This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS85.13 2486.62 2483.39 1990.55 1589.82 1789.29 2373.89 2484.38 3276.03 3079.01 3285.90 2278.47 1387.81 1686.11 3592.11 193.29 23
CSCG85.28 2387.68 1982.49 2689.95 2591.99 588.82 2671.20 3986.41 2379.63 1879.26 3088.36 1073.94 4386.64 3386.67 2691.40 294.41 8
xxxxxxxxxxxxxcwj85.35 2085.76 3184.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 861.35 12178.82 1087.42 2086.23 3191.28 393.90 13
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 888.93 778.82 1087.42 2086.23 3191.28 393.90 13
SteuartSystems-ACMMP85.99 1688.31 1683.27 2290.73 1189.84 1590.27 1574.31 1684.56 3175.88 3187.32 1585.04 2577.31 2589.01 788.46 391.14 593.96 12
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS88.00 690.50 685.08 590.95 891.58 792.03 175.53 1391.15 580.10 1692.27 588.34 1180.80 588.00 1486.99 1991.09 695.16 6
DeepC-MVS78.47 284.81 2786.03 2983.37 2089.29 3390.38 1288.61 2876.50 186.25 2477.22 2575.12 4180.28 4677.59 2388.39 1088.17 691.02 793.66 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 896.21 1
SED-MVS88.85 291.59 385.67 290.54 1692.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 995.73 3
DPE-MVScopyleft88.63 491.29 485.53 390.87 992.20 491.98 276.00 690.55 882.09 793.85 190.75 281.25 188.62 887.59 1490.96 1095.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft87.56 790.17 784.52 1091.71 390.57 1090.77 975.19 1490.67 780.50 1586.59 1888.86 878.09 1789.92 189.41 190.84 1195.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft88.67 391.62 285.22 490.47 1892.36 290.69 1076.15 493.08 282.75 592.19 690.71 380.45 689.27 687.91 990.82 1295.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HFP-MVS86.15 1587.95 1884.06 1590.80 1089.20 2489.62 2174.26 1787.52 1680.63 1386.82 1784.19 3078.22 1587.58 1887.19 1790.81 1393.13 25
ACMMPR85.52 1887.53 2083.17 2390.13 2189.27 2189.30 2273.97 2286.89 2177.14 2686.09 1983.18 3377.74 2187.42 2087.20 1690.77 1492.63 26
ACMMPcopyleft83.42 3285.27 3381.26 3288.47 3888.49 3588.31 3272.09 3483.42 3672.77 4282.65 2578.22 5175.18 3686.24 4085.76 3790.74 1592.13 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS84.42 2986.29 2882.23 2790.04 2388.82 2889.23 2471.74 3782.82 3874.61 3484.41 2482.09 3677.03 2987.13 2686.73 2590.73 1692.06 33
DeepC-MVS_fast78.24 384.27 3085.50 3282.85 2490.46 1989.24 2287.83 3474.24 1884.88 2776.23 2975.26 4081.05 4477.62 2288.02 1387.62 1390.69 1792.41 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS86.96 1089.45 984.05 1690.13 2189.23 2389.77 1974.59 1589.17 1180.70 1289.93 1289.67 578.47 1387.57 1986.79 2390.67 1893.76 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DROMVSNet79.44 5081.35 4777.22 5582.95 6584.67 6381.31 6263.65 9372.47 6968.75 5973.15 4978.33 5075.99 3486.06 4283.96 5090.67 1890.79 43
TSAR-MVS + MP.86.88 1189.23 1084.14 1489.78 2788.67 3290.59 1173.46 2888.99 1280.52 1491.26 788.65 979.91 886.96 3186.22 3390.59 2093.83 15
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030481.73 4083.86 3779.26 4386.22 5189.18 2586.41 3967.15 6775.28 5670.75 5474.59 4383.49 3274.42 4087.05 2986.34 3090.58 2191.08 41
APD-MVScopyleft86.84 1288.91 1484.41 1190.66 1290.10 1390.78 875.64 1087.38 1878.72 2090.68 1186.82 1780.15 787.13 2686.45 2990.51 2293.83 15
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS84.74 2886.43 2782.77 2589.48 3188.13 4088.64 2773.93 2384.92 2676.77 2781.94 2783.50 3177.29 2786.92 3286.49 2890.49 2393.14 24
XVS86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
X-MVStestdata86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
X-MVS83.23 3485.20 3480.92 3589.71 2888.68 2988.21 3373.60 2582.57 3971.81 4777.07 3481.92 3871.72 6186.98 3086.86 2190.47 2492.36 30
NCCC85.34 2186.59 2583.88 1791.48 488.88 2689.79 1875.54 1286.67 2277.94 2476.55 3684.99 2678.07 1888.04 1287.68 1290.46 2793.31 22
CNVR-MVS86.36 1488.19 1784.23 1391.33 589.84 1590.34 1275.56 1187.36 1978.97 1981.19 2986.76 1878.74 1289.30 588.58 290.45 2894.33 10
MP-MVScopyleft85.50 1987.40 2183.28 2190.65 1389.51 2089.16 2574.11 2083.70 3578.06 2385.54 2184.89 2877.31 2587.40 2387.14 1890.41 2993.65 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+75.73 482.40 3682.76 4181.97 3088.02 3989.67 1886.60 3871.48 3881.28 4478.18 2264.78 8677.96 5377.13 2887.32 2486.83 2290.41 2991.48 37
ACMMP_NAP86.52 1389.01 1183.62 1890.28 2090.09 1490.32 1474.05 2188.32 1579.74 1787.04 1685.59 2476.97 3089.35 488.44 490.35 3194.27 11
zzz-MVS85.71 1786.88 2384.34 1290.54 1687.11 4589.77 1974.17 1988.54 1483.08 478.60 3386.10 2078.11 1687.80 1787.46 1590.35 3192.56 27
CS-MVS79.22 5381.11 5077.01 5781.36 7784.03 6680.35 6863.25 9773.43 6670.37 5574.10 4776.03 5976.40 3286.32 3983.95 5190.34 3389.93 50
CDPH-MVS82.64 3585.03 3579.86 4089.41 3288.31 3788.32 3171.84 3680.11 4667.47 6682.09 2681.44 4271.85 5985.89 4386.15 3490.24 3491.25 39
LGP-MVS_train79.83 4581.22 4978.22 5186.28 5085.36 5986.76 3769.59 4877.34 5165.14 7575.68 3870.79 7971.37 6584.60 5284.01 4890.18 3590.74 44
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4190.23 1676.06 588.85 1381.20 1187.33 1487.93 1279.47 988.59 988.23 590.15 3693.60 21
3Dnovator73.76 579.75 4780.52 5578.84 4684.94 6187.35 4284.43 5365.54 7878.29 5073.97 3663.00 9475.62 6174.07 4285.00 4985.34 4190.11 3789.04 56
DPM-MVS83.30 3384.33 3682.11 2889.56 2988.49 3590.33 1373.24 2983.85 3476.46 2872.43 5282.65 3473.02 5086.37 3786.91 2090.03 3889.62 54
ETV-MVS77.32 6478.81 6275.58 6482.24 7283.64 7479.98 7064.02 9069.64 7663.90 8070.89 6069.94 8573.41 4685.39 4783.91 5289.92 3988.31 62
ACMP73.23 779.79 4680.53 5478.94 4585.61 5485.68 5485.61 4469.59 4877.33 5271.00 5374.45 4469.16 9171.88 5783.15 6783.37 5689.92 3990.57 47
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS-test78.79 5980.72 5276.53 6081.11 8283.88 6979.69 7763.72 9273.80 6369.95 5775.40 3976.17 5774.85 3784.50 5582.78 6189.87 4188.54 61
train_agg84.86 2687.21 2282.11 2890.59 1485.47 5689.81 1773.55 2783.95 3373.30 3989.84 1387.23 1575.61 3586.47 3585.46 4089.78 4292.06 33
TSAR-MVS + GP.83.69 3186.58 2680.32 3785.14 5686.96 4684.91 5170.25 4384.71 3073.91 3785.16 2285.63 2377.92 1985.44 4485.71 3889.77 4392.45 28
ACMM72.26 878.86 5878.13 6579.71 4186.89 4683.40 7686.02 4170.50 4175.28 5671.49 5163.01 9369.26 9073.57 4584.11 5883.98 4989.76 4487.84 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS79.68 4979.28 6180.15 3987.99 4086.77 4888.52 3072.72 3164.55 10067.65 6567.87 7574.33 6574.31 4186.37 3785.25 4289.73 4589.81 52
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSP-MVS88.09 590.84 584.88 790.00 2491.80 691.63 575.80 791.99 481.23 1092.54 289.18 680.89 487.99 1587.91 989.70 4694.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet81.62 4183.41 3879.53 4287.06 4488.59 3385.47 4667.96 6076.59 5474.05 3574.69 4281.98 3772.98 5186.14 4185.47 3989.68 4790.42 48
abl_679.05 4487.27 4388.85 2783.62 5768.25 5681.68 4272.94 4173.79 4884.45 2972.55 5389.66 4890.64 45
MVS_111021_HR80.13 4481.46 4678.58 4885.77 5385.17 6083.45 5869.28 5174.08 6270.31 5674.31 4575.26 6273.13 4886.46 3685.15 4389.53 4989.81 52
IS_MVSNet73.33 8477.34 7468.65 11781.29 7883.47 7574.45 12663.58 9565.75 9248.49 15267.11 7970.61 8054.63 16984.51 5483.58 5589.48 5086.34 79
DELS-MVS79.15 5681.07 5176.91 5883.54 6387.31 4384.45 5264.92 8369.98 7169.34 5871.62 5676.26 5669.84 7086.57 3485.90 3689.39 5189.88 51
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11577.72 11280.72 10373.81 14169.65 4761.99 12043.23 17860.54 10357.50 13958.57 13879.56 11581.07 7689.34 5283.97 107
EIA-MVS75.64 7276.60 7974.53 7482.43 7083.84 7078.32 9262.28 12165.96 9063.28 8468.95 6767.54 10171.61 6382.55 7281.63 7089.24 5385.72 83
PHI-MVS82.36 3785.89 3078.24 5086.40 4989.52 1985.52 4569.52 5082.38 4165.67 7281.35 2882.36 3573.07 4987.31 2586.76 2489.24 5391.56 36
canonicalmvs79.16 5582.37 4475.41 6582.33 7186.38 5280.80 6563.18 9982.90 3767.34 6772.79 5176.07 5869.62 7183.46 6684.41 4789.20 5590.60 46
MSLP-MVS++82.09 3882.66 4281.42 3187.03 4587.22 4485.82 4370.04 4480.30 4578.66 2168.67 7181.04 4577.81 2085.19 4884.88 4589.19 5691.31 38
HQP-MVS81.19 4283.27 3978.76 4787.40 4285.45 5786.95 3670.47 4281.31 4366.91 6979.24 3176.63 5571.67 6284.43 5683.78 5389.19 5692.05 35
EPP-MVSNet74.00 8177.41 7270.02 10280.53 8883.91 6874.99 12162.68 11365.06 9549.77 14768.68 7072.09 7363.06 10882.49 7480.73 8189.12 5888.91 57
NR-MVSNet68.79 12770.56 11566.71 14677.48 11579.54 11373.52 14569.20 5261.20 12839.76 18558.52 11550.11 19051.37 17880.26 10680.71 8688.97 5983.59 113
PVSNet_Blended_VisFu76.57 6777.90 6675.02 6880.56 8786.58 5079.24 8166.18 7264.81 9768.18 6365.61 8071.45 7467.05 8384.16 5781.80 6888.90 6090.92 42
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 13077.23 11779.46 11573.48 14669.66 4660.43 13439.56 18658.82 11453.48 16655.74 16379.59 11381.21 7488.89 6182.70 117
QAPM78.47 6080.22 5876.43 6185.03 5886.75 4980.62 6766.00 7573.77 6465.35 7465.54 8278.02 5272.69 5283.71 6183.36 5788.87 6290.41 49
casdiffmvs76.76 6678.46 6474.77 7180.32 9183.73 7380.65 6663.24 9873.58 6566.11 7169.39 6674.09 6669.49 7382.52 7379.35 11188.84 6386.52 77
CPTT-MVS81.77 3983.10 4080.21 3885.93 5286.45 5187.72 3570.98 4082.54 4071.53 5074.23 4681.49 4176.31 3382.85 7081.87 6788.79 6492.26 31
Effi-MVS+75.28 7476.20 8074.20 7681.15 8083.24 7981.11 6363.13 10166.37 8660.27 9064.30 9068.88 9570.93 6881.56 7981.69 6988.61 6587.35 69
UniMVSNet (Re)69.53 11871.90 10866.76 14476.42 12180.93 9972.59 15168.03 5961.75 12341.68 18358.34 12157.23 14153.27 17479.53 11680.62 9088.57 6684.90 99
PCF-MVS73.28 679.42 5180.41 5678.26 4984.88 6288.17 3886.08 4069.85 4575.23 5868.43 6168.03 7478.38 4971.76 6081.26 8880.65 8988.56 6791.18 40
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_part174.24 7873.44 9375.18 6782.02 7482.34 8783.88 5562.40 11960.93 13068.68 6049.25 18269.71 8765.73 9881.26 8881.98 6688.35 6888.60 60
GeoE74.23 7974.84 8673.52 7880.42 9081.46 9379.77 7461.06 13167.23 8363.67 8159.56 11068.74 9767.90 8080.25 10779.37 11088.31 6987.26 72
test250671.72 9572.95 9970.29 9781.49 7583.27 7775.74 11067.59 6468.19 7949.81 14661.15 9849.73 19258.82 13684.76 5082.94 5888.27 7080.63 138
ECVR-MVScopyleft72.20 9173.91 9070.20 9981.49 7583.27 7775.74 11067.59 6468.19 7949.31 15055.77 13262.00 11958.82 13684.76 5082.94 5888.27 7080.41 142
MAR-MVS79.21 5480.32 5777.92 5287.46 4188.15 3983.95 5467.48 6674.28 6068.25 6264.70 8777.04 5472.17 5585.42 4585.00 4488.22 7287.62 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+73.11 8673.66 9172.48 8277.72 11280.88 10278.55 8958.83 15965.19 9460.36 8959.98 10762.42 11871.22 6681.66 7680.61 9188.20 7384.88 100
ET-MVSNet_ETH3D72.46 9074.19 8870.44 9562.50 20181.17 9779.90 7362.46 11864.52 10157.52 10371.49 5859.15 13272.08 5678.61 12781.11 7588.16 7483.29 115
OMC-MVS80.26 4382.59 4377.54 5383.04 6485.54 5583.25 5965.05 8287.32 2072.42 4372.04 5478.97 4873.30 4783.86 5981.60 7188.15 7588.83 58
AdaColmapbinary79.74 4878.62 6381.05 3489.23 3486.06 5384.95 5071.96 3579.39 4975.51 3263.16 9268.84 9676.51 3183.55 6382.85 6088.13 7686.46 78
test111171.56 9773.44 9369.38 11081.16 7982.95 8274.99 12167.68 6266.89 8446.33 16655.19 13860.91 12357.99 14484.59 5382.70 6288.12 7780.85 135
OpenMVScopyleft70.44 1076.15 7076.82 7875.37 6685.01 5984.79 6278.99 8562.07 12271.27 7067.88 6457.91 12372.36 7270.15 6982.23 7581.41 7288.12 7787.78 67
FA-MVS(training)73.66 8274.95 8572.15 8378.63 10480.46 10678.92 8654.79 17269.71 7565.37 7362.04 9566.89 10467.10 8280.72 9679.87 9988.10 7984.97 97
UA-Net74.47 7777.80 6770.59 9485.33 5585.40 5873.54 14465.98 7660.65 13256.00 11172.11 5379.15 4754.63 16983.13 6882.25 6488.04 8081.92 127
DU-MVS69.63 11770.91 11368.13 12175.99 12379.54 11373.81 14169.20 5261.20 12843.23 17858.52 11553.50 16458.57 13879.22 11980.45 9287.97 8183.97 107
FC-MVSNet-train72.60 8975.07 8469.71 10581.10 8378.79 12373.74 14365.23 8166.10 8953.34 12670.36 6263.40 11556.92 15481.44 8180.96 7887.93 8284.46 105
IB-MVS66.94 1271.21 10271.66 11070.68 9179.18 9982.83 8472.61 15061.77 12659.66 13763.44 8353.26 15459.65 13059.16 13576.78 14782.11 6587.90 8387.33 70
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_BlendedMVS76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
PVSNet_Blended76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
DeepPCF-MVS79.04 185.30 2288.93 1281.06 3388.77 3790.48 1185.46 4773.08 3090.97 673.77 3884.81 2385.95 2177.43 2488.22 1187.73 1187.85 8694.34 9
thisisatest053071.48 9973.01 9869.70 10673.83 14778.62 12574.53 12559.12 15364.13 10358.63 9664.60 8858.63 13464.27 10180.28 10580.17 9787.82 8784.64 103
TAPA-MVS71.42 977.69 6380.05 5974.94 6980.68 8684.52 6481.36 6163.14 10084.77 2864.82 7768.72 6975.91 6071.86 5881.62 7779.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051771.41 10072.95 9969.60 10773.70 14978.70 12474.42 12959.12 15363.89 10758.35 9964.56 8958.39 13664.27 10180.29 10480.17 9787.74 8984.69 102
MVS_Test75.37 7377.13 7673.31 8079.07 10081.32 9579.98 7060.12 14469.72 7464.11 7970.53 6173.22 6868.90 7580.14 10979.48 10887.67 9085.50 87
DI_MVS_plusplus_trai75.13 7576.12 8173.96 7778.18 10681.55 9080.97 6462.54 11568.59 7765.13 7661.43 9774.81 6369.32 7481.01 9479.59 10487.64 9185.89 81
MVSTER72.06 9274.24 8769.51 10870.39 17775.97 15376.91 10557.36 16664.64 9961.39 8868.86 6863.76 11363.46 10581.44 8179.70 10187.56 9285.31 91
TSAR-MVS + ACMM85.10 2588.81 1580.77 3689.55 3088.53 3488.59 2972.55 3287.39 1771.90 4490.95 1087.55 1374.57 3887.08 2886.54 2787.47 9393.67 18
CLD-MVS79.35 5281.23 4877.16 5685.01 5986.92 4785.87 4260.89 13380.07 4875.35 3372.96 5073.21 6968.43 7985.41 4684.63 4687.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu71.82 9471.86 10971.78 8578.77 10180.47 10578.55 8961.67 12960.68 13155.49 11258.48 11765.48 10868.85 7676.92 14475.55 15687.35 9585.46 88
WR-MVS63.03 16767.40 15257.92 18675.14 13277.60 14060.56 19966.10 7354.11 17623.88 20853.94 14853.58 16234.50 20473.93 16377.71 12987.35 9580.94 134
v14419269.34 12168.68 13970.12 10074.06 14380.54 10478.08 9560.54 13754.99 16954.13 11952.92 16152.80 17566.73 9077.13 14276.72 14587.15 9785.63 84
EPNet79.08 5780.62 5377.28 5488.90 3683.17 8183.65 5672.41 3374.41 5967.15 6876.78 3574.37 6464.43 10083.70 6283.69 5487.15 9788.19 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS67.24 14866.94 15567.60 12878.73 10281.35 9473.28 14859.49 14946.89 20151.42 13843.65 19453.49 16555.50 16681.38 8380.66 8887.15 9781.17 133
v114469.93 11569.36 12970.61 9374.89 13580.93 9979.11 8360.64 13555.97 16155.31 11453.85 14954.14 15766.54 9278.10 13277.44 13587.14 10085.09 94
anonymousdsp65.28 15767.98 14662.13 16758.73 20973.98 16767.10 17350.69 19348.41 19747.66 16054.27 14352.75 17661.45 12676.71 14880.20 9587.13 10189.53 55
PLCcopyleft68.99 1175.68 7175.31 8376.12 6382.94 6681.26 9679.94 7266.10 7377.15 5366.86 7059.13 11368.53 9873.73 4480.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v1070.22 11169.76 12470.74 8974.79 13680.30 11079.22 8259.81 14757.71 14856.58 10954.22 14755.31 15066.95 8678.28 13077.47 13487.12 10385.07 95
v119269.50 11968.83 13570.29 9774.49 13980.92 10178.55 8960.54 13755.04 16754.21 11752.79 16352.33 17766.92 8777.88 13477.35 13887.04 10485.51 86
v192192069.03 12468.32 14369.86 10374.03 14480.37 10777.55 9760.25 14154.62 17153.59 12552.36 16751.50 18366.75 8977.17 14176.69 14786.96 10585.56 85
v2v48270.05 11469.46 12870.74 8974.62 13880.32 10979.00 8460.62 13657.41 15056.89 10655.43 13755.14 15266.39 9477.25 14077.14 14086.90 10683.57 114
Vis-MVSNetpermissive72.77 8877.20 7567.59 12974.19 14284.01 6776.61 10961.69 12760.62 13350.61 14270.25 6371.31 7755.57 16583.85 6082.28 6386.90 10688.08 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PEN-MVS62.96 16865.77 16259.70 17973.98 14575.45 15763.39 19267.61 6352.49 18225.49 20753.39 15149.12 19440.85 19771.94 17577.26 13986.86 10880.72 137
v870.23 11069.86 12270.67 9274.69 13779.82 11278.79 8759.18 15258.80 14158.20 10055.00 13957.33 14066.31 9577.51 13776.71 14686.82 10983.88 110
ACMH+66.54 1371.36 10170.09 11972.85 8182.59 6881.13 9878.56 8868.04 5861.55 12452.52 13351.50 17154.14 15768.56 7878.85 12479.50 10786.82 10983.94 109
v124068.64 12967.89 14869.51 10873.89 14680.26 11176.73 10759.97 14653.43 17953.08 12851.82 17050.84 18666.62 9176.79 14676.77 14486.78 11185.34 90
DCV-MVSNet73.65 8375.78 8271.16 8880.19 9279.27 11777.45 10161.68 12866.73 8558.72 9565.31 8369.96 8462.19 11381.29 8780.97 7786.74 11286.91 73
GBi-Net70.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
FMVSNet270.39 10972.67 10367.72 12572.95 15478.00 13075.15 11662.69 11263.29 11151.25 13955.64 13368.49 9957.59 14680.91 9580.35 9486.70 11382.02 121
v7n67.05 15066.94 15567.17 13672.35 15978.97 11873.26 14958.88 15851.16 19050.90 14048.21 18550.11 19060.96 12777.70 13577.38 13686.68 11685.05 96
WR-MVS_H61.83 18265.87 16157.12 18971.72 16476.87 14461.45 19766.19 7151.97 18722.92 21253.13 15852.30 17933.80 20571.03 18275.00 15986.65 11780.78 136
MSDG71.52 9869.87 12173.44 7982.21 7379.35 11679.52 7864.59 8566.15 8861.87 8553.21 15656.09 14765.85 9778.94 12378.50 11986.60 11876.85 166
FMVSNet370.49 10772.90 10167.67 12772.88 15777.98 13374.96 12362.72 10864.13 10351.44 13558.37 11869.02 9257.43 14979.43 11779.57 10586.59 11981.81 128
MVS_111021_LR78.13 6279.85 6076.13 6281.12 8181.50 9280.28 6965.25 8076.09 5571.32 5276.49 3772.87 7172.21 5482.79 7181.29 7386.59 11987.91 65
DTE-MVSNet61.85 18064.96 17158.22 18574.32 14174.39 16661.01 19867.85 6151.76 18921.91 21553.28 15348.17 19537.74 20172.22 17276.44 14986.52 12178.49 155
baseline269.69 11670.27 11869.01 11375.72 12777.13 14373.82 14058.94 15761.35 12657.09 10561.68 9657.17 14261.99 11778.10 13276.58 14886.48 12279.85 146
thisisatest051567.40 14668.78 13665.80 14970.02 17975.24 16069.36 16357.37 16554.94 17053.67 12455.53 13654.85 15358.00 14378.19 13178.91 11586.39 12383.78 111
FMVSNet168.84 12670.47 11766.94 14171.35 17177.68 13874.71 12462.35 12056.93 15249.94 14550.01 17764.59 11057.07 15181.33 8480.72 8286.25 12482.00 124
UGNet72.78 8777.67 6867.07 13971.65 16683.24 7975.20 11563.62 9464.93 9656.72 10771.82 5573.30 6749.02 18281.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121171.90 9372.48 10471.21 8780.14 9381.53 9176.92 10462.89 10464.46 10258.94 9243.80 19370.98 7862.22 11280.70 9780.19 9686.18 12685.73 82
tfpn200view968.11 13268.72 13867.40 13177.83 11078.93 11974.28 13162.81 10556.64 15446.82 16252.65 16453.47 16756.59 15580.41 9978.43 12086.11 12780.52 140
CANet_DTU73.29 8576.96 7769.00 11477.04 11882.06 8879.49 7956.30 16967.85 8153.29 12771.12 5970.37 8361.81 12281.59 7880.96 7886.09 12884.73 101
CP-MVSNet62.68 17065.49 16559.40 18271.84 16275.34 15862.87 19467.04 6852.64 18127.19 20553.38 15248.15 19641.40 19571.26 17875.68 15486.07 12982.00 124
ACMH65.37 1470.71 10570.00 12071.54 8682.51 6982.47 8677.78 9668.13 5756.19 15946.06 16954.30 14251.20 18468.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view767.68 14068.43 14266.80 14377.90 10778.86 12173.84 13962.75 10656.07 16044.70 17652.85 16252.81 17455.58 16480.41 9977.77 12886.05 13180.28 143
thres20067.98 13468.55 14167.30 13477.89 10978.86 12174.18 13562.75 10656.35 15746.48 16552.98 16053.54 16356.46 15680.41 9977.97 12686.05 13179.78 148
CNLPA77.20 6577.54 6976.80 5982.63 6784.31 6579.77 7464.64 8485.17 2573.18 4056.37 13069.81 8674.53 3981.12 9278.69 11786.04 13387.29 71
TSAR-MVS + COLMAP78.34 6181.64 4574.48 7580.13 9485.01 6181.73 6065.93 7784.75 2961.68 8685.79 2066.27 10671.39 6482.91 6980.78 8086.01 13485.98 80
LS3D74.08 8073.39 9574.88 7085.05 5782.62 8579.71 7668.66 5472.82 6758.80 9457.61 12461.31 12271.07 6780.32 10378.87 11686.00 13580.18 144
Anonymous20240521172.16 10780.85 8581.85 8976.88 10665.40 7962.89 11546.35 18967.99 10062.05 11581.15 9180.38 9385.97 13684.50 104
PS-CasMVS62.38 17665.06 16859.25 18371.73 16375.21 16262.77 19566.99 6951.94 18826.96 20652.00 16947.52 19941.06 19671.16 18175.60 15585.97 13681.97 126
thres40067.95 13568.62 14067.17 13677.90 10778.59 12674.27 13262.72 10856.34 15845.77 17153.00 15953.35 17056.46 15680.21 10878.43 12085.91 13880.43 141
thres100view90067.60 14468.02 14567.12 13877.83 11077.75 13773.90 13862.52 11656.64 15446.82 16252.65 16453.47 16755.92 16078.77 12577.62 13185.72 13979.23 151
Vis-MVSNet (Re-imp)67.83 13873.52 9261.19 17178.37 10576.72 14766.80 17662.96 10265.50 9334.17 19767.19 7869.68 8839.20 20079.39 11879.44 10985.68 14076.73 167
baseline170.10 11372.17 10667.69 12679.74 9576.80 14573.91 13764.38 8762.74 11648.30 15464.94 8464.08 11254.17 17181.46 8078.92 11485.66 14176.22 168
V4268.76 12869.63 12567.74 12464.93 19778.01 12978.30 9356.48 16858.65 14256.30 11054.26 14557.03 14364.85 9977.47 13877.01 14285.60 14284.96 98
TransMVSNet (Re)64.74 16065.66 16363.66 16277.40 11675.33 15969.86 15962.67 11447.63 19941.21 18450.01 17752.33 17745.31 18879.57 11477.69 13085.49 14377.07 165
IterMVS-LS71.69 9672.82 10270.37 9677.54 11476.34 15075.13 11960.46 13961.53 12557.57 10264.89 8567.33 10266.04 9677.09 14377.37 13785.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_ETH3D67.18 14967.03 15467.36 13274.44 14078.12 12874.07 13666.38 7052.22 18446.87 16148.64 18351.84 18156.96 15277.29 13978.53 11885.42 14582.59 118
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15268.41 5561.33 12738.33 19051.31 17254.13 15956.03 15979.22 11978.19 12385.37 14682.45 119
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 14075.15 13177.97 13577.12 10355.40 17157.87 14346.68 16456.17 13160.39 12462.36 11176.32 15176.25 15285.35 14781.34 131
diffmvs74.86 7677.37 7371.93 8475.62 12880.35 10879.42 8060.15 14372.81 6864.63 7871.51 5773.11 7066.53 9379.02 12277.98 12585.25 14886.83 76
GA-MVS68.14 13169.17 13266.93 14273.77 14878.50 12774.45 12658.28 16155.11 16648.44 15360.08 10553.99 16061.50 12478.43 12977.57 13285.13 14980.54 139
v14867.85 13767.53 14968.23 11973.25 15277.57 14174.26 13357.36 16655.70 16257.45 10453.53 15055.42 14961.96 11875.23 15573.92 16485.08 15081.32 132
HyFIR lowres test69.47 12068.94 13470.09 10176.77 12082.93 8376.63 10860.17 14259.00 14054.03 12040.54 20265.23 10967.89 8176.54 15078.30 12285.03 15180.07 145
gg-mvs-nofinetune62.55 17165.05 16959.62 18078.72 10377.61 13970.83 15853.63 17339.71 21322.04 21436.36 20664.32 11147.53 18481.16 9079.03 11385.00 15277.17 163
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15768.70 11680.49 8977.98 13375.29 11462.95 10363.62 10949.96 14447.32 18850.72 18758.57 13876.87 14575.50 15784.94 15375.33 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpnnormal64.27 16363.64 17965.02 15275.84 12675.61 15671.24 15762.52 11647.79 19842.97 18042.65 19644.49 20652.66 17678.77 12576.86 14384.88 15479.29 150
pm-mvs165.62 15467.42 15163.53 16373.66 15076.39 14969.66 16060.87 13449.73 19443.97 17751.24 17357.00 14448.16 18379.89 11077.84 12784.85 15579.82 147
gm-plane-assit57.00 19557.62 20256.28 19276.10 12262.43 20847.62 21646.57 20733.84 21723.24 21037.52 20340.19 21359.61 13479.81 11177.55 13384.55 15672.03 187
USDC67.36 14767.90 14766.74 14571.72 16475.23 16171.58 15460.28 14067.45 8250.54 14360.93 9945.20 20562.08 11476.56 14974.50 16284.25 15775.38 176
MS-PatchMatch70.17 11270.49 11669.79 10480.98 8477.97 13577.51 9858.95 15662.33 11855.22 11553.14 15765.90 10762.03 11679.08 12177.11 14184.08 15877.91 158
TDRefinement66.09 15365.03 17067.31 13369.73 18176.75 14675.33 11264.55 8660.28 13549.72 14845.63 19142.83 20860.46 13275.75 15275.95 15384.08 15878.04 157
pmmvs467.89 13667.39 15368.48 11871.60 16873.57 16874.45 12660.98 13264.65 9857.97 10154.95 14051.73 18261.88 11973.78 16475.11 15883.99 16077.91 158
pmmvs562.37 17764.04 17660.42 17465.03 19571.67 17567.17 17252.70 18350.30 19144.80 17454.23 14651.19 18549.37 18172.88 16773.48 16883.45 16174.55 180
pmmvs-eth3d63.52 16662.44 18864.77 15466.82 19270.12 18069.41 16259.48 15054.34 17552.71 12946.24 19044.35 20756.93 15372.37 16873.77 16683.30 16275.91 170
pmmvs662.41 17462.88 18261.87 16871.38 17075.18 16367.76 16959.45 15141.64 20942.52 18237.33 20452.91 17346.87 18577.67 13676.26 15183.23 16379.18 152
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13076.55 14874.42 12963.75 9153.55 17749.37 14959.41 11162.45 11744.44 18979.71 11279.82 10083.17 16477.36 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS65.06 15869.17 13260.26 17655.25 21563.43 20266.71 17743.01 21162.41 11750.64 14169.44 6567.04 10363.29 10674.36 16173.54 16782.68 16573.99 184
SixPastTwentyTwo61.84 18162.45 18761.12 17269.20 18572.20 17262.03 19657.40 16446.54 20238.03 19257.14 12841.72 21058.12 14269.67 19271.58 17581.94 16678.30 156
IterMVS66.36 15268.30 14464.10 15869.48 18474.61 16573.41 14750.79 19257.30 15148.28 15560.64 10259.92 12960.85 13174.14 16272.66 17181.80 16778.82 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL67.78 13966.65 15869.10 11273.01 15372.69 17168.49 16661.85 12562.93 11460.20 9156.83 12950.42 18869.52 7275.62 15374.46 16381.51 16873.62 185
TinyColmap62.84 16961.03 19464.96 15369.61 18271.69 17468.48 16759.76 14855.41 16347.69 15947.33 18734.20 21762.76 11074.52 15972.59 17281.44 16971.47 188
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18675.05 12063.30 9666.36 8745.27 17367.40 7766.84 10543.64 19175.37 15474.98 16081.15 17077.44 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet64.83 15965.54 16464.01 16070.64 17669.41 18165.97 18152.74 18157.81 14552.65 13054.27 14356.31 14660.92 12872.20 17373.09 16981.12 17175.69 173
RPMNet61.71 18462.88 18260.34 17569.51 18369.41 18163.48 19149.23 19757.81 14545.64 17250.51 17550.12 18953.13 17568.17 19968.49 19081.07 17275.62 175
test-mter60.84 18664.62 17356.42 19155.99 21364.18 19765.39 18334.23 21654.39 17446.21 16857.40 12759.49 13155.86 16171.02 18369.65 18180.87 17376.20 169
test-LLR64.42 16164.36 17464.49 15675.02 13363.93 19966.61 17861.96 12354.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
TESTMET0.1,161.10 18564.36 17457.29 18857.53 21063.93 19966.61 17836.22 21554.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
CostFormer68.92 12569.58 12668.15 12075.98 12576.17 15278.22 9451.86 18665.80 9161.56 8763.57 9162.83 11661.85 12070.40 19068.67 18779.42 17679.62 149
CVMVSNet62.55 17165.89 16058.64 18466.95 19069.15 18366.49 18056.29 17052.46 18332.70 19859.27 11258.21 13850.09 18071.77 17671.39 17679.31 17778.99 153
CHOSEN 1792x268869.20 12369.26 13069.13 11176.86 11978.93 11977.27 10260.12 14461.86 12254.42 11642.54 19761.61 12066.91 8878.55 12878.14 12479.23 17883.23 116
PM-MVS60.48 18760.94 19559.94 17758.85 20866.83 19264.27 18951.39 18955.03 16848.03 15650.00 17940.79 21258.26 14169.20 19567.13 19778.84 17977.60 160
baseline70.45 10874.09 8966.20 14770.95 17475.67 15474.26 13353.57 17468.33 7858.42 9769.87 6471.45 7461.55 12374.84 15874.76 16178.42 18083.72 112
PatchT61.97 17964.04 17659.55 18160.49 20567.40 18956.54 20648.65 20156.69 15352.65 13051.10 17452.14 18060.92 12872.20 17373.09 16978.03 18175.69 173
RPSCF67.64 14371.25 11163.43 16461.86 20370.73 17867.26 17150.86 19174.20 6158.91 9367.49 7669.33 8964.10 10371.41 17768.45 19177.61 18277.17 163
MDTV_nov1_ep13_2view60.16 18860.51 19659.75 17865.39 19469.05 18468.00 16848.29 20351.99 18545.95 17048.01 18649.64 19353.39 17368.83 19666.52 19877.47 18369.55 194
MDTV_nov1_ep1364.37 16265.24 16663.37 16568.94 18670.81 17772.40 15350.29 19560.10 13653.91 12260.07 10659.15 13257.21 15069.43 19467.30 19477.47 18369.78 193
LTVRE_ROB59.44 1661.82 18362.64 18560.87 17372.83 15877.19 14264.37 18858.97 15533.56 21828.00 20452.59 16642.21 20963.93 10474.52 15976.28 15077.15 18582.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT66.89 15169.22 13164.17 15771.30 17275.64 15571.33 15553.17 17857.63 14949.08 15160.72 10160.05 12863.09 10774.99 15773.92 16477.07 18681.57 130
SCA65.40 15666.58 15964.02 15970.65 17573.37 16967.35 17053.46 17663.66 10854.14 11860.84 10060.20 12761.50 12469.96 19168.14 19277.01 18769.91 191
MDA-MVSNet-bldmvs53.37 20453.01 20753.79 20043.67 21967.95 18859.69 20257.92 16243.69 20532.41 19941.47 19827.89 22252.38 17756.97 21465.99 20076.68 18867.13 198
MVS-HIRNet54.41 20152.10 20857.11 19058.99 20756.10 21449.68 21449.10 19846.18 20352.15 13433.18 21046.11 20256.10 15863.19 20759.70 21076.64 18960.25 210
dps64.00 16562.99 18165.18 15073.29 15172.07 17368.98 16553.07 17957.74 14758.41 9855.55 13547.74 19860.89 13069.53 19367.14 19676.44 19071.19 189
test0.0.03 158.80 19161.58 19255.56 19475.02 13368.45 18759.58 20361.96 12352.74 18029.57 20149.75 18054.56 15531.46 20771.19 17969.77 18075.75 19164.57 202
EU-MVSNet54.63 20058.69 19849.90 20556.99 21162.70 20756.41 20750.64 19445.95 20423.14 21150.42 17646.51 20136.63 20265.51 20264.85 20175.57 19274.91 178
PatchmatchNetpermissive64.21 16464.65 17263.69 16171.29 17368.66 18569.63 16151.70 18863.04 11253.77 12359.83 10958.34 13760.23 13368.54 19766.06 19975.56 19368.08 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120656.36 19757.80 20154.67 19770.08 17866.39 19360.46 20057.54 16349.50 19629.30 20233.86 20946.64 20035.18 20370.44 18868.88 18675.47 19468.88 196
CMPMVSbinary47.78 1762.49 17362.52 18662.46 16670.01 18070.66 17962.97 19351.84 18751.98 18656.71 10842.87 19553.62 16157.80 14572.23 17170.37 17975.45 19575.91 170
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet58.52 19361.34 19355.22 19560.76 20467.01 19166.81 17549.02 19956.43 15638.90 18840.59 20154.54 15640.57 19873.16 16671.65 17475.30 19666.00 200
TAMVS59.58 19062.81 18455.81 19366.03 19365.64 19663.86 19048.74 20049.95 19337.07 19454.77 14158.54 13544.44 18972.29 17071.79 17374.70 19766.66 199
tpm cat165.41 15563.81 17867.28 13575.61 12972.88 17075.32 11352.85 18062.97 11363.66 8253.24 15553.29 17261.83 12165.54 20164.14 20374.43 19874.60 179
test20.0353.93 20356.28 20451.19 20372.19 16165.83 19453.20 21061.08 13042.74 20722.08 21337.07 20545.76 20424.29 21570.44 18869.04 18474.31 19963.05 206
FMVSNet557.24 19460.02 19753.99 19956.45 21262.74 20665.27 18447.03 20655.14 16539.55 18740.88 19953.42 16941.83 19272.35 16971.10 17873.79 20064.50 203
testgi54.39 20257.86 20050.35 20471.59 16967.24 19054.95 20853.25 17743.36 20623.78 20944.64 19247.87 19724.96 21270.45 18768.66 18873.60 20162.78 207
MIMVSNet149.27 20653.25 20644.62 20944.61 21761.52 20953.61 20952.18 18441.62 21018.68 21828.14 21541.58 21125.50 21068.46 19869.04 18473.15 20262.37 208
pmmvs347.65 20749.08 21245.99 20844.61 21754.79 21550.04 21231.95 21933.91 21629.90 20030.37 21133.53 21846.31 18663.50 20563.67 20473.14 20363.77 205
FC-MVSNet-test56.90 19665.20 16747.21 20766.98 18963.20 20449.11 21558.60 16059.38 13911.50 22265.60 8156.68 14524.66 21471.17 18071.36 17772.38 20469.02 195
GG-mvs-BLEND46.86 21067.51 15022.75 2160.05 22776.21 15164.69 1860.04 22461.90 1210.09 22855.57 13471.32 760.08 22370.54 18667.19 19571.58 20569.86 192
ambc53.42 20564.99 19663.36 20349.96 21347.07 20037.12 19328.97 21316.36 22541.82 19375.10 15667.34 19371.55 20675.72 172
tpmrst62.00 17862.35 18961.58 16971.62 16764.14 19869.07 16448.22 20562.21 11953.93 12158.26 12255.30 15155.81 16263.22 20662.62 20570.85 20770.70 190
tpm62.41 17463.15 18061.55 17072.24 16063.79 20171.31 15646.12 20957.82 14455.33 11359.90 10854.74 15453.63 17267.24 20064.29 20270.65 20874.25 183
FPMVS51.87 20550.00 21054.07 19866.83 19157.25 21260.25 20150.91 19050.25 19234.36 19636.04 20732.02 21941.49 19458.98 21256.07 21170.56 20959.36 212
EPMVS60.00 18961.97 19057.71 18768.46 18763.17 20564.54 18748.23 20463.30 11044.72 17560.19 10456.05 14850.85 17965.27 20462.02 20669.44 21063.81 204
PMVScopyleft39.38 1846.06 21143.30 21349.28 20662.93 19938.75 21941.88 21853.50 17533.33 21935.46 19528.90 21431.01 22033.04 20658.61 21354.63 21468.86 21157.88 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmnet_mix0255.30 19957.01 20353.30 20264.14 19859.09 21058.39 20550.24 19653.47 17838.68 18949.75 18045.86 20340.14 19965.38 20360.22 20868.19 21265.33 201
CHOSEN 280x42058.70 19261.88 19154.98 19655.45 21450.55 21764.92 18540.36 21255.21 16438.13 19148.31 18463.76 11363.03 10973.73 16568.58 18968.00 21373.04 186
new-patchmatchnet46.97 20949.47 21144.05 21162.82 20056.55 21345.35 21752.01 18542.47 20817.04 22035.73 20835.21 21621.84 21861.27 20954.83 21365.26 21460.26 209
ADS-MVSNet55.94 19858.01 19953.54 20162.48 20258.48 21159.12 20446.20 20859.65 13842.88 18152.34 16853.31 17146.31 18662.00 20860.02 20964.23 21560.24 211
N_pmnet47.35 20850.13 20944.11 21059.98 20651.64 21651.86 21144.80 21049.58 19520.76 21640.65 20040.05 21429.64 20859.84 21055.15 21257.63 21654.00 214
new_pmnet38.40 21242.64 21433.44 21337.54 22245.00 21836.60 21932.72 21840.27 21112.72 22129.89 21228.90 22124.78 21353.17 21552.90 21556.31 21748.34 215
Gipumacopyleft36.38 21335.80 21537.07 21245.76 21633.90 22029.81 22048.47 20239.91 21218.02 2198.00 2238.14 22725.14 21159.29 21161.02 20755.19 21840.31 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 21429.75 21620.76 21728.00 22330.93 22123.10 22229.18 22023.14 2211.46 22718.23 21916.54 2245.08 22140.22 21641.40 21737.76 21937.79 218
test_method22.26 21525.94 21717.95 2183.24 2267.17 22623.83 2217.27 22237.35 21520.44 21721.87 21839.16 21518.67 21934.56 21720.84 22134.28 22020.64 222
E-PMN21.77 21618.24 21925.89 21440.22 22019.58 22312.46 22539.87 21318.68 2236.71 2249.57 2204.31 23022.36 21719.89 22127.28 21933.73 22128.34 220
EMVS20.98 21717.15 22025.44 21539.51 22119.37 22412.66 22439.59 21419.10 2226.62 2259.27 2214.40 22922.43 21617.99 22224.40 22031.81 22225.53 221
tmp_tt14.50 22014.68 2247.17 22610.46 2272.21 22337.73 21428.71 20325.26 21616.98 2234.37 22231.49 21829.77 21826.56 223
MVEpermissive19.12 1920.47 21823.27 21817.20 21912.66 22525.41 22210.52 22634.14 21714.79 2246.53 2268.79 2224.68 22816.64 22029.49 21941.63 21622.73 22438.11 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft18.74 22518.55 2238.02 22126.96 2207.33 22323.81 21713.05 22625.99 20925.17 22022.45 22536.25 219
testmvs0.09 2190.15 2210.02 2210.01 2280.02 2280.05 2290.01 2250.11 2250.01 2290.26 2250.01 2310.06 2250.10 2230.10 2220.01 2260.43 224
test1230.09 2190.14 2220.02 2210.00 2290.02 2280.02 2300.01 2250.09 2260.00 2300.30 2240.00 2320.08 2230.03 2240.09 2230.01 2260.45 223
uanet_test0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3573.57 2687.54 14
our_test_367.93 18870.99 17666.89 174
MTAPA83.48 186.45 19
MTMP82.66 684.91 27
Patchmatch-RL test2.85 228
mPP-MVS89.90 2681.29 43
NP-MVS80.10 47
Patchmtry65.80 19565.97 18152.74 18152.65 130