This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11678.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
SR-MVS88.99 3473.57 2587.54 13
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7994.34 8
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9367.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8693.67 17
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9683.70 5683.69 5187.15 9088.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7186.46 75
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet69.25 11570.81 10767.43 12377.23 11079.46 10873.48 13969.66 4560.43 12739.56 17958.82 10953.48 16055.74 15679.59 10681.21 6888.89 5882.70 113
UniMVSNet_NR-MVSNet70.59 9972.19 9868.72 10877.72 10580.72 9773.81 13469.65 4661.99 11343.23 17160.54 9857.50 13358.57 13279.56 10881.07 7089.34 4983.97 103
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
DU-MVS69.63 11070.91 10668.13 11475.99 11679.54 10673.81 13469.20 5161.20 12143.23 17158.52 11053.50 15858.57 13279.22 11280.45 8687.97 7483.97 103
NR-MVSNet68.79 12070.56 10866.71 13977.48 10879.54 10673.52 13869.20 5161.20 12139.76 17858.52 11050.11 18451.37 17180.26 9980.71 8088.97 5683.59 109
LS3D74.08 7773.39 8974.88 6785.05 5682.62 7979.71 7468.66 5372.82 6458.80 9057.61 11961.31 11771.07 6480.32 9678.87 10986.00 12880.18 137
Baseline_NR-MVSNet67.53 13868.77 13066.09 14175.99 11674.75 15772.43 14568.41 5461.33 12038.33 18351.31 16554.13 15356.03 15279.22 11278.19 11685.37 13982.45 115
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
ACMH65.37 1470.71 9870.00 11371.54 8282.51 6782.47 8077.78 9268.13 5656.19 15246.06 16254.30 13551.20 17868.68 7480.66 9180.72 7686.07 12284.45 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.54 1371.36 9470.09 11272.85 7882.59 6681.13 9278.56 8468.04 5761.55 11752.52 12951.50 16454.14 15168.56 7578.85 11779.50 10086.82 10283.94 105
UniMVSNet (Re)69.53 11171.90 10166.76 13776.42 11480.93 9372.59 14468.03 5861.75 11641.68 17658.34 11657.23 13553.27 16779.53 10980.62 8488.57 6384.90 95
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
DTE-MVSNet61.85 17364.96 16458.22 17874.32 13474.39 15961.01 19167.85 6051.76 18221.91 20853.28 14648.17 18837.74 19472.22 16576.44 14286.52 11478.49 148
PEN-MVS62.96 16165.77 15559.70 17273.98 13875.45 15063.39 18567.61 6152.49 17525.49 20053.39 14449.12 18740.85 19071.94 16877.26 13286.86 10180.72 132
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6787.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
CP-MVSNet62.68 16365.49 15859.40 17571.84 15575.34 15162.87 18767.04 6452.64 17427.19 19853.38 14548.15 18941.40 18871.26 17175.68 14786.07 12282.00 120
PS-CasMVS62.38 16965.06 16159.25 17671.73 15675.21 15562.77 18866.99 6551.94 18126.96 19952.00 16247.52 19241.06 18971.16 17475.60 14885.97 12981.97 122
UniMVSNet_ETH3D67.18 14267.03 14767.36 12574.44 13378.12 12174.07 12966.38 6652.22 17746.87 15548.64 17651.84 17556.96 14577.29 13278.53 11185.42 13882.59 114
WR-MVS_H61.83 17565.87 15457.12 18271.72 15776.87 13761.45 19066.19 6751.97 18022.92 20553.13 15152.30 17333.80 19871.03 17575.00 15286.65 11080.78 131
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7866.18 6864.81 9068.18 5965.61 7771.45 7067.05 7984.16 5181.80 6288.90 5790.92 41
WR-MVS63.03 16067.40 14557.92 17975.14 12577.60 13360.56 19266.10 6954.11 16923.88 20153.94 14153.58 15634.50 19773.93 15677.71 12287.35 8880.94 130
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 9079.94 7066.10 6977.15 5266.86 6659.13 10868.53 9573.73 4080.38 9579.04 10587.13 9481.68 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
UA-Net74.47 7477.80 6470.59 9085.33 5485.40 5773.54 13765.98 7260.65 12556.00 10772.11 4979.15 4654.63 16283.13 6282.25 5888.04 7381.92 123
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8885.01 6081.73 5965.93 7384.75 2861.68 8285.79 1966.27 10271.39 6182.91 6380.78 7486.01 12785.98 77
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
Anonymous20240521172.16 10080.85 7981.85 8376.88 10265.40 7562.89 10846.35 18267.99 9762.05 11181.15 8580.38 8785.97 12984.50 100
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11287.91 61
FC-MVSNet-train72.60 8575.07 8169.71 9981.10 7778.79 11673.74 13665.23 7766.10 8253.34 12270.36 5863.40 11156.92 14781.44 7580.96 7287.93 7584.46 101
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 7088.83 55
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12569.81 8374.53 3581.12 8678.69 11086.04 12687.29 68
MSDG71.52 9169.87 11473.44 7682.21 7179.35 10979.52 7564.59 8166.15 8161.87 8153.21 14956.09 14165.85 9378.94 11678.50 11286.60 11176.85 159
TDRefinement66.09 14665.03 16367.31 12669.73 17476.75 13975.33 10664.55 8260.28 12849.72 14345.63 18442.83 20160.46 12875.75 14575.95 14684.08 15178.04 150
baseline170.10 10672.17 9967.69 11979.74 8976.80 13873.91 13064.38 8362.74 10948.30 14864.94 8164.08 10854.17 16481.46 7478.92 10785.66 13476.22 161
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
CDS-MVSNet67.65 13569.83 11665.09 14475.39 12376.55 14174.42 12263.75 8753.55 17049.37 14459.41 10662.45 11344.44 18279.71 10579.82 9383.17 15777.36 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet72.78 8377.67 6567.07 13271.65 15983.24 7475.20 10963.62 8864.93 8956.72 10371.82 5173.30 6349.02 17581.02 8780.70 8186.22 11888.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet73.33 8077.34 7168.65 11081.29 7483.47 7274.45 11963.58 8965.75 8548.49 14667.11 7670.61 7754.63 16284.51 4983.58 5289.48 4786.34 76
EPNet_dtu68.08 12671.00 10564.67 14879.64 9068.62 17975.05 11463.30 9066.36 8045.27 16667.40 7466.84 10143.64 18475.37 14774.98 15381.15 16377.44 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs76.76 6378.46 6074.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10488.84 6086.52 74
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8185.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7960.27 8664.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
Vis-MVSNet (Re-imp)67.83 13173.52 8761.19 16478.37 9876.72 14066.80 16962.96 9565.50 8634.17 19067.19 7569.68 8539.20 19379.39 11179.44 10285.68 13376.73 160
COLMAP_ROBcopyleft62.73 1567.66 13466.76 15068.70 10980.49 8377.98 12675.29 10862.95 9663.62 10249.96 14047.32 18150.72 18158.57 13276.87 13875.50 15084.94 14675.33 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121171.90 8872.48 9771.21 8380.14 8781.53 8576.92 10062.89 9764.46 9558.94 8843.80 18670.98 7462.22 10880.70 9080.19 9086.18 11985.73 79
tfpn200view968.11 12568.72 13167.40 12477.83 10378.93 11274.28 12462.81 9856.64 14746.82 15652.65 15753.47 16156.59 14880.41 9278.43 11386.11 12080.52 134
thres600view767.68 13368.43 13566.80 13677.90 10078.86 11473.84 13262.75 9956.07 15344.70 16952.85 15552.81 16855.58 15780.41 9277.77 12186.05 12480.28 136
thres20067.98 12768.55 13467.30 12777.89 10278.86 11474.18 12862.75 9956.35 15046.48 15952.98 15353.54 15756.46 14980.41 9277.97 11986.05 12479.78 141
thres40067.95 12868.62 13367.17 12977.90 10078.59 11974.27 12562.72 10156.34 15145.77 16453.00 15253.35 16456.46 14980.21 10178.43 11385.91 13180.43 135
GBi-Net70.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
test170.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
FMVSNet370.49 10072.90 9467.67 12072.88 15077.98 12674.96 11662.72 10164.13 9651.44 13158.37 11369.02 8957.43 14279.43 11079.57 9886.59 11281.81 124
FMVSNet270.39 10272.67 9667.72 11872.95 14778.00 12375.15 11062.69 10563.29 10451.25 13555.64 12768.49 9657.59 13980.91 8980.35 8886.70 10682.02 117
EPP-MVSNet74.00 7877.41 6970.02 9680.53 8283.91 6574.99 11562.68 10665.06 8849.77 14268.68 6672.09 6963.06 10482.49 6880.73 7589.12 5588.91 54
TransMVSNet (Re)64.74 15365.66 15663.66 15577.40 10975.33 15269.86 15262.67 10747.63 19241.21 17750.01 17052.33 17145.31 18179.57 10777.69 12385.49 13677.07 158
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9981.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8485.89 78
thres100view90067.60 13768.02 13867.12 13177.83 10377.75 13073.90 13162.52 10956.64 14746.82 15652.65 15753.47 16155.92 15378.77 11877.62 12485.72 13279.23 144
tfpnnormal64.27 15663.64 17265.02 14575.84 11975.61 14971.24 15062.52 10947.79 19142.97 17342.65 18944.49 19952.66 16978.77 11876.86 13684.88 14779.29 143
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
ET-MVSNet_ETH3D72.46 8674.19 8470.44 9162.50 19481.17 9179.90 7162.46 11264.52 9457.52 9971.49 5459.15 12672.08 5378.61 12081.11 6988.16 6983.29 111
test_part174.24 7573.44 8875.18 6482.02 7282.34 8183.88 5462.40 11360.93 12368.68 5649.25 17569.71 8465.73 9481.26 8281.98 6088.35 6588.60 57
FMVSNet168.84 11970.47 11066.94 13471.35 16477.68 13174.71 11762.35 11456.93 14549.94 14150.01 17064.59 10657.07 14481.33 7880.72 7686.25 11782.00 120
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8862.28 11565.96 8363.28 8068.95 6367.54 9871.61 6082.55 6681.63 6489.24 5085.72 80
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8262.07 11671.27 6667.88 6057.91 11872.36 6870.15 6682.23 6981.41 6688.12 7287.78 63
test-LLR64.42 15464.36 16764.49 14975.02 12663.93 19266.61 17161.96 11754.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
test0.0.03 158.80 18461.58 18555.56 18775.02 12668.45 18059.58 19661.96 11752.74 17329.57 19449.75 17354.56 14931.46 20071.19 17269.77 17375.75 18464.57 195
PatchMatch-RL67.78 13266.65 15169.10 10573.01 14672.69 16468.49 15961.85 11962.93 10760.20 8756.83 12450.42 18269.52 6975.62 14674.46 15681.51 16173.62 178
IB-MVS66.94 1271.21 9571.66 10370.68 8779.18 9382.83 7872.61 14361.77 12059.66 13063.44 7953.26 14759.65 12459.16 13176.78 14082.11 5987.90 7687.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive72.77 8477.20 7267.59 12274.19 13584.01 6476.61 10561.69 12160.62 12650.61 13870.25 5971.31 7355.57 15883.85 5482.28 5786.90 9988.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet73.65 7975.78 7971.16 8480.19 8679.27 11077.45 9761.68 12266.73 7858.72 9165.31 8069.96 8162.19 10981.29 8180.97 7186.74 10586.91 70
Effi-MVS+-dtu71.82 8971.86 10271.78 8178.77 9580.47 9978.55 8561.67 12360.68 12455.49 10858.48 11265.48 10468.85 7376.92 13775.55 14987.35 8885.46 85
test20.0353.93 19656.28 19751.19 19672.19 15465.83 18753.20 20361.08 12442.74 20022.08 20637.07 19845.76 19724.29 20870.44 18169.04 17774.31 19263.05 199
GeoE74.23 7674.84 8273.52 7580.42 8481.46 8779.77 7261.06 12567.23 7763.67 7759.56 10568.74 9467.90 7780.25 10079.37 10388.31 6687.26 69
pmmvs467.89 12967.39 14668.48 11171.60 16173.57 16174.45 11960.98 12664.65 9157.97 9754.95 13351.73 17661.88 11573.78 15775.11 15183.99 15377.91 151
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12780.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8785.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pm-mvs165.62 14767.42 14463.53 15673.66 14376.39 14269.66 15360.87 12849.73 18743.97 17051.24 16657.00 13848.16 17679.89 10377.84 12084.85 14879.82 140
v114469.93 10869.36 12270.61 8974.89 12880.93 9379.11 8060.64 12955.97 15455.31 11053.85 14254.14 15166.54 8878.10 12577.44 12887.14 9385.09 91
v2v48270.05 10769.46 12170.74 8574.62 13180.32 10279.00 8160.62 13057.41 14356.89 10255.43 13155.14 14666.39 9077.25 13377.14 13386.90 9983.57 110
v14419269.34 11468.68 13270.12 9474.06 13680.54 9878.08 9160.54 13154.99 16254.13 11552.92 15452.80 16966.73 8677.13 13576.72 13887.15 9085.63 81
v119269.50 11268.83 12870.29 9374.49 13280.92 9578.55 8560.54 13155.04 16054.21 11352.79 15652.33 17166.92 8377.88 12777.35 13187.04 9785.51 83
IterMVS-LS71.69 9072.82 9570.37 9277.54 10776.34 14375.13 11360.46 13361.53 11857.57 9864.89 8267.33 9966.04 9277.09 13677.37 13085.48 13785.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC67.36 14067.90 14066.74 13871.72 15775.23 15471.58 14760.28 13467.45 7650.54 13960.93 9445.20 19862.08 11076.56 14274.50 15584.25 15075.38 169
v192192069.03 11768.32 13669.86 9774.03 13780.37 10077.55 9360.25 13554.62 16453.59 12152.36 16051.50 17766.75 8577.17 13476.69 14086.96 9885.56 82
HyFIR lowres test69.47 11368.94 12770.09 9576.77 11382.93 7776.63 10460.17 13659.00 13354.03 11640.54 19565.23 10567.89 7876.54 14378.30 11585.03 14480.07 138
diffmvs74.86 7377.37 7071.93 8075.62 12180.35 10179.42 7760.15 13772.81 6564.63 7471.51 5373.11 6666.53 8979.02 11577.98 11885.25 14186.83 73
MVS_Test75.37 7077.13 7373.31 7779.07 9481.32 8979.98 6860.12 13869.72 7064.11 7570.53 5773.22 6468.90 7280.14 10279.48 10187.67 8385.50 84
CHOSEN 1792x268869.20 11669.26 12369.13 10476.86 11278.93 11277.27 9860.12 13861.86 11554.42 11242.54 19061.61 11566.91 8478.55 12178.14 11779.23 17183.23 112
v124068.64 12267.89 14169.51 10273.89 13980.26 10476.73 10359.97 14053.43 17253.08 12451.82 16350.84 18066.62 8776.79 13976.77 13786.78 10485.34 87
v1070.22 10469.76 11770.74 8574.79 12980.30 10379.22 7959.81 14157.71 14156.58 10554.22 14055.31 14466.95 8278.28 12377.47 12787.12 9685.07 92
TinyColmap62.84 16261.03 18764.96 14669.61 17571.69 16768.48 16059.76 14255.41 15647.69 15347.33 18034.20 21062.76 10674.52 15272.59 16581.44 16271.47 181
EG-PatchMatch MVS67.24 14166.94 14867.60 12178.73 9681.35 8873.28 14159.49 14346.89 19451.42 13443.65 18753.49 15955.50 15981.38 7780.66 8287.15 9081.17 129
pmmvs-eth3d63.52 15962.44 18164.77 14766.82 18570.12 17369.41 15559.48 14454.34 16852.71 12546.24 18344.35 20056.93 14672.37 16173.77 15983.30 15575.91 163
pmmvs662.41 16762.88 17561.87 16171.38 16375.18 15667.76 16259.45 14541.64 20242.52 17537.33 19752.91 16746.87 17877.67 12976.26 14483.23 15679.18 145
v870.23 10369.86 11570.67 8874.69 13079.82 10578.79 8359.18 14658.80 13458.20 9655.00 13257.33 13466.31 9177.51 13076.71 13986.82 10283.88 106
thisisatest053071.48 9273.01 9269.70 10073.83 14078.62 11874.53 11859.12 14764.13 9658.63 9264.60 8558.63 12864.27 9780.28 9880.17 9187.82 8084.64 99
tttt051771.41 9372.95 9369.60 10173.70 14278.70 11774.42 12259.12 14763.89 10058.35 9564.56 8658.39 13064.27 9780.29 9780.17 9187.74 8284.69 98
LTVRE_ROB59.44 1661.82 17662.64 17860.87 16672.83 15177.19 13564.37 18158.97 14933.56 21128.00 19752.59 15942.21 20263.93 10074.52 15276.28 14377.15 17882.13 116
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MS-PatchMatch70.17 10570.49 10969.79 9880.98 7877.97 12877.51 9458.95 15062.33 11155.22 11153.14 15065.90 10362.03 11279.08 11477.11 13484.08 15177.91 151
baseline269.69 10970.27 11169.01 10675.72 12077.13 13673.82 13358.94 15161.35 11957.09 10161.68 9257.17 13661.99 11378.10 12576.58 14186.48 11579.85 139
v7n67.05 14366.94 14867.17 12972.35 15278.97 11173.26 14258.88 15251.16 18350.90 13648.21 17850.11 18460.96 12377.70 12877.38 12986.68 10985.05 93
Fast-Effi-MVS+73.11 8273.66 8672.48 7977.72 10580.88 9678.55 8558.83 15365.19 8760.36 8559.98 10262.42 11471.22 6381.66 7080.61 8588.20 6884.88 96
FC-MVSNet-test56.90 18965.20 16047.21 20066.98 18263.20 19749.11 20858.60 15459.38 13211.50 21565.60 7856.68 13924.66 20771.17 17371.36 17072.38 19769.02 188
GA-MVS68.14 12469.17 12566.93 13573.77 14178.50 12074.45 11958.28 15555.11 15948.44 14760.08 10053.99 15461.50 12078.43 12277.57 12585.13 14280.54 133
MDA-MVSNet-bldmvs53.37 19753.01 20053.79 19343.67 21267.95 18159.69 19557.92 15643.69 19832.41 19241.47 19127.89 21552.38 17056.97 20765.99 19376.68 18167.13 191
Anonymous2023120656.36 19057.80 19454.67 19070.08 17166.39 18660.46 19357.54 15749.50 18929.30 19533.86 20246.64 19335.18 19670.44 18168.88 17975.47 18768.88 189
SixPastTwentyTwo61.84 17462.45 18061.12 16569.20 17872.20 16562.03 18957.40 15846.54 19538.03 18557.14 12341.72 20358.12 13669.67 18571.58 16881.94 15978.30 149
thisisatest051567.40 13968.78 12965.80 14270.02 17275.24 15369.36 15657.37 15954.94 16353.67 12055.53 13054.85 14758.00 13778.19 12478.91 10886.39 11683.78 107
v14867.85 13067.53 14268.23 11273.25 14577.57 13474.26 12657.36 16055.70 15557.45 10053.53 14355.42 14361.96 11475.23 14873.92 15785.08 14381.32 128
MVSTER72.06 8774.24 8369.51 10270.39 17075.97 14676.91 10157.36 16064.64 9261.39 8468.86 6463.76 10963.46 10181.44 7579.70 9487.56 8585.31 88
V4268.76 12169.63 11867.74 11764.93 19078.01 12278.30 8956.48 16258.65 13556.30 10654.26 13857.03 13764.85 9577.47 13177.01 13585.60 13584.96 94
CANet_DTU73.29 8176.96 7469.00 10777.04 11182.06 8279.49 7656.30 16367.85 7553.29 12371.12 5570.37 8061.81 11881.59 7280.96 7286.09 12184.73 97
CVMVSNet62.55 16465.89 15358.64 17766.95 18369.15 17666.49 17356.29 16452.46 17632.70 19159.27 10758.21 13250.09 17371.77 16971.39 16979.31 17078.99 146
Fast-Effi-MVS+-dtu68.34 12369.47 12067.01 13375.15 12477.97 12877.12 9955.40 16557.87 13646.68 15856.17 12660.39 11862.36 10776.32 14476.25 14585.35 14081.34 127
gg-mvs-nofinetune62.55 16465.05 16259.62 17378.72 9777.61 13270.83 15153.63 16639.71 20622.04 20736.36 19964.32 10747.53 17781.16 8479.03 10685.00 14577.17 156
baseline70.45 10174.09 8566.20 14070.95 16775.67 14774.26 12653.57 16768.33 7458.42 9369.87 6071.45 7061.55 11974.84 15174.76 15478.42 17383.72 108
PMVScopyleft39.38 1846.06 20443.30 20649.28 19962.93 19238.75 21241.88 21153.50 16833.33 21235.46 18828.90 20731.01 21333.04 19958.61 20654.63 20768.86 20457.88 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SCA65.40 14966.58 15264.02 15270.65 16873.37 16267.35 16353.46 16963.66 10154.14 11460.84 9560.20 12161.50 12069.96 18468.14 18577.01 18069.91 184
testgi54.39 19557.86 19350.35 19771.59 16267.24 18354.95 20153.25 17043.36 19923.78 20244.64 18547.87 19024.96 20570.45 18068.66 18173.60 19462.78 200
IterMVS-SCA-FT66.89 14469.22 12464.17 15071.30 16575.64 14871.33 14853.17 17157.63 14249.08 14560.72 9660.05 12263.09 10374.99 15073.92 15777.07 17981.57 126
dps64.00 15862.99 17465.18 14373.29 14472.07 16668.98 15853.07 17257.74 14058.41 9455.55 12947.74 19160.89 12669.53 18667.14 18976.44 18371.19 182
tpm cat165.41 14863.81 17167.28 12875.61 12272.88 16375.32 10752.85 17362.97 10663.66 7853.24 14853.29 16661.83 11765.54 19464.14 19674.43 19174.60 172
CR-MVSNet64.83 15265.54 15764.01 15370.64 16969.41 17465.97 17452.74 17457.81 13852.65 12654.27 13656.31 14060.92 12472.20 16673.09 16281.12 16475.69 166
Patchmtry65.80 18865.97 17452.74 17452.65 126
pmmvs562.37 17064.04 16960.42 16765.03 18871.67 16867.17 16552.70 17650.30 18444.80 16754.23 13951.19 17949.37 17472.88 16073.48 16183.45 15474.55 173
MIMVSNet149.27 19953.25 19944.62 20244.61 21061.52 20253.61 20252.18 17741.62 20318.68 21128.14 20841.58 20425.50 20368.46 19169.04 17773.15 19562.37 201
new-patchmatchnet46.97 20249.47 20444.05 20462.82 19356.55 20645.35 21052.01 17842.47 20117.04 21335.73 20135.21 20921.84 21161.27 20254.83 20665.26 20760.26 202
CostFormer68.92 11869.58 11968.15 11375.98 11876.17 14578.22 9051.86 17965.80 8461.56 8363.57 8862.83 11261.85 11670.40 18368.67 18079.42 16979.62 142
CMPMVSbinary47.78 1762.49 16662.52 17962.46 15970.01 17370.66 17262.97 18651.84 18051.98 17956.71 10442.87 18853.62 15557.80 13872.23 16470.37 17275.45 18875.91 163
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchmatchNetpermissive64.21 15764.65 16563.69 15471.29 16668.66 17869.63 15451.70 18163.04 10553.77 11959.83 10458.34 13160.23 12968.54 19066.06 19275.56 18668.08 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS60.48 18060.94 18859.94 17058.85 20166.83 18564.27 18251.39 18255.03 16148.03 15050.00 17240.79 20558.26 13569.20 18867.13 19078.84 17277.60 153
FPMVS51.87 19850.00 20354.07 19166.83 18457.25 20560.25 19450.91 18350.25 18534.36 18936.04 20032.02 21241.49 18758.98 20556.07 20470.56 20259.36 205
RPSCF67.64 13671.25 10463.43 15761.86 19670.73 17167.26 16450.86 18474.20 6058.91 8967.49 7369.33 8664.10 9971.41 17068.45 18477.61 17577.17 156
IterMVS66.36 14568.30 13764.10 15169.48 17774.61 15873.41 14050.79 18557.30 14448.28 14960.64 9759.92 12360.85 12774.14 15572.66 16481.80 16078.82 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp65.28 15067.98 13962.13 16058.73 20273.98 16067.10 16650.69 18648.41 19047.66 15454.27 13652.75 17061.45 12276.71 14180.20 8987.13 9489.53 52
EU-MVSNet54.63 19358.69 19149.90 19856.99 20462.70 20056.41 20050.64 18745.95 19723.14 20450.42 16946.51 19436.63 19565.51 19564.85 19475.57 18574.91 171
MDTV_nov1_ep1364.37 15565.24 15963.37 15868.94 17970.81 17072.40 14650.29 18860.10 12953.91 11860.07 10159.15 12657.21 14369.43 18767.30 18777.47 17669.78 186
pmnet_mix0255.30 19257.01 19653.30 19564.14 19159.09 20358.39 19850.24 18953.47 17138.68 18249.75 17345.86 19640.14 19265.38 19660.22 20168.19 20565.33 194
RPMNet61.71 17762.88 17560.34 16869.51 17669.41 17463.48 18449.23 19057.81 13845.64 16550.51 16850.12 18353.13 16868.17 19268.49 18381.07 16575.62 168
MVS-HIRNet54.41 19452.10 20157.11 18358.99 20056.10 20749.68 20749.10 19146.18 19652.15 13033.18 20346.11 19556.10 15163.19 20059.70 20376.64 18260.25 203
MIMVSNet58.52 18661.34 18655.22 18860.76 19767.01 18466.81 16849.02 19256.43 14938.90 18140.59 19454.54 15040.57 19173.16 15971.65 16775.30 18966.00 193
TAMVS59.58 18362.81 17755.81 18666.03 18665.64 18963.86 18348.74 19349.95 18637.07 18754.77 13458.54 12944.44 18272.29 16371.79 16674.70 19066.66 192
PatchT61.97 17264.04 16959.55 17460.49 19867.40 18256.54 19948.65 19456.69 14652.65 12651.10 16752.14 17460.92 12472.20 16673.09 16278.03 17475.69 166
Gipumacopyleft36.38 20635.80 20837.07 20545.76 20933.90 21329.81 21348.47 19539.91 20518.02 2128.00 2168.14 22025.14 20459.29 20461.02 20055.19 21140.31 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDTV_nov1_ep13_2view60.16 18160.51 18959.75 17165.39 18769.05 17768.00 16148.29 19651.99 17845.95 16348.01 17949.64 18653.39 16668.83 18966.52 19177.47 17669.55 187
EPMVS60.00 18261.97 18357.71 18068.46 18063.17 19864.54 18048.23 19763.30 10344.72 16860.19 9956.05 14250.85 17265.27 19762.02 19969.44 20363.81 197
tpmrst62.00 17162.35 18261.58 16271.62 16064.14 19169.07 15748.22 19862.21 11253.93 11758.26 11755.30 14555.81 15563.22 19962.62 19870.85 20070.70 183
FMVSNet557.24 18760.02 19053.99 19256.45 20562.74 19965.27 17747.03 19955.14 15839.55 18040.88 19253.42 16341.83 18572.35 16271.10 17173.79 19364.50 196
gm-plane-assit57.00 18857.62 19556.28 18576.10 11562.43 20147.62 20946.57 20033.84 21023.24 20337.52 19640.19 20659.61 13079.81 10477.55 12684.55 14972.03 180
ADS-MVSNet55.94 19158.01 19253.54 19462.48 19558.48 20459.12 19746.20 20159.65 13142.88 17452.34 16153.31 16546.31 17962.00 20160.02 20264.23 20860.24 204
tpm62.41 16763.15 17361.55 16372.24 15363.79 19471.31 14946.12 20257.82 13755.33 10959.90 10354.74 14853.63 16567.24 19364.29 19570.65 20174.25 176
N_pmnet47.35 20150.13 20244.11 20359.98 19951.64 20951.86 20444.80 20349.58 18820.76 20940.65 19340.05 20729.64 20159.84 20355.15 20557.63 20954.00 207
PMMVS65.06 15169.17 12560.26 16955.25 20863.43 19566.71 17043.01 20462.41 11050.64 13769.44 6167.04 10063.29 10274.36 15473.54 16082.68 15873.99 177
CHOSEN 280x42058.70 18561.88 18454.98 18955.45 20750.55 21064.92 17840.36 20555.21 15738.13 18448.31 17763.76 10963.03 10573.73 15868.58 18268.00 20673.04 179
E-PMN21.77 20918.24 21225.89 20740.22 21319.58 21612.46 21839.87 20618.68 2166.71 2179.57 2134.31 22322.36 21019.89 21427.28 21233.73 21428.34 213
EMVS20.98 21017.15 21325.44 20839.51 21419.37 21712.66 21739.59 20719.10 2156.62 2189.27 2144.40 22222.43 20917.99 21524.40 21331.81 21525.53 214
TESTMET0.1,161.10 17864.36 16757.29 18157.53 20363.93 19266.61 17136.22 20854.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
test-mter60.84 17964.62 16656.42 18455.99 20664.18 19065.39 17634.23 20954.39 16746.21 16157.40 12259.49 12555.86 15471.02 17669.65 17480.87 16676.20 162
MVEpermissive19.12 1920.47 21123.27 21117.20 21212.66 21825.41 21510.52 21934.14 21014.79 2176.53 2198.79 2154.68 22116.64 21329.49 21241.63 20922.73 21738.11 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet38.40 20542.64 20733.44 20637.54 21545.00 21136.60 21232.72 21140.27 20412.72 21429.89 20528.90 21424.78 20653.17 20852.90 20856.31 21048.34 208
pmmvs347.65 20049.08 20545.99 20144.61 21054.79 20850.04 20531.95 21233.91 20929.90 19330.37 20433.53 21146.31 17963.50 19863.67 19773.14 19663.77 198
PMMVS225.60 20729.75 20920.76 21028.00 21630.93 21423.10 21529.18 21323.14 2141.46 22018.23 21216.54 2175.08 21440.22 20941.40 21037.76 21237.79 211
DeepMVS_CXcopyleft18.74 21818.55 2168.02 21426.96 2137.33 21623.81 21013.05 21925.99 20225.17 21322.45 21836.25 212
test_method22.26 20825.94 21017.95 2113.24 2197.17 21923.83 2147.27 21537.35 20820.44 21021.87 21139.16 20818.67 21234.56 21020.84 21434.28 21320.64 215
tmp_tt14.50 21314.68 2177.17 21910.46 2202.21 21637.73 20728.71 19625.26 20916.98 2164.37 21531.49 21129.77 21126.56 216
GG-mvs-BLEND46.86 20367.51 14322.75 2090.05 22076.21 14464.69 1790.04 21761.90 1140.09 22155.57 12871.32 720.08 21670.54 17967.19 18871.58 19869.86 185
testmvs0.09 2120.15 2140.02 2140.01 2210.02 2210.05 2220.01 2180.11 2180.01 2220.26 2180.01 2240.06 2180.10 2160.10 2150.01 2190.43 217
test1230.09 2120.14 2150.02 2140.00 2220.02 2210.02 2230.01 2180.09 2190.00 2230.30 2170.00 2250.08 2160.03 2170.09 2160.01 2190.45 216
uanet_test0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def46.24 160
9.1486.88 15
our_test_367.93 18170.99 16966.89 167
ambc53.42 19864.99 18963.36 19649.96 20647.07 19337.12 18628.97 20616.36 21841.82 18675.10 14967.34 18671.55 19975.72 165
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 221
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46