This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft88.63 491.29 485.53 390.87 992.20 491.98 276.00 690.55 882.09 793.85 190.75 281.25 188.62 887.59 1490.96 1095.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2491.80 691.63 575.80 791.99 481.23 1092.54 289.18 680.89 487.99 1587.91 989.70 4694.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1692.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 995.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 896.21 1
APDe-MVS88.00 690.50 685.08 590.95 891.58 792.03 175.53 1391.15 580.10 1692.27 588.34 1180.80 588.00 1486.99 1991.09 695.16 6
DVP-MVScopyleft88.67 391.62 285.22 490.47 1892.36 290.69 1076.15 493.08 282.75 592.19 690.71 380.45 689.27 687.91 990.82 1295.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.86.88 1189.23 1084.14 1489.78 2788.67 3290.59 1173.46 2888.99 1280.52 1491.26 788.65 979.91 886.96 3186.22 3390.59 2093.83 15
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj85.35 2085.76 3184.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 861.35 12178.82 1087.42 2086.23 3191.28 393.90 13
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 888.93 778.82 1087.42 2086.23 3191.28 393.90 13
TSAR-MVS + ACMM85.10 2588.81 1580.77 3689.55 3088.53 3488.59 2972.55 3287.39 1771.90 4490.95 1087.55 1374.57 3887.08 2886.54 2787.47 9393.67 18
APD-MVScopyleft86.84 1288.91 1484.41 1190.66 1290.10 1390.78 875.64 1087.38 1878.72 2090.68 1186.82 1780.15 787.13 2686.45 2990.51 2293.83 15
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS86.96 1089.45 984.05 1690.13 2189.23 2389.77 1974.59 1589.17 1180.70 1289.93 1289.67 578.47 1387.57 1986.79 2390.67 1893.76 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg84.86 2687.21 2282.11 2890.59 1485.47 5689.81 1773.55 2783.95 3373.30 3989.84 1387.23 1575.61 3586.47 3585.46 4089.78 4292.06 33
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4190.23 1676.06 588.85 1381.20 1187.33 1487.93 1279.47 988.59 988.23 590.15 3693.60 21
SteuartSystems-ACMMP85.99 1688.31 1683.27 2290.73 1189.84 1590.27 1574.31 1684.56 3175.88 3187.32 1585.04 2577.31 2589.01 788.46 391.14 593.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1389.01 1183.62 1890.28 2090.09 1490.32 1474.05 2188.32 1579.74 1787.04 1685.59 2476.97 3089.35 488.44 490.35 3194.27 11
HFP-MVS86.15 1587.95 1884.06 1590.80 1089.20 2489.62 2174.26 1787.52 1680.63 1386.82 1784.19 3078.22 1587.58 1887.19 1790.81 1393.13 25
SMA-MVScopyleft87.56 790.17 784.52 1091.71 390.57 1090.77 975.19 1490.67 780.50 1586.59 1888.86 878.09 1789.92 189.41 190.84 1195.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR85.52 1887.53 2083.17 2390.13 2189.27 2189.30 2273.97 2286.89 2177.14 2686.09 1983.18 3377.74 2187.42 2087.20 1690.77 1492.63 26
TSAR-MVS + COLMAP78.34 6181.64 4574.48 7580.13 9485.01 6181.73 6065.93 7784.75 2961.68 8685.79 2066.27 10671.39 6482.91 6980.78 8086.01 13485.98 80
MP-MVScopyleft85.50 1987.40 2183.28 2190.65 1389.51 2089.16 2574.11 2083.70 3578.06 2385.54 2184.89 2877.31 2587.40 2387.14 1890.41 2993.65 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.83.69 3186.58 2680.32 3785.14 5686.96 4684.91 5170.25 4384.71 3073.91 3785.16 2285.63 2377.92 1985.44 4485.71 3889.77 4392.45 28
DeepPCF-MVS79.04 185.30 2288.93 1281.06 3388.77 3790.48 1185.46 4773.08 3090.97 673.77 3884.81 2385.95 2177.43 2488.22 1187.73 1187.85 8694.34 9
PGM-MVS84.42 2986.29 2882.23 2790.04 2388.82 2889.23 2471.74 3782.82 3874.61 3484.41 2482.09 3677.03 2987.13 2686.73 2590.73 1692.06 33
ACMMPcopyleft83.42 3285.27 3381.26 3288.47 3888.49 3588.31 3272.09 3483.42 3672.77 4282.65 2578.22 5175.18 3686.24 4085.76 3790.74 1592.13 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS82.64 3585.03 3579.86 4089.41 3288.31 3788.32 3171.84 3680.11 4667.47 6682.09 2681.44 4271.85 5985.89 4386.15 3490.24 3491.25 39
CP-MVS84.74 2886.43 2782.77 2589.48 3188.13 4088.64 2773.93 2384.92 2676.77 2781.94 2783.50 3177.29 2786.92 3286.49 2890.49 2393.14 24
PHI-MVS82.36 3785.89 3078.24 5086.40 4989.52 1985.52 4569.52 5082.38 4165.67 7281.35 2882.36 3573.07 4987.31 2586.76 2489.24 5391.56 36
CNVR-MVS86.36 1488.19 1784.23 1391.33 589.84 1590.34 1275.56 1187.36 1978.97 1981.19 2986.76 1878.74 1289.30 588.58 290.45 2894.33 10
CSCG85.28 2387.68 1982.49 2689.95 2591.99 588.82 2671.20 3986.41 2379.63 1879.26 3088.36 1073.94 4386.64 3386.67 2691.40 294.41 8
HQP-MVS81.19 4283.27 3978.76 4787.40 4285.45 5786.95 3670.47 4281.31 4366.91 6979.24 3176.63 5571.67 6284.43 5683.78 5389.19 5692.05 35
MCST-MVS85.13 2486.62 2483.39 1990.55 1589.82 1789.29 2373.89 2484.38 3276.03 3079.01 3285.90 2278.47 1387.81 1686.11 3592.11 193.29 23
zzz-MVS85.71 1786.88 2384.34 1290.54 1687.11 4589.77 1974.17 1988.54 1483.08 478.60 3386.10 2078.11 1687.80 1787.46 1590.35 3192.56 27
X-MVS83.23 3485.20 3480.92 3589.71 2888.68 2988.21 3373.60 2582.57 3971.81 4777.07 3481.92 3871.72 6186.98 3086.86 2190.47 2492.36 30
EPNet79.08 5780.62 5377.28 5488.90 3683.17 8183.65 5672.41 3374.41 5967.15 6876.78 3574.37 6464.43 10083.70 6283.69 5487.15 9788.19 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC85.34 2186.59 2583.88 1791.48 488.88 2689.79 1875.54 1286.67 2277.94 2476.55 3684.99 2678.07 1888.04 1287.68 1290.46 2793.31 22
MVS_111021_LR78.13 6279.85 6076.13 6281.12 8181.50 9280.28 6965.25 8076.09 5571.32 5276.49 3772.87 7172.21 5482.79 7181.29 7386.59 11987.91 65
LGP-MVS_train79.83 4581.22 4978.22 5186.28 5085.36 5986.76 3769.59 4877.34 5165.14 7575.68 3870.79 7971.37 6584.60 5284.01 4890.18 3590.74 44
CS-MVS-test78.79 5980.72 5276.53 6081.11 8283.88 6979.69 7763.72 9273.80 6369.95 5775.40 3976.17 5774.85 3784.50 5582.78 6189.87 4188.54 61
DeepC-MVS_fast78.24 384.27 3085.50 3282.85 2490.46 1989.24 2287.83 3474.24 1884.88 2776.23 2975.26 4081.05 4477.62 2288.02 1387.62 1390.69 1792.41 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS78.47 284.81 2786.03 2983.37 2089.29 3390.38 1288.61 2876.50 186.25 2477.22 2575.12 4180.28 4677.59 2388.39 1088.17 691.02 793.66 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet81.62 4183.41 3879.53 4287.06 4488.59 3385.47 4667.96 6076.59 5474.05 3574.69 4281.98 3772.98 5186.14 4185.47 3989.68 4790.42 48
MVS_030481.73 4083.86 3779.26 4386.22 5189.18 2586.41 3967.15 6775.28 5670.75 5474.59 4383.49 3274.42 4087.05 2986.34 3090.58 2191.08 41
ACMP73.23 779.79 4680.53 5478.94 4585.61 5485.68 5485.61 4469.59 4877.33 5271.00 5374.45 4469.16 9171.88 5783.15 6783.37 5689.92 3990.57 47
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_HR80.13 4481.46 4678.58 4885.77 5385.17 6083.45 5869.28 5174.08 6270.31 5674.31 4575.26 6273.13 4886.46 3685.15 4389.53 4989.81 52
CPTT-MVS81.77 3983.10 4080.21 3885.93 5286.45 5187.72 3570.98 4082.54 4071.53 5074.23 4681.49 4176.31 3382.85 7081.87 6788.79 6492.26 31
CS-MVS79.22 5381.11 5077.01 5781.36 7784.03 6680.35 6863.25 9773.43 6670.37 5574.10 4776.03 5976.40 3286.32 3983.95 5190.34 3389.93 50
abl_679.05 4487.27 4388.85 2783.62 5768.25 5681.68 4272.94 4173.79 4884.45 2972.55 5389.66 4890.64 45
DROMVSNet79.44 5081.35 4777.22 5582.95 6584.67 6381.31 6263.65 9372.47 6968.75 5973.15 4978.33 5075.99 3486.06 4283.96 5090.67 1890.79 43
CLD-MVS79.35 5281.23 4877.16 5685.01 5986.92 4785.87 4260.89 13380.07 4875.35 3372.96 5073.21 6968.43 7985.41 4684.63 4687.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs79.16 5582.37 4475.41 6582.33 7186.38 5280.80 6563.18 9982.90 3767.34 6772.79 5176.07 5869.62 7183.46 6684.41 4789.20 5590.60 46
DPM-MVS83.30 3384.33 3682.11 2889.56 2988.49 3590.33 1373.24 2983.85 3476.46 2872.43 5282.65 3473.02 5086.37 3786.91 2090.03 3889.62 54
UA-Net74.47 7777.80 6770.59 9485.33 5585.40 5873.54 14465.98 7660.65 13256.00 11172.11 5379.15 4754.63 16983.13 6882.25 6488.04 8081.92 127
OMC-MVS80.26 4382.59 4377.54 5383.04 6485.54 5583.25 5965.05 8287.32 2072.42 4372.04 5478.97 4873.30 4783.86 5981.60 7188.15 7588.83 58
UGNet72.78 8777.67 6867.07 13971.65 16683.24 7975.20 11563.62 9464.93 9656.72 10771.82 5573.30 6749.02 18281.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DELS-MVS79.15 5681.07 5176.91 5883.54 6387.31 4384.45 5264.92 8369.98 7169.34 5871.62 5676.26 5669.84 7086.57 3485.90 3689.39 5189.88 51
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
diffmvs74.86 7677.37 7371.93 8475.62 12880.35 10879.42 8060.15 14372.81 6864.63 7871.51 5773.11 7066.53 9379.02 12277.98 12585.25 14886.83 76
ET-MVSNet_ETH3D72.46 9074.19 8870.44 9562.50 20181.17 9779.90 7362.46 11864.52 10157.52 10371.49 5859.15 13272.08 5678.61 12781.11 7588.16 7483.29 115
CANet_DTU73.29 8576.96 7769.00 11477.04 11882.06 8879.49 7956.30 16967.85 8153.29 12771.12 5970.37 8361.81 12281.59 7880.96 7886.09 12884.73 101
ETV-MVS77.32 6478.81 6275.58 6482.24 7283.64 7479.98 7064.02 9069.64 7663.90 8070.89 6069.94 8573.41 4685.39 4783.91 5289.92 3988.31 62
MVS_Test75.37 7377.13 7673.31 8079.07 10081.32 9579.98 7060.12 14469.72 7464.11 7970.53 6173.22 6868.90 7580.14 10979.48 10887.67 9085.50 87
FC-MVSNet-train72.60 8975.07 8469.71 10581.10 8378.79 12373.74 14365.23 8166.10 8953.34 12670.36 6263.40 11556.92 15481.44 8180.96 7887.93 8284.46 105
Vis-MVSNetpermissive72.77 8877.20 7567.59 12974.19 14284.01 6776.61 10961.69 12760.62 13350.61 14270.25 6371.31 7755.57 16583.85 6082.28 6386.90 10688.08 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline70.45 10874.09 8966.20 14770.95 17475.67 15474.26 13353.57 17468.33 7858.42 9769.87 6471.45 7461.55 12374.84 15874.76 16178.42 18083.72 112
PMMVS65.06 15869.17 13260.26 17655.25 21563.43 20266.71 17743.01 21162.41 11750.64 14169.44 6567.04 10363.29 10674.36 16173.54 16782.68 16573.99 184
casdiffmvs76.76 6678.46 6474.77 7180.32 9183.73 7380.65 6663.24 9873.58 6566.11 7169.39 6674.09 6669.49 7382.52 7379.35 11188.84 6386.52 77
EIA-MVS75.64 7276.60 7974.53 7482.43 7083.84 7078.32 9262.28 12165.96 9063.28 8468.95 6767.54 10171.61 6382.55 7281.63 7089.24 5385.72 83
MVSTER72.06 9274.24 8769.51 10870.39 17775.97 15376.91 10557.36 16664.64 9961.39 8868.86 6863.76 11363.46 10581.44 8179.70 10187.56 9285.31 91
TAPA-MVS71.42 977.69 6380.05 5974.94 6980.68 8684.52 6481.36 6163.14 10084.77 2864.82 7768.72 6975.91 6071.86 5881.62 7779.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPP-MVSNet74.00 8177.41 7270.02 10280.53 8883.91 6874.99 12162.68 11365.06 9549.77 14768.68 7072.09 7363.06 10882.49 7480.73 8189.12 5888.91 57
MSLP-MVS++82.09 3882.66 4281.42 3187.03 4587.22 4485.82 4370.04 4480.30 4578.66 2168.67 7181.04 4577.81 2085.19 4884.88 4589.19 5691.31 38
PVSNet_BlendedMVS76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
PVSNet_Blended76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
PCF-MVS73.28 679.42 5180.41 5678.26 4984.88 6288.17 3886.08 4069.85 4575.23 5868.43 6168.03 7478.38 4971.76 6081.26 8880.65 8988.56 6791.18 40
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OPM-MVS79.68 4979.28 6180.15 3987.99 4086.77 4888.52 3072.72 3164.55 10067.65 6567.87 7574.33 6574.31 4186.37 3785.25 4289.73 4589.81 52
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF67.64 14371.25 11163.43 16461.86 20370.73 17867.26 17150.86 19174.20 6158.91 9367.49 7669.33 8964.10 10371.41 17768.45 19177.61 18277.17 163
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18675.05 12063.30 9666.36 8745.27 17367.40 7766.84 10543.64 19175.37 15474.98 16081.15 17077.44 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)67.83 13873.52 9261.19 17178.37 10576.72 14766.80 17662.96 10265.50 9334.17 19767.19 7869.68 8839.20 20079.39 11879.44 10985.68 14076.73 167
IS_MVSNet73.33 8477.34 7468.65 11781.29 7883.47 7574.45 12663.58 9565.75 9248.49 15267.11 7970.61 8054.63 16984.51 5483.58 5589.48 5086.34 79
PVSNet_Blended_VisFu76.57 6777.90 6675.02 6880.56 8786.58 5079.24 8166.18 7264.81 9768.18 6365.61 8071.45 7467.05 8384.16 5781.80 6888.90 6090.92 42
FC-MVSNet-test56.90 19665.20 16747.21 20766.98 18963.20 20449.11 21558.60 16059.38 13911.50 22265.60 8156.68 14524.66 21471.17 18071.36 17772.38 20469.02 195
QAPM78.47 6080.22 5876.43 6185.03 5886.75 4980.62 6766.00 7573.77 6465.35 7465.54 8278.02 5272.69 5283.71 6183.36 5788.87 6290.41 49
DCV-MVSNet73.65 8375.78 8271.16 8880.19 9279.27 11777.45 10161.68 12866.73 8558.72 9565.31 8369.96 8462.19 11381.29 8780.97 7786.74 11286.91 73
baseline170.10 11372.17 10667.69 12679.74 9576.80 14573.91 13764.38 8762.74 11648.30 15464.94 8464.08 11254.17 17181.46 8078.92 11485.66 14176.22 168
IterMVS-LS71.69 9672.82 10270.37 9677.54 11476.34 15075.13 11960.46 13961.53 12557.57 10264.89 8567.33 10266.04 9677.09 14377.37 13785.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+75.73 482.40 3682.76 4181.97 3088.02 3989.67 1886.60 3871.48 3881.28 4478.18 2264.78 8677.96 5377.13 2887.32 2486.83 2290.41 2991.48 37
MAR-MVS79.21 5480.32 5777.92 5287.46 4188.15 3983.95 5467.48 6674.28 6068.25 6264.70 8777.04 5472.17 5585.42 4585.00 4488.22 7287.62 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053071.48 9973.01 9869.70 10673.83 14778.62 12574.53 12559.12 15364.13 10358.63 9664.60 8858.63 13464.27 10180.28 10580.17 9787.82 8784.64 103
tttt051771.41 10072.95 9969.60 10773.70 14978.70 12474.42 12959.12 15363.89 10758.35 9964.56 8958.39 13664.27 10180.29 10480.17 9787.74 8984.69 102
Effi-MVS+75.28 7476.20 8074.20 7681.15 8083.24 7981.11 6363.13 10166.37 8660.27 9064.30 9068.88 9570.93 6881.56 7981.69 6988.61 6587.35 69
CostFormer68.92 12569.58 12668.15 12075.98 12576.17 15278.22 9451.86 18665.80 9161.56 8763.57 9162.83 11661.85 12070.40 19068.67 18779.42 17679.62 149
AdaColmapbinary79.74 4878.62 6381.05 3489.23 3486.06 5384.95 5071.96 3579.39 4975.51 3263.16 9268.84 9676.51 3183.55 6382.85 6088.13 7686.46 78
ACMM72.26 878.86 5878.13 6579.71 4186.89 4683.40 7686.02 4170.50 4175.28 5671.49 5163.01 9369.26 9073.57 4584.11 5883.98 4989.76 4487.84 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator73.76 579.75 4780.52 5578.84 4684.94 6187.35 4284.43 5365.54 7878.29 5073.97 3663.00 9475.62 6174.07 4285.00 4985.34 4190.11 3789.04 56
FA-MVS(training)73.66 8274.95 8572.15 8378.63 10480.46 10678.92 8654.79 17269.71 7565.37 7362.04 9566.89 10467.10 8280.72 9679.87 9988.10 7984.97 97
baseline269.69 11670.27 11869.01 11375.72 12777.13 14373.82 14058.94 15761.35 12657.09 10561.68 9657.17 14261.99 11778.10 13276.58 14886.48 12279.85 146
DI_MVS_plusplus_trai75.13 7576.12 8173.96 7778.18 10681.55 9080.97 6462.54 11568.59 7765.13 7661.43 9774.81 6369.32 7481.01 9479.59 10487.64 9185.89 81
test250671.72 9572.95 9970.29 9781.49 7583.27 7775.74 11067.59 6468.19 7949.81 14661.15 9849.73 19258.82 13684.76 5082.94 5888.27 7080.63 138
USDC67.36 14767.90 14766.74 14571.72 16475.23 16171.58 15460.28 14067.45 8250.54 14360.93 9945.20 20562.08 11476.56 14974.50 16284.25 15775.38 176
SCA65.40 15666.58 15964.02 15970.65 17573.37 16967.35 17053.46 17663.66 10854.14 11860.84 10060.20 12761.50 12469.96 19168.14 19277.01 18769.91 191
IterMVS-SCA-FT66.89 15169.22 13164.17 15771.30 17275.64 15571.33 15553.17 17857.63 14949.08 15160.72 10160.05 12863.09 10774.99 15773.92 16477.07 18681.57 130
IterMVS66.36 15268.30 14464.10 15869.48 18474.61 16573.41 14750.79 19257.30 15148.28 15560.64 10259.92 12960.85 13174.14 16272.66 17181.80 16778.82 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11577.72 11280.72 10373.81 14169.65 4761.99 12043.23 17860.54 10357.50 13958.57 13879.56 11581.07 7689.34 5283.97 107
EPMVS60.00 18961.97 19057.71 18768.46 18763.17 20564.54 18748.23 20463.30 11044.72 17560.19 10456.05 14850.85 17965.27 20462.02 20669.44 21063.81 204
GA-MVS68.14 13169.17 13266.93 14273.77 14878.50 12774.45 12658.28 16155.11 16648.44 15360.08 10553.99 16061.50 12478.43 12977.57 13285.13 14980.54 139
MDTV_nov1_ep1364.37 16265.24 16663.37 16568.94 18670.81 17772.40 15350.29 19560.10 13653.91 12260.07 10659.15 13257.21 15069.43 19467.30 19477.47 18369.78 193
Fast-Effi-MVS+73.11 8673.66 9172.48 8277.72 11280.88 10278.55 8958.83 15965.19 9460.36 8959.98 10762.42 11871.22 6681.66 7680.61 9188.20 7384.88 100
tpm62.41 17463.15 18061.55 17072.24 16063.79 20171.31 15646.12 20957.82 14455.33 11359.90 10854.74 15453.63 17267.24 20064.29 20270.65 20874.25 183
PatchmatchNetpermissive64.21 16464.65 17263.69 16171.29 17368.66 18569.63 16151.70 18863.04 11253.77 12359.83 10958.34 13760.23 13368.54 19766.06 19975.56 19368.08 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE74.23 7974.84 8673.52 7880.42 9081.46 9379.77 7461.06 13167.23 8363.67 8159.56 11068.74 9767.90 8080.25 10779.37 11088.31 6987.26 72
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13076.55 14874.42 12963.75 9153.55 17749.37 14959.41 11162.45 11744.44 18979.71 11279.82 10083.17 16477.36 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet62.55 17165.89 16058.64 18466.95 19069.15 18366.49 18056.29 17052.46 18332.70 19859.27 11258.21 13850.09 18071.77 17671.39 17679.31 17778.99 153
PLCcopyleft68.99 1175.68 7175.31 8376.12 6382.94 6681.26 9679.94 7266.10 7377.15 5366.86 7059.13 11368.53 9873.73 4480.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 13077.23 11779.46 11573.48 14669.66 4660.43 13439.56 18658.82 11453.48 16655.74 16379.59 11381.21 7488.89 6182.70 117
DU-MVS69.63 11770.91 11368.13 12175.99 12379.54 11373.81 14169.20 5261.20 12843.23 17858.52 11553.50 16458.57 13879.22 11980.45 9287.97 8183.97 107
NR-MVSNet68.79 12770.56 11566.71 14677.48 11579.54 11373.52 14569.20 5261.20 12839.76 18558.52 11550.11 19051.37 17880.26 10680.71 8688.97 5983.59 113
Effi-MVS+-dtu71.82 9471.86 10971.78 8578.77 10180.47 10578.55 8961.67 12960.68 13155.49 11258.48 11765.48 10868.85 7676.92 14475.55 15687.35 9585.46 88
GBi-Net70.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
FMVSNet370.49 10772.90 10167.67 12772.88 15777.98 13374.96 12362.72 10864.13 10351.44 13558.37 11869.02 9257.43 14979.43 11779.57 10586.59 11981.81 128
UniMVSNet (Re)69.53 11871.90 10866.76 14476.42 12180.93 9972.59 15168.03 5961.75 12341.68 18358.34 12157.23 14153.27 17479.53 11680.62 9088.57 6684.90 99
tpmrst62.00 17862.35 18961.58 16971.62 16764.14 19869.07 16448.22 20562.21 11953.93 12158.26 12255.30 15155.81 16263.22 20662.62 20570.85 20770.70 190
OpenMVScopyleft70.44 1076.15 7076.82 7875.37 6685.01 5984.79 6278.99 8562.07 12271.27 7067.88 6457.91 12372.36 7270.15 6982.23 7581.41 7288.12 7787.78 67
LS3D74.08 8073.39 9574.88 7085.05 5782.62 8579.71 7668.66 5472.82 6758.80 9457.61 12461.31 12271.07 6780.32 10378.87 11686.00 13580.18 144
test-LLR64.42 16164.36 17464.49 15675.02 13363.93 19966.61 17861.96 12354.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
TESTMET0.1,161.10 18564.36 17457.29 18857.53 21063.93 19966.61 17836.22 21554.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
test-mter60.84 18664.62 17356.42 19155.99 21364.18 19765.39 18334.23 21654.39 17446.21 16857.40 12759.49 13155.86 16171.02 18369.65 18180.87 17376.20 169
SixPastTwentyTwo61.84 18162.45 18761.12 17269.20 18572.20 17262.03 19657.40 16446.54 20238.03 19257.14 12841.72 21058.12 14269.67 19271.58 17581.94 16678.30 156
PatchMatch-RL67.78 13966.65 15869.10 11273.01 15372.69 17168.49 16661.85 12562.93 11460.20 9156.83 12950.42 18869.52 7275.62 15374.46 16381.51 16873.62 185
CNLPA77.20 6577.54 6976.80 5982.63 6784.31 6579.77 7464.64 8485.17 2573.18 4056.37 13069.81 8674.53 3981.12 9278.69 11786.04 13387.29 71
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 14075.15 13177.97 13577.12 10355.40 17157.87 14346.68 16456.17 13160.39 12462.36 11176.32 15176.25 15285.35 14781.34 131
ECVR-MVScopyleft72.20 9173.91 9070.20 9981.49 7583.27 7775.74 11067.59 6468.19 7949.31 15055.77 13262.00 11958.82 13684.76 5082.94 5888.27 7080.41 142
FMVSNet270.39 10972.67 10367.72 12572.95 15478.00 13075.15 11662.69 11263.29 11151.25 13955.64 13368.49 9957.59 14680.91 9580.35 9486.70 11382.02 121
GG-mvs-BLEND46.86 21067.51 15022.75 2160.05 22776.21 15164.69 1860.04 22461.90 1210.09 22855.57 13471.32 760.08 22370.54 18667.19 19571.58 20569.86 192
dps64.00 16562.99 18165.18 15073.29 15172.07 17368.98 16553.07 17957.74 14758.41 9855.55 13547.74 19860.89 13069.53 19367.14 19676.44 19071.19 189
thisisatest051567.40 14668.78 13665.80 14970.02 17975.24 16069.36 16357.37 16554.94 17053.67 12455.53 13654.85 15358.00 14378.19 13178.91 11586.39 12383.78 111
v2v48270.05 11469.46 12870.74 8974.62 13880.32 10979.00 8460.62 13657.41 15056.89 10655.43 13755.14 15266.39 9477.25 14077.14 14086.90 10683.57 114
test111171.56 9773.44 9369.38 11081.16 7982.95 8274.99 12167.68 6266.89 8446.33 16655.19 13860.91 12357.99 14484.59 5382.70 6288.12 7780.85 135
v870.23 11069.86 12270.67 9274.69 13779.82 11278.79 8759.18 15258.80 14158.20 10055.00 13957.33 14066.31 9577.51 13776.71 14686.82 10983.88 110
pmmvs467.89 13667.39 15368.48 11871.60 16873.57 16874.45 12660.98 13264.65 9857.97 10154.95 14051.73 18261.88 11973.78 16475.11 15883.99 16077.91 158
TAMVS59.58 19062.81 18455.81 19366.03 19365.64 19663.86 19048.74 20049.95 19337.07 19454.77 14158.54 13544.44 18972.29 17071.79 17374.70 19766.66 199
ACMH65.37 1470.71 10570.00 12071.54 8682.51 6982.47 8677.78 9668.13 5756.19 15946.06 16954.30 14251.20 18468.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
anonymousdsp65.28 15767.98 14662.13 16758.73 20973.98 16767.10 17350.69 19348.41 19747.66 16054.27 14352.75 17661.45 12676.71 14880.20 9587.13 10189.53 55
CR-MVSNet64.83 15965.54 16464.01 16070.64 17669.41 18165.97 18152.74 18157.81 14552.65 13054.27 14356.31 14660.92 12872.20 17373.09 16981.12 17175.69 173
V4268.76 12869.63 12567.74 12464.93 19778.01 12978.30 9356.48 16858.65 14256.30 11054.26 14557.03 14364.85 9977.47 13877.01 14285.60 14284.96 98
pmmvs562.37 17764.04 17660.42 17465.03 19571.67 17567.17 17252.70 18350.30 19144.80 17454.23 14651.19 18549.37 18172.88 16773.48 16883.45 16174.55 180
v1070.22 11169.76 12470.74 8974.79 13680.30 11079.22 8259.81 14757.71 14856.58 10954.22 14755.31 15066.95 8678.28 13077.47 13487.12 10385.07 95
WR-MVS63.03 16767.40 15257.92 18675.14 13277.60 14060.56 19966.10 7354.11 17623.88 20853.94 14853.58 16234.50 20473.93 16377.71 12987.35 9580.94 134
v114469.93 11569.36 12970.61 9374.89 13580.93 9979.11 8360.64 13555.97 16155.31 11453.85 14954.14 15766.54 9278.10 13277.44 13587.14 10085.09 94
v14867.85 13767.53 14968.23 11973.25 15277.57 14174.26 13357.36 16655.70 16257.45 10453.53 15055.42 14961.96 11875.23 15573.92 16485.08 15081.32 132
PEN-MVS62.96 16865.77 16259.70 17973.98 14575.45 15763.39 19267.61 6352.49 18225.49 20753.39 15149.12 19440.85 19771.94 17577.26 13986.86 10880.72 137
CP-MVSNet62.68 17065.49 16559.40 18271.84 16275.34 15862.87 19467.04 6852.64 18127.19 20553.38 15248.15 19641.40 19571.26 17875.68 15486.07 12982.00 124
DTE-MVSNet61.85 18064.96 17158.22 18574.32 14174.39 16661.01 19867.85 6151.76 18921.91 21553.28 15348.17 19537.74 20172.22 17276.44 14986.52 12178.49 155
IB-MVS66.94 1271.21 10271.66 11070.68 9179.18 9982.83 8472.61 15061.77 12659.66 13763.44 8353.26 15459.65 13059.16 13576.78 14782.11 6587.90 8387.33 70
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat165.41 15563.81 17867.28 13575.61 12972.88 17075.32 11352.85 18062.97 11363.66 8253.24 15553.29 17261.83 12165.54 20164.14 20374.43 19874.60 179
MSDG71.52 9869.87 12173.44 7982.21 7379.35 11679.52 7864.59 8566.15 8861.87 8553.21 15656.09 14765.85 9778.94 12378.50 11986.60 11876.85 166
MS-PatchMatch70.17 11270.49 11669.79 10480.98 8477.97 13577.51 9858.95 15662.33 11855.22 11553.14 15765.90 10762.03 11679.08 12177.11 14184.08 15877.91 158
WR-MVS_H61.83 18265.87 16157.12 18971.72 16476.87 14461.45 19766.19 7151.97 18722.92 21253.13 15852.30 17933.80 20571.03 18275.00 15986.65 11780.78 136
thres40067.95 13568.62 14067.17 13677.90 10778.59 12674.27 13262.72 10856.34 15845.77 17153.00 15953.35 17056.46 15680.21 10878.43 12085.91 13880.43 141
thres20067.98 13468.55 14167.30 13477.89 10978.86 12174.18 13562.75 10656.35 15746.48 16552.98 16053.54 16356.46 15680.41 9977.97 12686.05 13179.78 148
v14419269.34 12168.68 13970.12 10074.06 14380.54 10478.08 9560.54 13754.99 16954.13 11952.92 16152.80 17566.73 9077.13 14276.72 14587.15 9785.63 84
thres600view767.68 14068.43 14266.80 14377.90 10778.86 12173.84 13962.75 10656.07 16044.70 17652.85 16252.81 17455.58 16480.41 9977.77 12886.05 13180.28 143
v119269.50 11968.83 13570.29 9774.49 13980.92 10178.55 8960.54 13755.04 16754.21 11752.79 16352.33 17766.92 8777.88 13477.35 13887.04 10485.51 86
thres100view90067.60 14468.02 14567.12 13877.83 11077.75 13773.90 13862.52 11656.64 15446.82 16252.65 16453.47 16755.92 16078.77 12577.62 13185.72 13979.23 151
tfpn200view968.11 13268.72 13867.40 13177.83 11078.93 11974.28 13162.81 10556.64 15446.82 16252.65 16453.47 16756.59 15580.41 9978.43 12086.11 12780.52 140
LTVRE_ROB59.44 1661.82 18362.64 18560.87 17372.83 15877.19 14264.37 18858.97 15533.56 21828.00 20452.59 16642.21 20963.93 10474.52 15976.28 15077.15 18582.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192069.03 12468.32 14369.86 10374.03 14480.37 10777.55 9760.25 14154.62 17153.59 12552.36 16751.50 18366.75 8977.17 14176.69 14786.96 10585.56 85
ADS-MVSNet55.94 19858.01 19953.54 20162.48 20258.48 21159.12 20446.20 20859.65 13842.88 18152.34 16853.31 17146.31 18662.00 20860.02 20964.23 21560.24 211
PS-CasMVS62.38 17665.06 16859.25 18371.73 16375.21 16262.77 19566.99 6951.94 18826.96 20652.00 16947.52 19941.06 19671.16 18175.60 15585.97 13681.97 126
v124068.64 12967.89 14869.51 10873.89 14680.26 11176.73 10759.97 14653.43 17953.08 12851.82 17050.84 18666.62 9176.79 14676.77 14486.78 11185.34 90
ACMH+66.54 1371.36 10170.09 11972.85 8182.59 6881.13 9878.56 8868.04 5861.55 12452.52 13351.50 17154.14 15768.56 7878.85 12479.50 10786.82 10983.94 109
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15268.41 5561.33 12738.33 19051.31 17254.13 15956.03 15979.22 11978.19 12385.37 14682.45 119
pm-mvs165.62 15467.42 15163.53 16373.66 15076.39 14969.66 16060.87 13449.73 19443.97 17751.24 17357.00 14448.16 18379.89 11077.84 12784.85 15579.82 147
PatchT61.97 17964.04 17659.55 18160.49 20567.40 18956.54 20648.65 20156.69 15352.65 13051.10 17452.14 18060.92 12872.20 17373.09 16978.03 18175.69 173
RPMNet61.71 18462.88 18260.34 17569.51 18369.41 18163.48 19149.23 19757.81 14545.64 17250.51 17550.12 18953.13 17568.17 19968.49 19081.07 17275.62 175
EU-MVSNet54.63 20058.69 19849.90 20556.99 21162.70 20756.41 20750.64 19445.95 20423.14 21150.42 17646.51 20136.63 20265.51 20264.85 20175.57 19274.91 178
TransMVSNet (Re)64.74 16065.66 16363.66 16277.40 11675.33 15969.86 15962.67 11447.63 19941.21 18450.01 17752.33 17745.31 18879.57 11477.69 13085.49 14377.07 165
FMVSNet168.84 12670.47 11766.94 14171.35 17177.68 13874.71 12462.35 12056.93 15249.94 14550.01 17764.59 11057.07 15181.33 8480.72 8286.25 12482.00 124
PM-MVS60.48 18760.94 19559.94 17758.85 20866.83 19264.27 18951.39 18955.03 16848.03 15650.00 17940.79 21258.26 14169.20 19567.13 19778.84 17977.60 160
pmnet_mix0255.30 19957.01 20353.30 20264.14 19859.09 21058.39 20550.24 19653.47 17838.68 18949.75 18045.86 20340.14 19965.38 20360.22 20868.19 21265.33 201
test0.0.03 158.80 19161.58 19255.56 19475.02 13368.45 18759.58 20361.96 12352.74 18029.57 20149.75 18054.56 15531.46 20771.19 17969.77 18075.75 19164.57 202
test_part174.24 7873.44 9375.18 6782.02 7482.34 8783.88 5562.40 11960.93 13068.68 6049.25 18269.71 8765.73 9881.26 8881.98 6688.35 6888.60 60
UniMVSNet_ETH3D67.18 14967.03 15467.36 13274.44 14078.12 12874.07 13666.38 7052.22 18446.87 16148.64 18351.84 18156.96 15277.29 13978.53 11885.42 14582.59 118
CHOSEN 280x42058.70 19261.88 19154.98 19655.45 21450.55 21764.92 18540.36 21255.21 16438.13 19148.31 18463.76 11363.03 10973.73 16568.58 18968.00 21373.04 186
v7n67.05 15066.94 15567.17 13672.35 15978.97 11873.26 14958.88 15851.16 19050.90 14048.21 18550.11 19060.96 12777.70 13577.38 13686.68 11685.05 96
MDTV_nov1_ep13_2view60.16 18860.51 19659.75 17865.39 19469.05 18468.00 16848.29 20351.99 18545.95 17048.01 18649.64 19353.39 17368.83 19666.52 19877.47 18369.55 194
TinyColmap62.84 16961.03 19464.96 15369.61 18271.69 17468.48 16759.76 14855.41 16347.69 15947.33 18734.20 21762.76 11074.52 15972.59 17281.44 16971.47 188
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15768.70 11680.49 8977.98 13375.29 11462.95 10363.62 10949.96 14447.32 18850.72 18758.57 13876.87 14575.50 15784.94 15375.33 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521172.16 10780.85 8581.85 8976.88 10665.40 7962.89 11546.35 18967.99 10062.05 11581.15 9180.38 9385.97 13684.50 104
pmmvs-eth3d63.52 16662.44 18864.77 15466.82 19270.12 18069.41 16259.48 15054.34 17552.71 12946.24 19044.35 20756.93 15372.37 16873.77 16683.30 16275.91 170
TDRefinement66.09 15365.03 17067.31 13369.73 18176.75 14675.33 11264.55 8660.28 13549.72 14845.63 19142.83 20860.46 13275.75 15275.95 15384.08 15878.04 157
testgi54.39 20257.86 20050.35 20471.59 16967.24 19054.95 20853.25 17743.36 20623.78 20944.64 19247.87 19724.96 21270.45 18768.66 18873.60 20162.78 207
Anonymous2023121171.90 9372.48 10471.21 8780.14 9381.53 9176.92 10462.89 10464.46 10258.94 9243.80 19370.98 7862.22 11280.70 9780.19 9686.18 12685.73 82
EG-PatchMatch MVS67.24 14866.94 15567.60 12878.73 10281.35 9473.28 14859.49 14946.89 20151.42 13843.65 19453.49 16555.50 16681.38 8380.66 8887.15 9781.17 133
CMPMVSbinary47.78 1762.49 17362.52 18662.46 16670.01 18070.66 17962.97 19351.84 18751.98 18656.71 10842.87 19553.62 16157.80 14572.23 17170.37 17975.45 19575.91 170
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpnnormal64.27 16363.64 17965.02 15275.84 12675.61 15671.24 15762.52 11647.79 19842.97 18042.65 19644.49 20652.66 17678.77 12576.86 14384.88 15479.29 150
CHOSEN 1792x268869.20 12369.26 13069.13 11176.86 11978.93 11977.27 10260.12 14461.86 12254.42 11642.54 19761.61 12066.91 8878.55 12878.14 12479.23 17883.23 116
MDA-MVSNet-bldmvs53.37 20453.01 20753.79 20043.67 21967.95 18859.69 20257.92 16243.69 20532.41 19941.47 19827.89 22252.38 17756.97 21465.99 20076.68 18867.13 198
FMVSNet557.24 19460.02 19753.99 19956.45 21262.74 20665.27 18447.03 20655.14 16539.55 18740.88 19953.42 16941.83 19272.35 16971.10 17873.79 20064.50 203
N_pmnet47.35 20850.13 20944.11 21059.98 20651.64 21651.86 21144.80 21049.58 19520.76 21640.65 20040.05 21429.64 20859.84 21055.15 21257.63 21654.00 214
MIMVSNet58.52 19361.34 19355.22 19560.76 20467.01 19166.81 17549.02 19956.43 15638.90 18840.59 20154.54 15640.57 19873.16 16671.65 17475.30 19666.00 200
HyFIR lowres test69.47 12068.94 13470.09 10176.77 12082.93 8376.63 10860.17 14259.00 14054.03 12040.54 20265.23 10967.89 8176.54 15078.30 12285.03 15180.07 145
gm-plane-assit57.00 19557.62 20256.28 19276.10 12262.43 20847.62 21646.57 20733.84 21723.24 21037.52 20340.19 21359.61 13479.81 11177.55 13384.55 15672.03 187
pmmvs662.41 17462.88 18261.87 16871.38 17075.18 16367.76 16959.45 15141.64 20942.52 18237.33 20452.91 17346.87 18577.67 13676.26 15183.23 16379.18 152
test20.0353.93 20356.28 20451.19 20372.19 16165.83 19453.20 21061.08 13042.74 20722.08 21337.07 20545.76 20424.29 21570.44 18869.04 18474.31 19963.05 206
gg-mvs-nofinetune62.55 17165.05 16959.62 18078.72 10377.61 13970.83 15853.63 17339.71 21322.04 21436.36 20664.32 11147.53 18481.16 9079.03 11385.00 15277.17 163
FPMVS51.87 20550.00 21054.07 19866.83 19157.25 21260.25 20150.91 19050.25 19234.36 19636.04 20732.02 21941.49 19458.98 21256.07 21170.56 20959.36 212
new-patchmatchnet46.97 20949.47 21144.05 21162.82 20056.55 21345.35 21752.01 18542.47 20817.04 22035.73 20835.21 21621.84 21861.27 20954.83 21365.26 21460.26 209
Anonymous2023120656.36 19757.80 20154.67 19770.08 17866.39 19360.46 20057.54 16349.50 19629.30 20233.86 20946.64 20035.18 20370.44 18868.88 18675.47 19468.88 196
MVS-HIRNet54.41 20152.10 20857.11 19058.99 20756.10 21449.68 21449.10 19846.18 20352.15 13433.18 21046.11 20256.10 15863.19 20759.70 21076.64 18960.25 210
pmmvs347.65 20749.08 21245.99 20844.61 21754.79 21550.04 21231.95 21933.91 21629.90 20030.37 21133.53 21846.31 18663.50 20563.67 20473.14 20363.77 205
new_pmnet38.40 21242.64 21433.44 21337.54 22245.00 21836.60 21932.72 21840.27 21112.72 22129.89 21228.90 22124.78 21353.17 21552.90 21556.31 21748.34 215
ambc53.42 20564.99 19663.36 20349.96 21347.07 20037.12 19328.97 21316.36 22541.82 19375.10 15667.34 19371.55 20675.72 172
PMVScopyleft39.38 1846.06 21143.30 21349.28 20662.93 19938.75 21941.88 21853.50 17533.33 21935.46 19528.90 21431.01 22033.04 20658.61 21354.63 21468.86 21157.88 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MIMVSNet149.27 20653.25 20644.62 20944.61 21761.52 20953.61 20952.18 18441.62 21018.68 21828.14 21541.58 21125.50 21068.46 19869.04 18473.15 20262.37 208
tmp_tt14.50 22014.68 2247.17 22610.46 2272.21 22337.73 21428.71 20325.26 21616.98 2234.37 22231.49 21829.77 21826.56 223
DeepMVS_CXcopyleft18.74 22518.55 2238.02 22126.96 2207.33 22323.81 21713.05 22625.99 20925.17 22022.45 22536.25 219
test_method22.26 21525.94 21717.95 2183.24 2267.17 22623.83 2217.27 22237.35 21520.44 21721.87 21839.16 21518.67 21934.56 21720.84 22134.28 22020.64 222
PMMVS225.60 21429.75 21620.76 21728.00 22330.93 22123.10 22229.18 22023.14 2211.46 22718.23 21916.54 2245.08 22140.22 21641.40 21737.76 21937.79 218
E-PMN21.77 21618.24 21925.89 21440.22 22019.58 22312.46 22539.87 21318.68 2236.71 2249.57 2204.31 23022.36 21719.89 22127.28 21933.73 22128.34 220
EMVS20.98 21717.15 22025.44 21539.51 22119.37 22412.66 22439.59 21419.10 2226.62 2259.27 2214.40 22922.43 21617.99 22224.40 22031.81 22225.53 221
MVEpermissive19.12 1920.47 21823.27 21817.20 21912.66 22525.41 22210.52 22634.14 21714.79 2246.53 2268.79 2224.68 22816.64 22029.49 21941.63 21622.73 22438.11 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft36.38 21335.80 21537.07 21245.76 21633.90 22029.81 22048.47 20239.91 21218.02 2198.00 2238.14 22725.14 21159.29 21161.02 20755.19 21840.31 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test1230.09 2190.14 2220.02 2210.00 2290.02 2280.02 2300.01 2250.09 2260.00 2300.30 2240.00 2320.08 2230.03 2240.09 2230.01 2260.45 223
testmvs0.09 2190.15 2210.02 2210.01 2280.02 2280.05 2290.01 2250.11 2250.01 2290.26 2250.01 2310.06 2250.10 2230.10 2220.01 2260.43 224
uanet_test0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3573.57 2687.54 14
our_test_367.93 18870.99 17666.89 174
MTAPA83.48 186.45 19
MTMP82.66 684.91 27
Patchmatch-RL test2.85 228
XVS86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
X-MVStestdata86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
mPP-MVS89.90 2681.29 43
NP-MVS80.10 47
Patchmtry65.80 19565.97 18152.74 18152.65 130