This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7994.34 8
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8693.67 17
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11678.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9367.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6787.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12780.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8785.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9683.70 5683.69 5187.15 9088.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet73.33 8077.34 7168.65 11081.29 7483.47 7274.45 11963.58 8965.75 8548.49 14667.11 7670.61 7754.63 16284.51 4983.58 5289.48 4786.34 76
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7186.46 75
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
Vis-MVSNetpermissive72.77 8477.20 7267.59 12274.19 13584.01 6476.61 10561.69 12160.62 12650.61 13870.25 5971.31 7355.57 15883.85 5482.28 5786.90 9988.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net74.47 7477.80 6470.59 9085.33 5485.40 5773.54 13765.98 7260.65 12556.00 10772.11 4979.15 4654.63 16283.13 6282.25 5888.04 7381.92 123
IB-MVS66.94 1271.21 9571.66 10370.68 8779.18 9382.83 7872.61 14361.77 12059.66 13063.44 7953.26 14759.65 12459.16 13176.78 14082.11 5987.90 7687.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_part174.24 7573.44 8875.18 6482.02 7282.34 8183.88 5462.40 11360.93 12368.68 5649.25 17569.71 8465.73 9481.26 8281.98 6088.35 6588.60 57
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7866.18 6864.81 9068.18 5965.61 7771.45 7067.05 7984.16 5181.80 6288.90 5790.92 41
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7960.27 8664.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8862.28 11565.96 8363.28 8068.95 6367.54 9871.61 6082.55 6681.63 6489.24 5085.72 80
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 7088.83 55
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8262.07 11671.27 6667.88 6057.91 11872.36 6870.15 6682.23 6981.41 6688.12 7287.78 63
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11287.91 61
TranMVSNet+NR-MVSNet69.25 11570.81 10767.43 12377.23 11079.46 10873.48 13969.66 4560.43 12739.56 17958.82 10953.48 16055.74 15679.59 10681.21 6888.89 5882.70 113
ET-MVSNet_ETH3D72.46 8674.19 8470.44 9162.50 19481.17 9179.90 7162.46 11264.52 9457.52 9971.49 5459.15 12672.08 5378.61 12081.11 6988.16 6983.29 111
UniMVSNet_NR-MVSNet70.59 9972.19 9868.72 10877.72 10580.72 9773.81 13469.65 4661.99 11343.23 17160.54 9857.50 13358.57 13279.56 10881.07 7089.34 4983.97 103
DCV-MVSNet73.65 7975.78 7971.16 8480.19 8679.27 11077.45 9761.68 12266.73 7858.72 9165.31 8069.96 8162.19 10981.29 8180.97 7186.74 10586.91 70
CANet_DTU73.29 8176.96 7469.00 10777.04 11182.06 8279.49 7656.30 16367.85 7553.29 12371.12 5570.37 8061.81 11881.59 7280.96 7286.09 12184.73 97
FC-MVSNet-train72.60 8575.07 8169.71 9981.10 7778.79 11673.74 13665.23 7766.10 8253.34 12270.36 5863.40 11156.92 14781.44 7580.96 7287.93 7584.46 101
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8885.01 6081.73 5965.93 7384.75 2861.68 8285.79 1966.27 10271.39 6182.91 6380.78 7486.01 12785.98 77
EPP-MVSNet74.00 7877.41 6970.02 9680.53 8283.91 6574.99 11562.68 10665.06 8849.77 14268.68 6672.09 6963.06 10482.49 6880.73 7589.12 5588.91 54
GBi-Net70.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
test170.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
FMVSNet168.84 11970.47 11066.94 13471.35 16477.68 13174.71 11762.35 11456.93 14549.94 14150.01 17064.59 10657.07 14481.33 7880.72 7686.25 11782.00 120
ACMH65.37 1470.71 9870.00 11371.54 8282.51 6782.47 8077.78 9268.13 5656.19 15246.06 16254.30 13551.20 17868.68 7480.66 9180.72 7686.07 12284.45 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet68.79 12070.56 10866.71 13977.48 10879.54 10673.52 13869.20 5161.20 12139.76 17858.52 11050.11 18451.37 17180.26 9980.71 8088.97 5683.59 109
UGNet72.78 8377.67 6567.07 13271.65 15983.24 7475.20 10963.62 8864.93 8956.72 10371.82 5173.30 6349.02 17581.02 8780.70 8186.22 11888.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EG-PatchMatch MVS67.24 14166.94 14867.60 12178.73 9681.35 8873.28 14159.49 14346.89 19451.42 13443.65 18753.49 15955.50 15981.38 7780.66 8287.15 9081.17 129
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)69.53 11171.90 10166.76 13776.42 11480.93 9372.59 14468.03 5861.75 11641.68 17658.34 11657.23 13553.27 16779.53 10980.62 8488.57 6384.90 95
Fast-Effi-MVS+73.11 8273.66 8672.48 7977.72 10580.88 9678.55 8558.83 15365.19 8760.36 8559.98 10262.42 11471.22 6381.66 7080.61 8588.20 6884.88 96
DU-MVS69.63 11070.91 10668.13 11475.99 11679.54 10673.81 13469.20 5161.20 12143.23 17158.52 11053.50 15858.57 13279.22 11280.45 8687.97 7483.97 103
Anonymous20240521172.16 10080.85 7981.85 8376.88 10265.40 7562.89 10846.35 18267.99 9762.05 11181.15 8580.38 8785.97 12984.50 100
FMVSNet270.39 10272.67 9667.72 11872.95 14778.00 12375.15 11062.69 10563.29 10451.25 13555.64 12768.49 9657.59 13980.91 8980.35 8886.70 10682.02 117
anonymousdsp65.28 15067.98 13962.13 16058.73 20273.98 16067.10 16650.69 18648.41 19047.66 15454.27 13652.75 17061.45 12276.71 14180.20 8987.13 9489.53 52
Anonymous2023121171.90 8872.48 9771.21 8380.14 8781.53 8576.92 10062.89 9764.46 9558.94 8843.80 18670.98 7462.22 10880.70 9080.19 9086.18 11985.73 79
thisisatest053071.48 9273.01 9269.70 10073.83 14078.62 11874.53 11859.12 14764.13 9658.63 9264.60 8558.63 12864.27 9780.28 9880.17 9187.82 8084.64 99
tttt051771.41 9372.95 9369.60 10173.70 14278.70 11774.42 12259.12 14763.89 10058.35 9564.56 8658.39 13064.27 9780.29 9780.17 9187.74 8284.69 98
CDS-MVSNet67.65 13569.83 11665.09 14475.39 12376.55 14174.42 12263.75 8753.55 17049.37 14459.41 10662.45 11344.44 18279.71 10579.82 9383.17 15777.36 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER72.06 8774.24 8369.51 10270.39 17075.97 14676.91 10157.36 16064.64 9261.39 8468.86 6463.76 10963.46 10181.44 7579.70 9487.56 8585.31 88
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9981.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8485.89 78
FMVSNet370.49 10072.90 9467.67 12072.88 15077.98 12674.96 11662.72 10164.13 9651.44 13158.37 11369.02 8957.43 14279.43 11079.57 9886.59 11281.81 124
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8185.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+66.54 1371.36 9470.09 11272.85 7882.59 6681.13 9278.56 8468.04 5761.55 11752.52 12951.50 16454.14 15168.56 7578.85 11779.50 10086.82 10283.94 105
MVS_Test75.37 7077.13 7373.31 7779.07 9481.32 8979.98 6860.12 13869.72 7064.11 7570.53 5773.22 6468.90 7280.14 10279.48 10187.67 8385.50 84
Vis-MVSNet (Re-imp)67.83 13173.52 8761.19 16478.37 9876.72 14066.80 16962.96 9565.50 8634.17 19067.19 7569.68 8539.20 19379.39 11179.44 10285.68 13376.73 160
GeoE74.23 7674.84 8273.52 7580.42 8481.46 8779.77 7261.06 12567.23 7763.67 7759.56 10568.74 9467.90 7780.25 10079.37 10388.31 6687.26 69
casdiffmvs76.76 6378.46 6074.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10488.84 6086.52 74
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 9079.94 7066.10 6977.15 5266.86 6659.13 10868.53 9573.73 4080.38 9579.04 10587.13 9481.68 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gg-mvs-nofinetune62.55 16465.05 16259.62 17378.72 9777.61 13270.83 15153.63 16639.71 20622.04 20736.36 19964.32 10747.53 17781.16 8479.03 10685.00 14577.17 156
baseline170.10 10672.17 9967.69 11979.74 8976.80 13873.91 13064.38 8362.74 10948.30 14864.94 8164.08 10854.17 16481.46 7478.92 10785.66 13476.22 161
thisisatest051567.40 13968.78 12965.80 14270.02 17275.24 15369.36 15657.37 15954.94 16353.67 12055.53 13054.85 14758.00 13778.19 12478.91 10886.39 11683.78 107
LS3D74.08 7773.39 8974.88 6785.05 5682.62 7979.71 7468.66 5372.82 6458.80 9057.61 11961.31 11771.07 6480.32 9678.87 10986.00 12880.18 137
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12569.81 8374.53 3581.12 8678.69 11086.04 12687.29 68
UniMVSNet_ETH3D67.18 14267.03 14767.36 12574.44 13378.12 12174.07 12966.38 6652.22 17746.87 15548.64 17651.84 17556.96 14577.29 13278.53 11185.42 13882.59 114
MSDG71.52 9169.87 11473.44 7682.21 7179.35 10979.52 7564.59 8166.15 8161.87 8153.21 14956.09 14165.85 9378.94 11678.50 11286.60 11176.85 159
tfpn200view968.11 12568.72 13167.40 12477.83 10378.93 11274.28 12462.81 9856.64 14746.82 15652.65 15753.47 16156.59 14880.41 9278.43 11386.11 12080.52 134
thres40067.95 12868.62 13367.17 12977.90 10078.59 11974.27 12562.72 10156.34 15145.77 16453.00 15253.35 16456.46 14980.21 10178.43 11385.91 13180.43 135
HyFIR lowres test69.47 11368.94 12770.09 9576.77 11382.93 7776.63 10460.17 13659.00 13354.03 11640.54 19565.23 10567.89 7876.54 14378.30 11585.03 14480.07 138
Baseline_NR-MVSNet67.53 13868.77 13066.09 14175.99 11674.75 15772.43 14568.41 5461.33 12038.33 18351.31 16554.13 15356.03 15279.22 11278.19 11685.37 13982.45 115
CHOSEN 1792x268869.20 11669.26 12369.13 10476.86 11278.93 11277.27 9860.12 13861.86 11554.42 11242.54 19061.61 11566.91 8478.55 12178.14 11779.23 17183.23 112
diffmvs74.86 7377.37 7071.93 8075.62 12180.35 10179.42 7760.15 13772.81 6564.63 7471.51 5373.11 6666.53 8979.02 11577.98 11885.25 14186.83 73
thres20067.98 12768.55 13467.30 12777.89 10278.86 11474.18 12862.75 9956.35 15046.48 15952.98 15353.54 15756.46 14980.41 9277.97 11986.05 12479.78 141
pm-mvs165.62 14767.42 14463.53 15673.66 14376.39 14269.66 15360.87 12849.73 18743.97 17051.24 16657.00 13848.16 17679.89 10377.84 12084.85 14879.82 140
thres600view767.68 13368.43 13566.80 13677.90 10078.86 11473.84 13262.75 9956.07 15344.70 16952.85 15552.81 16855.58 15780.41 9277.77 12186.05 12480.28 136
WR-MVS63.03 16067.40 14557.92 17975.14 12577.60 13360.56 19266.10 6954.11 16923.88 20153.94 14153.58 15634.50 19773.93 15677.71 12287.35 8880.94 130
TransMVSNet (Re)64.74 15365.66 15663.66 15577.40 10975.33 15269.86 15262.67 10747.63 19241.21 17750.01 17052.33 17145.31 18179.57 10777.69 12385.49 13677.07 158
thres100view90067.60 13768.02 13867.12 13177.83 10377.75 13073.90 13162.52 10956.64 14746.82 15652.65 15753.47 16155.92 15378.77 11877.62 12485.72 13279.23 144
GA-MVS68.14 12469.17 12566.93 13573.77 14178.50 12074.45 11958.28 15555.11 15948.44 14760.08 10053.99 15461.50 12078.43 12277.57 12585.13 14280.54 133
gm-plane-assit57.00 18857.62 19556.28 18576.10 11562.43 20147.62 20946.57 20033.84 21023.24 20337.52 19640.19 20659.61 13079.81 10477.55 12684.55 14972.03 180
v1070.22 10469.76 11770.74 8574.79 12980.30 10379.22 7959.81 14157.71 14156.58 10554.22 14055.31 14466.95 8278.28 12377.47 12787.12 9685.07 92
v114469.93 10869.36 12270.61 8974.89 12880.93 9379.11 8060.64 12955.97 15455.31 11053.85 14254.14 15166.54 8878.10 12577.44 12887.14 9385.09 91
v7n67.05 14366.94 14867.17 12972.35 15278.97 11173.26 14258.88 15251.16 18350.90 13648.21 17850.11 18460.96 12377.70 12877.38 12986.68 10985.05 93
IterMVS-LS71.69 9072.82 9570.37 9277.54 10776.34 14375.13 11360.46 13361.53 11857.57 9864.89 8267.33 9966.04 9277.09 13677.37 13085.48 13785.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 11268.83 12870.29 9374.49 13280.92 9578.55 8560.54 13155.04 16054.21 11352.79 15652.33 17166.92 8377.88 12777.35 13187.04 9785.51 83
PEN-MVS62.96 16165.77 15559.70 17273.98 13875.45 15063.39 18567.61 6152.49 17525.49 20053.39 14449.12 18740.85 19071.94 16877.26 13286.86 10180.72 132
v2v48270.05 10769.46 12170.74 8574.62 13180.32 10279.00 8160.62 13057.41 14356.89 10255.43 13155.14 14666.39 9077.25 13377.14 13386.90 9983.57 110
MS-PatchMatch70.17 10570.49 10969.79 9880.98 7877.97 12877.51 9458.95 15062.33 11155.22 11153.14 15065.90 10362.03 11279.08 11477.11 13484.08 15177.91 151
V4268.76 12169.63 11867.74 11764.93 19078.01 12278.30 8956.48 16258.65 13556.30 10654.26 13857.03 13764.85 9577.47 13177.01 13585.60 13584.96 94
tfpnnormal64.27 15663.64 17265.02 14575.84 11975.61 14971.24 15062.52 10947.79 19142.97 17342.65 18944.49 19952.66 16978.77 11876.86 13684.88 14779.29 143
v124068.64 12267.89 14169.51 10273.89 13980.26 10476.73 10359.97 14053.43 17253.08 12451.82 16350.84 18066.62 8776.79 13976.77 13786.78 10485.34 87
v14419269.34 11468.68 13270.12 9474.06 13680.54 9878.08 9160.54 13154.99 16254.13 11552.92 15452.80 16966.73 8677.13 13576.72 13887.15 9085.63 81
v870.23 10369.86 11570.67 8874.69 13079.82 10578.79 8359.18 14658.80 13458.20 9655.00 13257.33 13466.31 9177.51 13076.71 13986.82 10283.88 106
v192192069.03 11768.32 13669.86 9774.03 13780.37 10077.55 9360.25 13554.62 16453.59 12152.36 16051.50 17766.75 8577.17 13476.69 14086.96 9885.56 82
baseline269.69 10970.27 11169.01 10675.72 12077.13 13673.82 13358.94 15161.35 11957.09 10161.68 9257.17 13661.99 11378.10 12576.58 14186.48 11579.85 139
DTE-MVSNet61.85 17364.96 16458.22 17874.32 13474.39 15961.01 19167.85 6051.76 18221.91 20853.28 14648.17 18837.74 19472.22 16576.44 14286.52 11478.49 148
LTVRE_ROB59.44 1661.82 17662.64 17860.87 16672.83 15177.19 13564.37 18158.97 14933.56 21128.00 19752.59 15942.21 20263.93 10074.52 15276.28 14377.15 17882.13 116
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs662.41 16762.88 17561.87 16171.38 16375.18 15667.76 16259.45 14541.64 20242.52 17537.33 19752.91 16746.87 17877.67 12976.26 14483.23 15679.18 145
Fast-Effi-MVS+-dtu68.34 12369.47 12067.01 13375.15 12477.97 12877.12 9955.40 16557.87 13646.68 15856.17 12660.39 11862.36 10776.32 14476.25 14585.35 14081.34 127
TDRefinement66.09 14665.03 16367.31 12669.73 17476.75 13975.33 10664.55 8260.28 12849.72 14345.63 18442.83 20160.46 12875.75 14575.95 14684.08 15178.04 150
CP-MVSNet62.68 16365.49 15859.40 17571.84 15575.34 15162.87 18767.04 6452.64 17427.19 19853.38 14548.15 18941.40 18871.26 17175.68 14786.07 12282.00 120
PS-CasMVS62.38 16965.06 16159.25 17671.73 15675.21 15562.77 18866.99 6551.94 18126.96 19952.00 16247.52 19241.06 18971.16 17475.60 14885.97 12981.97 122
Effi-MVS+-dtu71.82 8971.86 10271.78 8178.77 9580.47 9978.55 8561.67 12360.68 12455.49 10858.48 11265.48 10468.85 7376.92 13775.55 14987.35 8885.46 85
COLMAP_ROBcopyleft62.73 1567.66 13466.76 15068.70 10980.49 8377.98 12675.29 10862.95 9663.62 10249.96 14047.32 18150.72 18158.57 13276.87 13875.50 15084.94 14675.33 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs467.89 12967.39 14668.48 11171.60 16173.57 16174.45 11960.98 12664.65 9157.97 9754.95 13351.73 17661.88 11573.78 15775.11 15183.99 15377.91 151
WR-MVS_H61.83 17565.87 15457.12 18271.72 15776.87 13761.45 19066.19 6751.97 18022.92 20553.13 15152.30 17333.80 19871.03 17575.00 15286.65 11080.78 131
EPNet_dtu68.08 12671.00 10564.67 14879.64 9068.62 17975.05 11463.30 9066.36 8045.27 16667.40 7466.84 10143.64 18475.37 14774.98 15381.15 16377.44 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline70.45 10174.09 8566.20 14070.95 16775.67 14774.26 12653.57 16768.33 7458.42 9369.87 6071.45 7061.55 11974.84 15174.76 15478.42 17383.72 108
USDC67.36 14067.90 14066.74 13871.72 15775.23 15471.58 14760.28 13467.45 7650.54 13960.93 9445.20 19862.08 11076.56 14274.50 15584.25 15075.38 169
PatchMatch-RL67.78 13266.65 15169.10 10573.01 14672.69 16468.49 15961.85 11962.93 10760.20 8756.83 12450.42 18269.52 6975.62 14674.46 15681.51 16173.62 178
IterMVS-SCA-FT66.89 14469.22 12464.17 15071.30 16575.64 14871.33 14853.17 17157.63 14249.08 14560.72 9660.05 12263.09 10374.99 15073.92 15777.07 17981.57 126
v14867.85 13067.53 14268.23 11273.25 14577.57 13474.26 12657.36 16055.70 15557.45 10053.53 14355.42 14361.96 11475.23 14873.92 15785.08 14381.32 128
pmmvs-eth3d63.52 15962.44 18164.77 14766.82 18570.12 17369.41 15559.48 14454.34 16852.71 12546.24 18344.35 20056.93 14672.37 16173.77 15983.30 15575.91 163
PMMVS65.06 15169.17 12560.26 16955.25 20863.43 19566.71 17043.01 20462.41 11050.64 13769.44 6167.04 10063.29 10274.36 15473.54 16082.68 15873.99 177
pmmvs562.37 17064.04 16960.42 16765.03 18871.67 16867.17 16552.70 17650.30 18444.80 16754.23 13951.19 17949.37 17472.88 16073.48 16183.45 15474.55 173
CR-MVSNet64.83 15265.54 15764.01 15370.64 16969.41 17465.97 17452.74 17457.81 13852.65 12654.27 13656.31 14060.92 12472.20 16673.09 16281.12 16475.69 166
PatchT61.97 17264.04 16959.55 17460.49 19867.40 18256.54 19948.65 19456.69 14652.65 12651.10 16752.14 17460.92 12472.20 16673.09 16278.03 17475.69 166
IterMVS66.36 14568.30 13764.10 15169.48 17774.61 15873.41 14050.79 18557.30 14448.28 14960.64 9759.92 12360.85 12774.14 15572.66 16481.80 16078.82 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap62.84 16261.03 18764.96 14669.61 17571.69 16768.48 16059.76 14255.41 15647.69 15347.33 18034.20 21062.76 10674.52 15272.59 16581.44 16271.47 181
TAMVS59.58 18362.81 17755.81 18666.03 18665.64 18963.86 18348.74 19349.95 18637.07 18754.77 13458.54 12944.44 18272.29 16371.79 16674.70 19066.66 192
MIMVSNet58.52 18661.34 18655.22 18860.76 19767.01 18466.81 16849.02 19256.43 14938.90 18140.59 19454.54 15040.57 19173.16 15971.65 16775.30 18966.00 193
SixPastTwentyTwo61.84 17462.45 18061.12 16569.20 17872.20 16562.03 18957.40 15846.54 19538.03 18557.14 12341.72 20358.12 13669.67 18571.58 16881.94 15978.30 149
CVMVSNet62.55 16465.89 15358.64 17766.95 18369.15 17666.49 17356.29 16452.46 17632.70 19159.27 10758.21 13250.09 17371.77 16971.39 16979.31 17078.99 146
FC-MVSNet-test56.90 18965.20 16047.21 20066.98 18263.20 19749.11 20858.60 15459.38 13211.50 21565.60 7856.68 13924.66 20771.17 17371.36 17072.38 19769.02 188
FMVSNet557.24 18760.02 19053.99 19256.45 20562.74 19965.27 17747.03 19955.14 15839.55 18040.88 19253.42 16341.83 18572.35 16271.10 17173.79 19364.50 196
CMPMVSbinary47.78 1762.49 16662.52 17962.46 15970.01 17370.66 17262.97 18651.84 18051.98 17956.71 10442.87 18853.62 15557.80 13872.23 16470.37 17275.45 18875.91 163
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 158.80 18461.58 18555.56 18775.02 12668.45 18059.58 19661.96 11752.74 17329.57 19449.75 17354.56 14931.46 20071.19 17269.77 17375.75 18464.57 195
test-mter60.84 17964.62 16656.42 18455.99 20664.18 19065.39 17634.23 20954.39 16746.21 16157.40 12259.49 12555.86 15471.02 17669.65 17480.87 16676.20 162
test-LLR64.42 15464.36 16764.49 14975.02 12663.93 19266.61 17161.96 11754.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
TESTMET0.1,161.10 17864.36 16757.29 18157.53 20363.93 19266.61 17136.22 20854.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
test20.0353.93 19656.28 19751.19 19672.19 15465.83 18753.20 20361.08 12442.74 20022.08 20637.07 19845.76 19724.29 20870.44 18169.04 17774.31 19263.05 199
MIMVSNet149.27 19953.25 19944.62 20244.61 21061.52 20253.61 20252.18 17741.62 20318.68 21128.14 20841.58 20425.50 20368.46 19169.04 17773.15 19562.37 201
Anonymous2023120656.36 19057.80 19454.67 19070.08 17166.39 18660.46 19357.54 15749.50 18929.30 19533.86 20246.64 19335.18 19670.44 18168.88 17975.47 18768.88 189
CostFormer68.92 11869.58 11968.15 11375.98 11876.17 14578.22 9051.86 17965.80 8461.56 8363.57 8862.83 11261.85 11670.40 18368.67 18079.42 16979.62 142
testgi54.39 19557.86 19350.35 19771.59 16267.24 18354.95 20153.25 17043.36 19923.78 20244.64 18547.87 19024.96 20570.45 18068.66 18173.60 19462.78 200
CHOSEN 280x42058.70 18561.88 18454.98 18955.45 20750.55 21064.92 17840.36 20555.21 15738.13 18448.31 17763.76 10963.03 10573.73 15868.58 18268.00 20673.04 179
RPMNet61.71 17762.88 17560.34 16869.51 17669.41 17463.48 18449.23 19057.81 13845.64 16550.51 16850.12 18353.13 16868.17 19268.49 18381.07 16575.62 168
RPSCF67.64 13671.25 10463.43 15761.86 19670.73 17167.26 16450.86 18474.20 6058.91 8967.49 7369.33 8664.10 9971.41 17068.45 18477.61 17577.17 156
SCA65.40 14966.58 15264.02 15270.65 16873.37 16267.35 16353.46 16963.66 10154.14 11460.84 9560.20 12161.50 12069.96 18468.14 18577.01 18069.91 184
ambc53.42 19864.99 18963.36 19649.96 20647.07 19337.12 18628.97 20616.36 21841.82 18675.10 14967.34 18671.55 19975.72 165
MDTV_nov1_ep1364.37 15565.24 15963.37 15868.94 17970.81 17072.40 14650.29 18860.10 12953.91 11860.07 10159.15 12657.21 14369.43 18767.30 18777.47 17669.78 186
GG-mvs-BLEND46.86 20367.51 14322.75 2090.05 22076.21 14464.69 1790.04 21761.90 1140.09 22155.57 12871.32 720.08 21670.54 17967.19 18871.58 19869.86 185
dps64.00 15862.99 17465.18 14373.29 14472.07 16668.98 15853.07 17257.74 14058.41 9455.55 12947.74 19160.89 12669.53 18667.14 18976.44 18371.19 182
PM-MVS60.48 18060.94 18859.94 17058.85 20166.83 18564.27 18251.39 18255.03 16148.03 15050.00 17240.79 20558.26 13569.20 18867.13 19078.84 17277.60 153
MDTV_nov1_ep13_2view60.16 18160.51 18959.75 17165.39 18769.05 17768.00 16148.29 19651.99 17845.95 16348.01 17949.64 18653.39 16668.83 18966.52 19177.47 17669.55 187
PatchmatchNetpermissive64.21 15764.65 16563.69 15471.29 16668.66 17869.63 15451.70 18163.04 10553.77 11959.83 10458.34 13160.23 12968.54 19066.06 19275.56 18668.08 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 19753.01 20053.79 19343.67 21267.95 18159.69 19557.92 15643.69 19832.41 19241.47 19127.89 21552.38 17056.97 20765.99 19376.68 18167.13 191
EU-MVSNet54.63 19358.69 19149.90 19856.99 20462.70 20056.41 20050.64 18745.95 19723.14 20450.42 16946.51 19436.63 19565.51 19564.85 19475.57 18574.91 171
tpm62.41 16763.15 17361.55 16372.24 15363.79 19471.31 14946.12 20257.82 13755.33 10959.90 10354.74 14853.63 16567.24 19364.29 19570.65 20174.25 176
tpm cat165.41 14863.81 17167.28 12875.61 12272.88 16375.32 10752.85 17362.97 10663.66 7853.24 14853.29 16661.83 11765.54 19464.14 19674.43 19174.60 172
pmmvs347.65 20049.08 20545.99 20144.61 21054.79 20850.04 20531.95 21233.91 20929.90 19330.37 20433.53 21146.31 17963.50 19863.67 19773.14 19663.77 198
tpmrst62.00 17162.35 18261.58 16271.62 16064.14 19169.07 15748.22 19862.21 11253.93 11758.26 11755.30 14555.81 15563.22 19962.62 19870.85 20070.70 183
EPMVS60.00 18261.97 18357.71 18068.46 18063.17 19864.54 18048.23 19763.30 10344.72 16860.19 9956.05 14250.85 17265.27 19762.02 19969.44 20363.81 197
Gipumacopyleft36.38 20635.80 20837.07 20545.76 20933.90 21329.81 21348.47 19539.91 20518.02 2128.00 2168.14 22025.14 20459.29 20461.02 20055.19 21140.31 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0255.30 19257.01 19653.30 19564.14 19159.09 20358.39 19850.24 18953.47 17138.68 18249.75 17345.86 19640.14 19265.38 19660.22 20168.19 20565.33 194
ADS-MVSNet55.94 19158.01 19253.54 19462.48 19558.48 20459.12 19746.20 20159.65 13142.88 17452.34 16153.31 16546.31 17962.00 20160.02 20264.23 20860.24 204
MVS-HIRNet54.41 19452.10 20157.11 18358.99 20056.10 20749.68 20749.10 19146.18 19652.15 13033.18 20346.11 19556.10 15163.19 20059.70 20376.64 18260.25 203
FPMVS51.87 19850.00 20354.07 19166.83 18457.25 20560.25 19450.91 18350.25 18534.36 18936.04 20032.02 21241.49 18758.98 20556.07 20470.56 20259.36 205
N_pmnet47.35 20150.13 20244.11 20359.98 19951.64 20951.86 20444.80 20349.58 18820.76 20940.65 19340.05 20729.64 20159.84 20355.15 20557.63 20954.00 207
new-patchmatchnet46.97 20249.47 20444.05 20462.82 19356.55 20645.35 21052.01 17842.47 20117.04 21335.73 20135.21 20921.84 21161.27 20254.83 20665.26 20760.26 202
PMVScopyleft39.38 1846.06 20443.30 20649.28 19962.93 19238.75 21241.88 21153.50 16833.33 21235.46 18828.90 20731.01 21333.04 19958.61 20654.63 20768.86 20457.88 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 20542.64 20733.44 20637.54 21545.00 21136.60 21232.72 21140.27 20412.72 21429.89 20528.90 21424.78 20653.17 20852.90 20856.31 21048.34 208
MVEpermissive19.12 1920.47 21123.27 21117.20 21212.66 21825.41 21510.52 21934.14 21014.79 2176.53 2198.79 2154.68 22116.64 21329.49 21241.63 20922.73 21738.11 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 20729.75 20920.76 21028.00 21630.93 21423.10 21529.18 21323.14 2141.46 22018.23 21216.54 2175.08 21440.22 20941.40 21037.76 21237.79 211
tmp_tt14.50 21314.68 2177.17 21910.46 2202.21 21637.73 20728.71 19625.26 20916.98 2164.37 21531.49 21129.77 21126.56 216
E-PMN21.77 20918.24 21225.89 20740.22 21319.58 21612.46 21839.87 20618.68 2166.71 2179.57 2134.31 22322.36 21019.89 21427.28 21233.73 21428.34 213
EMVS20.98 21017.15 21325.44 20839.51 21419.37 21712.66 21739.59 20719.10 2156.62 2189.27 2144.40 22222.43 20917.99 21524.40 21331.81 21525.53 214
test_method22.26 20825.94 21017.95 2113.24 2197.17 21923.83 2147.27 21537.35 20820.44 21021.87 21139.16 20818.67 21234.56 21020.84 21434.28 21320.64 215
testmvs0.09 2120.15 2140.02 2140.01 2210.02 2210.05 2220.01 2180.11 2180.01 2220.26 2180.01 2240.06 2180.10 2160.10 2150.01 2190.43 217
test1230.09 2120.14 2150.02 2140.00 2220.02 2210.02 2230.01 2180.09 2190.00 2230.30 2170.00 2250.08 2160.03 2170.09 2160.01 2190.45 216
uanet_test0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def46.24 160
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18170.99 16966.89 167
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 221
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 18865.97 17452.74 17452.65 126
DeepMVS_CXcopyleft18.74 21818.55 2168.02 21426.96 2137.33 21623.81 21013.05 21925.99 20225.17 21322.45 21836.25 212