SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 10 | 91.71 3 | 90.57 10 | 90.77 9 | 75.19 14 | 90.67 7 | 80.50 15 | 86.59 18 | 88.86 8 | 78.09 17 | 89.92 1 | 89.41 1 | 90.84 11 | 95.19 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DVP-MVS++ | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 8 | 96.21 1 |
|
SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 16 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 9 | 95.73 3 |
|
ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 18 | 90.28 20 | 90.09 14 | 90.32 14 | 74.05 21 | 88.32 15 | 79.74 17 | 87.04 16 | 85.59 24 | 76.97 30 | 89.35 4 | 88.44 4 | 90.35 31 | 94.27 11 |
|
CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 13 | 91.33 5 | 89.84 15 | 90.34 12 | 75.56 11 | 87.36 19 | 78.97 19 | 81.19 29 | 86.76 18 | 78.74 12 | 89.30 5 | 88.58 2 | 90.45 28 | 94.33 10 |
|
DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 18 | 92.36 2 | 90.69 10 | 76.15 4 | 93.08 2 | 82.75 5 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 12 | 95.84 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 22 | 90.73 11 | 89.84 15 | 90.27 15 | 74.31 16 | 84.56 31 | 75.88 31 | 87.32 15 | 85.04 25 | 77.31 25 | 89.01 7 | 88.46 3 | 91.14 5 | 93.96 12 |
Skip Steuart: Steuart Systems R&D Blog. |
DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 9 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 7 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 10 | 95.48 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 41 | 90.23 16 | 76.06 5 | 88.85 13 | 81.20 11 | 87.33 14 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 36 | 93.60 21 |
|
DeepC-MVS | | 78.47 2 | 84.81 27 | 86.03 29 | 83.37 20 | 89.29 33 | 90.38 12 | 88.61 28 | 76.50 1 | 86.25 24 | 77.22 25 | 75.12 41 | 80.28 46 | 77.59 23 | 88.39 10 | 88.17 6 | 91.02 7 | 93.66 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 79.04 1 | 85.30 22 | 88.93 12 | 81.06 33 | 88.77 37 | 90.48 11 | 85.46 47 | 73.08 30 | 90.97 6 | 73.77 38 | 84.81 23 | 85.95 21 | 77.43 24 | 88.22 11 | 87.73 11 | 87.85 86 | 94.34 9 |
|
NCCC | | | 85.34 21 | 86.59 25 | 83.88 17 | 91.48 4 | 88.88 26 | 89.79 18 | 75.54 12 | 86.67 22 | 77.94 24 | 76.55 36 | 84.99 26 | 78.07 18 | 88.04 12 | 87.68 12 | 90.46 27 | 93.31 22 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 30 | 85.50 32 | 82.85 24 | 90.46 19 | 89.24 22 | 87.83 34 | 74.24 18 | 84.88 27 | 76.23 29 | 75.26 40 | 81.05 44 | 77.62 22 | 88.02 13 | 87.62 13 | 90.69 17 | 92.41 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 8 | 91.58 7 | 92.03 1 | 75.53 13 | 91.15 5 | 80.10 16 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 19 | 91.09 6 | 95.16 6 |
|
MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 24 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 10 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 46 | 94.51 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MCST-MVS | | | 85.13 24 | 86.62 24 | 83.39 19 | 90.55 15 | 89.82 17 | 89.29 23 | 73.89 24 | 84.38 32 | 76.03 30 | 79.01 32 | 85.90 22 | 78.47 13 | 87.81 16 | 86.11 35 | 92.11 1 | 93.29 23 |
|
zzz-MVS | | | 85.71 17 | 86.88 23 | 84.34 12 | 90.54 16 | 87.11 45 | 89.77 19 | 74.17 19 | 88.54 14 | 83.08 4 | 78.60 33 | 86.10 20 | 78.11 16 | 87.80 17 | 87.46 15 | 90.35 31 | 92.56 27 |
|
HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 15 | 90.80 10 | 89.20 24 | 89.62 21 | 74.26 17 | 87.52 16 | 80.63 13 | 86.82 17 | 84.19 30 | 78.22 15 | 87.58 18 | 87.19 17 | 90.81 13 | 93.13 25 |
|
SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 16 | 90.13 21 | 89.23 23 | 89.77 19 | 74.59 15 | 89.17 11 | 80.70 12 | 89.93 12 | 89.67 5 | 78.47 13 | 87.57 19 | 86.79 23 | 90.67 18 | 93.76 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
xxxxxxxxxxxxxcwj | | | 85.35 20 | 85.76 31 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 61.35 121 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
ACMMPR | | | 85.52 18 | 87.53 20 | 83.17 23 | 90.13 21 | 89.27 21 | 89.30 22 | 73.97 22 | 86.89 21 | 77.14 26 | 86.09 19 | 83.18 33 | 77.74 21 | 87.42 20 | 87.20 16 | 90.77 14 | 92.63 26 |
|
MP-MVS |  | | 85.50 19 | 87.40 21 | 83.28 21 | 90.65 13 | 89.51 20 | 89.16 25 | 74.11 20 | 83.70 35 | 78.06 23 | 85.54 21 | 84.89 28 | 77.31 25 | 87.40 23 | 87.14 18 | 90.41 29 | 93.65 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
3Dnovator+ | | 75.73 4 | 82.40 36 | 82.76 41 | 81.97 30 | 88.02 39 | 89.67 18 | 86.60 38 | 71.48 38 | 81.28 44 | 78.18 22 | 64.78 86 | 77.96 53 | 77.13 28 | 87.32 24 | 86.83 22 | 90.41 29 | 91.48 37 |
|
PHI-MVS | | | 82.36 37 | 85.89 30 | 78.24 50 | 86.40 49 | 89.52 19 | 85.52 45 | 69.52 50 | 82.38 41 | 65.67 72 | 81.35 28 | 82.36 35 | 73.07 49 | 87.31 25 | 86.76 24 | 89.24 53 | 91.56 36 |
|
PGM-MVS | | | 84.42 29 | 86.29 28 | 82.23 27 | 90.04 23 | 88.82 28 | 89.23 24 | 71.74 37 | 82.82 38 | 74.61 34 | 84.41 24 | 82.09 36 | 77.03 29 | 87.13 26 | 86.73 25 | 90.73 16 | 92.06 33 |
|
APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 11 | 90.66 12 | 90.10 13 | 90.78 8 | 75.64 10 | 87.38 18 | 78.72 20 | 90.68 11 | 86.82 17 | 80.15 7 | 87.13 26 | 86.45 29 | 90.51 22 | 93.83 15 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + ACMM | | | 85.10 25 | 88.81 15 | 80.77 36 | 89.55 30 | 88.53 34 | 88.59 29 | 72.55 32 | 87.39 17 | 71.90 44 | 90.95 10 | 87.55 13 | 74.57 38 | 87.08 28 | 86.54 27 | 87.47 93 | 93.67 18 |
|
MVS_0304 | | | 81.73 40 | 83.86 37 | 79.26 43 | 86.22 51 | 89.18 25 | 86.41 39 | 67.15 67 | 75.28 56 | 70.75 54 | 74.59 43 | 83.49 32 | 74.42 40 | 87.05 29 | 86.34 30 | 90.58 21 | 91.08 41 |
|
X-MVS | | | 83.23 34 | 85.20 34 | 80.92 35 | 89.71 28 | 88.68 29 | 88.21 33 | 73.60 25 | 82.57 39 | 71.81 47 | 77.07 34 | 81.92 38 | 71.72 61 | 86.98 30 | 86.86 21 | 90.47 24 | 92.36 30 |
|
TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 14 | 89.78 27 | 88.67 32 | 90.59 11 | 73.46 28 | 88.99 12 | 80.52 14 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 31 | 86.22 33 | 90.59 20 | 93.83 15 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CP-MVS | | | 84.74 28 | 86.43 27 | 82.77 25 | 89.48 31 | 88.13 40 | 88.64 27 | 73.93 23 | 84.92 26 | 76.77 27 | 81.94 27 | 83.50 31 | 77.29 27 | 86.92 32 | 86.49 28 | 90.49 23 | 93.14 24 |
|
CSCG | | | 85.28 23 | 87.68 19 | 82.49 26 | 89.95 25 | 91.99 5 | 88.82 26 | 71.20 39 | 86.41 23 | 79.63 18 | 79.26 30 | 88.36 10 | 73.94 43 | 86.64 33 | 86.67 26 | 91.40 2 | 94.41 8 |
|
DELS-MVS | | | 79.15 56 | 81.07 51 | 76.91 58 | 83.54 63 | 87.31 43 | 84.45 52 | 64.92 83 | 69.98 71 | 69.34 58 | 71.62 56 | 76.26 56 | 69.84 70 | 86.57 34 | 85.90 36 | 89.39 51 | 89.88 51 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
train_agg | | | 84.86 26 | 87.21 22 | 82.11 28 | 90.59 14 | 85.47 56 | 89.81 17 | 73.55 27 | 83.95 33 | 73.30 39 | 89.84 13 | 87.23 15 | 75.61 35 | 86.47 35 | 85.46 40 | 89.78 42 | 92.06 33 |
|
MVS_111021_HR | | | 80.13 44 | 81.46 46 | 78.58 48 | 85.77 53 | 85.17 60 | 83.45 58 | 69.28 51 | 74.08 62 | 70.31 56 | 74.31 45 | 75.26 62 | 73.13 48 | 86.46 36 | 85.15 43 | 89.53 49 | 89.81 52 |
|
DPM-MVS | | | 83.30 33 | 84.33 36 | 82.11 28 | 89.56 29 | 88.49 35 | 90.33 13 | 73.24 29 | 83.85 34 | 76.46 28 | 72.43 52 | 82.65 34 | 73.02 50 | 86.37 37 | 86.91 20 | 90.03 38 | 89.62 54 |
|
OPM-MVS | | | 79.68 49 | 79.28 61 | 80.15 39 | 87.99 40 | 86.77 48 | 88.52 30 | 72.72 31 | 64.55 100 | 67.65 65 | 67.87 75 | 74.33 65 | 74.31 41 | 86.37 37 | 85.25 42 | 89.73 45 | 89.81 52 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CS-MVS | | | 79.22 53 | 81.11 50 | 77.01 57 | 81.36 77 | 84.03 66 | 80.35 68 | 63.25 97 | 73.43 66 | 70.37 55 | 74.10 47 | 76.03 59 | 76.40 32 | 86.32 39 | 83.95 51 | 90.34 33 | 89.93 50 |
|
ACMMP |  | | 83.42 32 | 85.27 33 | 81.26 32 | 88.47 38 | 88.49 35 | 88.31 32 | 72.09 34 | 83.42 36 | 72.77 42 | 82.65 25 | 78.22 51 | 75.18 36 | 86.24 40 | 85.76 37 | 90.74 15 | 92.13 32 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 81.62 41 | 83.41 38 | 79.53 42 | 87.06 44 | 88.59 33 | 85.47 46 | 67.96 60 | 76.59 54 | 74.05 35 | 74.69 42 | 81.98 37 | 72.98 51 | 86.14 41 | 85.47 39 | 89.68 47 | 90.42 48 |
|
DROMVSNet | | | 79.44 50 | 81.35 47 | 77.22 55 | 82.95 65 | 84.67 63 | 81.31 62 | 63.65 93 | 72.47 69 | 68.75 59 | 73.15 49 | 78.33 50 | 75.99 34 | 86.06 42 | 83.96 50 | 90.67 18 | 90.79 43 |
|
CDPH-MVS | | | 82.64 35 | 85.03 35 | 79.86 40 | 89.41 32 | 88.31 37 | 88.32 31 | 71.84 36 | 80.11 46 | 67.47 66 | 82.09 26 | 81.44 42 | 71.85 59 | 85.89 43 | 86.15 34 | 90.24 34 | 91.25 39 |
|
TSAR-MVS + GP. | | | 83.69 31 | 86.58 26 | 80.32 37 | 85.14 56 | 86.96 46 | 84.91 51 | 70.25 43 | 84.71 30 | 73.91 37 | 85.16 22 | 85.63 23 | 77.92 19 | 85.44 44 | 85.71 38 | 89.77 43 | 92.45 28 |
|
MAR-MVS | | | 79.21 54 | 80.32 57 | 77.92 52 | 87.46 41 | 88.15 39 | 83.95 54 | 67.48 66 | 74.28 60 | 68.25 62 | 64.70 87 | 77.04 54 | 72.17 55 | 85.42 45 | 85.00 44 | 88.22 72 | 87.62 68 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CLD-MVS | | | 79.35 52 | 81.23 48 | 77.16 56 | 85.01 59 | 86.92 47 | 85.87 42 | 60.89 133 | 80.07 48 | 75.35 33 | 72.96 50 | 73.21 69 | 68.43 79 | 85.41 46 | 84.63 46 | 87.41 94 | 85.44 89 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ETV-MVS | | | 77.32 64 | 78.81 62 | 75.58 64 | 82.24 72 | 83.64 74 | 79.98 70 | 64.02 90 | 69.64 76 | 63.90 80 | 70.89 60 | 69.94 85 | 73.41 46 | 85.39 47 | 83.91 52 | 89.92 39 | 88.31 62 |
|
MSLP-MVS++ | | | 82.09 38 | 82.66 42 | 81.42 31 | 87.03 45 | 87.22 44 | 85.82 43 | 70.04 44 | 80.30 45 | 78.66 21 | 68.67 71 | 81.04 45 | 77.81 20 | 85.19 48 | 84.88 45 | 89.19 56 | 91.31 38 |
|
3Dnovator | | 73.76 5 | 79.75 47 | 80.52 55 | 78.84 46 | 84.94 61 | 87.35 42 | 84.43 53 | 65.54 78 | 78.29 50 | 73.97 36 | 63.00 94 | 75.62 61 | 74.07 42 | 85.00 49 | 85.34 41 | 90.11 37 | 89.04 56 |
|
test2506 | | | 71.72 95 | 72.95 99 | 70.29 97 | 81.49 75 | 83.27 77 | 75.74 110 | 67.59 64 | 68.19 79 | 49.81 146 | 61.15 98 | 49.73 192 | 58.82 136 | 84.76 50 | 82.94 58 | 88.27 70 | 80.63 138 |
|
ECVR-MVS |  | | 72.20 91 | 73.91 90 | 70.20 99 | 81.49 75 | 83.27 77 | 75.74 110 | 67.59 64 | 68.19 79 | 49.31 150 | 55.77 132 | 62.00 119 | 58.82 136 | 84.76 50 | 82.94 58 | 88.27 70 | 80.41 142 |
|
LGP-MVS_train | | | 79.83 45 | 81.22 49 | 78.22 51 | 86.28 50 | 85.36 59 | 86.76 37 | 69.59 48 | 77.34 51 | 65.14 75 | 75.68 38 | 70.79 79 | 71.37 65 | 84.60 52 | 84.01 48 | 90.18 35 | 90.74 44 |
|
test1111 | | | 71.56 97 | 73.44 93 | 69.38 110 | 81.16 79 | 82.95 82 | 74.99 121 | 67.68 62 | 66.89 84 | 46.33 166 | 55.19 138 | 60.91 123 | 57.99 144 | 84.59 53 | 82.70 62 | 88.12 77 | 80.85 135 |
|
IS_MVSNet | | | 73.33 84 | 77.34 74 | 68.65 117 | 81.29 78 | 83.47 75 | 74.45 126 | 63.58 95 | 65.75 92 | 48.49 152 | 67.11 79 | 70.61 80 | 54.63 169 | 84.51 54 | 83.58 55 | 89.48 50 | 86.34 79 |
|
CS-MVS-test | | | 78.79 59 | 80.72 52 | 76.53 60 | 81.11 82 | 83.88 69 | 79.69 77 | 63.72 92 | 73.80 63 | 69.95 57 | 75.40 39 | 76.17 57 | 74.85 37 | 84.50 55 | 82.78 61 | 89.87 41 | 88.54 61 |
|
HQP-MVS | | | 81.19 42 | 83.27 39 | 78.76 47 | 87.40 42 | 85.45 57 | 86.95 36 | 70.47 42 | 81.31 43 | 66.91 69 | 79.24 31 | 76.63 55 | 71.67 62 | 84.43 56 | 83.78 53 | 89.19 56 | 92.05 35 |
|
PVSNet_Blended_VisFu | | | 76.57 67 | 77.90 66 | 75.02 68 | 80.56 87 | 86.58 50 | 79.24 81 | 66.18 72 | 64.81 97 | 68.18 63 | 65.61 80 | 71.45 74 | 67.05 83 | 84.16 57 | 81.80 68 | 88.90 60 | 90.92 42 |
|
ACMM | | 72.26 8 | 78.86 58 | 78.13 65 | 79.71 41 | 86.89 46 | 83.40 76 | 86.02 41 | 70.50 41 | 75.28 56 | 71.49 51 | 63.01 93 | 69.26 90 | 73.57 45 | 84.11 58 | 83.98 49 | 89.76 44 | 87.84 66 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OMC-MVS | | | 80.26 43 | 82.59 43 | 77.54 53 | 83.04 64 | 85.54 55 | 83.25 59 | 65.05 82 | 87.32 20 | 72.42 43 | 72.04 54 | 78.97 48 | 73.30 47 | 83.86 59 | 81.60 71 | 88.15 75 | 88.83 58 |
|
Vis-MVSNet |  | | 72.77 88 | 77.20 75 | 67.59 129 | 74.19 142 | 84.01 67 | 76.61 109 | 61.69 127 | 60.62 133 | 50.61 142 | 70.25 63 | 71.31 77 | 55.57 165 | 83.85 60 | 82.28 63 | 86.90 106 | 88.08 64 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
QAPM | | | 78.47 60 | 80.22 58 | 76.43 61 | 85.03 58 | 86.75 49 | 80.62 67 | 66.00 75 | 73.77 64 | 65.35 74 | 65.54 82 | 78.02 52 | 72.69 52 | 83.71 61 | 83.36 57 | 88.87 62 | 90.41 49 |
|
EPNet | | | 79.08 57 | 80.62 53 | 77.28 54 | 88.90 36 | 83.17 81 | 83.65 56 | 72.41 33 | 74.41 59 | 67.15 68 | 76.78 35 | 74.37 64 | 64.43 100 | 83.70 62 | 83.69 54 | 87.15 97 | 88.19 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
AdaColmap |  | | 79.74 48 | 78.62 63 | 81.05 34 | 89.23 34 | 86.06 53 | 84.95 50 | 71.96 35 | 79.39 49 | 75.51 32 | 63.16 92 | 68.84 96 | 76.51 31 | 83.55 63 | 82.85 60 | 88.13 76 | 86.46 78 |
|
PVSNet_BlendedMVS | | | 76.21 68 | 77.52 70 | 74.69 72 | 79.46 97 | 83.79 71 | 77.50 99 | 64.34 88 | 69.88 72 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 83 | 83.48 64 | 79.63 102 | 87.89 84 | 86.87 74 |
|
PVSNet_Blended | | | 76.21 68 | 77.52 70 | 74.69 72 | 79.46 97 | 83.79 71 | 77.50 99 | 64.34 88 | 69.88 72 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 83 | 83.48 64 | 79.63 102 | 87.89 84 | 86.87 74 |
|
canonicalmvs | | | 79.16 55 | 82.37 44 | 75.41 65 | 82.33 71 | 86.38 52 | 80.80 65 | 63.18 99 | 82.90 37 | 67.34 67 | 72.79 51 | 76.07 58 | 69.62 71 | 83.46 66 | 84.41 47 | 89.20 55 | 90.60 46 |
|
ACMP | | 73.23 7 | 79.79 46 | 80.53 54 | 78.94 45 | 85.61 54 | 85.68 54 | 85.61 44 | 69.59 48 | 77.33 52 | 71.00 53 | 74.45 44 | 69.16 91 | 71.88 57 | 83.15 67 | 83.37 56 | 89.92 39 | 90.57 47 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UA-Net | | | 74.47 77 | 77.80 67 | 70.59 94 | 85.33 55 | 85.40 58 | 73.54 144 | 65.98 76 | 60.65 132 | 56.00 111 | 72.11 53 | 79.15 47 | 54.63 169 | 83.13 68 | 82.25 64 | 88.04 80 | 81.92 127 |
|
TSAR-MVS + COLMAP | | | 78.34 61 | 81.64 45 | 74.48 75 | 80.13 94 | 85.01 61 | 81.73 60 | 65.93 77 | 84.75 29 | 61.68 86 | 85.79 20 | 66.27 106 | 71.39 64 | 82.91 69 | 80.78 80 | 86.01 134 | 85.98 80 |
|
CPTT-MVS | | | 81.77 39 | 83.10 40 | 80.21 38 | 85.93 52 | 86.45 51 | 87.72 35 | 70.98 40 | 82.54 40 | 71.53 50 | 74.23 46 | 81.49 41 | 76.31 33 | 82.85 70 | 81.87 67 | 88.79 64 | 92.26 31 |
|
MVS_111021_LR | | | 78.13 62 | 79.85 60 | 76.13 62 | 81.12 81 | 81.50 92 | 80.28 69 | 65.25 80 | 76.09 55 | 71.32 52 | 76.49 37 | 72.87 71 | 72.21 54 | 82.79 71 | 81.29 73 | 86.59 119 | 87.91 65 |
|
EIA-MVS | | | 75.64 72 | 76.60 79 | 74.53 74 | 82.43 70 | 83.84 70 | 78.32 92 | 62.28 121 | 65.96 90 | 63.28 84 | 68.95 67 | 67.54 101 | 71.61 63 | 82.55 72 | 81.63 70 | 89.24 53 | 85.72 83 |
|
casdiffmvs | | | 76.76 66 | 78.46 64 | 74.77 71 | 80.32 91 | 83.73 73 | 80.65 66 | 63.24 98 | 73.58 65 | 66.11 71 | 69.39 66 | 74.09 66 | 69.49 73 | 82.52 73 | 79.35 111 | 88.84 63 | 86.52 77 |
|
EPP-MVSNet | | | 74.00 81 | 77.41 72 | 70.02 102 | 80.53 88 | 83.91 68 | 74.99 121 | 62.68 113 | 65.06 95 | 49.77 147 | 68.68 70 | 72.09 73 | 63.06 108 | 82.49 74 | 80.73 81 | 89.12 58 | 88.91 57 |
|
OpenMVS |  | 70.44 10 | 76.15 70 | 76.82 78 | 75.37 66 | 85.01 59 | 84.79 62 | 78.99 85 | 62.07 122 | 71.27 70 | 67.88 64 | 57.91 123 | 72.36 72 | 70.15 69 | 82.23 75 | 81.41 72 | 88.12 77 | 87.78 67 |
|
Fast-Effi-MVS+ | | | 73.11 86 | 73.66 91 | 72.48 82 | 77.72 112 | 80.88 102 | 78.55 89 | 58.83 159 | 65.19 94 | 60.36 89 | 59.98 107 | 62.42 118 | 71.22 66 | 81.66 76 | 80.61 91 | 88.20 73 | 84.88 100 |
|
TAPA-MVS | | 71.42 9 | 77.69 63 | 80.05 59 | 74.94 69 | 80.68 86 | 84.52 64 | 81.36 61 | 63.14 100 | 84.77 28 | 64.82 77 | 68.72 69 | 75.91 60 | 71.86 58 | 81.62 77 | 79.55 106 | 87.80 88 | 85.24 92 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CANet_DTU | | | 73.29 85 | 76.96 77 | 69.00 114 | 77.04 118 | 82.06 88 | 79.49 79 | 56.30 169 | 67.85 81 | 53.29 127 | 71.12 59 | 70.37 83 | 61.81 122 | 81.59 78 | 80.96 78 | 86.09 128 | 84.73 101 |
|
Effi-MVS+ | | | 75.28 74 | 76.20 80 | 74.20 76 | 81.15 80 | 83.24 79 | 81.11 63 | 63.13 101 | 66.37 86 | 60.27 90 | 64.30 90 | 68.88 95 | 70.93 68 | 81.56 79 | 81.69 69 | 88.61 65 | 87.35 69 |
|
baseline1 | | | 70.10 113 | 72.17 106 | 67.69 126 | 79.74 95 | 76.80 145 | 73.91 137 | 64.38 87 | 62.74 116 | 48.30 154 | 64.94 84 | 64.08 112 | 54.17 171 | 81.46 80 | 78.92 114 | 85.66 141 | 76.22 168 |
|
FC-MVSNet-train | | | 72.60 89 | 75.07 84 | 69.71 105 | 81.10 83 | 78.79 123 | 73.74 143 | 65.23 81 | 66.10 89 | 53.34 126 | 70.36 62 | 63.40 115 | 56.92 154 | 81.44 81 | 80.96 78 | 87.93 82 | 84.46 105 |
|
MVSTER | | | 72.06 92 | 74.24 87 | 69.51 108 | 70.39 177 | 75.97 153 | 76.91 105 | 57.36 166 | 64.64 99 | 61.39 88 | 68.86 68 | 63.76 113 | 63.46 105 | 81.44 81 | 79.70 101 | 87.56 92 | 85.31 91 |
|
EG-PatchMatch MVS | | | 67.24 148 | 66.94 155 | 67.60 128 | 78.73 102 | 81.35 94 | 73.28 148 | 59.49 149 | 46.89 201 | 51.42 138 | 43.65 194 | 53.49 165 | 55.50 166 | 81.38 83 | 80.66 88 | 87.15 97 | 81.17 133 |
|
GBi-Net | | | 70.78 103 | 73.37 96 | 67.76 122 | 72.95 154 | 78.00 130 | 75.15 116 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 118 | 69.02 92 | 57.59 146 | 81.33 84 | 80.72 82 | 86.70 113 | 82.02 121 |
|
test1 | | | 70.78 103 | 73.37 96 | 67.76 122 | 72.95 154 | 78.00 130 | 75.15 116 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 118 | 69.02 92 | 57.59 146 | 81.33 84 | 80.72 82 | 86.70 113 | 82.02 121 |
|
FMVSNet1 | | | 68.84 126 | 70.47 117 | 66.94 141 | 71.35 171 | 77.68 138 | 74.71 124 | 62.35 120 | 56.93 152 | 49.94 145 | 50.01 177 | 64.59 110 | 57.07 151 | 81.33 84 | 80.72 82 | 86.25 124 | 82.00 124 |
|
DCV-MVSNet | | | 73.65 83 | 75.78 82 | 71.16 88 | 80.19 92 | 79.27 117 | 77.45 101 | 61.68 128 | 66.73 85 | 58.72 95 | 65.31 83 | 69.96 84 | 62.19 113 | 81.29 87 | 80.97 77 | 86.74 112 | 86.91 73 |
|
test_part1 | | | 74.24 78 | 73.44 93 | 75.18 67 | 82.02 74 | 82.34 87 | 83.88 55 | 62.40 119 | 60.93 130 | 68.68 60 | 49.25 182 | 69.71 87 | 65.73 98 | 81.26 88 | 81.98 66 | 88.35 68 | 88.60 60 |
|
PCF-MVS | | 73.28 6 | 79.42 51 | 80.41 56 | 78.26 49 | 84.88 62 | 88.17 38 | 86.08 40 | 69.85 45 | 75.23 58 | 68.43 61 | 68.03 74 | 78.38 49 | 71.76 60 | 81.26 88 | 80.65 89 | 88.56 67 | 91.18 40 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
gg-mvs-nofinetune | | | 62.55 171 | 65.05 169 | 59.62 180 | 78.72 103 | 77.61 139 | 70.83 158 | 53.63 173 | 39.71 213 | 22.04 214 | 36.36 206 | 64.32 111 | 47.53 184 | 81.16 90 | 79.03 113 | 85.00 152 | 77.17 163 |
|
Anonymous202405211 | | | | 72.16 107 | | 80.85 85 | 81.85 89 | 76.88 106 | 65.40 79 | 62.89 115 | | 46.35 189 | 67.99 100 | 62.05 115 | 81.15 91 | 80.38 93 | 85.97 136 | 84.50 104 |
|
CNLPA | | | 77.20 65 | 77.54 69 | 76.80 59 | 82.63 67 | 84.31 65 | 79.77 74 | 64.64 84 | 85.17 25 | 73.18 40 | 56.37 130 | 69.81 86 | 74.53 39 | 81.12 92 | 78.69 117 | 86.04 133 | 87.29 71 |
|
UGNet | | | 72.78 87 | 77.67 68 | 67.07 139 | 71.65 166 | 83.24 79 | 75.20 115 | 63.62 94 | 64.93 96 | 56.72 107 | 71.82 55 | 73.30 67 | 49.02 182 | 81.02 93 | 80.70 87 | 86.22 125 | 88.67 59 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DI_MVS_plusplus_trai | | | 75.13 75 | 76.12 81 | 73.96 77 | 78.18 106 | 81.55 90 | 80.97 64 | 62.54 115 | 68.59 77 | 65.13 76 | 61.43 97 | 74.81 63 | 69.32 74 | 81.01 94 | 79.59 104 | 87.64 91 | 85.89 81 |
|
FMVSNet2 | | | 70.39 109 | 72.67 103 | 67.72 125 | 72.95 154 | 78.00 130 | 75.15 116 | 62.69 112 | 63.29 111 | 51.25 139 | 55.64 133 | 68.49 99 | 57.59 146 | 80.91 95 | 80.35 94 | 86.70 113 | 82.02 121 |
|
FA-MVS(training) | | | 73.66 82 | 74.95 85 | 72.15 83 | 78.63 104 | 80.46 106 | 78.92 86 | 54.79 172 | 69.71 75 | 65.37 73 | 62.04 95 | 66.89 104 | 67.10 82 | 80.72 96 | 79.87 99 | 88.10 79 | 84.97 97 |
|
Anonymous20231211 | | | 71.90 93 | 72.48 104 | 71.21 87 | 80.14 93 | 81.53 91 | 76.92 104 | 62.89 104 | 64.46 102 | 58.94 92 | 43.80 193 | 70.98 78 | 62.22 112 | 80.70 97 | 80.19 96 | 86.18 126 | 85.73 82 |
|
ACMH | | 65.37 14 | 70.71 105 | 70.00 120 | 71.54 86 | 82.51 69 | 82.47 86 | 77.78 96 | 68.13 57 | 56.19 159 | 46.06 169 | 54.30 142 | 51.20 184 | 68.68 77 | 80.66 98 | 80.72 82 | 86.07 129 | 84.45 106 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tfpn200view9 | | | 68.11 132 | 68.72 138 | 67.40 131 | 77.83 110 | 78.93 119 | 74.28 131 | 62.81 105 | 56.64 154 | 46.82 162 | 52.65 164 | 53.47 167 | 56.59 155 | 80.41 99 | 78.43 120 | 86.11 127 | 80.52 140 |
|
thres600view7 | | | 67.68 140 | 68.43 142 | 66.80 143 | 77.90 107 | 78.86 121 | 73.84 139 | 62.75 106 | 56.07 160 | 44.70 176 | 52.85 162 | 52.81 174 | 55.58 164 | 80.41 99 | 77.77 128 | 86.05 131 | 80.28 143 |
|
thres200 | | | 67.98 134 | 68.55 141 | 67.30 134 | 77.89 109 | 78.86 121 | 74.18 135 | 62.75 106 | 56.35 157 | 46.48 165 | 52.98 160 | 53.54 163 | 56.46 156 | 80.41 99 | 77.97 126 | 86.05 131 | 79.78 148 |
|
PLC |  | 68.99 11 | 75.68 71 | 75.31 83 | 76.12 63 | 82.94 66 | 81.26 96 | 79.94 72 | 66.10 73 | 77.15 53 | 66.86 70 | 59.13 113 | 68.53 98 | 73.73 44 | 80.38 102 | 79.04 112 | 87.13 101 | 81.68 129 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LS3D | | | 74.08 80 | 73.39 95 | 74.88 70 | 85.05 57 | 82.62 85 | 79.71 76 | 68.66 54 | 72.82 67 | 58.80 94 | 57.61 124 | 61.31 122 | 71.07 67 | 80.32 103 | 78.87 116 | 86.00 135 | 80.18 144 |
|
tttt0517 | | | 71.41 100 | 72.95 99 | 69.60 107 | 73.70 149 | 78.70 124 | 74.42 129 | 59.12 153 | 63.89 107 | 58.35 99 | 64.56 89 | 58.39 136 | 64.27 101 | 80.29 104 | 80.17 97 | 87.74 89 | 84.69 102 |
|
thisisatest0530 | | | 71.48 99 | 73.01 98 | 69.70 106 | 73.83 147 | 78.62 125 | 74.53 125 | 59.12 153 | 64.13 103 | 58.63 96 | 64.60 88 | 58.63 134 | 64.27 101 | 80.28 105 | 80.17 97 | 87.82 87 | 84.64 103 |
|
NR-MVSNet | | | 68.79 127 | 70.56 115 | 66.71 146 | 77.48 115 | 79.54 113 | 73.52 145 | 69.20 52 | 61.20 128 | 39.76 185 | 58.52 115 | 50.11 190 | 51.37 178 | 80.26 106 | 80.71 86 | 88.97 59 | 83.59 113 |
|
GeoE | | | 74.23 79 | 74.84 86 | 73.52 78 | 80.42 90 | 81.46 93 | 79.77 74 | 61.06 131 | 67.23 83 | 63.67 81 | 59.56 110 | 68.74 97 | 67.90 80 | 80.25 107 | 79.37 110 | 88.31 69 | 87.26 72 |
|
thres400 | | | 67.95 135 | 68.62 140 | 67.17 136 | 77.90 107 | 78.59 126 | 74.27 132 | 62.72 108 | 56.34 158 | 45.77 171 | 53.00 159 | 53.35 170 | 56.46 156 | 80.21 108 | 78.43 120 | 85.91 138 | 80.43 141 |
|
MVS_Test | | | 75.37 73 | 77.13 76 | 73.31 80 | 79.07 100 | 81.32 95 | 79.98 70 | 60.12 144 | 69.72 74 | 64.11 79 | 70.53 61 | 73.22 68 | 68.90 75 | 80.14 109 | 79.48 108 | 87.67 90 | 85.50 87 |
|
pm-mvs1 | | | 65.62 154 | 67.42 151 | 63.53 163 | 73.66 150 | 76.39 149 | 69.66 160 | 60.87 134 | 49.73 194 | 43.97 177 | 51.24 173 | 57.00 144 | 48.16 183 | 79.89 110 | 77.84 127 | 84.85 155 | 79.82 147 |
|
gm-plane-assit | | | 57.00 195 | 57.62 202 | 56.28 192 | 76.10 122 | 62.43 208 | 47.62 216 | 46.57 207 | 33.84 217 | 23.24 210 | 37.52 203 | 40.19 213 | 59.61 134 | 79.81 111 | 77.55 133 | 84.55 156 | 72.03 187 |
|
CDS-MVSNet | | | 67.65 142 | 69.83 123 | 65.09 151 | 75.39 130 | 76.55 148 | 74.42 129 | 63.75 91 | 53.55 177 | 49.37 149 | 59.41 111 | 62.45 117 | 44.44 189 | 79.71 112 | 79.82 100 | 83.17 164 | 77.36 162 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TranMVSNet+NR-MVSNet | | | 69.25 122 | 70.81 114 | 67.43 130 | 77.23 117 | 79.46 115 | 73.48 146 | 69.66 46 | 60.43 134 | 39.56 186 | 58.82 114 | 53.48 166 | 55.74 163 | 79.59 113 | 81.21 74 | 88.89 61 | 82.70 117 |
|
TransMVSNet (Re) | | | 64.74 160 | 65.66 163 | 63.66 162 | 77.40 116 | 75.33 159 | 69.86 159 | 62.67 114 | 47.63 199 | 41.21 184 | 50.01 177 | 52.33 177 | 45.31 188 | 79.57 114 | 77.69 130 | 85.49 143 | 77.07 165 |
|
UniMVSNet_NR-MVSNet | | | 70.59 106 | 72.19 105 | 68.72 115 | 77.72 112 | 80.72 103 | 73.81 141 | 69.65 47 | 61.99 120 | 43.23 178 | 60.54 103 | 57.50 139 | 58.57 138 | 79.56 115 | 81.07 76 | 89.34 52 | 83.97 107 |
|
UniMVSNet (Re) | | | 69.53 118 | 71.90 108 | 66.76 144 | 76.42 121 | 80.93 99 | 72.59 151 | 68.03 59 | 61.75 123 | 41.68 183 | 58.34 121 | 57.23 141 | 53.27 174 | 79.53 116 | 80.62 90 | 88.57 66 | 84.90 99 |
|
FMVSNet3 | | | 70.49 107 | 72.90 101 | 67.67 127 | 72.88 157 | 77.98 133 | 74.96 123 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 118 | 69.02 92 | 57.43 149 | 79.43 117 | 79.57 105 | 86.59 119 | 81.81 128 |
|
Vis-MVSNet (Re-imp) | | | 67.83 138 | 73.52 92 | 61.19 171 | 78.37 105 | 76.72 147 | 66.80 176 | 62.96 102 | 65.50 93 | 34.17 197 | 67.19 78 | 69.68 88 | 39.20 200 | 79.39 118 | 79.44 109 | 85.68 140 | 76.73 167 |
|
DU-MVS | | | 69.63 117 | 70.91 113 | 68.13 121 | 75.99 123 | 79.54 113 | 73.81 141 | 69.20 52 | 61.20 128 | 43.23 178 | 58.52 115 | 53.50 164 | 58.57 138 | 79.22 119 | 80.45 92 | 87.97 81 | 83.97 107 |
|
Baseline_NR-MVSNet | | | 67.53 145 | 68.77 137 | 66.09 148 | 75.99 123 | 74.75 164 | 72.43 152 | 68.41 55 | 61.33 127 | 38.33 190 | 51.31 172 | 54.13 159 | 56.03 159 | 79.22 119 | 78.19 123 | 85.37 146 | 82.45 119 |
|
MS-PatchMatch | | | 70.17 112 | 70.49 116 | 69.79 104 | 80.98 84 | 77.97 135 | 77.51 98 | 58.95 156 | 62.33 118 | 55.22 115 | 53.14 157 | 65.90 107 | 62.03 116 | 79.08 121 | 77.11 141 | 84.08 158 | 77.91 158 |
|
diffmvs | | | 74.86 76 | 77.37 73 | 71.93 84 | 75.62 128 | 80.35 108 | 79.42 80 | 60.15 143 | 72.81 68 | 64.63 78 | 71.51 57 | 73.11 70 | 66.53 93 | 79.02 122 | 77.98 125 | 85.25 148 | 86.83 76 |
|
MSDG | | | 71.52 98 | 69.87 121 | 73.44 79 | 82.21 73 | 79.35 116 | 79.52 78 | 64.59 85 | 66.15 88 | 61.87 85 | 53.21 156 | 56.09 147 | 65.85 97 | 78.94 123 | 78.50 119 | 86.60 118 | 76.85 166 |
|
ACMH+ | | 66.54 13 | 71.36 101 | 70.09 119 | 72.85 81 | 82.59 68 | 81.13 98 | 78.56 88 | 68.04 58 | 61.55 124 | 52.52 133 | 51.50 171 | 54.14 157 | 68.56 78 | 78.85 124 | 79.50 107 | 86.82 109 | 83.94 109 |
|
thres100view900 | | | 67.60 144 | 68.02 145 | 67.12 138 | 77.83 110 | 77.75 137 | 73.90 138 | 62.52 116 | 56.64 154 | 46.82 162 | 52.65 164 | 53.47 167 | 55.92 160 | 78.77 125 | 77.62 131 | 85.72 139 | 79.23 151 |
|
tfpnnormal | | | 64.27 163 | 63.64 179 | 65.02 152 | 75.84 126 | 75.61 156 | 71.24 157 | 62.52 116 | 47.79 198 | 42.97 180 | 42.65 196 | 44.49 206 | 52.66 176 | 78.77 125 | 76.86 143 | 84.88 154 | 79.29 150 |
|
ET-MVSNet_ETH3D | | | 72.46 90 | 74.19 88 | 70.44 95 | 62.50 201 | 81.17 97 | 79.90 73 | 62.46 118 | 64.52 101 | 57.52 103 | 71.49 58 | 59.15 132 | 72.08 56 | 78.61 127 | 81.11 75 | 88.16 74 | 83.29 115 |
|
CHOSEN 1792x2688 | | | 69.20 123 | 69.26 130 | 69.13 111 | 76.86 119 | 78.93 119 | 77.27 102 | 60.12 144 | 61.86 122 | 54.42 116 | 42.54 197 | 61.61 120 | 66.91 88 | 78.55 128 | 78.14 124 | 79.23 178 | 83.23 116 |
|
GA-MVS | | | 68.14 131 | 69.17 132 | 66.93 142 | 73.77 148 | 78.50 127 | 74.45 126 | 58.28 161 | 55.11 166 | 48.44 153 | 60.08 105 | 53.99 160 | 61.50 124 | 78.43 129 | 77.57 132 | 85.13 149 | 80.54 139 |
|
v10 | | | 70.22 111 | 69.76 124 | 70.74 89 | 74.79 136 | 80.30 110 | 79.22 82 | 59.81 147 | 57.71 148 | 56.58 109 | 54.22 147 | 55.31 150 | 66.95 86 | 78.28 130 | 77.47 134 | 87.12 103 | 85.07 95 |
|
thisisatest0515 | | | 67.40 146 | 68.78 136 | 65.80 149 | 70.02 179 | 75.24 160 | 69.36 163 | 57.37 165 | 54.94 170 | 53.67 124 | 55.53 136 | 54.85 153 | 58.00 143 | 78.19 131 | 78.91 115 | 86.39 123 | 83.78 111 |
|
v1144 | | | 69.93 115 | 69.36 129 | 70.61 93 | 74.89 135 | 80.93 99 | 79.11 83 | 60.64 135 | 55.97 161 | 55.31 114 | 53.85 149 | 54.14 157 | 66.54 92 | 78.10 132 | 77.44 135 | 87.14 100 | 85.09 94 |
|
baseline2 | | | 69.69 116 | 70.27 118 | 69.01 113 | 75.72 127 | 77.13 143 | 73.82 140 | 58.94 157 | 61.35 126 | 57.09 105 | 61.68 96 | 57.17 142 | 61.99 117 | 78.10 132 | 76.58 148 | 86.48 122 | 79.85 146 |
|
v1192 | | | 69.50 119 | 68.83 135 | 70.29 97 | 74.49 139 | 80.92 101 | 78.55 89 | 60.54 137 | 55.04 167 | 54.21 117 | 52.79 163 | 52.33 177 | 66.92 87 | 77.88 134 | 77.35 138 | 87.04 104 | 85.51 86 |
|
v7n | | | 67.05 150 | 66.94 155 | 67.17 136 | 72.35 159 | 78.97 118 | 73.26 149 | 58.88 158 | 51.16 190 | 50.90 140 | 48.21 185 | 50.11 190 | 60.96 127 | 77.70 135 | 77.38 136 | 86.68 116 | 85.05 96 |
|
pmmvs6 | | | 62.41 174 | 62.88 182 | 61.87 168 | 71.38 170 | 75.18 163 | 67.76 169 | 59.45 151 | 41.64 209 | 42.52 182 | 37.33 204 | 52.91 173 | 46.87 185 | 77.67 136 | 76.26 151 | 83.23 163 | 79.18 152 |
|
v8 | | | 70.23 110 | 69.86 122 | 70.67 92 | 74.69 137 | 79.82 112 | 78.79 87 | 59.18 152 | 58.80 141 | 58.20 100 | 55.00 139 | 57.33 140 | 66.31 95 | 77.51 137 | 76.71 146 | 86.82 109 | 83.88 110 |
|
V42 | | | 68.76 128 | 69.63 125 | 67.74 124 | 64.93 197 | 78.01 129 | 78.30 93 | 56.48 168 | 58.65 142 | 56.30 110 | 54.26 145 | 57.03 143 | 64.85 99 | 77.47 138 | 77.01 142 | 85.60 142 | 84.96 98 |
|
UniMVSNet_ETH3D | | | 67.18 149 | 67.03 154 | 67.36 132 | 74.44 140 | 78.12 128 | 74.07 136 | 66.38 70 | 52.22 184 | 46.87 161 | 48.64 183 | 51.84 181 | 56.96 152 | 77.29 139 | 78.53 118 | 85.42 145 | 82.59 118 |
|
v2v482 | | | 70.05 114 | 69.46 128 | 70.74 89 | 74.62 138 | 80.32 109 | 79.00 84 | 60.62 136 | 57.41 150 | 56.89 106 | 55.43 137 | 55.14 152 | 66.39 94 | 77.25 140 | 77.14 140 | 86.90 106 | 83.57 114 |
|
v1921920 | | | 69.03 124 | 68.32 143 | 69.86 103 | 74.03 144 | 80.37 107 | 77.55 97 | 60.25 141 | 54.62 171 | 53.59 125 | 52.36 167 | 51.50 183 | 66.75 89 | 77.17 141 | 76.69 147 | 86.96 105 | 85.56 85 |
|
v144192 | | | 69.34 121 | 68.68 139 | 70.12 100 | 74.06 143 | 80.54 104 | 78.08 95 | 60.54 137 | 54.99 169 | 54.13 119 | 52.92 161 | 52.80 175 | 66.73 90 | 77.13 142 | 76.72 145 | 87.15 97 | 85.63 84 |
|
IterMVS-LS | | | 71.69 96 | 72.82 102 | 70.37 96 | 77.54 114 | 76.34 150 | 75.13 119 | 60.46 139 | 61.53 125 | 57.57 102 | 64.89 85 | 67.33 102 | 66.04 96 | 77.09 143 | 77.37 137 | 85.48 144 | 85.18 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 71.82 94 | 71.86 109 | 71.78 85 | 78.77 101 | 80.47 105 | 78.55 89 | 61.67 129 | 60.68 131 | 55.49 112 | 58.48 117 | 65.48 108 | 68.85 76 | 76.92 144 | 75.55 156 | 87.35 95 | 85.46 88 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 141 | 66.76 157 | 68.70 116 | 80.49 89 | 77.98 133 | 75.29 114 | 62.95 103 | 63.62 109 | 49.96 144 | 47.32 188 | 50.72 187 | 58.57 138 | 76.87 145 | 75.50 157 | 84.94 153 | 75.33 177 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1240 | | | 68.64 129 | 67.89 148 | 69.51 108 | 73.89 146 | 80.26 111 | 76.73 107 | 59.97 146 | 53.43 179 | 53.08 128 | 51.82 170 | 50.84 186 | 66.62 91 | 76.79 146 | 76.77 144 | 86.78 111 | 85.34 90 |
|
IB-MVS | | 66.94 12 | 71.21 102 | 71.66 110 | 70.68 91 | 79.18 99 | 82.83 84 | 72.61 150 | 61.77 126 | 59.66 137 | 63.44 83 | 53.26 154 | 59.65 130 | 59.16 135 | 76.78 147 | 82.11 65 | 87.90 83 | 87.33 70 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
anonymousdsp | | | 65.28 157 | 67.98 146 | 62.13 167 | 58.73 209 | 73.98 167 | 67.10 173 | 50.69 193 | 48.41 197 | 47.66 160 | 54.27 143 | 52.75 176 | 61.45 126 | 76.71 148 | 80.20 95 | 87.13 101 | 89.53 55 |
|
USDC | | | 67.36 147 | 67.90 147 | 66.74 145 | 71.72 164 | 75.23 161 | 71.58 154 | 60.28 140 | 67.45 82 | 50.54 143 | 60.93 99 | 45.20 205 | 62.08 114 | 76.56 149 | 74.50 162 | 84.25 157 | 75.38 176 |
|
HyFIR lowres test | | | 69.47 120 | 68.94 134 | 70.09 101 | 76.77 120 | 82.93 83 | 76.63 108 | 60.17 142 | 59.00 140 | 54.03 120 | 40.54 202 | 65.23 109 | 67.89 81 | 76.54 150 | 78.30 122 | 85.03 151 | 80.07 145 |
|
Fast-Effi-MVS+-dtu | | | 68.34 130 | 69.47 127 | 67.01 140 | 75.15 131 | 77.97 135 | 77.12 103 | 55.40 171 | 57.87 143 | 46.68 164 | 56.17 131 | 60.39 124 | 62.36 111 | 76.32 151 | 76.25 152 | 85.35 147 | 81.34 131 |
|
TDRefinement | | | 66.09 153 | 65.03 170 | 67.31 133 | 69.73 181 | 76.75 146 | 75.33 112 | 64.55 86 | 60.28 135 | 49.72 148 | 45.63 191 | 42.83 208 | 60.46 132 | 75.75 152 | 75.95 153 | 84.08 158 | 78.04 157 |
|
PatchMatch-RL | | | 67.78 139 | 66.65 158 | 69.10 112 | 73.01 153 | 72.69 171 | 68.49 166 | 61.85 125 | 62.93 114 | 60.20 91 | 56.83 129 | 50.42 188 | 69.52 72 | 75.62 153 | 74.46 163 | 81.51 168 | 73.62 185 |
|
EPNet_dtu | | | 68.08 133 | 71.00 112 | 64.67 155 | 79.64 96 | 68.62 186 | 75.05 120 | 63.30 96 | 66.36 87 | 45.27 173 | 67.40 77 | 66.84 105 | 43.64 191 | 75.37 154 | 74.98 160 | 81.15 170 | 77.44 161 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v148 | | | 67.85 137 | 67.53 149 | 68.23 119 | 73.25 152 | 77.57 141 | 74.26 133 | 57.36 166 | 55.70 162 | 57.45 104 | 53.53 150 | 55.42 149 | 61.96 118 | 75.23 155 | 73.92 164 | 85.08 150 | 81.32 132 |
|
ambc | | | | 53.42 205 | | 64.99 196 | 63.36 203 | 49.96 213 | | 47.07 200 | 37.12 193 | 28.97 213 | 16.36 225 | 41.82 193 | 75.10 156 | 67.34 193 | 71.55 206 | 75.72 172 |
|
IterMVS-SCA-FT | | | 66.89 151 | 69.22 131 | 64.17 157 | 71.30 172 | 75.64 155 | 71.33 155 | 53.17 178 | 57.63 149 | 49.08 151 | 60.72 101 | 60.05 128 | 63.09 107 | 74.99 157 | 73.92 164 | 77.07 186 | 81.57 130 |
|
baseline | | | 70.45 108 | 74.09 89 | 66.20 147 | 70.95 174 | 75.67 154 | 74.26 133 | 53.57 174 | 68.33 78 | 58.42 97 | 69.87 64 | 71.45 74 | 61.55 123 | 74.84 158 | 74.76 161 | 78.42 180 | 83.72 112 |
|
TinyColmap | | | 62.84 169 | 61.03 194 | 64.96 153 | 69.61 182 | 71.69 174 | 68.48 167 | 59.76 148 | 55.41 163 | 47.69 159 | 47.33 187 | 34.20 217 | 62.76 110 | 74.52 159 | 72.59 172 | 81.44 169 | 71.47 188 |
|
LTVRE_ROB | | 59.44 16 | 61.82 183 | 62.64 185 | 60.87 173 | 72.83 158 | 77.19 142 | 64.37 188 | 58.97 155 | 33.56 218 | 28.00 204 | 52.59 166 | 42.21 209 | 63.93 104 | 74.52 159 | 76.28 150 | 77.15 185 | 82.13 120 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PMMVS | | | 65.06 158 | 69.17 132 | 60.26 176 | 55.25 215 | 63.43 202 | 66.71 177 | 43.01 211 | 62.41 117 | 50.64 141 | 69.44 65 | 67.04 103 | 63.29 106 | 74.36 161 | 73.54 167 | 82.68 165 | 73.99 184 |
|
IterMVS | | | 66.36 152 | 68.30 144 | 64.10 158 | 69.48 184 | 74.61 165 | 73.41 147 | 50.79 192 | 57.30 151 | 48.28 155 | 60.64 102 | 59.92 129 | 60.85 131 | 74.14 162 | 72.66 171 | 81.80 167 | 78.82 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS | | | 63.03 167 | 67.40 152 | 57.92 186 | 75.14 132 | 77.60 140 | 60.56 199 | 66.10 73 | 54.11 176 | 23.88 208 | 53.94 148 | 53.58 162 | 34.50 204 | 73.93 163 | 77.71 129 | 87.35 95 | 80.94 134 |
|
pmmvs4 | | | 67.89 136 | 67.39 153 | 68.48 118 | 71.60 168 | 73.57 168 | 74.45 126 | 60.98 132 | 64.65 98 | 57.97 101 | 54.95 140 | 51.73 182 | 61.88 119 | 73.78 164 | 75.11 158 | 83.99 160 | 77.91 158 |
|
CHOSEN 280x420 | | | 58.70 192 | 61.88 191 | 54.98 196 | 55.45 214 | 50.55 217 | 64.92 185 | 40.36 212 | 55.21 164 | 38.13 191 | 48.31 184 | 63.76 113 | 63.03 109 | 73.73 165 | 68.58 189 | 68.00 213 | 73.04 186 |
|
MIMVSNet | | | 58.52 193 | 61.34 193 | 55.22 195 | 60.76 204 | 67.01 191 | 66.81 175 | 49.02 199 | 56.43 156 | 38.90 188 | 40.59 201 | 54.54 156 | 40.57 198 | 73.16 166 | 71.65 174 | 75.30 196 | 66.00 200 |
|
pmmvs5 | | | 62.37 177 | 64.04 176 | 60.42 174 | 65.03 195 | 71.67 175 | 67.17 172 | 52.70 183 | 50.30 191 | 44.80 174 | 54.23 146 | 51.19 185 | 49.37 181 | 72.88 167 | 73.48 168 | 83.45 161 | 74.55 180 |
|
pmmvs-eth3d | | | 63.52 166 | 62.44 188 | 64.77 154 | 66.82 192 | 70.12 180 | 69.41 162 | 59.48 150 | 54.34 175 | 52.71 129 | 46.24 190 | 44.35 207 | 56.93 153 | 72.37 168 | 73.77 166 | 83.30 162 | 75.91 170 |
|
FMVSNet5 | | | 57.24 194 | 60.02 197 | 53.99 199 | 56.45 212 | 62.74 206 | 65.27 184 | 47.03 206 | 55.14 165 | 39.55 187 | 40.88 199 | 53.42 169 | 41.83 192 | 72.35 169 | 71.10 178 | 73.79 200 | 64.50 203 |
|
TAMVS | | | 59.58 190 | 62.81 184 | 55.81 193 | 66.03 193 | 65.64 196 | 63.86 190 | 48.74 200 | 49.95 193 | 37.07 194 | 54.77 141 | 58.54 135 | 44.44 189 | 72.29 170 | 71.79 173 | 74.70 197 | 66.66 199 |
|
CMPMVS |  | 47.78 17 | 62.49 173 | 62.52 186 | 62.46 166 | 70.01 180 | 70.66 179 | 62.97 193 | 51.84 187 | 51.98 186 | 56.71 108 | 42.87 195 | 53.62 161 | 57.80 145 | 72.23 171 | 70.37 179 | 75.45 195 | 75.91 170 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
DTE-MVSNet | | | 61.85 180 | 64.96 171 | 58.22 185 | 74.32 141 | 74.39 166 | 61.01 198 | 67.85 61 | 51.76 189 | 21.91 215 | 53.28 153 | 48.17 195 | 37.74 201 | 72.22 172 | 76.44 149 | 86.52 121 | 78.49 155 |
|
CR-MVSNet | | | 64.83 159 | 65.54 164 | 64.01 160 | 70.64 176 | 69.41 181 | 65.97 181 | 52.74 181 | 57.81 145 | 52.65 130 | 54.27 143 | 56.31 146 | 60.92 128 | 72.20 173 | 73.09 169 | 81.12 171 | 75.69 173 |
|
PatchT | | | 61.97 179 | 64.04 176 | 59.55 181 | 60.49 205 | 67.40 189 | 56.54 206 | 48.65 201 | 56.69 153 | 52.65 130 | 51.10 174 | 52.14 180 | 60.92 128 | 72.20 173 | 73.09 169 | 78.03 181 | 75.69 173 |
|
PEN-MVS | | | 62.96 168 | 65.77 162 | 59.70 179 | 73.98 145 | 75.45 157 | 63.39 192 | 67.61 63 | 52.49 182 | 25.49 207 | 53.39 151 | 49.12 194 | 40.85 197 | 71.94 175 | 77.26 139 | 86.86 108 | 80.72 137 |
|
CVMVSNet | | | 62.55 171 | 65.89 160 | 58.64 184 | 66.95 190 | 69.15 183 | 66.49 180 | 56.29 170 | 52.46 183 | 32.70 198 | 59.27 112 | 58.21 138 | 50.09 180 | 71.77 176 | 71.39 176 | 79.31 177 | 78.99 153 |
|
RPSCF | | | 67.64 143 | 71.25 111 | 63.43 164 | 61.86 203 | 70.73 178 | 67.26 171 | 50.86 191 | 74.20 61 | 58.91 93 | 67.49 76 | 69.33 89 | 64.10 103 | 71.41 177 | 68.45 191 | 77.61 182 | 77.17 163 |
|
CP-MVSNet | | | 62.68 170 | 65.49 165 | 59.40 182 | 71.84 162 | 75.34 158 | 62.87 194 | 67.04 68 | 52.64 181 | 27.19 205 | 53.38 152 | 48.15 196 | 41.40 195 | 71.26 178 | 75.68 154 | 86.07 129 | 82.00 124 |
|
test0.0.03 1 | | | 58.80 191 | 61.58 192 | 55.56 194 | 75.02 133 | 68.45 187 | 59.58 203 | 61.96 123 | 52.74 180 | 29.57 201 | 49.75 180 | 54.56 155 | 31.46 207 | 71.19 179 | 69.77 180 | 75.75 191 | 64.57 202 |
|
FC-MVSNet-test | | | 56.90 196 | 65.20 167 | 47.21 207 | 66.98 189 | 63.20 204 | 49.11 215 | 58.60 160 | 59.38 139 | 11.50 222 | 65.60 81 | 56.68 145 | 24.66 214 | 71.17 180 | 71.36 177 | 72.38 204 | 69.02 195 |
|
PS-CasMVS | | | 62.38 176 | 65.06 168 | 59.25 183 | 71.73 163 | 75.21 162 | 62.77 195 | 66.99 69 | 51.94 188 | 26.96 206 | 52.00 169 | 47.52 199 | 41.06 196 | 71.16 181 | 75.60 155 | 85.97 136 | 81.97 126 |
|
WR-MVS_H | | | 61.83 182 | 65.87 161 | 57.12 189 | 71.72 164 | 76.87 144 | 61.45 197 | 66.19 71 | 51.97 187 | 22.92 212 | 53.13 158 | 52.30 179 | 33.80 205 | 71.03 182 | 75.00 159 | 86.65 117 | 80.78 136 |
|
test-mter | | | 60.84 186 | 64.62 173 | 56.42 191 | 55.99 213 | 64.18 197 | 65.39 183 | 34.23 216 | 54.39 174 | 46.21 168 | 57.40 127 | 59.49 131 | 55.86 161 | 71.02 183 | 69.65 181 | 80.87 173 | 76.20 169 |
|
test-LLR | | | 64.42 161 | 64.36 174 | 64.49 156 | 75.02 133 | 63.93 199 | 66.61 178 | 61.96 123 | 54.41 172 | 47.77 157 | 57.46 125 | 60.25 125 | 55.20 167 | 70.80 184 | 69.33 182 | 80.40 174 | 74.38 181 |
|
TESTMET0.1,1 | | | 61.10 185 | 64.36 174 | 57.29 188 | 57.53 210 | 63.93 199 | 66.61 178 | 36.22 215 | 54.41 172 | 47.77 157 | 57.46 125 | 60.25 125 | 55.20 167 | 70.80 184 | 69.33 182 | 80.40 174 | 74.38 181 |
|
GG-mvs-BLEND | | | 46.86 210 | 67.51 150 | 22.75 216 | 0.05 227 | 76.21 151 | 64.69 186 | 0.04 224 | 61.90 121 | 0.09 228 | 55.57 134 | 71.32 76 | 0.08 223 | 70.54 186 | 67.19 195 | 71.58 205 | 69.86 192 |
|
testgi | | | 54.39 202 | 57.86 200 | 50.35 204 | 71.59 169 | 67.24 190 | 54.95 208 | 53.25 177 | 43.36 206 | 23.78 209 | 44.64 192 | 47.87 197 | 24.96 212 | 70.45 187 | 68.66 188 | 73.60 201 | 62.78 207 |
|
Anonymous20231206 | | | 56.36 197 | 57.80 201 | 54.67 197 | 70.08 178 | 66.39 193 | 60.46 200 | 57.54 163 | 49.50 196 | 29.30 202 | 33.86 209 | 46.64 200 | 35.18 203 | 70.44 188 | 68.88 186 | 75.47 194 | 68.88 196 |
|
test20.03 | | | 53.93 203 | 56.28 204 | 51.19 203 | 72.19 161 | 65.83 194 | 53.20 210 | 61.08 130 | 42.74 207 | 22.08 213 | 37.07 205 | 45.76 204 | 24.29 215 | 70.44 188 | 69.04 184 | 74.31 199 | 63.05 206 |
|
CostFormer | | | 68.92 125 | 69.58 126 | 68.15 120 | 75.98 125 | 76.17 152 | 78.22 94 | 51.86 186 | 65.80 91 | 61.56 87 | 63.57 91 | 62.83 116 | 61.85 120 | 70.40 190 | 68.67 187 | 79.42 176 | 79.62 149 |
|
SCA | | | 65.40 156 | 66.58 159 | 64.02 159 | 70.65 175 | 73.37 169 | 67.35 170 | 53.46 176 | 63.66 108 | 54.14 118 | 60.84 100 | 60.20 127 | 61.50 124 | 69.96 191 | 68.14 192 | 77.01 187 | 69.91 191 |
|
SixPastTwentyTwo | | | 61.84 181 | 62.45 187 | 61.12 172 | 69.20 185 | 72.20 172 | 62.03 196 | 57.40 164 | 46.54 202 | 38.03 192 | 57.14 128 | 41.72 210 | 58.12 142 | 69.67 192 | 71.58 175 | 81.94 166 | 78.30 156 |
|
dps | | | 64.00 165 | 62.99 181 | 65.18 150 | 73.29 151 | 72.07 173 | 68.98 165 | 53.07 179 | 57.74 147 | 58.41 98 | 55.55 135 | 47.74 198 | 60.89 130 | 69.53 193 | 67.14 196 | 76.44 190 | 71.19 189 |
|
MDTV_nov1_ep13 | | | 64.37 162 | 65.24 166 | 63.37 165 | 68.94 186 | 70.81 177 | 72.40 153 | 50.29 195 | 60.10 136 | 53.91 122 | 60.07 106 | 59.15 132 | 57.21 150 | 69.43 194 | 67.30 194 | 77.47 183 | 69.78 193 |
|
PM-MVS | | | 60.48 187 | 60.94 195 | 59.94 177 | 58.85 208 | 66.83 192 | 64.27 189 | 51.39 189 | 55.03 168 | 48.03 156 | 50.00 179 | 40.79 212 | 58.26 141 | 69.20 195 | 67.13 197 | 78.84 179 | 77.60 160 |
|
MDTV_nov1_ep13_2view | | | 60.16 188 | 60.51 196 | 59.75 178 | 65.39 194 | 69.05 184 | 68.00 168 | 48.29 203 | 51.99 185 | 45.95 170 | 48.01 186 | 49.64 193 | 53.39 173 | 68.83 196 | 66.52 198 | 77.47 183 | 69.55 194 |
|
PatchmatchNet |  | | 64.21 164 | 64.65 172 | 63.69 161 | 71.29 173 | 68.66 185 | 69.63 161 | 51.70 188 | 63.04 112 | 53.77 123 | 59.83 109 | 58.34 137 | 60.23 133 | 68.54 197 | 66.06 199 | 75.56 193 | 68.08 197 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet1 | | | 49.27 206 | 53.25 206 | 44.62 209 | 44.61 217 | 61.52 209 | 53.61 209 | 52.18 184 | 41.62 210 | 18.68 218 | 28.14 215 | 41.58 211 | 25.50 210 | 68.46 198 | 69.04 184 | 73.15 202 | 62.37 208 |
|
RPMNet | | | 61.71 184 | 62.88 182 | 60.34 175 | 69.51 183 | 69.41 181 | 63.48 191 | 49.23 197 | 57.81 145 | 45.64 172 | 50.51 175 | 50.12 189 | 53.13 175 | 68.17 199 | 68.49 190 | 81.07 172 | 75.62 175 |
|
tpm | | | 62.41 174 | 63.15 180 | 61.55 170 | 72.24 160 | 63.79 201 | 71.31 156 | 46.12 209 | 57.82 144 | 55.33 113 | 59.90 108 | 54.74 154 | 53.63 172 | 67.24 200 | 64.29 202 | 70.65 208 | 74.25 183 |
|
tpm cat1 | | | 65.41 155 | 63.81 178 | 67.28 135 | 75.61 129 | 72.88 170 | 75.32 113 | 52.85 180 | 62.97 113 | 63.66 82 | 53.24 155 | 53.29 172 | 61.83 121 | 65.54 201 | 64.14 203 | 74.43 198 | 74.60 179 |
|
EU-MVSNet | | | 54.63 200 | 58.69 198 | 49.90 205 | 56.99 211 | 62.70 207 | 56.41 207 | 50.64 194 | 45.95 204 | 23.14 211 | 50.42 176 | 46.51 201 | 36.63 202 | 65.51 202 | 64.85 201 | 75.57 192 | 74.91 178 |
|
pmnet_mix02 | | | 55.30 199 | 57.01 203 | 53.30 202 | 64.14 198 | 59.09 210 | 58.39 205 | 50.24 196 | 53.47 178 | 38.68 189 | 49.75 180 | 45.86 203 | 40.14 199 | 65.38 203 | 60.22 208 | 68.19 212 | 65.33 201 |
|
EPMVS | | | 60.00 189 | 61.97 190 | 57.71 187 | 68.46 187 | 63.17 205 | 64.54 187 | 48.23 204 | 63.30 110 | 44.72 175 | 60.19 104 | 56.05 148 | 50.85 179 | 65.27 204 | 62.02 206 | 69.44 210 | 63.81 204 |
|
pmmvs3 | | | 47.65 207 | 49.08 212 | 45.99 208 | 44.61 217 | 54.79 215 | 50.04 212 | 31.95 219 | 33.91 216 | 29.90 200 | 30.37 211 | 33.53 218 | 46.31 186 | 63.50 205 | 63.67 204 | 73.14 203 | 63.77 205 |
|
tpmrst | | | 62.00 178 | 62.35 189 | 61.58 169 | 71.62 167 | 64.14 198 | 69.07 164 | 48.22 205 | 62.21 119 | 53.93 121 | 58.26 122 | 55.30 151 | 55.81 162 | 63.22 206 | 62.62 205 | 70.85 207 | 70.70 190 |
|
MVS-HIRNet | | | 54.41 201 | 52.10 208 | 57.11 190 | 58.99 207 | 56.10 214 | 49.68 214 | 49.10 198 | 46.18 203 | 52.15 134 | 33.18 210 | 46.11 202 | 56.10 158 | 63.19 207 | 59.70 210 | 76.64 189 | 60.25 210 |
|
ADS-MVSNet | | | 55.94 198 | 58.01 199 | 53.54 201 | 62.48 202 | 58.48 211 | 59.12 204 | 46.20 208 | 59.65 138 | 42.88 181 | 52.34 168 | 53.31 171 | 46.31 186 | 62.00 208 | 60.02 209 | 64.23 215 | 60.24 211 |
|
new-patchmatchnet | | | 46.97 209 | 49.47 211 | 44.05 211 | 62.82 200 | 56.55 213 | 45.35 217 | 52.01 185 | 42.47 208 | 17.04 220 | 35.73 208 | 35.21 216 | 21.84 218 | 61.27 209 | 54.83 213 | 65.26 214 | 60.26 209 |
|
N_pmnet | | | 47.35 208 | 50.13 209 | 44.11 210 | 59.98 206 | 51.64 216 | 51.86 211 | 44.80 210 | 49.58 195 | 20.76 216 | 40.65 200 | 40.05 214 | 29.64 208 | 59.84 210 | 55.15 212 | 57.63 216 | 54.00 214 |
|
Gipuma |  | | 36.38 213 | 35.80 215 | 37.07 212 | 45.76 216 | 33.90 220 | 29.81 220 | 48.47 202 | 39.91 212 | 18.02 219 | 8.00 223 | 8.14 227 | 25.14 211 | 59.29 211 | 61.02 207 | 55.19 218 | 40.31 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FPMVS | | | 51.87 205 | 50.00 210 | 54.07 198 | 66.83 191 | 57.25 212 | 60.25 201 | 50.91 190 | 50.25 192 | 34.36 196 | 36.04 207 | 32.02 219 | 41.49 194 | 58.98 212 | 56.07 211 | 70.56 209 | 59.36 212 |
|
PMVS |  | 39.38 18 | 46.06 211 | 43.30 213 | 49.28 206 | 62.93 199 | 38.75 219 | 41.88 218 | 53.50 175 | 33.33 219 | 35.46 195 | 28.90 214 | 31.01 220 | 33.04 206 | 58.61 213 | 54.63 214 | 68.86 211 | 57.88 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MDA-MVSNet-bldmvs | | | 53.37 204 | 53.01 207 | 53.79 200 | 43.67 219 | 67.95 188 | 59.69 202 | 57.92 162 | 43.69 205 | 32.41 199 | 41.47 198 | 27.89 222 | 52.38 177 | 56.97 214 | 65.99 200 | 76.68 188 | 67.13 198 |
|
new_pmnet | | | 38.40 212 | 42.64 214 | 33.44 213 | 37.54 222 | 45.00 218 | 36.60 219 | 32.72 218 | 40.27 211 | 12.72 221 | 29.89 212 | 28.90 221 | 24.78 213 | 53.17 215 | 52.90 215 | 56.31 217 | 48.34 215 |
|
PMMVS2 | | | 25.60 214 | 29.75 216 | 20.76 217 | 28.00 223 | 30.93 221 | 23.10 222 | 29.18 220 | 23.14 221 | 1.46 227 | 18.23 219 | 16.54 224 | 5.08 221 | 40.22 216 | 41.40 217 | 37.76 219 | 37.79 218 |
|
test_method | | | 22.26 215 | 25.94 217 | 17.95 218 | 3.24 226 | 7.17 226 | 23.83 221 | 7.27 222 | 37.35 215 | 20.44 217 | 21.87 218 | 39.16 215 | 18.67 219 | 34.56 217 | 20.84 221 | 34.28 220 | 20.64 222 |
|
tmp_tt | | | | | 14.50 220 | 14.68 224 | 7.17 226 | 10.46 227 | 2.21 223 | 37.73 214 | 28.71 203 | 25.26 216 | 16.98 223 | 4.37 222 | 31.49 218 | 29.77 218 | 26.56 223 | |
|
MVE |  | 19.12 19 | 20.47 218 | 23.27 218 | 17.20 219 | 12.66 225 | 25.41 222 | 10.52 226 | 34.14 217 | 14.79 224 | 6.53 226 | 8.79 222 | 4.68 228 | 16.64 220 | 29.49 219 | 41.63 216 | 22.73 224 | 38.11 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | | | 18.74 225 | 18.55 223 | 8.02 221 | 26.96 220 | 7.33 223 | 23.81 217 | 13.05 226 | 25.99 209 | 25.17 220 | | 22.45 225 | 36.25 219 |
|
E-PMN | | | 21.77 216 | 18.24 219 | 25.89 214 | 40.22 220 | 19.58 223 | 12.46 225 | 39.87 213 | 18.68 223 | 6.71 224 | 9.57 220 | 4.31 230 | 22.36 217 | 19.89 221 | 27.28 219 | 33.73 221 | 28.34 220 |
|
EMVS | | | 20.98 217 | 17.15 220 | 25.44 215 | 39.51 221 | 19.37 224 | 12.66 224 | 39.59 214 | 19.10 222 | 6.62 225 | 9.27 221 | 4.40 229 | 22.43 216 | 17.99 222 | 24.40 220 | 31.81 222 | 25.53 221 |
|
testmvs | | | 0.09 219 | 0.15 221 | 0.02 221 | 0.01 228 | 0.02 228 | 0.05 229 | 0.01 225 | 0.11 225 | 0.01 229 | 0.26 225 | 0.01 231 | 0.06 225 | 0.10 223 | 0.10 222 | 0.01 226 | 0.43 224 |
|
test123 | | | 0.09 219 | 0.14 222 | 0.02 221 | 0.00 229 | 0.02 228 | 0.02 230 | 0.01 225 | 0.09 226 | 0.00 230 | 0.30 224 | 0.00 232 | 0.08 223 | 0.03 224 | 0.09 223 | 0.01 226 | 0.45 223 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 229 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 230 | 0.00 226 | 0.00 232 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 229 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 230 | 0.00 226 | 0.00 232 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 229 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 230 | 0.00 226 | 0.00 232 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 46.24 167 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
SR-MVS | | | | | | 88.99 35 | | | 73.57 26 | | | | 87.54 14 | | | | | |
|
our_test_3 | | | | | | 67.93 188 | 70.99 176 | 66.89 174 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 6 | | 84.91 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 228 | | | | | | | | | | |
|
XVS | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
X-MVStestdata | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
abl_6 | | | | | 79.05 44 | 87.27 43 | 88.85 27 | 83.62 57 | 68.25 56 | 81.68 42 | 72.94 41 | 73.79 48 | 84.45 29 | 72.55 53 | | | 89.66 48 | 90.64 45 |
|
mPP-MVS | | | | | | 89.90 26 | | | | | | | 81.29 43 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 47 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 195 | 65.97 181 | 52.74 181 | | 52.65 130 | | | | | | | |
|