DPE-MVS |  | | 88.63 3 | 91.29 3 | 85.53 2 | 90.87 8 | 92.20 3 | 91.98 2 | 76.00 5 | 90.55 7 | 82.09 6 | 93.85 1 | 90.75 1 | 81.25 1 | 88.62 7 | 87.59 13 | 90.96 9 | 95.48 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 88.85 1 | 91.59 2 | 85.67 1 | 90.54 15 | 92.29 2 | 91.71 3 | 76.40 2 | 92.41 2 | 83.24 2 | 92.50 3 | 90.64 3 | 81.10 2 | 89.53 2 | 88.02 7 | 91.00 8 | 95.73 2 |
|
MSP-MVS | | | 88.09 4 | 90.84 4 | 84.88 6 | 90.00 23 | 91.80 5 | 91.63 4 | 75.80 6 | 91.99 3 | 81.23 9 | 92.54 2 | 89.18 5 | 80.89 3 | 87.99 14 | 87.91 8 | 89.70 43 | 94.51 6 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 88.00 5 | 90.50 5 | 85.08 4 | 90.95 7 | 91.58 6 | 92.03 1 | 75.53 12 | 91.15 4 | 80.10 15 | 92.27 4 | 88.34 10 | 80.80 4 | 88.00 13 | 86.99 18 | 91.09 6 | 95.16 5 |
|
DVP-MVS | | | 88.67 2 | 91.62 1 | 85.22 3 | 90.47 17 | 92.36 1 | 90.69 9 | 76.15 3 | 93.08 1 | 82.75 4 | 92.19 5 | 90.71 2 | 80.45 5 | 89.27 5 | 87.91 8 | 90.82 11 | 95.84 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APD-MVS |  | | 86.84 11 | 88.91 13 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 17 | 78.72 19 | 90.68 10 | 86.82 16 | 80.15 6 | 87.13 25 | 86.45 28 | 90.51 20 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 86.88 10 | 89.23 9 | 84.14 13 | 89.78 26 | 88.67 31 | 90.59 10 | 73.46 27 | 88.99 11 | 80.52 13 | 91.26 6 | 88.65 8 | 79.91 7 | 86.96 30 | 86.22 32 | 90.59 18 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 87.09 8 | 88.92 12 | 84.95 5 | 92.61 1 | 87.91 40 | 90.23 15 | 76.06 4 | 88.85 12 | 81.20 10 | 87.33 13 | 87.93 11 | 79.47 8 | 88.59 8 | 88.23 5 | 90.15 34 | 93.60 20 |
|
xxxxxxxxxxxxxcwj | | | 85.35 19 | 85.76 30 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 61.35 116 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
SF-MVS | | | 87.47 7 | 89.70 7 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 88.93 6 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
CNVR-MVS | | | 86.36 13 | 88.19 16 | 84.23 12 | 91.33 4 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 18 | 78.97 18 | 81.19 28 | 86.76 17 | 78.74 11 | 89.30 4 | 88.58 2 | 90.45 26 | 94.33 9 |
|
SD-MVS | | | 86.96 9 | 89.45 8 | 84.05 15 | 90.13 20 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 11 | 89.93 11 | 89.67 4 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MCST-MVS | | | 85.13 23 | 86.62 23 | 83.39 18 | 90.55 14 | 89.82 16 | 89.29 22 | 73.89 23 | 84.38 31 | 76.03 29 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 15 | 86.11 34 | 92.11 1 | 93.29 22 |
|
HFP-MVS | | | 86.15 14 | 87.95 17 | 84.06 14 | 90.80 9 | 89.20 23 | 89.62 20 | 74.26 16 | 87.52 15 | 80.63 12 | 86.82 16 | 84.19 29 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
zzz-MVS | | | 85.71 16 | 86.88 22 | 84.34 11 | 90.54 15 | 87.11 44 | 89.77 18 | 74.17 18 | 88.54 13 | 83.08 3 | 78.60 32 | 86.10 19 | 78.11 15 | 87.80 16 | 87.46 14 | 90.35 29 | 92.56 26 |
|
SMA-MVS |  | | 87.56 6 | 90.17 6 | 84.52 9 | 91.71 2 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 6 | 80.50 14 | 86.59 17 | 88.86 7 | 78.09 16 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 85.34 20 | 86.59 24 | 83.88 16 | 91.48 3 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 21 | 77.94 23 | 76.55 35 | 84.99 25 | 78.07 17 | 88.04 11 | 87.68 11 | 90.46 25 | 93.31 21 |
|
TSAR-MVS + GP. | | | 83.69 30 | 86.58 25 | 80.32 36 | 85.14 55 | 86.96 45 | 84.91 50 | 70.25 42 | 84.71 29 | 73.91 36 | 85.16 21 | 85.63 22 | 77.92 18 | 85.44 41 | 85.71 37 | 89.77 40 | 92.45 27 |
|
MSLP-MVS++ | | | 82.09 37 | 82.66 41 | 81.42 30 | 87.03 44 | 87.22 43 | 85.82 42 | 70.04 43 | 80.30 44 | 78.66 20 | 68.67 67 | 81.04 44 | 77.81 19 | 85.19 46 | 84.88 44 | 89.19 53 | 91.31 37 |
|
ACMMPR | | | 85.52 17 | 87.53 19 | 83.17 22 | 90.13 20 | 89.27 20 | 89.30 21 | 73.97 21 | 86.89 20 | 77.14 25 | 86.09 18 | 83.18 32 | 77.74 20 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 29 | 85.50 31 | 82.85 23 | 90.46 18 | 89.24 21 | 87.83 33 | 74.24 17 | 84.88 26 | 76.23 28 | 75.26 38 | 81.05 43 | 77.62 21 | 88.02 12 | 87.62 12 | 90.69 16 | 92.41 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 78.47 2 | 84.81 26 | 86.03 28 | 83.37 19 | 89.29 32 | 90.38 11 | 88.61 27 | 76.50 1 | 86.25 23 | 77.22 24 | 75.12 39 | 80.28 45 | 77.59 22 | 88.39 9 | 88.17 6 | 91.02 7 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 79.04 1 | 85.30 21 | 88.93 11 | 81.06 32 | 88.77 36 | 90.48 10 | 85.46 46 | 73.08 29 | 90.97 5 | 73.77 37 | 84.81 22 | 85.95 20 | 77.43 23 | 88.22 10 | 87.73 10 | 87.85 79 | 94.34 8 |
|
MP-MVS |  | | 85.50 18 | 87.40 20 | 83.28 20 | 90.65 12 | 89.51 19 | 89.16 24 | 74.11 19 | 83.70 34 | 78.06 22 | 85.54 20 | 84.89 27 | 77.31 24 | 87.40 22 | 87.14 17 | 90.41 27 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SteuartSystems-ACMMP | | | 85.99 15 | 88.31 15 | 83.27 21 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 30 | 75.88 30 | 87.32 14 | 85.04 24 | 77.31 24 | 89.01 6 | 88.46 3 | 91.14 5 | 93.96 11 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 84.74 27 | 86.43 26 | 82.77 24 | 89.48 30 | 88.13 39 | 88.64 26 | 73.93 22 | 84.92 25 | 76.77 26 | 81.94 26 | 83.50 30 | 77.29 26 | 86.92 31 | 86.49 27 | 90.49 21 | 93.14 23 |
|
3Dnovator+ | | 75.73 4 | 82.40 35 | 82.76 40 | 81.97 29 | 88.02 38 | 89.67 17 | 86.60 37 | 71.48 37 | 81.28 43 | 78.18 21 | 64.78 83 | 77.96 51 | 77.13 27 | 87.32 23 | 86.83 21 | 90.41 27 | 91.48 36 |
|
PGM-MVS | | | 84.42 28 | 86.29 27 | 82.23 26 | 90.04 22 | 88.82 27 | 89.23 23 | 71.74 36 | 82.82 37 | 74.61 33 | 84.41 23 | 82.09 35 | 77.03 28 | 87.13 25 | 86.73 24 | 90.73 15 | 92.06 32 |
|
ACMMP_NAP | | | 86.52 12 | 89.01 10 | 83.62 17 | 90.28 19 | 90.09 13 | 90.32 13 | 74.05 20 | 88.32 14 | 79.74 16 | 87.04 15 | 85.59 23 | 76.97 29 | 89.35 3 | 88.44 4 | 90.35 29 | 94.27 10 |
|
AdaColmap |  | | 79.74 47 | 78.62 59 | 81.05 33 | 89.23 33 | 86.06 52 | 84.95 49 | 71.96 34 | 79.39 48 | 75.51 31 | 63.16 89 | 68.84 93 | 76.51 30 | 83.55 57 | 82.85 55 | 88.13 71 | 86.46 75 |
|
CPTT-MVS | | | 81.77 38 | 83.10 39 | 80.21 37 | 85.93 51 | 86.45 50 | 87.72 34 | 70.98 39 | 82.54 39 | 71.53 49 | 74.23 44 | 81.49 40 | 76.31 31 | 82.85 64 | 81.87 61 | 88.79 61 | 92.26 30 |
|
train_agg | | | 84.86 25 | 87.21 21 | 82.11 27 | 90.59 13 | 85.47 55 | 89.81 16 | 73.55 26 | 83.95 32 | 73.30 38 | 89.84 12 | 87.23 14 | 75.61 32 | 86.47 34 | 85.46 39 | 89.78 39 | 92.06 32 |
|
ACMMP |  | | 83.42 31 | 85.27 32 | 81.26 31 | 88.47 37 | 88.49 34 | 88.31 31 | 72.09 33 | 83.42 35 | 72.77 41 | 82.65 24 | 78.22 49 | 75.18 33 | 86.24 38 | 85.76 36 | 90.74 14 | 92.13 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TSAR-MVS + ACMM | | | 85.10 24 | 88.81 14 | 80.77 35 | 89.55 29 | 88.53 33 | 88.59 28 | 72.55 31 | 87.39 16 | 71.90 43 | 90.95 9 | 87.55 12 | 74.57 34 | 87.08 27 | 86.54 26 | 87.47 86 | 93.67 17 |
|
CNLPA | | | 77.20 61 | 77.54 66 | 76.80 56 | 82.63 65 | 84.31 63 | 79.77 72 | 64.64 80 | 85.17 24 | 73.18 39 | 56.37 125 | 69.81 83 | 74.53 35 | 81.12 86 | 78.69 110 | 86.04 126 | 87.29 68 |
|
MVS_0304 | | | 81.73 39 | 83.86 36 | 79.26 42 | 86.22 50 | 89.18 24 | 86.41 38 | 67.15 63 | 75.28 55 | 70.75 53 | 74.59 41 | 83.49 31 | 74.42 36 | 87.05 28 | 86.34 29 | 90.58 19 | 91.08 40 |
|
OPM-MVS | | | 79.68 48 | 79.28 57 | 80.15 38 | 87.99 39 | 86.77 47 | 88.52 29 | 72.72 30 | 64.55 93 | 67.65 61 | 67.87 71 | 74.33 61 | 74.31 37 | 86.37 36 | 85.25 41 | 89.73 42 | 89.81 49 |
|
3Dnovator | | 73.76 5 | 79.75 46 | 80.52 51 | 78.84 45 | 84.94 60 | 87.35 41 | 84.43 52 | 65.54 74 | 78.29 49 | 73.97 35 | 63.00 91 | 75.62 57 | 74.07 38 | 85.00 47 | 85.34 40 | 90.11 35 | 89.04 53 |
|
CSCG | | | 85.28 22 | 87.68 18 | 82.49 25 | 89.95 24 | 91.99 4 | 88.82 25 | 71.20 38 | 86.41 22 | 79.63 17 | 79.26 29 | 88.36 9 | 73.94 39 | 86.64 32 | 86.67 25 | 91.40 2 | 94.41 7 |
|
PLC |  | 68.99 11 | 75.68 68 | 75.31 80 | 76.12 59 | 82.94 64 | 81.26 90 | 79.94 70 | 66.10 69 | 77.15 52 | 66.86 66 | 59.13 108 | 68.53 95 | 73.73 40 | 80.38 95 | 79.04 105 | 87.13 94 | 81.68 125 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMM | | 72.26 8 | 78.86 55 | 78.13 61 | 79.71 40 | 86.89 45 | 83.40 73 | 86.02 40 | 70.50 40 | 75.28 55 | 71.49 50 | 63.01 90 | 69.26 87 | 73.57 41 | 84.11 52 | 83.98 48 | 89.76 41 | 87.84 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 77.32 60 | 78.81 58 | 75.58 61 | 82.24 70 | 83.64 70 | 79.98 68 | 64.02 86 | 69.64 71 | 63.90 76 | 70.89 56 | 69.94 82 | 73.41 42 | 85.39 44 | 83.91 49 | 89.92 37 | 88.31 58 |
|
OMC-MVS | | | 80.26 42 | 82.59 42 | 77.54 52 | 83.04 63 | 85.54 54 | 83.25 58 | 65.05 78 | 87.32 19 | 72.42 42 | 72.04 50 | 78.97 47 | 73.30 43 | 83.86 53 | 81.60 65 | 88.15 70 | 88.83 55 |
|
MVS_111021_HR | | | 80.13 43 | 81.46 45 | 78.58 47 | 85.77 52 | 85.17 59 | 83.45 57 | 69.28 50 | 74.08 61 | 70.31 54 | 74.31 43 | 75.26 58 | 73.13 44 | 86.46 35 | 85.15 42 | 89.53 46 | 89.81 49 |
|
CS-MVS | | | 76.92 62 | 78.01 62 | 75.64 60 | 81.47 73 | 83.59 71 | 80.68 64 | 62.47 111 | 68.39 73 | 65.83 68 | 67.84 72 | 70.74 76 | 73.07 45 | 85.31 45 | 82.79 56 | 90.33 31 | 87.42 65 |
|
PHI-MVS | | | 82.36 36 | 85.89 29 | 78.24 49 | 86.40 48 | 89.52 18 | 85.52 44 | 69.52 49 | 82.38 40 | 65.67 69 | 81.35 27 | 82.36 34 | 73.07 45 | 87.31 24 | 86.76 23 | 89.24 50 | 91.56 35 |
|
DPM-MVS | | | 83.30 32 | 84.33 35 | 82.11 27 | 89.56 28 | 88.49 34 | 90.33 12 | 73.24 28 | 83.85 33 | 76.46 27 | 72.43 48 | 82.65 33 | 73.02 47 | 86.37 36 | 86.91 19 | 90.03 36 | 89.62 51 |
|
CANet | | | 81.62 40 | 83.41 37 | 79.53 41 | 87.06 43 | 88.59 32 | 85.47 45 | 67.96 59 | 76.59 53 | 74.05 34 | 74.69 40 | 81.98 36 | 72.98 48 | 86.14 39 | 85.47 38 | 89.68 44 | 90.42 46 |
|
QAPM | | | 78.47 56 | 80.22 54 | 76.43 57 | 85.03 57 | 86.75 48 | 80.62 66 | 66.00 71 | 73.77 62 | 65.35 70 | 65.54 79 | 78.02 50 | 72.69 49 | 83.71 55 | 83.36 54 | 88.87 59 | 90.41 47 |
|
abl_6 | | | | | 79.05 43 | 87.27 42 | 88.85 26 | 83.62 56 | 68.25 55 | 81.68 41 | 72.94 40 | 73.79 45 | 84.45 28 | 72.55 50 | | | 89.66 45 | 90.64 43 |
|
MVS_111021_LR | | | 78.13 58 | 79.85 56 | 76.13 58 | 81.12 76 | 81.50 86 | 80.28 67 | 65.25 76 | 76.09 54 | 71.32 51 | 76.49 36 | 72.87 67 | 72.21 51 | 82.79 65 | 81.29 67 | 86.59 112 | 87.91 61 |
|
MAR-MVS | | | 79.21 51 | 80.32 53 | 77.92 51 | 87.46 40 | 88.15 38 | 83.95 53 | 67.48 62 | 74.28 59 | 68.25 58 | 64.70 84 | 77.04 52 | 72.17 52 | 85.42 42 | 85.00 43 | 88.22 67 | 87.62 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ET-MVSNet_ETH3D | | | 72.46 86 | 74.19 84 | 70.44 91 | 62.50 194 | 81.17 91 | 79.90 71 | 62.46 112 | 64.52 94 | 57.52 99 | 71.49 54 | 59.15 126 | 72.08 53 | 78.61 120 | 81.11 69 | 88.16 69 | 83.29 111 |
|
ACMP | | 73.23 7 | 79.79 45 | 80.53 50 | 78.94 44 | 85.61 53 | 85.68 53 | 85.61 43 | 69.59 47 | 77.33 51 | 71.00 52 | 74.45 42 | 69.16 88 | 71.88 54 | 83.15 61 | 83.37 53 | 89.92 37 | 90.57 45 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TAPA-MVS | | 71.42 9 | 77.69 59 | 80.05 55 | 74.94 66 | 80.68 80 | 84.52 62 | 81.36 60 | 63.14 93 | 84.77 27 | 64.82 73 | 68.72 65 | 75.91 56 | 71.86 55 | 81.62 71 | 79.55 99 | 87.80 81 | 85.24 89 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CDPH-MVS | | | 82.64 34 | 85.03 34 | 79.86 39 | 89.41 31 | 88.31 36 | 88.32 30 | 71.84 35 | 80.11 45 | 67.47 62 | 82.09 25 | 81.44 41 | 71.85 56 | 85.89 40 | 86.15 33 | 90.24 32 | 91.25 38 |
|
PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 52 | 78.26 48 | 84.88 61 | 88.17 37 | 86.08 39 | 69.85 44 | 75.23 57 | 68.43 57 | 68.03 70 | 78.38 48 | 71.76 57 | 81.26 82 | 80.65 83 | 88.56 64 | 91.18 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVS | | | 83.23 33 | 85.20 33 | 80.92 34 | 89.71 27 | 88.68 28 | 88.21 32 | 73.60 24 | 82.57 38 | 71.81 46 | 77.07 33 | 81.92 37 | 71.72 58 | 86.98 29 | 86.86 20 | 90.47 22 | 92.36 29 |
|
HQP-MVS | | | 81.19 41 | 83.27 38 | 78.76 46 | 87.40 41 | 85.45 56 | 86.95 35 | 70.47 41 | 81.31 42 | 66.91 65 | 79.24 30 | 76.63 53 | 71.67 59 | 84.43 50 | 83.78 50 | 89.19 53 | 92.05 34 |
|
EIA-MVS | | | 75.64 69 | 76.60 76 | 74.53 71 | 82.43 68 | 83.84 66 | 78.32 88 | 62.28 115 | 65.96 83 | 63.28 80 | 68.95 63 | 67.54 98 | 71.61 60 | 82.55 66 | 81.63 64 | 89.24 50 | 85.72 80 |
|
TSAR-MVS + COLMAP | | | 78.34 57 | 81.64 44 | 74.48 72 | 80.13 88 | 85.01 60 | 81.73 59 | 65.93 73 | 84.75 28 | 61.68 82 | 85.79 19 | 66.27 102 | 71.39 61 | 82.91 63 | 80.78 74 | 86.01 127 | 85.98 77 |
|
LGP-MVS_train | | | 79.83 44 | 81.22 47 | 78.22 50 | 86.28 49 | 85.36 58 | 86.76 36 | 69.59 47 | 77.34 50 | 65.14 71 | 75.68 37 | 70.79 75 | 71.37 62 | 84.60 48 | 84.01 47 | 90.18 33 | 90.74 42 |
|
Fast-Effi-MVS+ | | | 73.11 82 | 73.66 86 | 72.48 79 | 77.72 105 | 80.88 96 | 78.55 85 | 58.83 153 | 65.19 87 | 60.36 85 | 59.98 102 | 62.42 114 | 71.22 63 | 81.66 70 | 80.61 85 | 88.20 68 | 84.88 96 |
|
LS3D | | | 74.08 77 | 73.39 89 | 74.88 67 | 85.05 56 | 82.62 79 | 79.71 74 | 68.66 53 | 72.82 64 | 58.80 90 | 57.61 119 | 61.31 117 | 71.07 64 | 80.32 96 | 78.87 109 | 86.00 128 | 80.18 137 |
|
Effi-MVS+ | | | 75.28 71 | 76.20 77 | 74.20 73 | 81.15 75 | 83.24 74 | 81.11 61 | 63.13 94 | 66.37 79 | 60.27 86 | 64.30 87 | 68.88 92 | 70.93 65 | 81.56 73 | 81.69 63 | 88.61 62 | 87.35 66 |
|
OpenMVS |  | 70.44 10 | 76.15 67 | 76.82 75 | 75.37 63 | 85.01 58 | 84.79 61 | 78.99 82 | 62.07 116 | 71.27 66 | 67.88 60 | 57.91 118 | 72.36 68 | 70.15 66 | 82.23 69 | 81.41 66 | 88.12 72 | 87.78 63 |
|
DELS-MVS | | | 79.15 53 | 81.07 48 | 76.91 55 | 83.54 62 | 87.31 42 | 84.45 51 | 64.92 79 | 69.98 67 | 69.34 55 | 71.62 52 | 76.26 54 | 69.84 67 | 86.57 33 | 85.90 35 | 89.39 48 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 79.16 52 | 82.37 43 | 75.41 62 | 82.33 69 | 86.38 51 | 80.80 63 | 63.18 92 | 82.90 36 | 67.34 63 | 72.79 47 | 76.07 55 | 69.62 68 | 83.46 60 | 84.41 46 | 89.20 52 | 90.60 44 |
|
PatchMatch-RL | | | 67.78 132 | 66.65 151 | 69.10 105 | 73.01 146 | 72.69 164 | 68.49 159 | 61.85 119 | 62.93 107 | 60.20 87 | 56.83 124 | 50.42 182 | 69.52 69 | 75.62 146 | 74.46 156 | 81.51 161 | 73.62 178 |
|
casdiffmvs | | | 76.76 63 | 78.46 60 | 74.77 68 | 80.32 85 | 83.73 69 | 80.65 65 | 63.24 91 | 73.58 63 | 66.11 67 | 69.39 62 | 74.09 62 | 69.49 70 | 82.52 67 | 79.35 104 | 88.84 60 | 86.52 74 |
|
DI_MVS_plusplus_trai | | | 75.13 72 | 76.12 78 | 73.96 74 | 78.18 99 | 81.55 84 | 80.97 62 | 62.54 108 | 68.59 72 | 65.13 72 | 61.43 93 | 74.81 59 | 69.32 71 | 81.01 88 | 79.59 97 | 87.64 84 | 85.89 78 |
|
MVS_Test | | | 75.37 70 | 77.13 73 | 73.31 77 | 79.07 94 | 81.32 89 | 79.98 68 | 60.12 138 | 69.72 70 | 64.11 75 | 70.53 57 | 73.22 64 | 68.90 72 | 80.14 102 | 79.48 101 | 87.67 83 | 85.50 84 |
|
Effi-MVS+-dtu | | | 71.82 89 | 71.86 102 | 71.78 81 | 78.77 95 | 80.47 99 | 78.55 85 | 61.67 123 | 60.68 124 | 55.49 108 | 58.48 112 | 65.48 104 | 68.85 73 | 76.92 137 | 75.55 149 | 87.35 88 | 85.46 85 |
|
ACMH | | 65.37 14 | 70.71 98 | 70.00 113 | 71.54 82 | 82.51 67 | 82.47 80 | 77.78 92 | 68.13 56 | 56.19 152 | 46.06 162 | 54.30 135 | 51.20 178 | 68.68 74 | 80.66 91 | 80.72 76 | 86.07 122 | 84.45 102 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 66.54 13 | 71.36 94 | 70.09 112 | 72.85 78 | 82.59 66 | 81.13 92 | 78.56 84 | 68.04 57 | 61.55 117 | 52.52 129 | 51.50 164 | 54.14 151 | 68.56 75 | 78.85 117 | 79.50 100 | 86.82 102 | 83.94 105 |
|
CLD-MVS | | | 79.35 50 | 81.23 46 | 77.16 54 | 85.01 58 | 86.92 46 | 85.87 41 | 60.89 127 | 80.07 47 | 75.35 32 | 72.96 46 | 73.21 65 | 68.43 76 | 85.41 43 | 84.63 45 | 87.41 87 | 85.44 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GeoE | | | 74.23 76 | 74.84 82 | 73.52 75 | 80.42 84 | 81.46 87 | 79.77 72 | 61.06 125 | 67.23 77 | 63.67 77 | 59.56 105 | 68.74 94 | 67.90 77 | 80.25 100 | 79.37 103 | 88.31 66 | 87.26 69 |
|
HyFIR lowres test | | | 69.47 113 | 68.94 127 | 70.09 95 | 76.77 113 | 82.93 77 | 76.63 104 | 60.17 136 | 59.00 133 | 54.03 116 | 40.54 195 | 65.23 105 | 67.89 78 | 76.54 143 | 78.30 115 | 85.03 144 | 80.07 138 |
|
PVSNet_Blended_VisFu | | | 76.57 64 | 77.90 63 | 75.02 65 | 80.56 81 | 86.58 49 | 79.24 78 | 66.18 68 | 64.81 90 | 68.18 59 | 65.61 77 | 71.45 70 | 67.05 79 | 84.16 51 | 81.80 62 | 88.90 57 | 90.92 41 |
|
PVSNet_BlendedMVS | | | 76.21 65 | 77.52 67 | 74.69 69 | 79.46 91 | 83.79 67 | 77.50 95 | 64.34 84 | 69.88 68 | 71.88 44 | 68.54 68 | 70.42 78 | 67.05 79 | 83.48 58 | 79.63 95 | 87.89 77 | 86.87 71 |
|
PVSNet_Blended | | | 76.21 65 | 77.52 67 | 74.69 69 | 79.46 91 | 83.79 67 | 77.50 95 | 64.34 84 | 69.88 68 | 71.88 44 | 68.54 68 | 70.42 78 | 67.05 79 | 83.48 58 | 79.63 95 | 87.89 77 | 86.87 71 |
|
v10 | | | 70.22 104 | 69.76 117 | 70.74 85 | 74.79 129 | 80.30 103 | 79.22 79 | 59.81 141 | 57.71 141 | 56.58 105 | 54.22 140 | 55.31 144 | 66.95 82 | 78.28 123 | 77.47 127 | 87.12 96 | 85.07 92 |
|
v1192 | | | 69.50 112 | 68.83 128 | 70.29 93 | 74.49 132 | 80.92 95 | 78.55 85 | 60.54 131 | 55.04 160 | 54.21 113 | 52.79 156 | 52.33 171 | 66.92 83 | 77.88 127 | 77.35 131 | 87.04 97 | 85.51 83 |
|
CHOSEN 1792x2688 | | | 69.20 116 | 69.26 123 | 69.13 104 | 76.86 112 | 78.93 112 | 77.27 98 | 60.12 138 | 61.86 115 | 54.42 112 | 42.54 190 | 61.61 115 | 66.91 84 | 78.55 121 | 78.14 117 | 79.23 171 | 83.23 112 |
|
v1921920 | | | 69.03 117 | 68.32 136 | 69.86 97 | 74.03 137 | 80.37 100 | 77.55 93 | 60.25 135 | 54.62 164 | 53.59 121 | 52.36 160 | 51.50 177 | 66.75 85 | 77.17 134 | 76.69 140 | 86.96 98 | 85.56 82 |
|
v144192 | | | 69.34 114 | 68.68 132 | 70.12 94 | 74.06 136 | 80.54 98 | 78.08 91 | 60.54 131 | 54.99 162 | 54.13 115 | 52.92 154 | 52.80 169 | 66.73 86 | 77.13 135 | 76.72 138 | 87.15 90 | 85.63 81 |
|
v1240 | | | 68.64 122 | 67.89 141 | 69.51 102 | 73.89 139 | 80.26 104 | 76.73 103 | 59.97 140 | 53.43 172 | 53.08 124 | 51.82 163 | 50.84 180 | 66.62 87 | 76.79 139 | 76.77 137 | 86.78 104 | 85.34 87 |
|
v1144 | | | 69.93 108 | 69.36 122 | 70.61 89 | 74.89 128 | 80.93 93 | 79.11 80 | 60.64 129 | 55.97 154 | 55.31 110 | 53.85 142 | 54.14 151 | 66.54 88 | 78.10 125 | 77.44 128 | 87.14 93 | 85.09 91 |
|
diffmvs | | | 74.86 73 | 77.37 70 | 71.93 80 | 75.62 121 | 80.35 101 | 79.42 77 | 60.15 137 | 72.81 65 | 64.63 74 | 71.51 53 | 73.11 66 | 66.53 89 | 79.02 115 | 77.98 118 | 85.25 141 | 86.83 73 |
|
v2v482 | | | 70.05 107 | 69.46 121 | 70.74 85 | 74.62 131 | 80.32 102 | 79.00 81 | 60.62 130 | 57.41 143 | 56.89 102 | 55.43 131 | 55.14 146 | 66.39 90 | 77.25 133 | 77.14 133 | 86.90 99 | 83.57 110 |
|
v8 | | | 70.23 103 | 69.86 115 | 70.67 88 | 74.69 130 | 79.82 105 | 78.79 83 | 59.18 146 | 58.80 134 | 58.20 96 | 55.00 132 | 57.33 134 | 66.31 91 | 77.51 130 | 76.71 139 | 86.82 102 | 83.88 106 |
|
IterMVS-LS | | | 71.69 90 | 72.82 95 | 70.37 92 | 77.54 107 | 76.34 143 | 75.13 113 | 60.46 133 | 61.53 118 | 57.57 98 | 64.89 82 | 67.33 99 | 66.04 92 | 77.09 136 | 77.37 130 | 85.48 137 | 85.18 90 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 71.52 91 | 69.87 114 | 73.44 76 | 82.21 71 | 79.35 109 | 79.52 75 | 64.59 81 | 66.15 81 | 61.87 81 | 53.21 149 | 56.09 141 | 65.85 93 | 78.94 116 | 78.50 112 | 86.60 111 | 76.85 159 |
|
test_part1 | | | 74.24 75 | 73.44 88 | 75.18 64 | 82.02 72 | 82.34 81 | 83.88 54 | 62.40 113 | 60.93 123 | 68.68 56 | 49.25 175 | 69.71 84 | 65.73 94 | 81.26 82 | 81.98 60 | 88.35 65 | 88.60 57 |
|
V42 | | | 68.76 121 | 69.63 118 | 67.74 117 | 64.93 190 | 78.01 122 | 78.30 89 | 56.48 162 | 58.65 135 | 56.30 106 | 54.26 138 | 57.03 137 | 64.85 95 | 77.47 131 | 77.01 135 | 85.60 135 | 84.96 94 |
|
EPNet | | | 79.08 54 | 80.62 49 | 77.28 53 | 88.90 35 | 83.17 76 | 83.65 55 | 72.41 32 | 74.41 58 | 67.15 64 | 76.78 34 | 74.37 60 | 64.43 96 | 83.70 56 | 83.69 51 | 87.15 90 | 88.19 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thisisatest0530 | | | 71.48 92 | 73.01 92 | 69.70 100 | 73.83 140 | 78.62 118 | 74.53 118 | 59.12 147 | 64.13 96 | 58.63 92 | 64.60 85 | 58.63 128 | 64.27 97 | 80.28 98 | 80.17 91 | 87.82 80 | 84.64 99 |
|
tttt0517 | | | 71.41 93 | 72.95 93 | 69.60 101 | 73.70 142 | 78.70 117 | 74.42 122 | 59.12 147 | 63.89 100 | 58.35 95 | 64.56 86 | 58.39 130 | 64.27 97 | 80.29 97 | 80.17 91 | 87.74 82 | 84.69 98 |
|
RPSCF | | | 67.64 136 | 71.25 104 | 63.43 157 | 61.86 196 | 70.73 171 | 67.26 164 | 50.86 184 | 74.20 60 | 58.91 89 | 67.49 73 | 69.33 86 | 64.10 99 | 71.41 170 | 68.45 184 | 77.61 175 | 77.17 156 |
|
LTVRE_ROB | | 59.44 16 | 61.82 176 | 62.64 178 | 60.87 166 | 72.83 151 | 77.19 135 | 64.37 181 | 58.97 149 | 33.56 211 | 28.00 197 | 52.59 159 | 42.21 202 | 63.93 100 | 74.52 152 | 76.28 143 | 77.15 178 | 82.13 116 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVSTER | | | 72.06 87 | 74.24 83 | 69.51 102 | 70.39 170 | 75.97 146 | 76.91 101 | 57.36 160 | 64.64 92 | 61.39 84 | 68.86 64 | 63.76 109 | 63.46 101 | 81.44 75 | 79.70 94 | 87.56 85 | 85.31 88 |
|
PMMVS | | | 65.06 151 | 69.17 125 | 60.26 169 | 55.25 208 | 63.43 195 | 66.71 170 | 43.01 204 | 62.41 110 | 50.64 137 | 69.44 61 | 67.04 100 | 63.29 102 | 74.36 154 | 73.54 160 | 82.68 158 | 73.99 177 |
|
IterMVS-SCA-FT | | | 66.89 144 | 69.22 124 | 64.17 150 | 71.30 165 | 75.64 148 | 71.33 148 | 53.17 171 | 57.63 142 | 49.08 145 | 60.72 96 | 60.05 122 | 63.09 103 | 74.99 150 | 73.92 157 | 77.07 179 | 81.57 126 |
|
EPP-MVSNet | | | 74.00 78 | 77.41 69 | 70.02 96 | 80.53 82 | 83.91 65 | 74.99 115 | 62.68 106 | 65.06 88 | 49.77 142 | 68.68 66 | 72.09 69 | 63.06 104 | 82.49 68 | 80.73 75 | 89.12 55 | 88.91 54 |
|
CHOSEN 280x420 | | | 58.70 185 | 61.88 184 | 54.98 189 | 55.45 207 | 50.55 210 | 64.92 178 | 40.36 205 | 55.21 157 | 38.13 184 | 48.31 177 | 63.76 109 | 63.03 105 | 73.73 158 | 68.58 182 | 68.00 206 | 73.04 179 |
|
TinyColmap | | | 62.84 162 | 61.03 187 | 64.96 146 | 69.61 175 | 71.69 167 | 68.48 160 | 59.76 142 | 55.41 156 | 47.69 153 | 47.33 180 | 34.20 210 | 62.76 106 | 74.52 152 | 72.59 165 | 81.44 162 | 71.47 181 |
|
Fast-Effi-MVS+-dtu | | | 68.34 123 | 69.47 120 | 67.01 133 | 75.15 124 | 77.97 128 | 77.12 99 | 55.40 165 | 57.87 136 | 46.68 158 | 56.17 126 | 60.39 118 | 62.36 107 | 76.32 144 | 76.25 145 | 85.35 140 | 81.34 127 |
|
Anonymous20231211 | | | 71.90 88 | 72.48 97 | 71.21 83 | 80.14 87 | 81.53 85 | 76.92 100 | 62.89 97 | 64.46 95 | 58.94 88 | 43.80 186 | 70.98 74 | 62.22 108 | 80.70 90 | 80.19 90 | 86.18 119 | 85.73 79 |
|
DCV-MVSNet | | | 73.65 79 | 75.78 79 | 71.16 84 | 80.19 86 | 79.27 110 | 77.45 97 | 61.68 122 | 66.73 78 | 58.72 91 | 65.31 80 | 69.96 81 | 62.19 109 | 81.29 81 | 80.97 71 | 86.74 105 | 86.91 70 |
|
USDC | | | 67.36 140 | 67.90 140 | 66.74 138 | 71.72 157 | 75.23 154 | 71.58 147 | 60.28 134 | 67.45 76 | 50.54 139 | 60.93 94 | 45.20 198 | 62.08 110 | 76.56 142 | 74.50 155 | 84.25 150 | 75.38 169 |
|
Anonymous202405211 | | | | 72.16 100 | | 80.85 79 | 81.85 83 | 76.88 102 | 65.40 75 | 62.89 108 | | 46.35 182 | 67.99 97 | 62.05 111 | 81.15 85 | 80.38 87 | 85.97 129 | 84.50 100 |
|
MS-PatchMatch | | | 70.17 105 | 70.49 109 | 69.79 98 | 80.98 78 | 77.97 128 | 77.51 94 | 58.95 150 | 62.33 111 | 55.22 111 | 53.14 150 | 65.90 103 | 62.03 112 | 79.08 114 | 77.11 134 | 84.08 151 | 77.91 151 |
|
baseline2 | | | 69.69 109 | 70.27 111 | 69.01 106 | 75.72 120 | 77.13 136 | 73.82 133 | 58.94 151 | 61.35 119 | 57.09 101 | 61.68 92 | 57.17 136 | 61.99 113 | 78.10 125 | 76.58 141 | 86.48 115 | 79.85 139 |
|
v148 | | | 67.85 130 | 67.53 142 | 68.23 112 | 73.25 145 | 77.57 134 | 74.26 126 | 57.36 160 | 55.70 155 | 57.45 100 | 53.53 143 | 55.42 143 | 61.96 114 | 75.23 148 | 73.92 157 | 85.08 143 | 81.32 128 |
|
pmmvs4 | | | 67.89 129 | 67.39 146 | 68.48 111 | 71.60 161 | 73.57 161 | 74.45 119 | 60.98 126 | 64.65 91 | 57.97 97 | 54.95 133 | 51.73 176 | 61.88 115 | 73.78 157 | 75.11 151 | 83.99 153 | 77.91 151 |
|
CostFormer | | | 68.92 118 | 69.58 119 | 68.15 113 | 75.98 118 | 76.17 145 | 78.22 90 | 51.86 179 | 65.80 84 | 61.56 83 | 63.57 88 | 62.83 112 | 61.85 116 | 70.40 183 | 68.67 180 | 79.42 169 | 79.62 142 |
|
tpm cat1 | | | 65.41 148 | 63.81 171 | 67.28 128 | 75.61 122 | 72.88 163 | 75.32 107 | 52.85 173 | 62.97 106 | 63.66 78 | 53.24 148 | 53.29 166 | 61.83 117 | 65.54 194 | 64.14 196 | 74.43 191 | 74.60 172 |
|
CANet_DTU | | | 73.29 81 | 76.96 74 | 69.00 107 | 77.04 111 | 82.06 82 | 79.49 76 | 56.30 163 | 67.85 75 | 53.29 123 | 71.12 55 | 70.37 80 | 61.81 118 | 81.59 72 | 80.96 72 | 86.09 121 | 84.73 97 |
|
baseline | | | 70.45 101 | 74.09 85 | 66.20 140 | 70.95 167 | 75.67 147 | 74.26 126 | 53.57 167 | 68.33 74 | 58.42 93 | 69.87 60 | 71.45 70 | 61.55 119 | 74.84 151 | 74.76 154 | 78.42 173 | 83.72 108 |
|
SCA | | | 65.40 149 | 66.58 152 | 64.02 152 | 70.65 168 | 73.37 162 | 67.35 163 | 53.46 169 | 63.66 101 | 54.14 114 | 60.84 95 | 60.20 121 | 61.50 120 | 69.96 184 | 68.14 185 | 77.01 180 | 69.91 184 |
|
GA-MVS | | | 68.14 124 | 69.17 125 | 66.93 135 | 73.77 141 | 78.50 120 | 74.45 119 | 58.28 155 | 55.11 159 | 48.44 147 | 60.08 100 | 53.99 154 | 61.50 120 | 78.43 122 | 77.57 125 | 85.13 142 | 80.54 133 |
|
anonymousdsp | | | 65.28 150 | 67.98 139 | 62.13 160 | 58.73 202 | 73.98 160 | 67.10 166 | 50.69 186 | 48.41 190 | 47.66 154 | 54.27 136 | 52.75 170 | 61.45 122 | 76.71 141 | 80.20 89 | 87.13 94 | 89.53 52 |
|
v7n | | | 67.05 143 | 66.94 148 | 67.17 129 | 72.35 152 | 78.97 111 | 73.26 142 | 58.88 152 | 51.16 183 | 50.90 136 | 48.21 178 | 50.11 184 | 60.96 123 | 77.70 128 | 77.38 129 | 86.68 109 | 85.05 93 |
|
CR-MVSNet | | | 64.83 152 | 65.54 157 | 64.01 153 | 70.64 169 | 69.41 174 | 65.97 174 | 52.74 174 | 57.81 138 | 52.65 126 | 54.27 136 | 56.31 140 | 60.92 124 | 72.20 166 | 73.09 162 | 81.12 164 | 75.69 166 |
|
PatchT | | | 61.97 172 | 64.04 169 | 59.55 174 | 60.49 198 | 67.40 182 | 56.54 199 | 48.65 194 | 56.69 146 | 52.65 126 | 51.10 167 | 52.14 174 | 60.92 124 | 72.20 166 | 73.09 162 | 78.03 174 | 75.69 166 |
|
dps | | | 64.00 158 | 62.99 174 | 65.18 143 | 73.29 144 | 72.07 166 | 68.98 158 | 53.07 172 | 57.74 140 | 58.41 94 | 55.55 129 | 47.74 191 | 60.89 126 | 69.53 186 | 67.14 189 | 76.44 183 | 71.19 182 |
|
IterMVS | | | 66.36 145 | 68.30 137 | 64.10 151 | 69.48 177 | 74.61 158 | 73.41 140 | 50.79 185 | 57.30 144 | 48.28 149 | 60.64 97 | 59.92 123 | 60.85 127 | 74.14 155 | 72.66 164 | 81.80 160 | 78.82 147 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TDRefinement | | | 66.09 146 | 65.03 163 | 67.31 126 | 69.73 174 | 76.75 139 | 75.33 106 | 64.55 82 | 60.28 128 | 49.72 143 | 45.63 184 | 42.83 201 | 60.46 128 | 75.75 145 | 75.95 146 | 84.08 151 | 78.04 150 |
|
PatchmatchNet |  | | 64.21 157 | 64.65 165 | 63.69 154 | 71.29 166 | 68.66 178 | 69.63 154 | 51.70 181 | 63.04 105 | 53.77 119 | 59.83 104 | 58.34 131 | 60.23 129 | 68.54 190 | 66.06 192 | 75.56 186 | 68.08 190 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
gm-plane-assit | | | 57.00 188 | 57.62 195 | 56.28 185 | 76.10 115 | 62.43 201 | 47.62 209 | 46.57 200 | 33.84 210 | 23.24 203 | 37.52 196 | 40.19 206 | 59.61 130 | 79.81 104 | 77.55 126 | 84.55 149 | 72.03 180 |
|
IB-MVS | | 66.94 12 | 71.21 95 | 71.66 103 | 70.68 87 | 79.18 93 | 82.83 78 | 72.61 143 | 61.77 120 | 59.66 130 | 63.44 79 | 53.26 147 | 59.65 124 | 59.16 131 | 76.78 140 | 82.11 59 | 87.90 76 | 87.33 67 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
UniMVSNet_NR-MVSNet | | | 70.59 99 | 72.19 98 | 68.72 108 | 77.72 105 | 80.72 97 | 73.81 134 | 69.65 46 | 61.99 113 | 43.23 171 | 60.54 98 | 57.50 133 | 58.57 132 | 79.56 108 | 81.07 70 | 89.34 49 | 83.97 103 |
|
DU-MVS | | | 69.63 110 | 70.91 106 | 68.13 114 | 75.99 116 | 79.54 106 | 73.81 134 | 69.20 51 | 61.20 121 | 43.23 171 | 58.52 110 | 53.50 158 | 58.57 132 | 79.22 112 | 80.45 86 | 87.97 74 | 83.97 103 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 134 | 66.76 150 | 68.70 109 | 80.49 83 | 77.98 126 | 75.29 108 | 62.95 96 | 63.62 102 | 49.96 140 | 47.32 181 | 50.72 181 | 58.57 132 | 76.87 138 | 75.50 150 | 84.94 146 | 75.33 170 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PM-MVS | | | 60.48 180 | 60.94 188 | 59.94 170 | 58.85 201 | 66.83 185 | 64.27 182 | 51.39 182 | 55.03 161 | 48.03 150 | 50.00 172 | 40.79 205 | 58.26 135 | 69.20 188 | 67.13 190 | 78.84 172 | 77.60 153 |
|
SixPastTwentyTwo | | | 61.84 174 | 62.45 180 | 61.12 165 | 69.20 178 | 72.20 165 | 62.03 189 | 57.40 158 | 46.54 195 | 38.03 185 | 57.14 123 | 41.72 203 | 58.12 136 | 69.67 185 | 71.58 168 | 81.94 159 | 78.30 149 |
|
thisisatest0515 | | | 67.40 139 | 68.78 129 | 65.80 142 | 70.02 172 | 75.24 153 | 69.36 156 | 57.37 159 | 54.94 163 | 53.67 120 | 55.53 130 | 54.85 147 | 58.00 137 | 78.19 124 | 78.91 108 | 86.39 116 | 83.78 107 |
|
CMPMVS |  | 47.78 17 | 62.49 166 | 62.52 179 | 62.46 159 | 70.01 173 | 70.66 172 | 62.97 186 | 51.84 180 | 51.98 179 | 56.71 104 | 42.87 188 | 53.62 155 | 57.80 138 | 72.23 164 | 70.37 172 | 75.45 188 | 75.91 163 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
GBi-Net | | | 70.78 96 | 73.37 90 | 67.76 115 | 72.95 147 | 78.00 123 | 75.15 110 | 62.72 101 | 64.13 96 | 51.44 131 | 58.37 113 | 69.02 89 | 57.59 139 | 81.33 78 | 80.72 76 | 86.70 106 | 82.02 117 |
|
test1 | | | 70.78 96 | 73.37 90 | 67.76 115 | 72.95 147 | 78.00 123 | 75.15 110 | 62.72 101 | 64.13 96 | 51.44 131 | 58.37 113 | 69.02 89 | 57.59 139 | 81.33 78 | 80.72 76 | 86.70 106 | 82.02 117 |
|
FMVSNet2 | | | 70.39 102 | 72.67 96 | 67.72 118 | 72.95 147 | 78.00 123 | 75.15 110 | 62.69 105 | 63.29 104 | 51.25 135 | 55.64 127 | 68.49 96 | 57.59 139 | 80.91 89 | 80.35 88 | 86.70 106 | 82.02 117 |
|
FMVSNet3 | | | 70.49 100 | 72.90 94 | 67.67 120 | 72.88 150 | 77.98 126 | 74.96 116 | 62.72 101 | 64.13 96 | 51.44 131 | 58.37 113 | 69.02 89 | 57.43 142 | 79.43 110 | 79.57 98 | 86.59 112 | 81.81 124 |
|
MDTV_nov1_ep13 | | | 64.37 155 | 65.24 159 | 63.37 158 | 68.94 179 | 70.81 170 | 72.40 146 | 50.29 188 | 60.10 129 | 53.91 118 | 60.07 101 | 59.15 126 | 57.21 143 | 69.43 187 | 67.30 187 | 77.47 176 | 69.78 186 |
|
FMVSNet1 | | | 68.84 119 | 70.47 110 | 66.94 134 | 71.35 164 | 77.68 131 | 74.71 117 | 62.35 114 | 56.93 145 | 49.94 141 | 50.01 170 | 64.59 106 | 57.07 144 | 81.33 78 | 80.72 76 | 86.25 117 | 82.00 120 |
|
UniMVSNet_ETH3D | | | 67.18 142 | 67.03 147 | 67.36 125 | 74.44 133 | 78.12 121 | 74.07 129 | 66.38 66 | 52.22 177 | 46.87 155 | 48.64 176 | 51.84 175 | 56.96 145 | 77.29 132 | 78.53 111 | 85.42 138 | 82.59 114 |
|
pmmvs-eth3d | | | 63.52 159 | 62.44 181 | 64.77 147 | 66.82 185 | 70.12 173 | 69.41 155 | 59.48 144 | 54.34 168 | 52.71 125 | 46.24 183 | 44.35 200 | 56.93 146 | 72.37 161 | 73.77 159 | 83.30 155 | 75.91 163 |
|
FC-MVSNet-train | | | 72.60 85 | 75.07 81 | 69.71 99 | 81.10 77 | 78.79 116 | 73.74 136 | 65.23 77 | 66.10 82 | 53.34 122 | 70.36 58 | 63.40 111 | 56.92 147 | 81.44 75 | 80.96 72 | 87.93 75 | 84.46 101 |
|
tfpn200view9 | | | 68.11 125 | 68.72 131 | 67.40 124 | 77.83 103 | 78.93 112 | 74.28 124 | 62.81 98 | 56.64 147 | 46.82 156 | 52.65 157 | 53.47 161 | 56.59 148 | 80.41 92 | 78.43 113 | 86.11 120 | 80.52 134 |
|
thres400 | | | 67.95 128 | 68.62 133 | 67.17 129 | 77.90 100 | 78.59 119 | 74.27 125 | 62.72 101 | 56.34 151 | 45.77 164 | 53.00 152 | 53.35 164 | 56.46 149 | 80.21 101 | 78.43 113 | 85.91 131 | 80.43 135 |
|
thres200 | | | 67.98 127 | 68.55 134 | 67.30 127 | 77.89 102 | 78.86 114 | 74.18 128 | 62.75 99 | 56.35 150 | 46.48 159 | 52.98 153 | 53.54 157 | 56.46 149 | 80.41 92 | 77.97 119 | 86.05 124 | 79.78 141 |
|
MVS-HIRNet | | | 54.41 194 | 52.10 201 | 57.11 183 | 58.99 200 | 56.10 207 | 49.68 207 | 49.10 191 | 46.18 196 | 52.15 130 | 33.18 203 | 46.11 195 | 56.10 151 | 63.19 200 | 59.70 203 | 76.64 182 | 60.25 203 |
|
Baseline_NR-MVSNet | | | 67.53 138 | 68.77 130 | 66.09 141 | 75.99 116 | 74.75 157 | 72.43 145 | 68.41 54 | 61.33 120 | 38.33 183 | 51.31 165 | 54.13 153 | 56.03 152 | 79.22 112 | 78.19 116 | 85.37 139 | 82.45 115 |
|
thres100view900 | | | 67.60 137 | 68.02 138 | 67.12 131 | 77.83 103 | 77.75 130 | 73.90 131 | 62.52 109 | 56.64 147 | 46.82 156 | 52.65 157 | 53.47 161 | 55.92 153 | 78.77 118 | 77.62 124 | 85.72 132 | 79.23 144 |
|
test-mter | | | 60.84 179 | 64.62 166 | 56.42 184 | 55.99 206 | 64.18 190 | 65.39 176 | 34.23 209 | 54.39 167 | 46.21 161 | 57.40 122 | 59.49 125 | 55.86 154 | 71.02 176 | 69.65 174 | 80.87 166 | 76.20 162 |
|
tpmrst | | | 62.00 171 | 62.35 182 | 61.58 162 | 71.62 160 | 64.14 191 | 69.07 157 | 48.22 198 | 62.21 112 | 53.93 117 | 58.26 117 | 55.30 145 | 55.81 155 | 63.22 199 | 62.62 198 | 70.85 200 | 70.70 183 |
|
TranMVSNet+NR-MVSNet | | | 69.25 115 | 70.81 107 | 67.43 123 | 77.23 110 | 79.46 108 | 73.48 139 | 69.66 45 | 60.43 127 | 39.56 179 | 58.82 109 | 53.48 160 | 55.74 156 | 79.59 106 | 81.21 68 | 88.89 58 | 82.70 113 |
|
thres600view7 | | | 67.68 133 | 68.43 135 | 66.80 136 | 77.90 100 | 78.86 114 | 73.84 132 | 62.75 99 | 56.07 153 | 44.70 169 | 52.85 155 | 52.81 168 | 55.58 157 | 80.41 92 | 77.77 121 | 86.05 124 | 80.28 136 |
|
Vis-MVSNet |  | | 72.77 84 | 77.20 72 | 67.59 122 | 74.19 135 | 84.01 64 | 76.61 105 | 61.69 121 | 60.62 126 | 50.61 138 | 70.25 59 | 71.31 73 | 55.57 158 | 83.85 54 | 82.28 57 | 86.90 99 | 88.08 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EG-PatchMatch MVS | | | 67.24 141 | 66.94 148 | 67.60 121 | 78.73 96 | 81.35 88 | 73.28 141 | 59.49 143 | 46.89 194 | 51.42 134 | 43.65 187 | 53.49 159 | 55.50 159 | 81.38 77 | 80.66 82 | 87.15 90 | 81.17 129 |
|
test-LLR | | | 64.42 154 | 64.36 167 | 64.49 149 | 75.02 126 | 63.93 192 | 66.61 171 | 61.96 117 | 54.41 165 | 47.77 151 | 57.46 120 | 60.25 119 | 55.20 160 | 70.80 177 | 69.33 175 | 80.40 167 | 74.38 174 |
|
TESTMET0.1,1 | | | 61.10 178 | 64.36 167 | 57.29 181 | 57.53 203 | 63.93 192 | 66.61 171 | 36.22 208 | 54.41 165 | 47.77 151 | 57.46 120 | 60.25 119 | 55.20 160 | 70.80 177 | 69.33 175 | 80.40 167 | 74.38 174 |
|
UA-Net | | | 74.47 74 | 77.80 64 | 70.59 90 | 85.33 54 | 85.40 57 | 73.54 137 | 65.98 72 | 60.65 125 | 56.00 107 | 72.11 49 | 79.15 46 | 54.63 162 | 83.13 62 | 82.25 58 | 88.04 73 | 81.92 123 |
|
IS_MVSNet | | | 73.33 80 | 77.34 71 | 68.65 110 | 81.29 74 | 83.47 72 | 74.45 119 | 63.58 89 | 65.75 85 | 48.49 146 | 67.11 76 | 70.61 77 | 54.63 162 | 84.51 49 | 83.58 52 | 89.48 47 | 86.34 76 |
|
baseline1 | | | 70.10 106 | 72.17 99 | 67.69 119 | 79.74 89 | 76.80 138 | 73.91 130 | 64.38 83 | 62.74 109 | 48.30 148 | 64.94 81 | 64.08 108 | 54.17 164 | 81.46 74 | 78.92 107 | 85.66 134 | 76.22 161 |
|
tpm | | | 62.41 167 | 63.15 173 | 61.55 163 | 72.24 153 | 63.79 194 | 71.31 149 | 46.12 202 | 57.82 137 | 55.33 109 | 59.90 103 | 54.74 148 | 53.63 165 | 67.24 193 | 64.29 195 | 70.65 201 | 74.25 176 |
|
MDTV_nov1_ep13_2view | | | 60.16 181 | 60.51 189 | 59.75 171 | 65.39 187 | 69.05 177 | 68.00 161 | 48.29 196 | 51.99 178 | 45.95 163 | 48.01 179 | 49.64 186 | 53.39 166 | 68.83 189 | 66.52 191 | 77.47 176 | 69.55 187 |
|
UniMVSNet (Re) | | | 69.53 111 | 71.90 101 | 66.76 137 | 76.42 114 | 80.93 93 | 72.59 144 | 68.03 58 | 61.75 116 | 41.68 176 | 58.34 116 | 57.23 135 | 53.27 167 | 79.53 109 | 80.62 84 | 88.57 63 | 84.90 95 |
|
RPMNet | | | 61.71 177 | 62.88 175 | 60.34 168 | 69.51 176 | 69.41 174 | 63.48 184 | 49.23 190 | 57.81 138 | 45.64 165 | 50.51 168 | 50.12 183 | 53.13 168 | 68.17 192 | 68.49 183 | 81.07 165 | 75.62 168 |
|
tfpnnormal | | | 64.27 156 | 63.64 172 | 65.02 145 | 75.84 119 | 75.61 149 | 71.24 150 | 62.52 109 | 47.79 191 | 42.97 173 | 42.65 189 | 44.49 199 | 52.66 169 | 78.77 118 | 76.86 136 | 84.88 147 | 79.29 143 |
|
MDA-MVSNet-bldmvs | | | 53.37 197 | 53.01 200 | 53.79 193 | 43.67 212 | 67.95 181 | 59.69 195 | 57.92 156 | 43.69 198 | 32.41 192 | 41.47 191 | 27.89 215 | 52.38 170 | 56.97 207 | 65.99 193 | 76.68 181 | 67.13 191 |
|
NR-MVSNet | | | 68.79 120 | 70.56 108 | 66.71 139 | 77.48 108 | 79.54 106 | 73.52 138 | 69.20 51 | 61.20 121 | 39.76 178 | 58.52 110 | 50.11 184 | 51.37 171 | 80.26 99 | 80.71 80 | 88.97 56 | 83.59 109 |
|
EPMVS | | | 60.00 182 | 61.97 183 | 57.71 180 | 68.46 180 | 63.17 198 | 64.54 180 | 48.23 197 | 63.30 103 | 44.72 168 | 60.19 99 | 56.05 142 | 50.85 172 | 65.27 197 | 62.02 199 | 69.44 203 | 63.81 197 |
|
CVMVSNet | | | 62.55 164 | 65.89 153 | 58.64 177 | 66.95 183 | 69.15 176 | 66.49 173 | 56.29 164 | 52.46 176 | 32.70 191 | 59.27 107 | 58.21 132 | 50.09 173 | 71.77 169 | 71.39 169 | 79.31 170 | 78.99 146 |
|
pmmvs5 | | | 62.37 170 | 64.04 169 | 60.42 167 | 65.03 188 | 71.67 168 | 67.17 165 | 52.70 176 | 50.30 184 | 44.80 167 | 54.23 139 | 51.19 179 | 49.37 174 | 72.88 160 | 73.48 161 | 83.45 154 | 74.55 173 |
|
UGNet | | | 72.78 83 | 77.67 65 | 67.07 132 | 71.65 159 | 83.24 74 | 75.20 109 | 63.62 88 | 64.93 89 | 56.72 103 | 71.82 51 | 73.30 63 | 49.02 175 | 81.02 87 | 80.70 81 | 86.22 118 | 88.67 56 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
pm-mvs1 | | | 65.62 147 | 67.42 144 | 63.53 156 | 73.66 143 | 76.39 142 | 69.66 153 | 60.87 128 | 49.73 187 | 43.97 170 | 51.24 166 | 57.00 138 | 48.16 176 | 79.89 103 | 77.84 120 | 84.85 148 | 79.82 140 |
|
gg-mvs-nofinetune | | | 62.55 164 | 65.05 162 | 59.62 173 | 78.72 97 | 77.61 132 | 70.83 151 | 53.63 166 | 39.71 206 | 22.04 207 | 36.36 199 | 64.32 107 | 47.53 177 | 81.16 84 | 79.03 106 | 85.00 145 | 77.17 156 |
|
pmmvs6 | | | 62.41 167 | 62.88 175 | 61.87 161 | 71.38 163 | 75.18 156 | 67.76 162 | 59.45 145 | 41.64 202 | 42.52 175 | 37.33 197 | 52.91 167 | 46.87 178 | 77.67 129 | 76.26 144 | 83.23 156 | 79.18 145 |
|
ADS-MVSNet | | | 55.94 191 | 58.01 192 | 53.54 194 | 62.48 195 | 58.48 204 | 59.12 197 | 46.20 201 | 59.65 131 | 42.88 174 | 52.34 161 | 53.31 165 | 46.31 179 | 62.00 201 | 60.02 202 | 64.23 208 | 60.24 204 |
|
pmmvs3 | | | 47.65 200 | 49.08 205 | 45.99 201 | 44.61 210 | 54.79 208 | 50.04 205 | 31.95 212 | 33.91 209 | 29.90 193 | 30.37 204 | 33.53 211 | 46.31 179 | 63.50 198 | 63.67 197 | 73.14 196 | 63.77 198 |
|
TransMVSNet (Re) | | | 64.74 153 | 65.66 156 | 63.66 155 | 77.40 109 | 75.33 152 | 69.86 152 | 62.67 107 | 47.63 192 | 41.21 177 | 50.01 170 | 52.33 171 | 45.31 181 | 79.57 107 | 77.69 123 | 85.49 136 | 77.07 158 |
|
CDS-MVSNet | | | 67.65 135 | 69.83 116 | 65.09 144 | 75.39 123 | 76.55 141 | 74.42 122 | 63.75 87 | 53.55 170 | 49.37 144 | 59.41 106 | 62.45 113 | 44.44 182 | 79.71 105 | 79.82 93 | 83.17 157 | 77.36 155 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 59.58 183 | 62.81 177 | 55.81 186 | 66.03 186 | 65.64 189 | 63.86 183 | 48.74 193 | 49.95 186 | 37.07 187 | 54.77 134 | 58.54 129 | 44.44 182 | 72.29 163 | 71.79 166 | 74.70 190 | 66.66 192 |
|
EPNet_dtu | | | 68.08 126 | 71.00 105 | 64.67 148 | 79.64 90 | 68.62 179 | 75.05 114 | 63.30 90 | 66.36 80 | 45.27 166 | 67.40 74 | 66.84 101 | 43.64 184 | 75.37 147 | 74.98 153 | 81.15 163 | 77.44 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet5 | | | 57.24 187 | 60.02 190 | 53.99 192 | 56.45 205 | 62.74 199 | 65.27 177 | 47.03 199 | 55.14 158 | 39.55 180 | 40.88 192 | 53.42 163 | 41.83 185 | 72.35 162 | 71.10 171 | 73.79 193 | 64.50 196 |
|
ambc | | | | 53.42 198 | | 64.99 189 | 63.36 196 | 49.96 206 | | 47.07 193 | 37.12 186 | 28.97 206 | 16.36 218 | 41.82 186 | 75.10 149 | 67.34 186 | 71.55 199 | 75.72 165 |
|
FPMVS | | | 51.87 198 | 50.00 203 | 54.07 191 | 66.83 184 | 57.25 205 | 60.25 194 | 50.91 183 | 50.25 185 | 34.36 189 | 36.04 200 | 32.02 212 | 41.49 187 | 58.98 205 | 56.07 204 | 70.56 202 | 59.36 205 |
|
CP-MVSNet | | | 62.68 163 | 65.49 158 | 59.40 175 | 71.84 155 | 75.34 151 | 62.87 187 | 67.04 64 | 52.64 174 | 27.19 198 | 53.38 145 | 48.15 189 | 41.40 188 | 71.26 171 | 75.68 147 | 86.07 122 | 82.00 120 |
|
PS-CasMVS | | | 62.38 169 | 65.06 161 | 59.25 176 | 71.73 156 | 75.21 155 | 62.77 188 | 66.99 65 | 51.94 181 | 26.96 199 | 52.00 162 | 47.52 192 | 41.06 189 | 71.16 174 | 75.60 148 | 85.97 129 | 81.97 122 |
|
PEN-MVS | | | 62.96 161 | 65.77 155 | 59.70 172 | 73.98 138 | 75.45 150 | 63.39 185 | 67.61 61 | 52.49 175 | 25.49 200 | 53.39 144 | 49.12 187 | 40.85 190 | 71.94 168 | 77.26 132 | 86.86 101 | 80.72 132 |
|
MIMVSNet | | | 58.52 186 | 61.34 186 | 55.22 188 | 60.76 197 | 67.01 184 | 66.81 168 | 49.02 192 | 56.43 149 | 38.90 181 | 40.59 194 | 54.54 150 | 40.57 191 | 73.16 159 | 71.65 167 | 75.30 189 | 66.00 193 |
|
pmnet_mix02 | | | 55.30 192 | 57.01 196 | 53.30 195 | 64.14 191 | 59.09 203 | 58.39 198 | 50.24 189 | 53.47 171 | 38.68 182 | 49.75 173 | 45.86 196 | 40.14 192 | 65.38 196 | 60.22 201 | 68.19 205 | 65.33 194 |
|
Vis-MVSNet (Re-imp) | | | 67.83 131 | 73.52 87 | 61.19 164 | 78.37 98 | 76.72 140 | 66.80 169 | 62.96 95 | 65.50 86 | 34.17 190 | 67.19 75 | 69.68 85 | 39.20 193 | 79.39 111 | 79.44 102 | 85.68 133 | 76.73 160 |
|
DTE-MVSNet | | | 61.85 173 | 64.96 164 | 58.22 178 | 74.32 134 | 74.39 159 | 61.01 191 | 67.85 60 | 51.76 182 | 21.91 208 | 53.28 146 | 48.17 188 | 37.74 194 | 72.22 165 | 76.44 142 | 86.52 114 | 78.49 148 |
|
EU-MVSNet | | | 54.63 193 | 58.69 191 | 49.90 198 | 56.99 204 | 62.70 200 | 56.41 200 | 50.64 187 | 45.95 197 | 23.14 204 | 50.42 169 | 46.51 194 | 36.63 195 | 65.51 195 | 64.85 194 | 75.57 185 | 74.91 171 |
|
Anonymous20231206 | | | 56.36 190 | 57.80 194 | 54.67 190 | 70.08 171 | 66.39 186 | 60.46 193 | 57.54 157 | 49.50 189 | 29.30 195 | 33.86 202 | 46.64 193 | 35.18 196 | 70.44 181 | 68.88 179 | 75.47 187 | 68.88 189 |
|
WR-MVS | | | 63.03 160 | 67.40 145 | 57.92 179 | 75.14 125 | 77.60 133 | 60.56 192 | 66.10 69 | 54.11 169 | 23.88 201 | 53.94 141 | 53.58 156 | 34.50 197 | 73.93 156 | 77.71 122 | 87.35 88 | 80.94 130 |
|
WR-MVS_H | | | 61.83 175 | 65.87 154 | 57.12 182 | 71.72 157 | 76.87 137 | 61.45 190 | 66.19 67 | 51.97 180 | 22.92 205 | 53.13 151 | 52.30 173 | 33.80 198 | 71.03 175 | 75.00 152 | 86.65 110 | 80.78 131 |
|
PMVS |  | 39.38 18 | 46.06 204 | 43.30 206 | 49.28 199 | 62.93 192 | 38.75 212 | 41.88 211 | 53.50 168 | 33.33 212 | 35.46 188 | 28.90 207 | 31.01 213 | 33.04 199 | 58.61 206 | 54.63 207 | 68.86 204 | 57.88 206 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test0.0.03 1 | | | 58.80 184 | 61.58 185 | 55.56 187 | 75.02 126 | 68.45 180 | 59.58 196 | 61.96 117 | 52.74 173 | 29.57 194 | 49.75 173 | 54.56 149 | 31.46 200 | 71.19 172 | 69.77 173 | 75.75 184 | 64.57 195 |
|
N_pmnet | | | 47.35 201 | 50.13 202 | 44.11 203 | 59.98 199 | 51.64 209 | 51.86 204 | 44.80 203 | 49.58 188 | 20.76 209 | 40.65 193 | 40.05 207 | 29.64 201 | 59.84 203 | 55.15 205 | 57.63 209 | 54.00 207 |
|
DeepMVS_CX |  | | | | | | 18.74 218 | 18.55 216 | 8.02 214 | 26.96 213 | 7.33 216 | 23.81 210 | 13.05 219 | 25.99 202 | 25.17 213 | | 22.45 218 | 36.25 212 |
|
MIMVSNet1 | | | 49.27 199 | 53.25 199 | 44.62 202 | 44.61 210 | 61.52 202 | 53.61 202 | 52.18 177 | 41.62 203 | 18.68 211 | 28.14 208 | 41.58 204 | 25.50 203 | 68.46 191 | 69.04 177 | 73.15 195 | 62.37 201 |
|
Gipuma |  | | 36.38 206 | 35.80 208 | 37.07 205 | 45.76 209 | 33.90 213 | 29.81 213 | 48.47 195 | 39.91 205 | 18.02 212 | 8.00 216 | 8.14 220 | 25.14 204 | 59.29 204 | 61.02 200 | 55.19 211 | 40.31 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testgi | | | 54.39 195 | 57.86 193 | 50.35 197 | 71.59 162 | 67.24 183 | 54.95 201 | 53.25 170 | 43.36 199 | 23.78 202 | 44.64 185 | 47.87 190 | 24.96 205 | 70.45 180 | 68.66 181 | 73.60 194 | 62.78 200 |
|
new_pmnet | | | 38.40 205 | 42.64 207 | 33.44 206 | 37.54 215 | 45.00 211 | 36.60 212 | 32.72 211 | 40.27 204 | 12.72 214 | 29.89 205 | 28.90 214 | 24.78 206 | 53.17 208 | 52.90 208 | 56.31 210 | 48.34 208 |
|
FC-MVSNet-test | | | 56.90 189 | 65.20 160 | 47.21 200 | 66.98 182 | 63.20 197 | 49.11 208 | 58.60 154 | 59.38 132 | 11.50 215 | 65.60 78 | 56.68 139 | 24.66 207 | 71.17 173 | 71.36 170 | 72.38 197 | 69.02 188 |
|
test20.03 | | | 53.93 196 | 56.28 197 | 51.19 196 | 72.19 154 | 65.83 187 | 53.20 203 | 61.08 124 | 42.74 200 | 22.08 206 | 37.07 198 | 45.76 197 | 24.29 208 | 70.44 181 | 69.04 177 | 74.31 192 | 63.05 199 |
|
EMVS | | | 20.98 210 | 17.15 213 | 25.44 208 | 39.51 214 | 19.37 217 | 12.66 217 | 39.59 207 | 19.10 215 | 6.62 218 | 9.27 214 | 4.40 222 | 22.43 209 | 17.99 215 | 24.40 213 | 31.81 215 | 25.53 214 |
|
E-PMN | | | 21.77 209 | 18.24 212 | 25.89 207 | 40.22 213 | 19.58 216 | 12.46 218 | 39.87 206 | 18.68 216 | 6.71 217 | 9.57 213 | 4.31 223 | 22.36 210 | 19.89 214 | 27.28 212 | 33.73 214 | 28.34 213 |
|
new-patchmatchnet | | | 46.97 202 | 49.47 204 | 44.05 204 | 62.82 193 | 56.55 206 | 45.35 210 | 52.01 178 | 42.47 201 | 17.04 213 | 35.73 201 | 35.21 209 | 21.84 211 | 61.27 202 | 54.83 206 | 65.26 207 | 60.26 202 |
|
test_method | | | 22.26 208 | 25.94 210 | 17.95 211 | 3.24 219 | 7.17 219 | 23.83 214 | 7.27 215 | 37.35 208 | 20.44 210 | 21.87 211 | 39.16 208 | 18.67 212 | 34.56 210 | 20.84 214 | 34.28 213 | 20.64 215 |
|
MVE |  | 19.12 19 | 20.47 211 | 23.27 211 | 17.20 212 | 12.66 218 | 25.41 215 | 10.52 219 | 34.14 210 | 14.79 217 | 6.53 219 | 8.79 215 | 4.68 221 | 16.64 213 | 29.49 212 | 41.63 209 | 22.73 217 | 38.11 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 25.60 207 | 29.75 209 | 20.76 210 | 28.00 216 | 30.93 214 | 23.10 215 | 29.18 213 | 23.14 214 | 1.46 220 | 18.23 212 | 16.54 217 | 5.08 214 | 40.22 209 | 41.40 210 | 37.76 212 | 37.79 211 |
|
tmp_tt | | | | | 14.50 213 | 14.68 217 | 7.17 219 | 10.46 220 | 2.21 216 | 37.73 207 | 28.71 196 | 25.26 209 | 16.98 216 | 4.37 215 | 31.49 211 | 29.77 211 | 26.56 216 | |
|
GG-mvs-BLEND | | | 46.86 203 | 67.51 143 | 22.75 209 | 0.05 220 | 76.21 144 | 64.69 179 | 0.04 217 | 61.90 114 | 0.09 221 | 55.57 128 | 71.32 72 | 0.08 216 | 70.54 179 | 67.19 188 | 71.58 198 | 69.86 185 |
|
test123 | | | 0.09 212 | 0.14 215 | 0.02 214 | 0.00 222 | 0.02 221 | 0.02 223 | 0.01 218 | 0.09 219 | 0.00 223 | 0.30 217 | 0.00 225 | 0.08 216 | 0.03 217 | 0.09 216 | 0.01 219 | 0.45 216 |
|
testmvs | | | 0.09 212 | 0.15 214 | 0.02 214 | 0.01 221 | 0.02 221 | 0.05 222 | 0.01 218 | 0.11 218 | 0.01 222 | 0.26 218 | 0.01 224 | 0.06 218 | 0.10 216 | 0.10 215 | 0.01 219 | 0.43 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 222 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 223 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 222 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 223 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 222 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 223 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 46.24 160 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 15 | | | | | |
|
SR-MVS | | | | | | 88.99 34 | | | 73.57 25 | | | | 87.54 13 | | | | | |
|
our_test_3 | | | | | | 67.93 181 | 70.99 169 | 66.89 167 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 18 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 221 | | | | | | | | | | |
|
XVS | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
X-MVStestdata | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
mPP-MVS | | | | | | 89.90 25 | | | | | | | 81.29 42 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 46 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 188 | 65.97 174 | 52.74 174 | | 52.65 126 | | | | | | | |
|