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21940.15 22120.86 22112.61 22717.99 22825.16 22913.30 22448.42 22524.82 22853.07 22230.13 23128.47 22342.73 22337.65 22220.79 22651.04 223
test12326.75 22034.25 22218.01 2227.93 22817.18 22924.85 23012.36 22544.83 22616.52 22941.80 22518.10 23228.29 22433.08 22434.79 22318.10 22749.95 224
GG-mvs-BLEND69.11 21598.13 8235.26 2203.49 22998.20 16194.89 1712.38 22698.42 1335.82 23096.37 11798.60 685.97 22598.75 6897.98 9799.01 18998.61 182
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def69.05 215
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
our_test_392.30 17397.58 18890.09 209
MTAPA98.09 1699.97 8
MTMP98.46 1199.96 13
Patchmatch-RL test66.86 225
XVS97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVStestdata97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
mPP-MVS99.53 3199.89 35
NP-MVS98.57 124
Patchmtry98.59 13897.15 12579.14 20880.42 178