This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11678.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
mPP-MVS89.90 2581.29 42
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8693.67 17
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7186.46 75
SR-MVS88.99 3473.57 2587.54 13
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9683.70 5683.69 5187.15 9088.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7994.34 8
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9367.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6787.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7477.80 6470.59 9085.33 5485.40 5773.54 13765.98 7260.65 12556.00 10772.11 4979.15 4654.63 16283.13 6282.25 5888.04 7381.92 123
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
LS3D74.08 7773.39 8974.88 6785.05 5682.62 7979.71 7468.66 5372.82 6458.80 9057.61 11961.31 11771.07 6480.32 9678.87 10986.00 12880.18 137
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8262.07 11671.27 6667.88 6057.91 11872.36 6870.15 6682.23 6981.41 6688.12 7287.78 63
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12780.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8785.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 7088.83 55
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 9079.94 7066.10 6977.15 5266.86 6659.13 10868.53 9573.73 4080.38 9579.04 10587.13 9481.68 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12569.81 8374.53 3581.12 8678.69 11086.04 12687.29 68
ACMH+66.54 1371.36 9470.09 11272.85 7882.59 6681.13 9278.56 8468.04 5761.55 11752.52 12951.50 16454.14 15168.56 7578.85 11779.50 10086.82 10283.94 105
ACMH65.37 1470.71 9870.00 11371.54 8282.51 6782.47 8077.78 9268.13 5656.19 15246.06 16254.30 13551.20 17868.68 7480.66 9180.72 7686.07 12284.45 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8862.28 11565.96 8363.28 8068.95 6367.54 9871.61 6082.55 6681.63 6489.24 5085.72 80
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
MSDG71.52 9169.87 11473.44 7682.21 7179.35 10979.52 7564.59 8166.15 8161.87 8153.21 14956.09 14165.85 9378.94 11678.50 11286.60 11176.85 159
test_part174.24 7573.44 8875.18 6482.02 7282.34 8183.88 5462.40 11360.93 12368.68 5649.25 17569.71 8465.73 9481.26 8281.98 6088.35 6588.60 57
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
IS_MVSNet73.33 8077.34 7168.65 11081.29 7483.47 7274.45 11963.58 8965.75 8548.49 14667.11 7670.61 7754.63 16284.51 4983.58 5289.48 4786.34 76
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7960.27 8664.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11287.91 61
FC-MVSNet-train72.60 8575.07 8169.71 9981.10 7778.79 11673.74 13665.23 7766.10 8253.34 12270.36 5863.40 11156.92 14781.44 7580.96 7287.93 7584.46 101
MS-PatchMatch70.17 10570.49 10969.79 9880.98 7877.97 12877.51 9458.95 15062.33 11155.22 11153.14 15065.90 10362.03 11279.08 11477.11 13484.08 15177.91 151
Anonymous20240521172.16 10080.85 7981.85 8376.88 10265.40 7562.89 10846.35 18267.99 9762.05 11181.15 8580.38 8785.97 12984.50 100
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8185.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7866.18 6864.81 9068.18 5965.61 7771.45 7067.05 7984.16 5181.80 6288.90 5790.92 41
EPP-MVSNet74.00 7877.41 6970.02 9680.53 8283.91 6574.99 11562.68 10665.06 8849.77 14268.68 6672.09 6963.06 10482.49 6880.73 7589.12 5588.91 54
COLMAP_ROBcopyleft62.73 1567.66 13466.76 15068.70 10980.49 8377.98 12675.29 10862.95 9663.62 10249.96 14047.32 18150.72 18158.57 13276.87 13875.50 15084.94 14675.33 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE74.23 7674.84 8273.52 7580.42 8481.46 8779.77 7261.06 12567.23 7763.67 7759.56 10568.74 9467.90 7780.25 10079.37 10388.31 6687.26 69
casdiffmvs76.76 6378.46 6074.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10488.84 6086.52 74
DCV-MVSNet73.65 7975.78 7971.16 8480.19 8679.27 11077.45 9761.68 12266.73 7858.72 9165.31 8069.96 8162.19 10981.29 8180.97 7186.74 10586.91 70
Anonymous2023121171.90 8872.48 9771.21 8380.14 8781.53 8576.92 10062.89 9764.46 9558.94 8843.80 18670.98 7462.22 10880.70 9080.19 9086.18 11985.73 79
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8885.01 6081.73 5965.93 7384.75 2861.68 8285.79 1966.27 10271.39 6182.91 6380.78 7486.01 12785.98 77
baseline170.10 10672.17 9967.69 11979.74 8976.80 13873.91 13064.38 8362.74 10948.30 14864.94 8164.08 10854.17 16481.46 7478.92 10785.66 13476.22 161
EPNet_dtu68.08 12671.00 10564.67 14879.64 9068.62 17975.05 11463.30 9066.36 8045.27 16667.40 7466.84 10143.64 18475.37 14774.98 15381.15 16377.44 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
IB-MVS66.94 1271.21 9571.66 10370.68 8779.18 9382.83 7872.61 14361.77 12059.66 13063.44 7953.26 14759.65 12459.16 13176.78 14082.11 5987.90 7687.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.37 7077.13 7373.31 7779.07 9481.32 8979.98 6860.12 13869.72 7064.11 7570.53 5773.22 6468.90 7280.14 10279.48 10187.67 8385.50 84
Effi-MVS+-dtu71.82 8971.86 10271.78 8178.77 9580.47 9978.55 8561.67 12360.68 12455.49 10858.48 11265.48 10468.85 7376.92 13775.55 14987.35 8885.46 85
EG-PatchMatch MVS67.24 14166.94 14867.60 12178.73 9681.35 8873.28 14159.49 14346.89 19451.42 13443.65 18753.49 15955.50 15981.38 7780.66 8287.15 9081.17 129
gg-mvs-nofinetune62.55 16465.05 16259.62 17378.72 9777.61 13270.83 15153.63 16639.71 20622.04 20736.36 19964.32 10747.53 17781.16 8479.03 10685.00 14577.17 156
Vis-MVSNet (Re-imp)67.83 13173.52 8761.19 16478.37 9876.72 14066.80 16962.96 9565.50 8634.17 19067.19 7569.68 8539.20 19379.39 11179.44 10285.68 13376.73 160
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9981.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8485.89 78
thres600view767.68 13368.43 13566.80 13677.90 10078.86 11473.84 13262.75 9956.07 15344.70 16952.85 15552.81 16855.58 15780.41 9277.77 12186.05 12480.28 136
thres40067.95 12868.62 13367.17 12977.90 10078.59 11974.27 12562.72 10156.34 15145.77 16453.00 15253.35 16456.46 14980.21 10178.43 11385.91 13180.43 135
thres20067.98 12768.55 13467.30 12777.89 10278.86 11474.18 12862.75 9956.35 15046.48 15952.98 15353.54 15756.46 14980.41 9277.97 11986.05 12479.78 141
thres100view90067.60 13768.02 13867.12 13177.83 10377.75 13073.90 13162.52 10956.64 14746.82 15652.65 15753.47 16155.92 15378.77 11877.62 12485.72 13279.23 144
tfpn200view968.11 12568.72 13167.40 12477.83 10378.93 11274.28 12462.81 9856.64 14746.82 15652.65 15753.47 16156.59 14880.41 9278.43 11386.11 12080.52 134
Fast-Effi-MVS+73.11 8273.66 8672.48 7977.72 10580.88 9678.55 8558.83 15365.19 8760.36 8559.98 10262.42 11471.22 6381.66 7080.61 8588.20 6884.88 96
UniMVSNet_NR-MVSNet70.59 9972.19 9868.72 10877.72 10580.72 9773.81 13469.65 4661.99 11343.23 17160.54 9857.50 13358.57 13279.56 10881.07 7089.34 4983.97 103
IterMVS-LS71.69 9072.82 9570.37 9277.54 10776.34 14375.13 11360.46 13361.53 11857.57 9864.89 8267.33 9966.04 9277.09 13677.37 13085.48 13785.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet68.79 12070.56 10866.71 13977.48 10879.54 10673.52 13869.20 5161.20 12139.76 17858.52 11050.11 18451.37 17180.26 9980.71 8088.97 5683.59 109
TransMVSNet (Re)64.74 15365.66 15663.66 15577.40 10975.33 15269.86 15262.67 10747.63 19241.21 17750.01 17052.33 17145.31 18179.57 10777.69 12385.49 13677.07 158
TranMVSNet+NR-MVSNet69.25 11570.81 10767.43 12377.23 11079.46 10873.48 13969.66 4560.43 12739.56 17958.82 10953.48 16055.74 15679.59 10681.21 6888.89 5882.70 113
CANet_DTU73.29 8176.96 7469.00 10777.04 11182.06 8279.49 7656.30 16367.85 7553.29 12371.12 5570.37 8061.81 11881.59 7280.96 7286.09 12184.73 97
CHOSEN 1792x268869.20 11669.26 12369.13 10476.86 11278.93 11277.27 9860.12 13861.86 11554.42 11242.54 19061.61 11566.91 8478.55 12178.14 11779.23 17183.23 112
HyFIR lowres test69.47 11368.94 12770.09 9576.77 11382.93 7776.63 10460.17 13659.00 13354.03 11640.54 19565.23 10567.89 7876.54 14378.30 11585.03 14480.07 138
UniMVSNet (Re)69.53 11171.90 10166.76 13776.42 11480.93 9372.59 14468.03 5861.75 11641.68 17658.34 11657.23 13553.27 16779.53 10980.62 8488.57 6384.90 95
gm-plane-assit57.00 18857.62 19556.28 18576.10 11562.43 20147.62 20946.57 20033.84 21023.24 20337.52 19640.19 20659.61 13079.81 10477.55 12684.55 14972.03 180
DU-MVS69.63 11070.91 10668.13 11475.99 11679.54 10673.81 13469.20 5161.20 12143.23 17158.52 11053.50 15858.57 13279.22 11280.45 8687.97 7483.97 103
Baseline_NR-MVSNet67.53 13868.77 13066.09 14175.99 11674.75 15772.43 14568.41 5461.33 12038.33 18351.31 16554.13 15356.03 15279.22 11278.19 11685.37 13982.45 115
CostFormer68.92 11869.58 11968.15 11375.98 11876.17 14578.22 9051.86 17965.80 8461.56 8363.57 8862.83 11261.85 11670.40 18368.67 18079.42 16979.62 142
tfpnnormal64.27 15663.64 17265.02 14575.84 11975.61 14971.24 15062.52 10947.79 19142.97 17342.65 18944.49 19952.66 16978.77 11876.86 13684.88 14779.29 143
baseline269.69 10970.27 11169.01 10675.72 12077.13 13673.82 13358.94 15161.35 11957.09 10161.68 9257.17 13661.99 11378.10 12576.58 14186.48 11579.85 139
diffmvs74.86 7377.37 7071.93 8075.62 12180.35 10179.42 7760.15 13772.81 6564.63 7471.51 5373.11 6666.53 8979.02 11577.98 11885.25 14186.83 73
tpm cat165.41 14863.81 17167.28 12875.61 12272.88 16375.32 10752.85 17362.97 10663.66 7853.24 14853.29 16661.83 11765.54 19464.14 19674.43 19174.60 172
CDS-MVSNet67.65 13569.83 11665.09 14475.39 12376.55 14174.42 12263.75 8753.55 17049.37 14459.41 10662.45 11344.44 18279.71 10579.82 9383.17 15777.36 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu68.34 12369.47 12067.01 13375.15 12477.97 12877.12 9955.40 16557.87 13646.68 15856.17 12660.39 11862.36 10776.32 14476.25 14585.35 14081.34 127
WR-MVS63.03 16067.40 14557.92 17975.14 12577.60 13360.56 19266.10 6954.11 16923.88 20153.94 14153.58 15634.50 19773.93 15677.71 12287.35 8880.94 130
test-LLR64.42 15464.36 16764.49 14975.02 12663.93 19266.61 17161.96 11754.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
test0.0.03 158.80 18461.58 18555.56 18775.02 12668.45 18059.58 19661.96 11752.74 17329.57 19449.75 17354.56 14931.46 20071.19 17269.77 17375.75 18464.57 195
v114469.93 10869.36 12270.61 8974.89 12880.93 9379.11 8060.64 12955.97 15455.31 11053.85 14254.14 15166.54 8878.10 12577.44 12887.14 9385.09 91
v1070.22 10469.76 11770.74 8574.79 12980.30 10379.22 7959.81 14157.71 14156.58 10554.22 14055.31 14466.95 8278.28 12377.47 12787.12 9685.07 92
v870.23 10369.86 11570.67 8874.69 13079.82 10578.79 8359.18 14658.80 13458.20 9655.00 13257.33 13466.31 9177.51 13076.71 13986.82 10283.88 106
v2v48270.05 10769.46 12170.74 8574.62 13180.32 10279.00 8160.62 13057.41 14356.89 10255.43 13155.14 14666.39 9077.25 13377.14 13386.90 9983.57 110
v119269.50 11268.83 12870.29 9374.49 13280.92 9578.55 8560.54 13155.04 16054.21 11352.79 15652.33 17166.92 8377.88 12777.35 13187.04 9785.51 83
UniMVSNet_ETH3D67.18 14267.03 14767.36 12574.44 13378.12 12174.07 12966.38 6652.22 17746.87 15548.64 17651.84 17556.96 14577.29 13278.53 11185.42 13882.59 114
DTE-MVSNet61.85 17364.96 16458.22 17874.32 13474.39 15961.01 19167.85 6051.76 18221.91 20853.28 14648.17 18837.74 19472.22 16576.44 14286.52 11478.49 148
Vis-MVSNetpermissive72.77 8477.20 7267.59 12274.19 13584.01 6476.61 10561.69 12160.62 12650.61 13870.25 5971.31 7355.57 15883.85 5482.28 5786.90 9988.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14419269.34 11468.68 13270.12 9474.06 13680.54 9878.08 9160.54 13154.99 16254.13 11552.92 15452.80 16966.73 8677.13 13576.72 13887.15 9085.63 81
v192192069.03 11768.32 13669.86 9774.03 13780.37 10077.55 9360.25 13554.62 16453.59 12152.36 16051.50 17766.75 8577.17 13476.69 14086.96 9885.56 82
PEN-MVS62.96 16165.77 15559.70 17273.98 13875.45 15063.39 18567.61 6152.49 17525.49 20053.39 14449.12 18740.85 19071.94 16877.26 13286.86 10180.72 132
v124068.64 12267.89 14169.51 10273.89 13980.26 10476.73 10359.97 14053.43 17253.08 12451.82 16350.84 18066.62 8776.79 13976.77 13786.78 10485.34 87
thisisatest053071.48 9273.01 9269.70 10073.83 14078.62 11874.53 11859.12 14764.13 9658.63 9264.60 8558.63 12864.27 9780.28 9880.17 9187.82 8084.64 99
GA-MVS68.14 12469.17 12566.93 13573.77 14178.50 12074.45 11958.28 15555.11 15948.44 14760.08 10053.99 15461.50 12078.43 12277.57 12585.13 14280.54 133
tttt051771.41 9372.95 9369.60 10173.70 14278.70 11774.42 12259.12 14763.89 10058.35 9564.56 8658.39 13064.27 9780.29 9780.17 9187.74 8284.69 98
pm-mvs165.62 14767.42 14463.53 15673.66 14376.39 14269.66 15360.87 12849.73 18743.97 17051.24 16657.00 13848.16 17679.89 10377.84 12084.85 14879.82 140
dps64.00 15862.99 17465.18 14373.29 14472.07 16668.98 15853.07 17257.74 14058.41 9455.55 12947.74 19160.89 12669.53 18667.14 18976.44 18371.19 182
v14867.85 13067.53 14268.23 11273.25 14577.57 13474.26 12657.36 16055.70 15557.45 10053.53 14355.42 14361.96 11475.23 14873.92 15785.08 14381.32 128
PatchMatch-RL67.78 13266.65 15169.10 10573.01 14672.69 16468.49 15961.85 11962.93 10760.20 8756.83 12450.42 18269.52 6975.62 14674.46 15681.51 16173.62 178
GBi-Net70.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
test170.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
FMVSNet270.39 10272.67 9667.72 11872.95 14778.00 12375.15 11062.69 10563.29 10451.25 13555.64 12768.49 9657.59 13980.91 8980.35 8886.70 10682.02 117
FMVSNet370.49 10072.90 9467.67 12072.88 15077.98 12674.96 11662.72 10164.13 9651.44 13158.37 11369.02 8957.43 14279.43 11079.57 9886.59 11281.81 124
LTVRE_ROB59.44 1661.82 17662.64 17860.87 16672.83 15177.19 13564.37 18158.97 14933.56 21128.00 19752.59 15942.21 20263.93 10074.52 15276.28 14377.15 17882.13 116
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n67.05 14366.94 14867.17 12972.35 15278.97 11173.26 14258.88 15251.16 18350.90 13648.21 17850.11 18460.96 12377.70 12877.38 12986.68 10985.05 93
tpm62.41 16763.15 17361.55 16372.24 15363.79 19471.31 14946.12 20257.82 13755.33 10959.90 10354.74 14853.63 16567.24 19364.29 19570.65 20174.25 176
test20.0353.93 19656.28 19751.19 19672.19 15465.83 18753.20 20361.08 12442.74 20022.08 20637.07 19845.76 19724.29 20870.44 18169.04 17774.31 19263.05 199
CP-MVSNet62.68 16365.49 15859.40 17571.84 15575.34 15162.87 18767.04 6452.64 17427.19 19853.38 14548.15 18941.40 18871.26 17175.68 14786.07 12282.00 120
PS-CasMVS62.38 16965.06 16159.25 17671.73 15675.21 15562.77 18866.99 6551.94 18126.96 19952.00 16247.52 19241.06 18971.16 17475.60 14885.97 12981.97 122
WR-MVS_H61.83 17565.87 15457.12 18271.72 15776.87 13761.45 19066.19 6751.97 18022.92 20553.13 15152.30 17333.80 19871.03 17575.00 15286.65 11080.78 131
USDC67.36 14067.90 14066.74 13871.72 15775.23 15471.58 14760.28 13467.45 7650.54 13960.93 9445.20 19862.08 11076.56 14274.50 15584.25 15075.38 169
UGNet72.78 8377.67 6567.07 13271.65 15983.24 7475.20 10963.62 8864.93 8956.72 10371.82 5173.30 6349.02 17581.02 8780.70 8186.22 11888.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpmrst62.00 17162.35 18261.58 16271.62 16064.14 19169.07 15748.22 19862.21 11253.93 11758.26 11755.30 14555.81 15563.22 19962.62 19870.85 20070.70 183
pmmvs467.89 12967.39 14668.48 11171.60 16173.57 16174.45 11960.98 12664.65 9157.97 9754.95 13351.73 17661.88 11573.78 15775.11 15183.99 15377.91 151
testgi54.39 19557.86 19350.35 19771.59 16267.24 18354.95 20153.25 17043.36 19923.78 20244.64 18547.87 19024.96 20570.45 18068.66 18173.60 19462.78 200
pmmvs662.41 16762.88 17561.87 16171.38 16375.18 15667.76 16259.45 14541.64 20242.52 17537.33 19752.91 16746.87 17877.67 12976.26 14483.23 15679.18 145
FMVSNet168.84 11970.47 11066.94 13471.35 16477.68 13174.71 11762.35 11456.93 14549.94 14150.01 17064.59 10657.07 14481.33 7880.72 7686.25 11782.00 120
IterMVS-SCA-FT66.89 14469.22 12464.17 15071.30 16575.64 14871.33 14853.17 17157.63 14249.08 14560.72 9660.05 12263.09 10374.99 15073.92 15777.07 17981.57 126
PatchmatchNetpermissive64.21 15764.65 16563.69 15471.29 16668.66 17869.63 15451.70 18163.04 10553.77 11959.83 10458.34 13160.23 12968.54 19066.06 19275.56 18668.08 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline70.45 10174.09 8566.20 14070.95 16775.67 14774.26 12653.57 16768.33 7458.42 9369.87 6071.45 7061.55 11974.84 15174.76 15478.42 17383.72 108
SCA65.40 14966.58 15264.02 15270.65 16873.37 16267.35 16353.46 16963.66 10154.14 11460.84 9560.20 12161.50 12069.96 18468.14 18577.01 18069.91 184
CR-MVSNet64.83 15265.54 15764.01 15370.64 16969.41 17465.97 17452.74 17457.81 13852.65 12654.27 13656.31 14060.92 12472.20 16673.09 16281.12 16475.69 166
MVSTER72.06 8774.24 8369.51 10270.39 17075.97 14676.91 10157.36 16064.64 9261.39 8468.86 6463.76 10963.46 10181.44 7579.70 9487.56 8585.31 88
Anonymous2023120656.36 19057.80 19454.67 19070.08 17166.39 18660.46 19357.54 15749.50 18929.30 19533.86 20246.64 19335.18 19670.44 18168.88 17975.47 18768.88 189
thisisatest051567.40 13968.78 12965.80 14270.02 17275.24 15369.36 15657.37 15954.94 16353.67 12055.53 13054.85 14758.00 13778.19 12478.91 10886.39 11683.78 107
CMPMVSbinary47.78 1762.49 16662.52 17962.46 15970.01 17370.66 17262.97 18651.84 18051.98 17956.71 10442.87 18853.62 15557.80 13872.23 16470.37 17275.45 18875.91 163
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TDRefinement66.09 14665.03 16367.31 12669.73 17476.75 13975.33 10664.55 8260.28 12849.72 14345.63 18442.83 20160.46 12875.75 14575.95 14684.08 15178.04 150
TinyColmap62.84 16261.03 18764.96 14669.61 17571.69 16768.48 16059.76 14255.41 15647.69 15347.33 18034.20 21062.76 10674.52 15272.59 16581.44 16271.47 181
RPMNet61.71 17762.88 17560.34 16869.51 17669.41 17463.48 18449.23 19057.81 13845.64 16550.51 16850.12 18353.13 16868.17 19268.49 18381.07 16575.62 168
IterMVS66.36 14568.30 13764.10 15169.48 17774.61 15873.41 14050.79 18557.30 14448.28 14960.64 9759.92 12360.85 12774.14 15572.66 16481.80 16078.82 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo61.84 17462.45 18061.12 16569.20 17872.20 16562.03 18957.40 15846.54 19538.03 18557.14 12341.72 20358.12 13669.67 18571.58 16881.94 15978.30 149
MDTV_nov1_ep1364.37 15565.24 15963.37 15868.94 17970.81 17072.40 14650.29 18860.10 12953.91 11860.07 10159.15 12657.21 14369.43 18767.30 18777.47 17669.78 186
EPMVS60.00 18261.97 18357.71 18068.46 18063.17 19864.54 18048.23 19763.30 10344.72 16860.19 9956.05 14250.85 17265.27 19762.02 19969.44 20363.81 197
our_test_367.93 18170.99 16966.89 167
FC-MVSNet-test56.90 18965.20 16047.21 20066.98 18263.20 19749.11 20858.60 15459.38 13211.50 21565.60 7856.68 13924.66 20771.17 17371.36 17072.38 19769.02 188
CVMVSNet62.55 16465.89 15358.64 17766.95 18369.15 17666.49 17356.29 16452.46 17632.70 19159.27 10758.21 13250.09 17371.77 16971.39 16979.31 17078.99 146
FPMVS51.87 19850.00 20354.07 19166.83 18457.25 20560.25 19450.91 18350.25 18534.36 18936.04 20032.02 21241.49 18758.98 20556.07 20470.56 20259.36 205
pmmvs-eth3d63.52 15962.44 18164.77 14766.82 18570.12 17369.41 15559.48 14454.34 16852.71 12546.24 18344.35 20056.93 14672.37 16173.77 15983.30 15575.91 163
TAMVS59.58 18362.81 17755.81 18666.03 18665.64 18963.86 18348.74 19349.95 18637.07 18754.77 13458.54 12944.44 18272.29 16371.79 16674.70 19066.66 192
MDTV_nov1_ep13_2view60.16 18160.51 18959.75 17165.39 18769.05 17768.00 16148.29 19651.99 17845.95 16348.01 17949.64 18653.39 16668.83 18966.52 19177.47 17669.55 187
pmmvs562.37 17064.04 16960.42 16765.03 18871.67 16867.17 16552.70 17650.30 18444.80 16754.23 13951.19 17949.37 17472.88 16073.48 16183.45 15474.55 173
ambc53.42 19864.99 18963.36 19649.96 20647.07 19337.12 18628.97 20616.36 21841.82 18675.10 14967.34 18671.55 19975.72 165
V4268.76 12169.63 11867.74 11764.93 19078.01 12278.30 8956.48 16258.65 13556.30 10654.26 13857.03 13764.85 9577.47 13177.01 13585.60 13584.96 94
pmnet_mix0255.30 19257.01 19653.30 19564.14 19159.09 20358.39 19850.24 18953.47 17138.68 18249.75 17345.86 19640.14 19265.38 19660.22 20168.19 20565.33 194
PMVScopyleft39.38 1846.06 20443.30 20649.28 19962.93 19238.75 21241.88 21153.50 16833.33 21235.46 18828.90 20731.01 21333.04 19958.61 20654.63 20768.86 20457.88 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet46.97 20249.47 20444.05 20462.82 19356.55 20645.35 21052.01 17842.47 20117.04 21335.73 20135.21 20921.84 21161.27 20254.83 20665.26 20760.26 202
ET-MVSNet_ETH3D72.46 8674.19 8470.44 9162.50 19481.17 9179.90 7162.46 11264.52 9457.52 9971.49 5459.15 12672.08 5378.61 12081.11 6988.16 6983.29 111
ADS-MVSNet55.94 19158.01 19253.54 19462.48 19558.48 20459.12 19746.20 20159.65 13142.88 17452.34 16153.31 16546.31 17962.00 20160.02 20264.23 20860.24 204
RPSCF67.64 13671.25 10463.43 15761.86 19670.73 17167.26 16450.86 18474.20 6058.91 8967.49 7369.33 8664.10 9971.41 17068.45 18477.61 17577.17 156
MIMVSNet58.52 18661.34 18655.22 18860.76 19767.01 18466.81 16849.02 19256.43 14938.90 18140.59 19454.54 15040.57 19173.16 15971.65 16775.30 18966.00 193
PatchT61.97 17264.04 16959.55 17460.49 19867.40 18256.54 19948.65 19456.69 14652.65 12651.10 16752.14 17460.92 12472.20 16673.09 16278.03 17475.69 166
N_pmnet47.35 20150.13 20244.11 20359.98 19951.64 20951.86 20444.80 20349.58 18820.76 20940.65 19340.05 20729.64 20159.84 20355.15 20557.63 20954.00 207
MVS-HIRNet54.41 19452.10 20157.11 18358.99 20056.10 20749.68 20749.10 19146.18 19652.15 13033.18 20346.11 19556.10 15163.19 20059.70 20376.64 18260.25 203
PM-MVS60.48 18060.94 18859.94 17058.85 20166.83 18564.27 18251.39 18255.03 16148.03 15050.00 17240.79 20558.26 13569.20 18867.13 19078.84 17277.60 153
anonymousdsp65.28 15067.98 13962.13 16058.73 20273.98 16067.10 16650.69 18648.41 19047.66 15454.27 13652.75 17061.45 12276.71 14180.20 8987.13 9489.53 52
TESTMET0.1,161.10 17864.36 16757.29 18157.53 20363.93 19266.61 17136.22 20854.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
EU-MVSNet54.63 19358.69 19149.90 19856.99 20462.70 20056.41 20050.64 18745.95 19723.14 20450.42 16946.51 19436.63 19565.51 19564.85 19475.57 18574.91 171
FMVSNet557.24 18760.02 19053.99 19256.45 20562.74 19965.27 17747.03 19955.14 15839.55 18040.88 19253.42 16341.83 18572.35 16271.10 17173.79 19364.50 196
test-mter60.84 17964.62 16656.42 18455.99 20664.18 19065.39 17634.23 20954.39 16746.21 16157.40 12259.49 12555.86 15471.02 17669.65 17480.87 16676.20 162
CHOSEN 280x42058.70 18561.88 18454.98 18955.45 20750.55 21064.92 17840.36 20555.21 15738.13 18448.31 17763.76 10963.03 10573.73 15868.58 18268.00 20673.04 179
PMMVS65.06 15169.17 12560.26 16955.25 20863.43 19566.71 17043.01 20462.41 11050.64 13769.44 6167.04 10063.29 10274.36 15473.54 16082.68 15873.99 177
Gipumacopyleft36.38 20635.80 20837.07 20545.76 20933.90 21329.81 21348.47 19539.91 20518.02 2128.00 2168.14 22025.14 20459.29 20461.02 20055.19 21140.31 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs347.65 20049.08 20545.99 20144.61 21054.79 20850.04 20531.95 21233.91 20929.90 19330.37 20433.53 21146.31 17963.50 19863.67 19773.14 19663.77 198
MIMVSNet149.27 19953.25 19944.62 20244.61 21061.52 20253.61 20252.18 17741.62 20318.68 21128.14 20841.58 20425.50 20368.46 19169.04 17773.15 19562.37 201
MDA-MVSNet-bldmvs53.37 19753.01 20053.79 19343.67 21267.95 18159.69 19557.92 15643.69 19832.41 19241.47 19127.89 21552.38 17056.97 20765.99 19376.68 18167.13 191
E-PMN21.77 20918.24 21225.89 20740.22 21319.58 21612.46 21839.87 20618.68 2166.71 2179.57 2134.31 22322.36 21019.89 21427.28 21233.73 21428.34 213
EMVS20.98 21017.15 21325.44 20839.51 21419.37 21712.66 21739.59 20719.10 2156.62 2189.27 2144.40 22222.43 20917.99 21524.40 21331.81 21525.53 214
new_pmnet38.40 20542.64 20733.44 20637.54 21545.00 21136.60 21232.72 21140.27 20412.72 21429.89 20528.90 21424.78 20653.17 20852.90 20856.31 21048.34 208
PMMVS225.60 20729.75 20920.76 21028.00 21630.93 21423.10 21529.18 21323.14 2141.46 22018.23 21216.54 2175.08 21440.22 20941.40 21037.76 21237.79 211
tmp_tt14.50 21314.68 2177.17 21910.46 2202.21 21637.73 20728.71 19625.26 20916.98 2164.37 21531.49 21129.77 21126.56 216
MVEpermissive19.12 1920.47 21123.27 21117.20 21212.66 21825.41 21510.52 21934.14 21014.79 2176.53 2198.79 2154.68 22116.64 21329.49 21241.63 20922.73 21738.11 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method22.26 20825.94 21017.95 2113.24 2197.17 21923.83 2147.27 21537.35 20820.44 21021.87 21139.16 20818.67 21234.56 21020.84 21434.28 21320.64 215
GG-mvs-BLEND46.86 20367.51 14322.75 2090.05 22076.21 14464.69 1790.04 21761.90 1140.09 22155.57 12871.32 720.08 21670.54 17967.19 18871.58 19869.86 185
testmvs0.09 2120.15 2140.02 2140.01 2210.02 2210.05 2220.01 2180.11 2180.01 2220.26 2180.01 2240.06 2180.10 2160.10 2150.01 2190.43 217
uanet_test0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
test1230.09 2120.14 2150.02 2140.00 2220.02 2210.02 2230.01 2180.09 2190.00 2230.30 2170.00 2250.08 2160.03 2170.09 2160.01 2190.45 216
RE-MVS-def46.24 160
9.1486.88 15
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 221
NP-MVS80.10 46
Patchmtry65.80 18865.97 17452.74 17452.65 126
DeepMVS_CXcopyleft18.74 21818.55 2168.02 21426.96 2137.33 21623.81 21013.05 21925.99 20225.17 21322.45 21836.25 212