This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5899.77 53
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8399.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 87
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6899.76 58
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 69
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8999.76 58
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6899.73 73
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 11099.69 93
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8999.75 65
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 69
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8699.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9999.64 11099.36 147
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7799.74 69
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6899.73 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 53
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11799.76 58
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 8099.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 129
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12198.92 3499.78 2899.90 3
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7499.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 133
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7899.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11799.58 116
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 8099.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 99
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 103
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 106
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 11099.66 103
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9199.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10699.52 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 110
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 116
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 89
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9399.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15499.17 157
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7799.77 53
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9299.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13999.07 164
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8399.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10299.48 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres600view796.69 9596.43 13997.00 6996.28 9599.67 1298.41 6993.99 7197.85 15394.29 6995.96 11985.91 16799.19 3898.26 8997.63 10699.82 1099.73 73
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 8099.42 141
thres40096.71 9496.45 13797.02 6696.28 9599.63 2598.41 6994.00 7097.82 15494.42 6695.74 12586.26 16499.18 4098.20 9397.79 10299.81 1699.70 89
thres20096.76 9096.53 13097.03 6496.31 9299.67 1298.37 7293.99 7197.68 15994.49 6395.83 12486.77 15799.18 4098.26 8997.82 10099.82 1099.66 103
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11299.71 6899.76 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13799.16 4397.66 12899.05 2499.76 3599.90 3
tfpn200view996.75 9196.51 13297.03 6496.31 9299.67 1298.41 6993.99 7197.35 16494.52 6195.90 12186.93 15599.14 4498.26 8997.80 10199.82 1099.70 89
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 23
Skip Steuart: Steuart Systems R&D Blog.
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9399.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9799.14 161
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7599.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 116
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 133
thres100view90096.72 9396.47 13597.00 6996.31 9299.52 5398.28 7894.01 6997.35 16494.52 6195.90 12186.93 15599.09 4998.07 10297.87 9799.81 1699.63 112
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13599.82 24
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12599.58 116
HyFIR lowres test95.99 11296.56 12895.32 10497.99 6799.65 1796.54 13388.86 14998.44 12589.77 11984.14 20197.05 8499.03 5298.55 7798.19 8299.73 5199.86 15
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7598.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12297.45 11799.57 13998.89 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 8099.57 121
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13192.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 31
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 31
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9893.22 8898.98 7892.64 9694.97 13291.71 13598.93 5798.62 6998.52 6099.82 1099.72 84
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16398.92 5899.22 2798.84 4199.76 3599.56 122
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 122
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9993.71 7998.47 12495.75 4298.78 4593.20 12998.91 6098.52 7998.44 6299.81 1699.53 126
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 39
Anonymous2023121197.10 8197.06 11897.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16394.58 11498.90 6197.72 12698.10 8799.71 6899.75 65
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9997.85 9899.68 8999.15 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13593.55 14594.41 11598.88 6498.04 10798.24 7999.75 3999.76 58
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10897.65 10191.68 10598.00 14397.01 3197.72 8194.83 10998.85 6598.44 8498.86 3999.41 16499.52 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+95.38 12596.52 13194.05 12194.15 14499.14 9897.24 11486.79 16998.53 12087.62 12994.51 13787.06 15298.76 6698.60 7398.04 9099.72 5899.77 53
abl_698.09 4099.33 4299.22 9398.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 8099.41 142
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11599.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11598.11 8699.40 16699.28 150
Effi-MVS+95.81 11597.31 11294.06 12095.09 13299.35 7897.24 11488.22 15898.54 11985.38 14398.52 5588.68 14798.70 6898.32 8797.93 9299.74 4499.84 19
TSAR-MVS + COLMAP96.79 8996.55 12997.06 6297.70 7098.46 13999.07 4596.23 4499.38 2391.32 11098.80 4385.61 16998.69 7097.64 13196.92 12999.37 16899.06 165
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10493.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18399.48 137
ET-MVSNet_ETH3D96.17 10896.99 12095.21 10588.53 20598.54 13498.28 7892.61 9498.85 9093.60 8399.06 3290.39 13998.63 7395.98 17996.68 13499.61 11799.41 142
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8798.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10299.78 45
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14898.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9698.44 6299.76 3599.87 12
GeoE95.98 11497.24 11494.51 11395.02 13499.38 7198.02 9187.86 16398.37 12887.86 12792.99 15793.54 12498.56 7698.61 7097.92 9399.73 5199.85 18
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 8098.06 9093.22 8899.43 2192.30 10296.90 9889.83 14598.55 7798.00 11098.14 8399.64 11099.70 89
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12297.80 9593.05 9398.76 10794.39 6899.07 3197.03 8598.55 7798.31 8897.61 10799.43 16199.21 156
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10198.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7996.61 15795.43 16797.74 19697.93 190
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 8099.09 3599.42 599.83 899.80 31
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8997.06 12494.09 6898.72 11195.14 5298.47 5896.29 9198.43 8198.65 6697.44 11899.45 15898.94 167
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8298.88 5198.99 2999.74 4499.86 15
CHOSEN 1792x268896.41 10296.99 12095.74 9998.01 6699.72 697.70 10090.78 12499.13 6090.03 11687.35 19195.36 10398.33 8398.59 7598.91 3699.59 13199.87 12
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12693.23 8699.17 5192.60 9898.75 4896.19 9398.17 8498.19 9496.10 15399.72 5899.77 53
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12793.23 8699.15 5292.56 9998.74 4996.12 9698.17 8498.21 9296.10 15399.73 5199.78 45
ACMM96.26 996.67 9796.69 12696.66 7597.29 7898.46 13996.48 13695.09 5199.21 4693.19 8898.78 4586.73 15898.17 8497.84 11996.32 14599.74 4499.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet195.77 11696.41 14095.03 10693.42 15697.86 16597.11 12189.89 13798.53 12092.00 10589.17 17593.23 12898.15 8798.07 10298.34 7299.61 11799.69 93
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8898.05 10697.91 9599.74 4499.73 73
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8998.82 5498.87 3899.81 1699.89 6
OPM-MVS96.22 10795.85 14896.65 7697.75 6898.54 13499.00 5095.53 4796.88 17789.88 11795.95 12086.46 16298.07 9097.65 13096.63 13699.67 9798.83 174
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
CLD-MVS96.74 9296.51 13297.01 6896.71 8698.62 12898.73 6094.38 6498.94 8294.46 6497.33 8587.03 15398.07 9097.20 14796.87 13099.72 5899.54 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline97.45 7298.70 5995.99 9495.89 10599.36 7598.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9498.60 7398.60 5599.42 16399.86 15
test_part195.56 12095.38 15295.78 9696.07 9998.16 15597.57 10290.78 12497.43 16393.04 9189.12 17889.41 14697.93 9596.38 16597.38 12199.29 17399.78 45
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9699.06 3899.52 199.82 1099.79 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net96.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
test196.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
FMVSNet296.64 9897.50 9795.63 10293.81 14997.98 15898.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9798.63 6898.80 4699.68 8999.67 99
MDTV_nov1_ep1395.57 11997.48 9993.35 13995.43 12698.97 10597.19 11783.72 18998.92 8587.91 12697.75 7996.12 9697.88 10096.84 15695.64 16597.96 19498.10 186
UniMVSNet_ETH3D93.15 16492.33 19794.11 11993.91 14698.61 13094.81 16890.98 11997.06 17387.51 13082.27 20576.33 21197.87 10194.79 19497.47 11699.56 14299.81 29
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18397.15 11889.19 14799.08 6588.23 12294.97 13294.73 11197.84 10297.86 11898.26 7899.60 12599.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train96.23 10696.89 12295.46 10397.32 7598.77 11598.81 5893.60 8098.58 11685.52 14199.08 3086.67 15997.83 10397.87 11797.51 11199.69 8099.73 73
SCA94.95 13297.44 10292.04 15495.55 12199.16 9696.26 14179.30 20099.02 7485.73 14098.18 6797.13 8397.69 10496.03 17794.91 18197.69 19997.65 192
HQP-MVS96.37 10396.58 12796.13 8997.31 7798.44 14198.45 6895.22 5098.86 8888.58 12198.33 6487.00 15497.67 10597.23 14596.56 13999.56 14299.62 113
FMVSNet397.02 8398.12 7995.73 10093.59 15597.98 15898.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10698.61 7098.62 5399.61 11799.65 106
CostFormer94.25 14894.88 15893.51 13495.43 12698.34 14996.21 14280.64 19397.94 14894.01 7298.30 6586.20 16697.52 10792.71 20192.69 19797.23 20598.02 188
FMVSNet595.42 12396.47 13594.20 11792.26 16895.99 20495.66 14987.15 16797.87 15193.46 8596.68 10393.79 12397.52 10797.10 15197.21 12499.11 18096.62 204
EPMVS95.05 13096.86 12492.94 14495.84 10798.96 10696.68 12979.87 19699.05 7190.15 11497.12 9395.99 9897.49 10995.17 18894.75 18697.59 20096.96 200
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14496.53 13593.42 8299.04 7393.02 9298.03 7294.32 11797.47 11097.93 11397.77 10399.75 3999.88 10
CANet_DTU96.64 9899.08 3993.81 12497.10 8299.42 6698.85 5690.01 13499.31 3179.98 17599.78 299.10 6097.42 11198.35 8698.05 8999.47 15699.53 126
PatchmatchNetpermissive94.70 13797.08 11791.92 15995.53 12298.85 11095.77 14779.54 19898.95 7985.98 13798.52 5596.45 8797.39 11295.32 18594.09 19197.32 20297.38 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 15695.88 14691.50 16695.69 11498.62 12895.64 15079.41 19998.80 10083.76 15095.63 12896.13 9597.25 11392.92 20092.31 19997.27 20396.74 201
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8396.28 14097.47 3999.58 894.70 5998.99 3399.85 4097.24 11499.55 1099.34 997.73 19899.56 122
ACMP96.25 1096.62 10096.72 12596.50 8396.96 8498.75 11997.80 9594.30 6698.85 9093.12 8998.78 4586.61 16097.23 11597.73 12596.61 13799.62 11599.71 87
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet94.65 13997.04 11991.88 16295.68 11598.99 10395.89 14579.03 20399.15 5285.81 13996.96 9598.21 7297.10 11694.48 19694.24 19097.74 19697.21 196
tfpnnormal93.85 15794.12 17293.54 13393.22 15798.24 15295.45 15491.96 10194.61 20383.91 14690.74 16581.75 19397.04 11797.49 13696.16 15199.68 8999.84 19
ACMH95.42 1495.27 12895.96 14494.45 11596.83 8598.78 11494.72 17191.67 10698.95 7986.82 13496.42 11283.67 18097.00 11897.48 13796.68 13499.69 8099.76 58
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+95.51 1395.40 12496.00 14294.70 11096.33 9098.79 11296.79 12891.32 11498.77 10687.18 13195.60 12985.46 17096.97 11997.15 14896.59 13899.59 13199.65 106
MIMVSNet94.49 14597.59 9690.87 17991.74 18098.70 12494.68 17378.73 20597.98 14483.71 15197.71 8294.81 11096.96 12097.97 11197.92 9399.40 16698.04 187
RPMNet94.66 13897.16 11591.75 16394.98 13598.59 13197.00 12578.37 20797.98 14483.78 14896.27 11494.09 12296.91 12197.36 14096.73 13299.48 15499.09 163
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13798.63 6392.10 9798.68 11295.96 4199.23 1891.79 13496.87 12298.76 5997.37 12299.57 13999.68 98
CR-MVSNet94.57 14497.34 10791.33 17094.90 13698.59 13197.15 11879.14 20197.98 14480.42 17196.59 10993.50 12696.85 12398.10 9797.49 11399.50 15399.15 158
PatchT93.96 15397.36 10690.00 18694.76 14098.65 12690.11 20178.57 20697.96 14780.42 17196.07 11794.10 12196.85 12398.10 9797.49 11399.26 17599.15 158
USDC94.26 14794.83 15993.59 13096.02 10098.44 14197.84 9388.65 15398.86 8882.73 16094.02 14180.56 19696.76 12597.28 14496.15 15299.55 14498.50 178
Effi-MVS+-dtu95.74 11798.04 8293.06 14293.92 14599.16 9697.90 9288.16 16099.07 7082.02 16398.02 7394.32 11796.74 12698.53 7897.56 10999.61 11799.62 113
IterMVS-SCA-FT94.89 13497.87 8991.42 16794.86 13897.70 16997.24 11484.88 18398.93 8375.74 19194.26 14098.25 7096.69 12798.52 7997.68 10599.10 18199.73 73
TinyColmap94.00 15194.35 16893.60 12995.89 10598.26 15097.49 10588.82 15098.56 11883.21 15491.28 16280.48 19896.68 12897.34 14196.26 14899.53 15098.24 184
pmmvs495.09 12995.90 14594.14 11892.29 16797.70 16995.45 15490.31 13198.60 11490.70 11293.25 15089.90 14396.67 12997.13 14995.42 16899.44 16099.28 150
IterMVS94.81 13697.71 9291.42 16794.83 13997.63 17697.38 10785.08 18098.93 8375.67 19294.02 14197.64 7696.66 13098.45 8297.60 10898.90 18499.72 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB93.20 1692.84 16994.92 15690.43 18392.83 15898.63 12797.08 12387.87 16297.91 14968.42 20993.54 14679.46 20596.62 13197.55 13497.40 12099.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet94.59 14295.47 15193.55 13291.85 17797.89 16495.03 15992.00 9997.33 16686.12 13593.19 15187.29 15196.60 13296.12 17496.70 13399.72 5899.80 31
DU-MVS93.98 15294.44 16793.44 13591.66 18297.77 16695.03 15991.57 10897.17 17086.12 13593.13 15381.13 19596.60 13295.10 19097.01 12899.67 9799.80 31
tpm92.38 18394.79 16089.56 19094.30 14397.50 18694.24 18378.97 20497.72 15774.93 19697.97 7482.91 18596.60 13293.65 19994.81 18598.33 19098.98 166
SixPastTwentyTwo93.44 16195.32 15491.24 17292.11 17098.40 14592.77 18988.64 15498.09 14077.83 18493.51 14785.74 16896.52 13596.91 15494.89 18499.59 13199.73 73
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14493.75 7799.26 4093.38 8693.73 14499.35 5696.47 13698.96 4298.46 6199.77 3399.90 3
baseline296.36 10497.82 9094.65 11194.60 14199.09 9996.45 13789.63 14298.36 12991.29 11197.60 8494.13 12096.37 13798.45 8297.70 10499.54 14899.41 142
Baseline_NR-MVSNet93.87 15593.98 17793.75 12591.66 18297.02 19695.53 15291.52 11197.16 17287.77 12887.93 18983.69 17996.35 13895.10 19097.23 12399.68 8999.73 73
dps94.63 14095.31 15593.84 12395.53 12298.71 12396.54 13380.12 19597.81 15697.21 2896.98 9492.37 13096.34 13992.46 20391.77 20397.26 20497.08 198
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14298.96 10697.46 10691.75 10397.86 15290.07 11596.02 11897.25 8296.21 14098.04 10798.38 6799.60 12599.65 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS95.53 12196.50 13494.39 11693.86 14899.03 10096.67 13089.55 14497.33 16690.64 11393.02 15691.58 13696.21 14097.72 12697.43 11999.43 16199.36 147
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11897.27 11286.97 16899.09 6389.83 11893.51 14797.78 7596.18 14297.53 13595.71 16499.35 16998.41 180
TranMVSNet+NR-MVSNet93.67 15894.14 17093.13 14191.28 19697.58 18195.60 15191.97 10097.06 17384.05 14490.64 16882.22 19096.17 14394.94 19396.78 13199.69 8099.78 45
CP-MVSNet93.25 16394.00 17692.38 14891.65 18497.56 18394.38 18089.20 14696.05 19483.16 15589.51 17381.97 19196.16 14496.43 16396.56 13999.71 6899.89 6
UniMVSNet (Re)94.58 14395.34 15393.71 12792.25 16998.08 15794.97 16191.29 11897.03 17587.94 12593.97 14386.25 16596.07 14596.27 17195.97 15899.72 5899.79 39
tpm cat194.06 14994.90 15793.06 14295.42 12898.52 13696.64 13180.67 19297.82 15492.63 9793.39 14995.00 10796.06 14691.36 20691.58 20596.98 20696.66 203
v2v48292.77 17393.52 18791.90 16191.59 18797.63 17694.57 17890.31 13196.80 18179.22 17888.74 18181.55 19496.04 14795.26 18694.97 18099.66 10299.69 93
testgi95.67 11897.48 9993.56 13195.07 13399.00 10195.33 15788.47 15598.80 10086.90 13397.30 8792.33 13195.97 14897.66 12897.91 9599.60 12599.38 146
PS-CasMVS92.72 17493.36 18891.98 15791.62 18697.52 18594.13 18488.98 14895.94 19781.51 16687.35 19179.95 20295.91 14996.37 16696.49 14199.70 7799.89 6
v119292.43 18193.61 18391.05 17591.53 18897.43 18994.61 17687.99 16196.60 18576.72 18787.11 19382.74 18895.85 15096.35 16895.30 17199.60 12599.74 69
v192192092.36 18593.57 18490.94 17791.39 19297.39 19194.70 17287.63 16596.60 18576.63 18886.98 19482.89 18695.75 15196.26 17295.14 17699.55 14499.73 73
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10395.86 14690.82 12298.38 12792.54 10096.66 10497.33 7995.75 15197.75 12498.34 7299.60 12599.40 145
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9493.22 8898.82 9791.40 10996.94 9698.56 6695.70 15399.14 3399.41 699.79 2599.75 65
gm-plane-assit89.44 19892.82 19585.49 20191.37 19395.34 20779.55 21582.12 19091.68 21164.79 21387.98 18780.26 19995.66 15498.51 8197.56 10999.45 15898.41 180
v1092.79 17294.06 17491.31 17191.78 17997.29 19594.87 16686.10 17696.97 17679.82 17688.16 18584.56 17795.63 15596.33 16995.31 17099.65 10699.80 31
Fast-Effi-MVS+-dtu95.38 12598.20 7592.09 15393.91 14698.87 10997.35 10985.01 18299.08 6581.09 16798.10 6996.36 9095.62 15698.43 8597.03 12699.55 14499.50 135
PEN-MVS92.72 17493.20 19092.15 15291.29 19497.31 19394.67 17489.81 13896.19 19081.83 16488.58 18279.06 20695.61 15795.21 18796.27 14699.72 5899.82 24
pmmvs592.71 17694.27 16990.90 17891.42 19197.74 16893.23 18686.66 17295.99 19678.96 18191.45 16083.44 18295.55 15897.30 14395.05 17899.58 13598.93 168
test-LLR95.50 12297.32 10993.37 13795.49 12498.74 12096.44 13890.82 12298.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
TESTMET0.1,194.95 13297.32 10992.20 15192.62 16098.74 12096.44 13886.67 17198.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
v892.87 16893.87 18191.72 16592.05 17197.50 18694.79 16988.20 15996.85 17980.11 17490.01 17082.86 18795.48 16195.15 18994.90 18299.66 10299.80 31
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16198.59 7598.55 5799.29 17399.84 19
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter94.86 13597.32 10992.00 15692.41 16598.82 11196.18 14386.35 17598.05 14182.28 16196.48 11194.39 11695.46 16398.17 9596.20 14999.32 17199.13 162
v114492.81 17094.03 17591.40 16991.68 18197.60 18094.73 17088.40 15696.71 18278.48 18288.14 18684.46 17895.45 16496.31 17095.22 17399.65 10699.76 58
V4293.05 16693.90 18092.04 15491.91 17497.66 17394.91 16389.91 13696.85 17980.58 17089.66 17283.43 18395.37 16595.03 19294.90 18299.59 13199.78 45
v14419292.38 18393.55 18691.00 17691.44 19097.47 18894.27 18187.41 16696.52 18778.03 18387.50 19082.65 18995.32 16695.82 18295.15 17599.55 14499.78 45
v124091.99 18893.33 18990.44 18291.29 19497.30 19494.25 18286.79 16996.43 18875.49 19486.34 19781.85 19295.29 16796.42 16495.22 17399.52 15199.73 73
NR-MVSNet94.01 15094.51 16593.44 13592.56 16297.77 16695.67 14891.57 10897.17 17085.84 13893.13 15380.53 19795.29 16797.01 15296.17 15099.69 8099.75 65
anonymousdsp93.12 16595.86 14789.93 18891.09 19798.25 15195.12 15885.08 18097.44 16273.30 19990.89 16490.78 13895.25 16997.91 11495.96 15999.71 6899.82 24
gg-mvs-nofinetune90.85 19194.14 17087.02 19794.89 13799.25 8998.64 6276.29 21188.24 21257.50 21679.93 20795.45 10295.18 17098.77 5898.07 8899.62 11599.24 154
MVS-HIRNet92.51 17795.97 14388.48 19493.73 15298.37 14790.33 19975.36 21398.32 13077.78 18589.15 17694.87 10895.14 17197.62 13296.39 14398.51 18697.11 197
MDTV_nov1_ep13_2view92.44 17995.66 14988.68 19291.05 19897.92 16292.17 19279.64 19798.83 9576.20 18991.45 16093.51 12595.04 17295.68 18393.70 19497.96 19498.53 177
DTE-MVSNet92.42 18292.85 19391.91 16090.87 19996.97 19794.53 17989.81 13895.86 19981.59 16588.83 18077.88 20995.01 17394.34 19796.35 14499.64 11099.73 73
pm-mvs194.27 14695.57 15092.75 14592.58 16198.13 15694.87 16690.71 12796.70 18383.78 14889.94 17189.85 14494.96 17497.58 13397.07 12599.61 11799.72 84
pmnet_mix0292.44 17994.68 16289.83 18992.46 16497.65 17589.92 20390.49 13098.76 10773.05 20291.78 15890.08 14294.86 17594.53 19591.94 20298.21 19298.01 189
PM-MVS89.55 19790.30 20288.67 19387.06 20695.60 20590.88 19684.51 18696.14 19175.75 19086.89 19563.47 21794.64 17696.85 15593.89 19299.17 17999.29 149
FC-MVSNet-test96.07 11197.94 8793.89 12293.60 15498.67 12596.62 13290.30 13398.76 10788.62 12095.57 13097.63 7794.48 17797.97 11197.48 11599.71 6899.52 129
WR-MVS_H93.54 15994.67 16392.22 14991.95 17397.91 16394.58 17788.75 15196.64 18483.88 14790.66 16785.13 17394.40 17896.54 16195.91 16099.73 5199.89 6
GA-MVS93.93 15496.31 14191.16 17493.61 15398.79 11295.39 15690.69 12898.25 13473.28 20096.15 11688.42 14894.39 17997.76 12395.35 16999.58 13599.45 139
TransMVSNet (Re)93.45 16094.08 17392.72 14692.83 15897.62 17994.94 16291.54 11095.65 20083.06 15688.93 17983.53 18194.25 18097.41 13897.03 12699.67 9798.40 183
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12293.39 8399.35 2894.40 6798.79 4499.59 5394.24 18198.04 10798.29 7799.73 5199.80 31
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs691.90 18992.53 19691.17 17391.81 17897.63 17693.23 18688.37 15793.43 20880.61 16977.32 20987.47 15094.12 18296.58 15995.72 16398.88 18599.53 126
EPNet_dtu96.30 10598.53 6293.70 12898.97 5098.24 15297.36 10894.23 6798.85 9079.18 17999.19 1998.47 6794.09 18397.89 11698.21 8098.39 18998.85 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10392.04 9898.48 12388.03 12498.39 6299.91 3194.03 18499.33 2399.23 1799.81 1699.25 153
pmmvs-eth3d89.81 19689.65 20390.00 18686.94 20795.38 20691.08 19486.39 17494.57 20482.27 16283.03 20464.94 21493.96 18596.57 16093.82 19399.35 16999.24 154
WR-MVS93.43 16294.48 16692.21 15091.52 18997.69 17194.66 17589.98 13596.86 17883.43 15290.12 16985.03 17493.94 18696.02 17895.82 16199.71 6899.82 24
CVMVSNet95.33 12797.09 11693.27 14095.23 13098.39 14695.49 15392.58 9597.71 15883.00 15794.44 13993.28 12793.92 18797.79 12098.54 5999.41 16499.45 139
N_pmnet92.21 18794.60 16489.42 19191.88 17597.38 19289.15 20589.74 14197.89 15073.75 19887.94 18892.23 13293.85 18896.10 17593.20 19698.15 19397.43 194
v7n91.61 19092.95 19190.04 18590.56 20097.69 17193.74 18585.59 17895.89 19876.95 18686.60 19678.60 20893.76 18997.01 15294.99 17999.65 10699.87 12
Vis-MVSNetpermissive96.16 10998.22 7493.75 12595.33 12999.70 1197.27 11290.85 12198.30 13185.51 14295.72 12796.45 8793.69 19098.70 6499.00 2899.84 599.69 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051594.61 14196.89 12291.95 15892.00 17298.47 13892.01 19390.73 12698.18 13683.96 14594.51 13795.13 10693.38 19197.38 13994.74 18799.61 11799.79 39
new_pmnet90.45 19592.84 19487.66 19588.96 20496.16 20388.71 20684.66 18497.56 16071.91 20685.60 19986.58 16193.28 19296.07 17693.54 19598.46 18794.39 208
pmmvs388.19 20091.27 19984.60 20385.60 20993.66 21085.68 21081.13 19192.36 21063.66 21589.51 17377.10 21093.22 19396.37 16692.40 19898.30 19197.46 193
EG-PatchMatch MVS92.45 17893.92 17990.72 18092.56 16298.43 14394.88 16584.54 18597.18 16979.55 17786.12 19883.23 18493.15 19497.22 14696.00 15599.67 9799.27 152
v14892.36 18592.88 19291.75 16391.63 18597.66 17392.64 19090.55 12996.09 19283.34 15388.19 18480.00 20092.74 19593.98 19894.58 18899.58 13599.69 93
MDA-MVSNet-bldmvs87.84 20189.22 20486.23 19981.74 21196.77 20083.74 21189.57 14394.50 20572.83 20496.64 10564.47 21692.71 19681.43 21192.28 20096.81 20798.47 179
DeepMVS_CXcopyleft96.85 19887.43 20889.27 14598.30 13175.55 19395.05 13179.47 20492.62 19789.48 20795.18 21295.96 205
CMPMVSbinary70.31 1890.74 19291.06 20090.36 18497.32 7597.43 18992.97 18887.82 16493.50 20775.34 19583.27 20384.90 17592.19 19892.64 20291.21 20696.50 20994.46 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet92.80 17194.76 16190.51 18191.88 17596.74 20192.48 19188.69 15296.21 18979.00 18091.51 15987.82 14991.83 19995.87 18196.27 14699.21 17698.92 171
MIMVSNet188.61 19990.68 20186.19 20081.56 21295.30 20887.78 20785.98 17794.19 20672.30 20578.84 20878.90 20790.06 20096.59 15895.47 16699.46 15795.49 206
new-patchmatchnet86.12 20387.30 20584.74 20286.92 20895.19 20983.57 21284.42 18792.67 20965.66 21080.32 20664.72 21589.41 20192.33 20589.21 20798.43 18896.69 202
test_method87.27 20291.58 19882.25 20575.65 21687.52 21586.81 20972.60 21497.51 16173.20 20185.07 20079.97 20188.69 20297.31 14295.24 17296.53 20898.41 180
TDRefinement93.04 16793.57 18492.41 14796.58 8798.77 11597.78 9791.96 10198.12 13980.84 16889.13 17779.87 20387.78 20396.44 16294.50 18999.54 14898.15 185
Gipumacopyleft81.40 20581.78 20780.96 20783.21 21085.61 21679.73 21476.25 21297.33 16664.21 21455.32 21355.55 21886.04 20492.43 20492.20 20196.32 21093.99 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120690.70 19393.93 17886.92 19890.21 20396.79 19990.30 20086.61 17396.05 19469.25 20788.46 18384.86 17685.86 20597.11 15096.47 14299.30 17297.80 191
test20.0390.65 19493.71 18287.09 19690.44 20196.24 20289.74 20485.46 17995.59 20172.99 20390.68 16685.33 17184.41 20695.94 18095.10 17799.52 15197.06 199
IB-MVS93.96 1595.02 13196.44 13893.36 13897.05 8399.28 8790.43 19893.39 8398.02 14296.02 3994.92 13492.07 13383.52 20795.38 18495.82 16199.72 5899.59 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc80.99 20880.04 21490.84 21190.91 19596.09 19274.18 19762.81 21230.59 22382.44 20896.25 17391.77 20395.91 21198.56 176
FPMVS83.82 20484.61 20682.90 20490.39 20290.71 21290.85 19784.10 18895.47 20265.15 21183.44 20274.46 21275.48 20981.63 21079.42 21291.42 21487.14 212
EMVS68.12 21068.11 21268.14 21175.51 21771.76 21855.38 22077.20 20977.78 21537.79 22053.59 21443.61 22074.72 21067.05 21576.70 21488.27 21786.24 213
E-PMN68.30 20968.43 21168.15 21074.70 21871.56 21955.64 21977.24 20877.48 21639.46 21951.95 21641.68 22173.28 21170.65 21479.51 21188.61 21686.20 214
MVEpermissive67.97 1965.53 21167.43 21363.31 21259.33 21974.20 21753.09 22170.43 21566.27 21743.13 21845.98 21730.62 22270.65 21279.34 21386.30 20983.25 21889.33 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS277.26 20679.47 20974.70 20976.00 21588.37 21474.22 21676.34 21078.31 21454.13 21769.96 21152.50 21970.14 21384.83 20988.71 20897.35 20193.58 210
tmp_tt82.25 20597.73 6988.71 21380.18 21368.65 21699.15 5286.98 13299.47 985.31 17268.35 21487.51 20883.81 21091.64 213
PMVScopyleft72.60 1776.39 20777.66 21074.92 20881.04 21369.37 22068.47 21780.54 19485.39 21365.07 21273.52 21072.91 21365.67 21580.35 21276.81 21388.71 21585.25 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21240.15 21420.86 21412.61 22017.99 22125.16 22213.30 21748.42 21824.82 22153.07 21530.13 22428.47 21642.73 21637.65 21520.79 21951.04 216
test12326.75 21334.25 21518.01 2157.93 22117.18 22224.85 22312.36 21844.83 21916.52 22241.80 21818.10 22528.29 21733.08 21734.79 21618.10 22049.95 217
GG-mvs-BLEND69.11 20898.13 7835.26 2133.49 22298.20 15494.89 1642.38 21998.42 1265.82 22396.37 11398.60 645.97 21898.75 6197.98 9199.01 18298.61 175
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def69.05 208
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 16697.58 18190.09 202
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 218
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117
Patchmtry98.59 13197.15 11879.14 20180.42 171