This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS88.00 690.50 685.08 590.95 891.58 792.03 175.53 1391.15 580.10 1692.27 588.34 1180.80 588.00 1486.99 1991.09 695.16 6
DPE-MVScopyleft88.63 491.29 485.53 390.87 992.20 491.98 276.00 690.55 882.09 793.85 190.75 281.25 188.62 887.59 1490.96 1095.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1692.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 995.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 896.21 1
MSP-MVS88.09 590.84 584.88 790.00 2491.80 691.63 575.80 791.99 481.23 1092.54 289.18 680.89 487.99 1587.91 989.70 4694.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj85.35 2085.76 3184.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 861.35 12178.82 1087.42 2086.23 3191.28 393.90 13
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 888.93 778.82 1087.42 2086.23 3191.28 393.90 13
APD-MVScopyleft86.84 1288.91 1484.41 1190.66 1290.10 1390.78 875.64 1087.38 1878.72 2090.68 1186.82 1780.15 787.13 2686.45 2990.51 2293.83 15
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft87.56 790.17 784.52 1091.71 390.57 1090.77 975.19 1490.67 780.50 1586.59 1888.86 878.09 1789.92 189.41 190.84 1195.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft88.67 391.62 285.22 490.47 1892.36 290.69 1076.15 493.08 282.75 592.19 690.71 380.45 689.27 687.91 990.82 1295.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.86.88 1189.23 1084.14 1489.78 2788.67 3290.59 1173.46 2888.99 1280.52 1491.26 788.65 979.91 886.96 3186.22 3390.59 2093.83 15
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS86.36 1488.19 1784.23 1391.33 589.84 1590.34 1275.56 1187.36 1978.97 1981.19 2986.76 1878.74 1289.30 588.58 290.45 2894.33 10
DPM-MVS83.30 3384.33 3682.11 2889.56 2988.49 3590.33 1373.24 2983.85 3476.46 2872.43 5282.65 3473.02 5086.37 3786.91 2090.03 3889.62 54
ACMMP_NAP86.52 1389.01 1183.62 1890.28 2090.09 1490.32 1474.05 2188.32 1579.74 1787.04 1685.59 2476.97 3089.35 488.44 490.35 3194.27 11
SteuartSystems-ACMMP85.99 1688.31 1683.27 2290.73 1189.84 1590.27 1574.31 1684.56 3175.88 3187.32 1585.04 2577.31 2589.01 788.46 391.14 593.96 12
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4190.23 1676.06 588.85 1381.20 1187.33 1487.93 1279.47 988.59 988.23 590.15 3693.60 21
train_agg84.86 2687.21 2282.11 2890.59 1485.47 5689.81 1773.55 2783.95 3373.30 3989.84 1387.23 1575.61 3586.47 3585.46 4089.78 4292.06 33
NCCC85.34 2186.59 2583.88 1791.48 488.88 2689.79 1875.54 1286.67 2277.94 2476.55 3684.99 2678.07 1888.04 1287.68 1290.46 2793.31 22
zzz-MVS85.71 1786.88 2384.34 1290.54 1687.11 4589.77 1974.17 1988.54 1483.08 478.60 3386.10 2078.11 1687.80 1787.46 1590.35 3192.56 27
SD-MVS86.96 1089.45 984.05 1690.13 2189.23 2389.77 1974.59 1589.17 1180.70 1289.93 1289.67 578.47 1387.57 1986.79 2390.67 1893.76 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS86.15 1587.95 1884.06 1590.80 1089.20 2489.62 2174.26 1787.52 1680.63 1386.82 1784.19 3078.22 1587.58 1887.19 1790.81 1393.13 25
ACMMPR85.52 1887.53 2083.17 2390.13 2189.27 2189.30 2273.97 2286.89 2177.14 2686.09 1983.18 3377.74 2187.42 2087.20 1690.77 1492.63 26
MCST-MVS85.13 2486.62 2483.39 1990.55 1589.82 1789.29 2373.89 2484.38 3276.03 3079.01 3285.90 2278.47 1387.81 1686.11 3592.11 193.29 23
PGM-MVS84.42 2986.29 2882.23 2790.04 2388.82 2889.23 2471.74 3782.82 3874.61 3484.41 2482.09 3677.03 2987.13 2686.73 2590.73 1692.06 33
MP-MVScopyleft85.50 1987.40 2183.28 2190.65 1389.51 2089.16 2574.11 2083.70 3578.06 2385.54 2184.89 2877.31 2587.40 2387.14 1890.41 2993.65 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG85.28 2387.68 1982.49 2689.95 2591.99 588.82 2671.20 3986.41 2379.63 1879.26 3088.36 1073.94 4386.64 3386.67 2691.40 294.41 8
CP-MVS84.74 2886.43 2782.77 2589.48 3188.13 4088.64 2773.93 2384.92 2676.77 2781.94 2783.50 3177.29 2786.92 3286.49 2890.49 2393.14 24
DeepC-MVS78.47 284.81 2786.03 2983.37 2089.29 3390.38 1288.61 2876.50 186.25 2477.22 2575.12 4180.28 4677.59 2388.39 1088.17 691.02 793.66 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM85.10 2588.81 1580.77 3689.55 3088.53 3488.59 2972.55 3287.39 1771.90 4490.95 1087.55 1374.57 3887.08 2886.54 2787.47 9393.67 18
OPM-MVS79.68 4979.28 6180.15 3987.99 4086.77 4888.52 3072.72 3164.55 10067.65 6567.87 7574.33 6574.31 4186.37 3785.25 4289.73 4589.81 52
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDPH-MVS82.64 3585.03 3579.86 4089.41 3288.31 3788.32 3171.84 3680.11 4667.47 6682.09 2681.44 4271.85 5985.89 4386.15 3490.24 3491.25 39
ACMMPcopyleft83.42 3285.27 3381.26 3288.47 3888.49 3588.31 3272.09 3483.42 3672.77 4282.65 2578.22 5175.18 3686.24 4085.76 3790.74 1592.13 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS83.23 3485.20 3480.92 3589.71 2888.68 2988.21 3373.60 2582.57 3971.81 4777.07 3481.92 3871.72 6186.98 3086.86 2190.47 2492.36 30
DeepC-MVS_fast78.24 384.27 3085.50 3282.85 2490.46 1989.24 2287.83 3474.24 1884.88 2776.23 2975.26 4081.05 4477.62 2288.02 1387.62 1390.69 1792.41 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS81.77 3983.10 4080.21 3885.93 5286.45 5187.72 3570.98 4082.54 4071.53 5074.23 4681.49 4176.31 3382.85 7081.87 6788.79 6492.26 31
HQP-MVS81.19 4283.27 3978.76 4787.40 4285.45 5786.95 3670.47 4281.31 4366.91 6979.24 3176.63 5571.67 6284.43 5683.78 5389.19 5692.05 35
LGP-MVS_train79.83 4581.22 4978.22 5186.28 5085.36 5986.76 3769.59 4877.34 5165.14 7575.68 3870.79 7971.37 6584.60 5284.01 4890.18 3590.74 44
3Dnovator+75.73 482.40 3682.76 4181.97 3088.02 3989.67 1886.60 3871.48 3881.28 4478.18 2264.78 8677.96 5377.13 2887.32 2486.83 2290.41 2991.48 37
MVS_030481.73 4083.86 3779.26 4386.22 5189.18 2586.41 3967.15 6775.28 5670.75 5474.59 4383.49 3274.42 4087.05 2986.34 3090.58 2191.08 41
PCF-MVS73.28 679.42 5180.41 5678.26 4984.88 6288.17 3886.08 4069.85 4575.23 5868.43 6168.03 7478.38 4971.76 6081.26 8880.65 8988.56 6791.18 40
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMM72.26 878.86 5878.13 6579.71 4186.89 4683.40 7686.02 4170.50 4175.28 5671.49 5163.01 9369.26 9073.57 4584.11 5883.98 4989.76 4487.84 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS79.35 5281.23 4877.16 5685.01 5986.92 4785.87 4260.89 13380.07 4875.35 3372.96 5073.21 6968.43 7985.41 4684.63 4687.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++82.09 3882.66 4281.42 3187.03 4587.22 4485.82 4370.04 4480.30 4578.66 2168.67 7181.04 4577.81 2085.19 4884.88 4589.19 5691.31 38
ACMP73.23 779.79 4680.53 5478.94 4585.61 5485.68 5485.61 4469.59 4877.33 5271.00 5374.45 4469.16 9171.88 5783.15 6783.37 5689.92 3990.57 47
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS82.36 3785.89 3078.24 5086.40 4989.52 1985.52 4569.52 5082.38 4165.67 7281.35 2882.36 3573.07 4987.31 2586.76 2489.24 5391.56 36
CANet81.62 4183.41 3879.53 4287.06 4488.59 3385.47 4667.96 6076.59 5474.05 3574.69 4281.98 3772.98 5186.14 4185.47 3989.68 4790.42 48
DeepPCF-MVS79.04 185.30 2288.93 1281.06 3388.77 3790.48 1185.46 4773.08 3090.97 673.77 3884.81 2385.95 2177.43 2488.22 1187.73 1187.85 8694.34 9
XVS86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
X-MVStestdata86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
AdaColmapbinary79.74 4878.62 6381.05 3489.23 3486.06 5384.95 5071.96 3579.39 4975.51 3263.16 9268.84 9676.51 3183.55 6382.85 6088.13 7686.46 78
TSAR-MVS + GP.83.69 3186.58 2680.32 3785.14 5686.96 4684.91 5170.25 4384.71 3073.91 3785.16 2285.63 2377.92 1985.44 4485.71 3889.77 4392.45 28
DELS-MVS79.15 5681.07 5176.91 5883.54 6387.31 4384.45 5264.92 8369.98 7169.34 5871.62 5676.26 5669.84 7086.57 3485.90 3689.39 5189.88 51
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator73.76 579.75 4780.52 5578.84 4684.94 6187.35 4284.43 5365.54 7878.29 5073.97 3663.00 9475.62 6174.07 4285.00 4985.34 4190.11 3789.04 56
MAR-MVS79.21 5480.32 5777.92 5287.46 4188.15 3983.95 5467.48 6674.28 6068.25 6264.70 8777.04 5472.17 5585.42 4585.00 4488.22 7287.62 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_part174.24 7873.44 9375.18 6782.02 7482.34 8783.88 5562.40 11960.93 13068.68 6049.25 18269.71 8765.73 9881.26 8881.98 6688.35 6888.60 60
EPNet79.08 5780.62 5377.28 5488.90 3683.17 8183.65 5672.41 3374.41 5967.15 6876.78 3574.37 6464.43 10083.70 6283.69 5487.15 9788.19 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
abl_679.05 4487.27 4388.85 2783.62 5768.25 5681.68 4272.94 4173.79 4884.45 2972.55 5389.66 4890.64 45
MVS_111021_HR80.13 4481.46 4678.58 4885.77 5385.17 6083.45 5869.28 5174.08 6270.31 5674.31 4575.26 6273.13 4886.46 3685.15 4389.53 4989.81 52
OMC-MVS80.26 4382.59 4377.54 5383.04 6485.54 5583.25 5965.05 8287.32 2072.42 4372.04 5478.97 4873.30 4783.86 5981.60 7188.15 7588.83 58
TSAR-MVS + COLMAP78.34 6181.64 4574.48 7580.13 9485.01 6181.73 6065.93 7784.75 2961.68 8685.79 2066.27 10671.39 6482.91 6980.78 8086.01 13485.98 80
TAPA-MVS71.42 977.69 6380.05 5974.94 6980.68 8684.52 6481.36 6163.14 10084.77 2864.82 7768.72 6975.91 6071.86 5881.62 7779.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DROMVSNet79.44 5081.35 4777.22 5582.95 6584.67 6381.31 6263.65 9372.47 6968.75 5973.15 4978.33 5075.99 3486.06 4283.96 5090.67 1890.79 43
Effi-MVS+75.28 7476.20 8074.20 7681.15 8083.24 7981.11 6363.13 10166.37 8660.27 9064.30 9068.88 9570.93 6881.56 7981.69 6988.61 6587.35 69
DI_MVS_plusplus_trai75.13 7576.12 8173.96 7778.18 10681.55 9080.97 6462.54 11568.59 7765.13 7661.43 9774.81 6369.32 7481.01 9479.59 10487.64 9185.89 81
canonicalmvs79.16 5582.37 4475.41 6582.33 7186.38 5280.80 6563.18 9982.90 3767.34 6772.79 5176.07 5869.62 7183.46 6684.41 4789.20 5590.60 46
casdiffmvs76.76 6678.46 6474.77 7180.32 9183.73 7380.65 6663.24 9873.58 6566.11 7169.39 6674.09 6669.49 7382.52 7379.35 11188.84 6386.52 77
QAPM78.47 6080.22 5876.43 6185.03 5886.75 4980.62 6766.00 7573.77 6465.35 7465.54 8278.02 5272.69 5283.71 6183.36 5788.87 6290.41 49
CS-MVS79.22 5381.11 5077.01 5781.36 7784.03 6680.35 6863.25 9773.43 6670.37 5574.10 4776.03 5976.40 3286.32 3983.95 5190.34 3389.93 50
MVS_111021_LR78.13 6279.85 6076.13 6281.12 8181.50 9280.28 6965.25 8076.09 5571.32 5276.49 3772.87 7172.21 5482.79 7181.29 7386.59 11987.91 65
ETV-MVS77.32 6478.81 6275.58 6482.24 7283.64 7479.98 7064.02 9069.64 7663.90 8070.89 6069.94 8573.41 4685.39 4783.91 5289.92 3988.31 62
MVS_Test75.37 7377.13 7673.31 8079.07 10081.32 9579.98 7060.12 14469.72 7464.11 7970.53 6173.22 6868.90 7580.14 10979.48 10887.67 9085.50 87
PLCcopyleft68.99 1175.68 7175.31 8376.12 6382.94 6681.26 9679.94 7266.10 7377.15 5366.86 7059.13 11368.53 9873.73 4480.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ET-MVSNet_ETH3D72.46 9074.19 8870.44 9562.50 20181.17 9779.90 7362.46 11864.52 10157.52 10371.49 5859.15 13272.08 5678.61 12781.11 7588.16 7483.29 115
GeoE74.23 7974.84 8673.52 7880.42 9081.46 9379.77 7461.06 13167.23 8363.67 8159.56 11068.74 9767.90 8080.25 10779.37 11088.31 6987.26 72
CNLPA77.20 6577.54 6976.80 5982.63 6784.31 6579.77 7464.64 8485.17 2573.18 4056.37 13069.81 8674.53 3981.12 9278.69 11786.04 13387.29 71
LS3D74.08 8073.39 9574.88 7085.05 5782.62 8579.71 7668.66 5472.82 6758.80 9457.61 12461.31 12271.07 6780.32 10378.87 11686.00 13580.18 144
CS-MVS-test78.79 5980.72 5276.53 6081.11 8283.88 6979.69 7763.72 9273.80 6369.95 5775.40 3976.17 5774.85 3784.50 5582.78 6189.87 4188.54 61
MSDG71.52 9869.87 12173.44 7982.21 7379.35 11679.52 7864.59 8566.15 8861.87 8553.21 15656.09 14765.85 9778.94 12378.50 11986.60 11876.85 166
CANet_DTU73.29 8576.96 7769.00 11477.04 11882.06 8879.49 7956.30 16967.85 8153.29 12771.12 5970.37 8361.81 12281.59 7880.96 7886.09 12884.73 101
diffmvs74.86 7677.37 7371.93 8475.62 12880.35 10879.42 8060.15 14372.81 6864.63 7871.51 5773.11 7066.53 9379.02 12277.98 12585.25 14886.83 76
PVSNet_Blended_VisFu76.57 6777.90 6675.02 6880.56 8786.58 5079.24 8166.18 7264.81 9768.18 6365.61 8071.45 7467.05 8384.16 5781.80 6888.90 6090.92 42
v1070.22 11169.76 12470.74 8974.79 13680.30 11079.22 8259.81 14757.71 14856.58 10954.22 14755.31 15066.95 8678.28 13077.47 13487.12 10385.07 95
v114469.93 11569.36 12970.61 9374.89 13580.93 9979.11 8360.64 13555.97 16155.31 11453.85 14954.14 15766.54 9278.10 13277.44 13587.14 10085.09 94
v2v48270.05 11469.46 12870.74 8974.62 13880.32 10979.00 8460.62 13657.41 15056.89 10655.43 13755.14 15266.39 9477.25 14077.14 14086.90 10683.57 114
OpenMVScopyleft70.44 1076.15 7076.82 7875.37 6685.01 5984.79 6278.99 8562.07 12271.27 7067.88 6457.91 12372.36 7270.15 6982.23 7581.41 7288.12 7787.78 67
FA-MVS(training)73.66 8274.95 8572.15 8378.63 10480.46 10678.92 8654.79 17269.71 7565.37 7362.04 9566.89 10467.10 8280.72 9679.87 9988.10 7984.97 97
v870.23 11069.86 12270.67 9274.69 13779.82 11278.79 8759.18 15258.80 14158.20 10055.00 13957.33 14066.31 9577.51 13776.71 14686.82 10983.88 110
ACMH+66.54 1371.36 10170.09 11972.85 8182.59 6881.13 9878.56 8868.04 5861.55 12452.52 13351.50 17154.14 15768.56 7878.85 12479.50 10786.82 10983.94 109
Effi-MVS+-dtu71.82 9471.86 10971.78 8578.77 10180.47 10578.55 8961.67 12960.68 13155.49 11258.48 11765.48 10868.85 7676.92 14475.55 15687.35 9585.46 88
Fast-Effi-MVS+73.11 8673.66 9172.48 8277.72 11280.88 10278.55 8958.83 15965.19 9460.36 8959.98 10762.42 11871.22 6681.66 7680.61 9188.20 7384.88 100
v119269.50 11968.83 13570.29 9774.49 13980.92 10178.55 8960.54 13755.04 16754.21 11752.79 16352.33 17766.92 8777.88 13477.35 13887.04 10485.51 86
EIA-MVS75.64 7276.60 7974.53 7482.43 7083.84 7078.32 9262.28 12165.96 9063.28 8468.95 6767.54 10171.61 6382.55 7281.63 7089.24 5385.72 83
V4268.76 12869.63 12567.74 12464.93 19778.01 12978.30 9356.48 16858.65 14256.30 11054.26 14557.03 14364.85 9977.47 13877.01 14285.60 14284.96 98
CostFormer68.92 12569.58 12668.15 12075.98 12576.17 15278.22 9451.86 18665.80 9161.56 8763.57 9162.83 11661.85 12070.40 19068.67 18779.42 17679.62 149
v14419269.34 12168.68 13970.12 10074.06 14380.54 10478.08 9560.54 13754.99 16954.13 11952.92 16152.80 17566.73 9077.13 14276.72 14587.15 9785.63 84
ACMH65.37 1470.71 10570.00 12071.54 8682.51 6982.47 8677.78 9668.13 5756.19 15946.06 16954.30 14251.20 18468.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192069.03 12468.32 14369.86 10374.03 14480.37 10777.55 9760.25 14154.62 17153.59 12552.36 16751.50 18366.75 8977.17 14176.69 14786.96 10585.56 85
MS-PatchMatch70.17 11270.49 11669.79 10480.98 8477.97 13577.51 9858.95 15662.33 11855.22 11553.14 15765.90 10762.03 11679.08 12177.11 14184.08 15877.91 158
PVSNet_BlendedMVS76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
PVSNet_Blended76.21 6877.52 7074.69 7279.46 9783.79 7177.50 9964.34 8869.88 7271.88 4568.54 7270.42 8167.05 8383.48 6479.63 10287.89 8486.87 74
DCV-MVSNet73.65 8375.78 8271.16 8880.19 9279.27 11777.45 10161.68 12866.73 8558.72 9565.31 8369.96 8462.19 11381.29 8780.97 7786.74 11286.91 73
CHOSEN 1792x268869.20 12369.26 13069.13 11176.86 11978.93 11977.27 10260.12 14461.86 12254.42 11642.54 19761.61 12066.91 8878.55 12878.14 12479.23 17883.23 116
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 14075.15 13177.97 13577.12 10355.40 17157.87 14346.68 16456.17 13160.39 12462.36 11176.32 15176.25 15285.35 14781.34 131
Anonymous2023121171.90 9372.48 10471.21 8780.14 9381.53 9176.92 10462.89 10464.46 10258.94 9243.80 19370.98 7862.22 11280.70 9780.19 9686.18 12685.73 82
MVSTER72.06 9274.24 8769.51 10870.39 17775.97 15376.91 10557.36 16664.64 9961.39 8868.86 6863.76 11363.46 10581.44 8179.70 10187.56 9285.31 91
Anonymous20240521172.16 10780.85 8581.85 8976.88 10665.40 7962.89 11546.35 18967.99 10062.05 11581.15 9180.38 9385.97 13684.50 104
v124068.64 12967.89 14869.51 10873.89 14680.26 11176.73 10759.97 14653.43 17953.08 12851.82 17050.84 18666.62 9176.79 14676.77 14486.78 11185.34 90
HyFIR lowres test69.47 12068.94 13470.09 10176.77 12082.93 8376.63 10860.17 14259.00 14054.03 12040.54 20265.23 10967.89 8176.54 15078.30 12285.03 15180.07 145
Vis-MVSNetpermissive72.77 8877.20 7567.59 12974.19 14284.01 6776.61 10961.69 12760.62 13350.61 14270.25 6371.31 7755.57 16583.85 6082.28 6386.90 10688.08 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250671.72 9572.95 9970.29 9781.49 7583.27 7775.74 11067.59 6468.19 7949.81 14661.15 9849.73 19258.82 13684.76 5082.94 5888.27 7080.63 138
ECVR-MVScopyleft72.20 9173.91 9070.20 9981.49 7583.27 7775.74 11067.59 6468.19 7949.31 15055.77 13262.00 11958.82 13684.76 5082.94 5888.27 7080.41 142
TDRefinement66.09 15365.03 17067.31 13369.73 18176.75 14675.33 11264.55 8660.28 13549.72 14845.63 19142.83 20860.46 13275.75 15275.95 15384.08 15878.04 157
tpm cat165.41 15563.81 17867.28 13575.61 12972.88 17075.32 11352.85 18062.97 11363.66 8253.24 15553.29 17261.83 12165.54 20164.14 20374.43 19874.60 179
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15768.70 11680.49 8977.98 13375.29 11462.95 10363.62 10949.96 14447.32 18850.72 18758.57 13876.87 14575.50 15784.94 15375.33 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UGNet72.78 8777.67 6867.07 13971.65 16683.24 7975.20 11563.62 9464.93 9656.72 10771.82 5573.30 6749.02 18281.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GBi-Net70.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12272.95 15478.00 13075.15 11662.72 10864.13 10351.44 13558.37 11869.02 9257.59 14681.33 8480.72 8286.70 11382.02 121
FMVSNet270.39 10972.67 10367.72 12572.95 15478.00 13075.15 11662.69 11263.29 11151.25 13955.64 13368.49 9957.59 14680.91 9580.35 9486.70 11382.02 121
IterMVS-LS71.69 9672.82 10270.37 9677.54 11476.34 15075.13 11960.46 13961.53 12557.57 10264.89 8567.33 10266.04 9677.09 14377.37 13785.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18675.05 12063.30 9666.36 8745.27 17367.40 7766.84 10543.64 19175.37 15474.98 16081.15 17077.44 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111171.56 9773.44 9369.38 11081.16 7982.95 8274.99 12167.68 6266.89 8446.33 16655.19 13860.91 12357.99 14484.59 5382.70 6288.12 7780.85 135
EPP-MVSNet74.00 8177.41 7270.02 10280.53 8883.91 6874.99 12162.68 11365.06 9549.77 14768.68 7072.09 7363.06 10882.49 7480.73 8189.12 5888.91 57
FMVSNet370.49 10772.90 10167.67 12772.88 15777.98 13374.96 12362.72 10864.13 10351.44 13558.37 11869.02 9257.43 14979.43 11779.57 10586.59 11981.81 128
FMVSNet168.84 12670.47 11766.94 14171.35 17177.68 13874.71 12462.35 12056.93 15249.94 14550.01 17764.59 11057.07 15181.33 8480.72 8286.25 12482.00 124
thisisatest053071.48 9973.01 9869.70 10673.83 14778.62 12574.53 12559.12 15364.13 10358.63 9664.60 8858.63 13464.27 10180.28 10580.17 9787.82 8784.64 103
GA-MVS68.14 13169.17 13266.93 14273.77 14878.50 12774.45 12658.28 16155.11 16648.44 15360.08 10553.99 16061.50 12478.43 12977.57 13285.13 14980.54 139
pmmvs467.89 13667.39 15368.48 11871.60 16873.57 16874.45 12660.98 13264.65 9857.97 10154.95 14051.73 18261.88 11973.78 16475.11 15883.99 16077.91 158
IS_MVSNet73.33 8477.34 7468.65 11781.29 7883.47 7574.45 12663.58 9565.75 9248.49 15267.11 7970.61 8054.63 16984.51 5483.58 5589.48 5086.34 79
tttt051771.41 10072.95 9969.60 10773.70 14978.70 12474.42 12959.12 15363.89 10758.35 9964.56 8958.39 13664.27 10180.29 10480.17 9787.74 8984.69 102
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13076.55 14874.42 12963.75 9153.55 17749.37 14959.41 11162.45 11744.44 18979.71 11279.82 10083.17 16477.36 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view968.11 13268.72 13867.40 13177.83 11078.93 11974.28 13162.81 10556.64 15446.82 16252.65 16453.47 16756.59 15580.41 9978.43 12086.11 12780.52 140
thres40067.95 13568.62 14067.17 13677.90 10778.59 12674.27 13262.72 10856.34 15845.77 17153.00 15953.35 17056.46 15680.21 10878.43 12085.91 13880.43 141
v14867.85 13767.53 14968.23 11973.25 15277.57 14174.26 13357.36 16655.70 16257.45 10453.53 15055.42 14961.96 11875.23 15573.92 16485.08 15081.32 132
baseline70.45 10874.09 8966.20 14770.95 17475.67 15474.26 13353.57 17468.33 7858.42 9769.87 6471.45 7461.55 12374.84 15874.76 16178.42 18083.72 112
thres20067.98 13468.55 14167.30 13477.89 10978.86 12174.18 13562.75 10656.35 15746.48 16552.98 16053.54 16356.46 15680.41 9977.97 12686.05 13179.78 148
UniMVSNet_ETH3D67.18 14967.03 15467.36 13274.44 14078.12 12874.07 13666.38 7052.22 18446.87 16148.64 18351.84 18156.96 15277.29 13978.53 11885.42 14582.59 118
baseline170.10 11372.17 10667.69 12679.74 9576.80 14573.91 13764.38 8762.74 11648.30 15464.94 8464.08 11254.17 17181.46 8078.92 11485.66 14176.22 168
thres100view90067.60 14468.02 14567.12 13877.83 11077.75 13773.90 13862.52 11656.64 15446.82 16252.65 16453.47 16755.92 16078.77 12577.62 13185.72 13979.23 151
thres600view767.68 14068.43 14266.80 14377.90 10778.86 12173.84 13962.75 10656.07 16044.70 17652.85 16252.81 17455.58 16480.41 9977.77 12886.05 13180.28 143
baseline269.69 11670.27 11869.01 11375.72 12777.13 14373.82 14058.94 15761.35 12657.09 10561.68 9657.17 14261.99 11778.10 13276.58 14886.48 12279.85 146
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11577.72 11280.72 10373.81 14169.65 4761.99 12043.23 17860.54 10357.50 13958.57 13879.56 11581.07 7689.34 5283.97 107
DU-MVS69.63 11770.91 11368.13 12175.99 12379.54 11373.81 14169.20 5261.20 12843.23 17858.52 11553.50 16458.57 13879.22 11980.45 9287.97 8183.97 107
FC-MVSNet-train72.60 8975.07 8469.71 10581.10 8378.79 12373.74 14365.23 8166.10 8953.34 12670.36 6263.40 11556.92 15481.44 8180.96 7887.93 8284.46 105
UA-Net74.47 7777.80 6770.59 9485.33 5585.40 5873.54 14465.98 7660.65 13256.00 11172.11 5379.15 4754.63 16983.13 6882.25 6488.04 8081.92 127
NR-MVSNet68.79 12770.56 11566.71 14677.48 11579.54 11373.52 14569.20 5261.20 12839.76 18558.52 11550.11 19051.37 17880.26 10680.71 8688.97 5983.59 113
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 13077.23 11779.46 11573.48 14669.66 4660.43 13439.56 18658.82 11453.48 16655.74 16379.59 11381.21 7488.89 6182.70 117
IterMVS66.36 15268.30 14464.10 15869.48 18474.61 16573.41 14750.79 19257.30 15148.28 15560.64 10259.92 12960.85 13174.14 16272.66 17181.80 16778.82 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS67.24 14866.94 15567.60 12878.73 10281.35 9473.28 14859.49 14946.89 20151.42 13843.65 19453.49 16555.50 16681.38 8380.66 8887.15 9781.17 133
v7n67.05 15066.94 15567.17 13672.35 15978.97 11873.26 14958.88 15851.16 19050.90 14048.21 18550.11 19060.96 12777.70 13577.38 13686.68 11685.05 96
IB-MVS66.94 1271.21 10271.66 11070.68 9179.18 9982.83 8472.61 15061.77 12659.66 13763.44 8353.26 15459.65 13059.16 13576.78 14782.11 6587.90 8387.33 70
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UniMVSNet (Re)69.53 11871.90 10866.76 14476.42 12180.93 9972.59 15168.03 5961.75 12341.68 18358.34 12157.23 14153.27 17479.53 11680.62 9088.57 6684.90 99
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15268.41 5561.33 12738.33 19051.31 17254.13 15956.03 15979.22 11978.19 12385.37 14682.45 119
MDTV_nov1_ep1364.37 16265.24 16663.37 16568.94 18670.81 17772.40 15350.29 19560.10 13653.91 12260.07 10659.15 13257.21 15069.43 19467.30 19477.47 18369.78 193
USDC67.36 14767.90 14766.74 14571.72 16475.23 16171.58 15460.28 14067.45 8250.54 14360.93 9945.20 20562.08 11476.56 14974.50 16284.25 15775.38 176
IterMVS-SCA-FT66.89 15169.22 13164.17 15771.30 17275.64 15571.33 15553.17 17857.63 14949.08 15160.72 10160.05 12863.09 10774.99 15773.92 16477.07 18681.57 130
tpm62.41 17463.15 18061.55 17072.24 16063.79 20171.31 15646.12 20957.82 14455.33 11359.90 10854.74 15453.63 17267.24 20064.29 20270.65 20874.25 183
tfpnnormal64.27 16363.64 17965.02 15275.84 12675.61 15671.24 15762.52 11647.79 19842.97 18042.65 19644.49 20652.66 17678.77 12576.86 14384.88 15479.29 150
gg-mvs-nofinetune62.55 17165.05 16959.62 18078.72 10377.61 13970.83 15853.63 17339.71 21322.04 21436.36 20664.32 11147.53 18481.16 9079.03 11385.00 15277.17 163
TransMVSNet (Re)64.74 16065.66 16363.66 16277.40 11675.33 15969.86 15962.67 11447.63 19941.21 18450.01 17752.33 17745.31 18879.57 11477.69 13085.49 14377.07 165
pm-mvs165.62 15467.42 15163.53 16373.66 15076.39 14969.66 16060.87 13449.73 19443.97 17751.24 17357.00 14448.16 18379.89 11077.84 12784.85 15579.82 147
PatchmatchNetpermissive64.21 16464.65 17263.69 16171.29 17368.66 18569.63 16151.70 18863.04 11253.77 12359.83 10958.34 13760.23 13368.54 19766.06 19975.56 19368.08 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs-eth3d63.52 16662.44 18864.77 15466.82 19270.12 18069.41 16259.48 15054.34 17552.71 12946.24 19044.35 20756.93 15372.37 16873.77 16683.30 16275.91 170
thisisatest051567.40 14668.78 13665.80 14970.02 17975.24 16069.36 16357.37 16554.94 17053.67 12455.53 13654.85 15358.00 14378.19 13178.91 11586.39 12383.78 111
tpmrst62.00 17862.35 18961.58 16971.62 16764.14 19869.07 16448.22 20562.21 11953.93 12158.26 12255.30 15155.81 16263.22 20662.62 20570.85 20770.70 190
dps64.00 16562.99 18165.18 15073.29 15172.07 17368.98 16553.07 17957.74 14758.41 9855.55 13547.74 19860.89 13069.53 19367.14 19676.44 19071.19 189
PatchMatch-RL67.78 13966.65 15869.10 11273.01 15372.69 17168.49 16661.85 12562.93 11460.20 9156.83 12950.42 18869.52 7275.62 15374.46 16381.51 16873.62 185
TinyColmap62.84 16961.03 19464.96 15369.61 18271.69 17468.48 16759.76 14855.41 16347.69 15947.33 18734.20 21762.76 11074.52 15972.59 17281.44 16971.47 188
MDTV_nov1_ep13_2view60.16 18860.51 19659.75 17865.39 19469.05 18468.00 16848.29 20351.99 18545.95 17048.01 18649.64 19353.39 17368.83 19666.52 19877.47 18369.55 194
pmmvs662.41 17462.88 18261.87 16871.38 17075.18 16367.76 16959.45 15141.64 20942.52 18237.33 20452.91 17346.87 18577.67 13676.26 15183.23 16379.18 152
SCA65.40 15666.58 15964.02 15970.65 17573.37 16967.35 17053.46 17663.66 10854.14 11860.84 10060.20 12761.50 12469.96 19168.14 19277.01 18769.91 191
RPSCF67.64 14371.25 11163.43 16461.86 20370.73 17867.26 17150.86 19174.20 6158.91 9367.49 7669.33 8964.10 10371.41 17768.45 19177.61 18277.17 163
pmmvs562.37 17764.04 17660.42 17465.03 19571.67 17567.17 17252.70 18350.30 19144.80 17454.23 14651.19 18549.37 18172.88 16773.48 16883.45 16174.55 180
anonymousdsp65.28 15767.98 14662.13 16758.73 20973.98 16767.10 17350.69 19348.41 19747.66 16054.27 14352.75 17661.45 12676.71 14880.20 9587.13 10189.53 55
our_test_367.93 18870.99 17666.89 174
MIMVSNet58.52 19361.34 19355.22 19560.76 20467.01 19166.81 17549.02 19956.43 15638.90 18840.59 20154.54 15640.57 19873.16 16671.65 17475.30 19666.00 200
Vis-MVSNet (Re-imp)67.83 13873.52 9261.19 17178.37 10576.72 14766.80 17662.96 10265.50 9334.17 19767.19 7869.68 8839.20 20079.39 11879.44 10985.68 14076.73 167
PMMVS65.06 15869.17 13260.26 17655.25 21563.43 20266.71 17743.01 21162.41 11750.64 14169.44 6567.04 10363.29 10674.36 16173.54 16782.68 16573.99 184
test-LLR64.42 16164.36 17464.49 15675.02 13363.93 19966.61 17861.96 12354.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
TESTMET0.1,161.10 18564.36 17457.29 18857.53 21063.93 19966.61 17836.22 21554.41 17247.77 15757.46 12560.25 12555.20 16770.80 18469.33 18280.40 17474.38 181
CVMVSNet62.55 17165.89 16058.64 18466.95 19069.15 18366.49 18056.29 17052.46 18332.70 19859.27 11258.21 13850.09 18071.77 17671.39 17679.31 17778.99 153
CR-MVSNet64.83 15965.54 16464.01 16070.64 17669.41 18165.97 18152.74 18157.81 14552.65 13054.27 14356.31 14660.92 12872.20 17373.09 16981.12 17175.69 173
Patchmtry65.80 19565.97 18152.74 18152.65 130
test-mter60.84 18664.62 17356.42 19155.99 21364.18 19765.39 18334.23 21654.39 17446.21 16857.40 12759.49 13155.86 16171.02 18369.65 18180.87 17376.20 169
FMVSNet557.24 19460.02 19753.99 19956.45 21262.74 20665.27 18447.03 20655.14 16539.55 18740.88 19953.42 16941.83 19272.35 16971.10 17873.79 20064.50 203
CHOSEN 280x42058.70 19261.88 19154.98 19655.45 21450.55 21764.92 18540.36 21255.21 16438.13 19148.31 18463.76 11363.03 10973.73 16568.58 18968.00 21373.04 186
GG-mvs-BLEND46.86 21067.51 15022.75 2160.05 22776.21 15164.69 1860.04 22461.90 1210.09 22855.57 13471.32 760.08 22370.54 18667.19 19571.58 20569.86 192
EPMVS60.00 18961.97 19057.71 18768.46 18763.17 20564.54 18748.23 20463.30 11044.72 17560.19 10456.05 14850.85 17965.27 20462.02 20669.44 21063.81 204
LTVRE_ROB59.44 1661.82 18362.64 18560.87 17372.83 15877.19 14264.37 18858.97 15533.56 21828.00 20452.59 16642.21 20963.93 10474.52 15976.28 15077.15 18582.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS60.48 18760.94 19559.94 17758.85 20866.83 19264.27 18951.39 18955.03 16848.03 15650.00 17940.79 21258.26 14169.20 19567.13 19778.84 17977.60 160
TAMVS59.58 19062.81 18455.81 19366.03 19365.64 19663.86 19048.74 20049.95 19337.07 19454.77 14158.54 13544.44 18972.29 17071.79 17374.70 19766.66 199
RPMNet61.71 18462.88 18260.34 17569.51 18369.41 18163.48 19149.23 19757.81 14545.64 17250.51 17550.12 18953.13 17568.17 19968.49 19081.07 17275.62 175
PEN-MVS62.96 16865.77 16259.70 17973.98 14575.45 15763.39 19267.61 6352.49 18225.49 20753.39 15149.12 19440.85 19771.94 17577.26 13986.86 10880.72 137
CMPMVSbinary47.78 1762.49 17362.52 18662.46 16670.01 18070.66 17962.97 19351.84 18751.98 18656.71 10842.87 19553.62 16157.80 14572.23 17170.37 17975.45 19575.91 170
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CP-MVSNet62.68 17065.49 16559.40 18271.84 16275.34 15862.87 19467.04 6852.64 18127.19 20553.38 15248.15 19641.40 19571.26 17875.68 15486.07 12982.00 124
PS-CasMVS62.38 17665.06 16859.25 18371.73 16375.21 16262.77 19566.99 6951.94 18826.96 20652.00 16947.52 19941.06 19671.16 18175.60 15585.97 13681.97 126
SixPastTwentyTwo61.84 18162.45 18761.12 17269.20 18572.20 17262.03 19657.40 16446.54 20238.03 19257.14 12841.72 21058.12 14269.67 19271.58 17581.94 16678.30 156
WR-MVS_H61.83 18265.87 16157.12 18971.72 16476.87 14461.45 19766.19 7151.97 18722.92 21253.13 15852.30 17933.80 20571.03 18275.00 15986.65 11780.78 136
DTE-MVSNet61.85 18064.96 17158.22 18574.32 14174.39 16661.01 19867.85 6151.76 18921.91 21553.28 15348.17 19537.74 20172.22 17276.44 14986.52 12178.49 155
WR-MVS63.03 16767.40 15257.92 18675.14 13277.60 14060.56 19966.10 7354.11 17623.88 20853.94 14853.58 16234.50 20473.93 16377.71 12987.35 9580.94 134
Anonymous2023120656.36 19757.80 20154.67 19770.08 17866.39 19360.46 20057.54 16349.50 19629.30 20233.86 20946.64 20035.18 20370.44 18868.88 18675.47 19468.88 196
FPMVS51.87 20550.00 21054.07 19866.83 19157.25 21260.25 20150.91 19050.25 19234.36 19636.04 20732.02 21941.49 19458.98 21256.07 21170.56 20959.36 212
MDA-MVSNet-bldmvs53.37 20453.01 20753.79 20043.67 21967.95 18859.69 20257.92 16243.69 20532.41 19941.47 19827.89 22252.38 17756.97 21465.99 20076.68 18867.13 198
test0.0.03 158.80 19161.58 19255.56 19475.02 13368.45 18759.58 20361.96 12352.74 18029.57 20149.75 18054.56 15531.46 20771.19 17969.77 18075.75 19164.57 202
ADS-MVSNet55.94 19858.01 19953.54 20162.48 20258.48 21159.12 20446.20 20859.65 13842.88 18152.34 16853.31 17146.31 18662.00 20860.02 20964.23 21560.24 211
pmnet_mix0255.30 19957.01 20353.30 20264.14 19859.09 21058.39 20550.24 19653.47 17838.68 18949.75 18045.86 20340.14 19965.38 20360.22 20868.19 21265.33 201
PatchT61.97 17964.04 17659.55 18160.49 20567.40 18956.54 20648.65 20156.69 15352.65 13051.10 17452.14 18060.92 12872.20 17373.09 16978.03 18175.69 173
EU-MVSNet54.63 20058.69 19849.90 20556.99 21162.70 20756.41 20750.64 19445.95 20423.14 21150.42 17646.51 20136.63 20265.51 20264.85 20175.57 19274.91 178
testgi54.39 20257.86 20050.35 20471.59 16967.24 19054.95 20853.25 17743.36 20623.78 20944.64 19247.87 19724.96 21270.45 18768.66 18873.60 20162.78 207
MIMVSNet149.27 20653.25 20644.62 20944.61 21761.52 20953.61 20952.18 18441.62 21018.68 21828.14 21541.58 21125.50 21068.46 19869.04 18473.15 20262.37 208
test20.0353.93 20356.28 20451.19 20372.19 16165.83 19453.20 21061.08 13042.74 20722.08 21337.07 20545.76 20424.29 21570.44 18869.04 18474.31 19963.05 206
N_pmnet47.35 20850.13 20944.11 21059.98 20651.64 21651.86 21144.80 21049.58 19520.76 21640.65 20040.05 21429.64 20859.84 21055.15 21257.63 21654.00 214
pmmvs347.65 20749.08 21245.99 20844.61 21754.79 21550.04 21231.95 21933.91 21629.90 20030.37 21133.53 21846.31 18663.50 20563.67 20473.14 20363.77 205
ambc53.42 20564.99 19663.36 20349.96 21347.07 20037.12 19328.97 21316.36 22541.82 19375.10 15667.34 19371.55 20675.72 172
MVS-HIRNet54.41 20152.10 20857.11 19058.99 20756.10 21449.68 21449.10 19846.18 20352.15 13433.18 21046.11 20256.10 15863.19 20759.70 21076.64 18960.25 210
FC-MVSNet-test56.90 19665.20 16747.21 20766.98 18963.20 20449.11 21558.60 16059.38 13911.50 22265.60 8156.68 14524.66 21471.17 18071.36 17772.38 20469.02 195
gm-plane-assit57.00 19557.62 20256.28 19276.10 12262.43 20847.62 21646.57 20733.84 21723.24 21037.52 20340.19 21359.61 13479.81 11177.55 13384.55 15672.03 187
new-patchmatchnet46.97 20949.47 21144.05 21162.82 20056.55 21345.35 21752.01 18542.47 20817.04 22035.73 20835.21 21621.84 21861.27 20954.83 21365.26 21460.26 209
PMVScopyleft39.38 1846.06 21143.30 21349.28 20662.93 19938.75 21941.88 21853.50 17533.33 21935.46 19528.90 21431.01 22033.04 20658.61 21354.63 21468.86 21157.88 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21242.64 21433.44 21337.54 22245.00 21836.60 21932.72 21840.27 21112.72 22129.89 21228.90 22124.78 21353.17 21552.90 21556.31 21748.34 215
Gipumacopyleft36.38 21335.80 21537.07 21245.76 21633.90 22029.81 22048.47 20239.91 21218.02 2198.00 2238.14 22725.14 21159.29 21161.02 20755.19 21840.31 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method22.26 21525.94 21717.95 2183.24 2267.17 22623.83 2217.27 22237.35 21520.44 21721.87 21839.16 21518.67 21934.56 21720.84 22134.28 22020.64 222
PMMVS225.60 21429.75 21620.76 21728.00 22330.93 22123.10 22229.18 22023.14 2211.46 22718.23 21916.54 2245.08 22140.22 21641.40 21737.76 21937.79 218
DeepMVS_CXcopyleft18.74 22518.55 2238.02 22126.96 2207.33 22323.81 21713.05 22625.99 20925.17 22022.45 22536.25 219
EMVS20.98 21717.15 22025.44 21539.51 22119.37 22412.66 22439.59 21419.10 2226.62 2259.27 2214.40 22922.43 21617.99 22224.40 22031.81 22225.53 221
E-PMN21.77 21618.24 21925.89 21440.22 22019.58 22312.46 22539.87 21318.68 2236.71 2249.57 2204.31 23022.36 21719.89 22127.28 21933.73 22128.34 220
MVEpermissive19.12 1920.47 21823.27 21817.20 21912.66 22525.41 22210.52 22634.14 21714.79 2246.53 2268.79 2224.68 22816.64 22029.49 21941.63 21622.73 22438.11 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt14.50 22014.68 2247.17 22610.46 2272.21 22337.73 21428.71 20325.26 21616.98 2234.37 22231.49 21829.77 21826.56 223
Patchmatch-RL test2.85 228
testmvs0.09 2190.15 2210.02 2210.01 2280.02 2280.05 2290.01 2250.11 2250.01 2290.26 2250.01 2310.06 2250.10 2230.10 2220.01 2260.43 224
test1230.09 2190.14 2220.02 2210.00 2290.02 2280.02 2300.01 2250.09 2260.00 2300.30 2240.00 2320.08 2230.03 2240.09 2230.01 2260.45 223
uanet_test0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2290.00 2300.00 2310.00 2270.00 2270.00 2300.00 2260.00 2320.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3573.57 2687.54 14
MTAPA83.48 186.45 19
MTMP82.66 684.91 27
mPP-MVS89.90 2681.29 43
NP-MVS80.10 47