This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft95.53 496.13 494.82 296.81 2398.05 497.42 193.09 194.31 991.49 797.12 195.03 393.27 395.55 694.58 1296.86 798.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 2098.15 397.08 392.92 295.64 391.84 595.98 495.33 192.83 796.00 194.94 396.90 598.45 3
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 498.99 1
APDe-MVS95.23 595.69 694.70 597.12 1197.81 697.19 292.83 495.06 690.98 1196.47 292.77 1193.38 295.34 994.21 1696.68 1098.17 5
DVP-MVScopyleft95.56 396.26 394.73 396.93 1798.19 196.62 792.81 596.15 291.73 695.01 895.31 293.41 195.95 394.77 896.90 598.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1294.47 1694.26 797.18 996.99 1796.53 892.68 692.45 2589.96 1894.53 1291.63 2192.89 694.58 2393.82 2396.31 1997.26 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj92.95 2591.88 3494.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 671.01 13091.93 1694.40 2893.56 2997.04 297.27 17
SF-MVS94.61 894.96 1094.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 692.54 1391.93 1694.40 2893.56 2997.04 297.27 17
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3396.14 992.51 993.87 1690.76 1393.45 1993.84 592.62 995.11 1294.08 1995.58 5697.48 14
NCCC93.69 2093.66 2393.72 1797.37 696.66 3095.93 1792.50 1093.40 2088.35 2687.36 3692.33 1592.18 1394.89 1594.09 1896.00 2896.91 27
CNVR-MVS94.37 1294.65 1294.04 1297.29 797.11 1196.00 1192.43 1193.45 1789.85 2090.92 2693.04 992.59 1095.77 594.82 696.11 2697.42 16
MSP-MVS95.12 695.83 594.30 696.82 2297.94 596.98 592.37 1295.40 490.59 1496.16 393.71 692.70 894.80 1794.77 896.37 1597.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS94.53 1095.22 893.73 1695.69 3797.03 1595.77 2391.95 1394.41 891.35 894.97 993.34 891.80 2194.72 2193.99 2095.82 4098.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SMA-MVScopyleft94.70 795.35 793.93 1397.57 397.57 895.98 1291.91 1494.50 790.35 1593.46 1892.72 1291.89 1995.89 495.22 195.88 3398.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP94.06 1494.65 1293.38 2096.97 1697.36 996.12 1091.78 1592.05 2987.34 3194.42 1390.87 2591.87 2095.47 894.59 1196.21 2497.77 11
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS87.86 392.26 3291.86 3592.73 2696.18 3096.87 2095.19 2991.76 1692.17 2886.58 3681.79 5485.85 5290.88 3294.57 2494.61 1095.80 4197.18 20
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS93.81 1794.06 1993.53 1896.79 2496.85 2195.95 1491.69 1792.20 2787.17 3390.83 2893.41 791.96 1594.49 2693.50 3297.61 197.12 23
AdaColmapbinary90.29 4588.38 6092.53 2796.10 3295.19 5792.98 4791.40 1889.08 4888.65 2478.35 7481.44 7291.30 3090.81 8990.21 8294.72 9693.59 91
ACMMP_NAP93.94 1694.49 1593.30 2197.03 1497.31 1095.96 1391.30 1993.41 1988.55 2593.00 2090.33 2991.43 2795.53 794.41 1495.53 5897.47 15
DeepC-MVS_fast88.76 193.10 2393.02 3093.19 2397.13 1096.51 3495.35 2791.19 2093.14 2288.14 2785.26 4289.49 3691.45 2495.17 1095.07 295.85 3896.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS93.80 1893.45 2694.20 997.53 496.43 3795.88 1891.12 2194.09 1292.74 487.68 3490.77 2692.04 1494.74 2093.56 2995.91 3296.85 28
DPM-MVS91.72 3691.48 3692.00 3295.53 3895.75 4895.94 1591.07 2291.20 3585.58 4281.63 5890.74 2788.40 4893.40 4493.75 2595.45 6293.85 85
SR-MVS96.58 2790.99 2392.40 14
HFP-MVS94.02 1594.22 1893.78 1597.25 896.85 2195.81 2190.94 2494.12 1190.29 1794.09 1589.98 3292.52 1193.94 3593.49 3495.87 3597.10 24
TSAR-MVS + MP.94.48 1194.97 993.90 1495.53 3897.01 1696.69 690.71 2594.24 1090.92 1294.97 992.19 1693.03 494.83 1693.60 2796.51 1497.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft93.35 2193.59 2493.08 2497.39 596.82 2395.38 2690.71 2590.82 3788.07 2892.83 2290.29 3091.32 2994.03 3293.19 4195.61 5497.16 21
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR93.72 1993.94 2093.48 1997.07 1296.93 1895.78 2290.66 2793.88 1589.24 2293.53 1789.08 3992.24 1293.89 3793.50 3295.88 3396.73 32
CP-MVS93.25 2293.26 2793.24 2296.84 2096.51 3495.52 2590.61 2892.37 2688.88 2390.91 2789.52 3591.91 1893.64 4292.78 4795.69 4797.09 25
train_agg92.87 2693.53 2592.09 3196.88 1995.38 5295.94 1590.59 2990.65 3983.65 5494.31 1491.87 2090.30 3493.38 4592.42 5295.17 7696.73 32
X-MVS92.36 3192.75 3191.90 3496.89 1896.70 2695.25 2890.48 3091.50 3483.95 5188.20 3288.82 4189.11 4093.75 4093.43 3595.75 4596.83 30
TSAR-MVS + ACMM92.97 2494.51 1491.16 3895.88 3596.59 3195.09 3090.45 3193.42 1883.01 5794.68 1190.74 2788.74 4494.75 1993.78 2493.82 13697.63 12
PCF-MVS84.60 688.66 5787.75 7089.73 5093.06 6596.02 4193.22 4590.00 3282.44 8280.02 7777.96 7785.16 5687.36 6188.54 11788.54 12194.72 9695.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepPCF-MVS88.51 292.64 3094.42 1790.56 4294.84 4596.92 1991.31 6389.61 3395.16 584.55 4989.91 3091.45 2290.15 3795.12 1194.81 792.90 15597.58 13
ACMMPcopyleft92.03 3492.16 3291.87 3595.88 3596.55 3294.47 3689.49 3491.71 3285.26 4491.52 2584.48 5890.21 3692.82 5491.63 5895.92 3196.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3591.40 3892.75 2596.01 3395.88 4593.73 4189.00 3589.89 4590.31 1681.28 6088.85 4091.45 2492.88 5394.24 1596.00 2896.76 31
LS3D85.96 8084.37 9787.81 7094.13 5193.27 8790.26 7289.00 3584.91 6972.84 11271.74 10972.47 12487.45 6089.53 10789.09 11293.20 15189.60 152
CPTT-MVS91.39 3890.95 4291.91 3395.06 4095.24 5695.02 3188.98 3791.02 3686.71 3584.89 4488.58 4491.60 2390.82 8889.67 9894.08 12396.45 37
CSCG92.76 2793.16 2892.29 3096.30 2997.74 794.67 3488.98 3792.46 2489.73 2186.67 3892.15 1888.69 4592.26 6092.92 4595.40 6397.89 10
CDPH-MVS91.14 4092.01 3390.11 4496.18 3096.18 4094.89 3288.80 3988.76 4977.88 8889.18 3187.71 4887.29 6393.13 4893.31 3995.62 5295.84 48
OPM-MVS87.56 7085.80 8689.62 5293.90 5494.09 7594.12 3788.18 4075.40 13477.30 9176.41 8277.93 9588.79 4392.20 6290.82 6995.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet89.60 5189.91 4989.24 5796.45 2893.61 8192.95 4888.03 4185.74 6283.36 5587.29 3783.05 6580.98 10192.22 6191.85 5693.69 14195.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.92.71 2993.91 2191.30 3691.96 7596.00 4293.43 4287.94 4292.53 2386.27 4193.57 1691.94 1991.44 2693.29 4692.89 4696.78 897.15 22
PGM-MVS92.76 2793.03 2992.45 2997.03 1496.67 2995.73 2487.92 4390.15 4486.53 3792.97 2188.33 4591.69 2293.62 4393.03 4295.83 3996.41 39
3Dnovator+86.06 491.60 3790.86 4492.47 2896.00 3496.50 3694.70 3387.83 4490.49 4089.92 1974.68 9389.35 3790.66 3394.02 3394.14 1795.67 4996.85 28
PHI-MVS92.05 3393.74 2290.08 4594.96 4297.06 1493.11 4687.71 4590.71 3880.78 7292.40 2391.03 2387.68 5694.32 3094.48 1396.21 2496.16 43
HQP-MVS89.13 5589.58 5388.60 6493.53 5793.67 7993.29 4487.58 4688.53 5075.50 9387.60 3580.32 7787.07 6490.66 9489.95 9094.62 10296.35 42
CANet91.33 3991.46 3791.18 3795.01 4196.71 2593.77 3987.39 4787.72 5387.26 3281.77 5589.73 3387.32 6294.43 2793.86 2296.31 1996.02 46
PLCcopyleft83.76 988.61 5986.83 7690.70 4094.22 5092.63 9991.50 6087.19 4889.16 4786.87 3475.51 8880.87 7489.98 3890.01 9989.20 11094.41 11590.45 149
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
abl_690.66 4194.65 4896.27 3892.21 5186.94 4990.23 4286.38 3885.50 4192.96 1088.37 4995.40 6395.46 57
ACMM83.27 1087.68 6986.09 8289.54 5393.26 5992.19 10591.43 6186.74 5086.02 6082.85 5975.63 8775.14 10588.41 4790.68 9389.99 8794.59 10392.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030490.88 4191.35 3990.34 4393.91 5396.79 2494.49 3586.54 5186.57 5882.85 5981.68 5789.70 3487.57 5894.64 2293.93 2196.67 1296.15 44
MVS_111021_HR90.56 4291.29 4089.70 5194.71 4795.63 5091.81 5886.38 5287.53 5481.29 6787.96 3385.43 5487.69 5593.90 3692.93 4496.33 1795.69 51
OMC-MVS90.23 4790.40 4790.03 4793.45 5895.29 5391.89 5786.34 5393.25 2184.94 4781.72 5686.65 5188.90 4191.69 6890.27 8194.65 10093.95 83
DELS-MVS89.71 5089.68 5289.74 4993.75 5596.22 3993.76 4085.84 5482.53 7985.05 4678.96 7184.24 5984.25 7894.91 1494.91 495.78 4496.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA88.40 6087.00 7490.03 4793.73 5694.28 7189.56 8185.81 5591.87 3087.55 3069.53 12381.49 7189.23 3989.45 10888.59 12094.31 11993.82 86
MSDG83.87 10181.02 12387.19 7592.17 7489.80 13589.15 8985.72 5680.61 10279.24 7966.66 13768.75 14182.69 8587.95 12487.44 13094.19 12185.92 181
TSAR-MVS + COLMAP88.40 6089.09 5587.60 7392.72 7093.92 7892.21 5185.57 5791.73 3173.72 10491.75 2473.22 12287.64 5791.49 7089.71 9793.73 13991.82 128
3Dnovator85.17 590.48 4389.90 5091.16 3894.88 4495.74 4993.82 3885.36 5889.28 4687.81 2974.34 9687.40 4988.56 4693.07 4993.74 2696.53 1395.71 50
ACMP83.90 888.32 6388.06 6388.62 6392.18 7393.98 7791.28 6485.24 5986.69 5781.23 6885.62 4075.13 10687.01 6689.83 10189.77 9594.79 9095.43 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6488.55 5787.89 6992.84 6993.66 8093.35 4385.22 6085.77 6174.03 10386.60 3976.29 10286.62 6891.20 7490.58 7795.29 7195.75 49
QAPM89.49 5289.58 5389.38 5594.73 4695.94 4392.35 5085.00 6185.69 6380.03 7676.97 8187.81 4787.87 5392.18 6492.10 5496.33 1796.40 41
TAPA-MVS84.37 788.91 5688.93 5688.89 5993.00 6694.85 6592.00 5484.84 6291.68 3380.05 7579.77 6684.56 5788.17 5190.11 9889.00 11695.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR90.14 4890.89 4389.26 5693.23 6094.05 7690.43 6984.65 6390.16 4384.52 5090.14 2983.80 6187.99 5292.50 5890.92 6794.74 9494.70 70
test111184.86 9284.21 9885.61 8691.75 7895.14 5988.63 10184.57 6481.88 8771.21 11565.66 14568.51 14281.19 9893.74 4192.68 5096.31 1991.86 127
test250685.20 8784.11 9986.47 7891.84 7695.28 5489.18 8684.49 6582.59 7775.34 9774.66 9458.07 18981.68 9493.76 3892.71 4896.28 2291.71 130
ECVR-MVScopyleft85.25 8684.47 9586.16 8191.84 7695.28 5489.18 8684.49 6582.59 7773.49 10666.12 13969.28 13881.68 9493.76 3892.71 4896.28 2291.58 137
UA-Net86.07 7887.78 6884.06 10592.85 6895.11 6087.73 11184.38 6773.22 15473.18 10879.99 6589.22 3871.47 17593.22 4793.03 4294.76 9390.69 144
UniMVSNet_NR-MVSNet81.87 11981.33 11982.50 12185.31 15191.30 11085.70 13984.25 6875.89 13064.21 15266.95 13664.65 15480.22 11387.07 13289.18 11195.27 7494.29 76
ACMH78.52 1481.86 12080.45 13183.51 11490.51 9591.22 11185.62 14284.23 6970.29 17162.21 16669.04 12764.05 15684.48 7787.57 12888.45 12394.01 12792.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet80.52 13179.84 14081.33 13584.92 16090.39 12085.53 14484.22 7074.27 14360.68 18164.93 15259.96 17777.48 14286.75 14089.28 10695.12 8193.29 93
Anonymous20240521182.75 10989.58 10792.97 9389.04 9484.13 7178.72 11657.18 18876.64 10183.13 8489.55 10689.92 9193.38 14994.28 79
EPNet_dtu81.98 11883.82 10279.83 15194.10 5285.97 17687.29 11884.08 7280.61 10259.96 18381.62 5977.19 9962.91 19987.21 13086.38 14990.66 18187.77 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs87.45 7187.15 7387.79 7290.15 10394.22 7289.96 7483.93 7385.08 6780.91 6975.81 8677.88 9686.08 7091.86 6790.86 6895.74 4694.37 74
PVSNet_BlendedMVS88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
PVSNet_Blended88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
baseline184.54 9584.43 9684.67 9390.62 9091.16 11288.63 10183.75 7679.78 10771.16 11675.14 9074.10 11277.84 14091.56 6990.67 7496.04 2788.58 158
CS-MVS-test90.29 4590.96 4189.51 5493.18 6195.87 4689.18 8683.72 7788.32 5184.82 4884.89 4485.23 5590.25 3594.04 3192.66 5195.94 3095.69 51
CS-MVS90.34 4490.58 4690.07 4693.11 6295.82 4790.57 6783.62 7887.07 5685.35 4382.98 4883.47 6291.37 2894.94 1393.37 3896.37 1596.41 39
FC-MVSNet-train85.18 8885.31 9085.03 9190.67 8991.62 10987.66 11283.61 7979.75 10874.37 10178.69 7271.21 12878.91 13291.23 7289.96 8994.96 8494.69 71
UGNet85.90 8188.23 6183.18 11588.96 11394.10 7487.52 11383.60 8081.66 9077.90 8780.76 6283.19 6466.70 19291.13 8190.71 7394.39 11696.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS88.39 6288.44 5988.33 6894.90 4395.06 6190.51 6883.59 8185.27 6479.07 8077.13 7982.89 6687.70 5492.19 6392.32 5394.23 12094.20 81
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS81.20 12880.30 13282.25 12484.98 15890.94 11485.70 13983.58 8275.74 13164.21 15265.30 14859.60 18280.22 11386.89 13589.31 10594.77 9294.29 76
NR-MVSNet80.25 13479.98 13880.56 14485.20 15390.94 11485.65 14183.58 8275.74 13161.36 17665.30 14856.75 19672.38 17188.46 11988.80 11895.16 7793.87 84
Baseline_NR-MVSNet79.84 13878.37 15581.55 13284.98 15886.66 17285.06 14683.49 8475.57 13363.31 15958.22 18760.97 17278.00 13886.89 13587.13 13494.47 11193.15 95
OpenMVScopyleft82.53 1187.71 6886.84 7588.73 6194.42 4995.06 6191.02 6583.49 8482.50 8182.24 6467.62 13485.48 5385.56 7391.19 7591.30 6195.67 4994.75 68
ACMH+79.08 1381.84 12180.06 13683.91 10789.92 10590.62 11686.21 13483.48 8673.88 14765.75 14366.38 13865.30 15284.63 7685.90 15387.25 13393.45 14791.13 142
ETV-MVS89.22 5489.76 5188.60 6491.60 7994.61 6989.48 8383.46 8785.20 6681.58 6582.75 5082.59 6788.80 4294.57 2493.28 4096.68 1095.31 59
PVSNet_Blended_VisFu87.40 7287.80 6786.92 7692.86 6795.40 5188.56 10483.45 8879.55 11082.26 6274.49 9584.03 6079.24 13192.97 5291.53 6095.15 7896.65 35
Anonymous2023121184.42 9983.02 10586.05 8288.85 11492.70 9788.92 9783.40 8979.99 10578.31 8355.83 19278.92 8983.33 8289.06 11289.76 9693.50 14694.90 64
COLMAP_ROBcopyleft76.78 1580.50 13278.49 15182.85 11790.96 8789.65 14186.20 13583.40 8977.15 12466.54 13862.27 16165.62 15177.89 13985.23 16384.70 17092.11 16384.83 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet (Re)81.22 12781.08 12281.39 13385.35 15091.76 10884.93 14882.88 9176.13 12965.02 14964.94 15163.09 16075.17 15587.71 12789.04 11494.97 8394.88 65
EIA-MVS87.94 6788.05 6487.81 7091.46 8095.00 6388.67 9882.81 9282.53 7980.81 7180.04 6480.20 7887.48 5992.58 5791.61 5995.63 5194.36 75
thres100view90082.55 11481.01 12584.34 9790.30 10192.27 10389.04 9482.77 9375.14 13569.56 12365.72 14263.13 15879.62 12689.97 10089.26 10794.73 9591.61 136
tfpn200view982.86 10981.46 11684.48 9590.30 10193.09 8989.05 9382.71 9475.14 13569.56 12365.72 14263.13 15880.38 11291.15 7889.51 10194.91 8692.50 118
thres40082.68 11281.15 12184.47 9690.52 9392.89 9488.95 9682.71 9474.33 14269.22 12865.31 14762.61 16480.63 10790.96 8689.50 10294.79 9092.45 120
thres600view782.53 11581.02 12384.28 10090.61 9193.05 9088.57 10382.67 9674.12 14568.56 13165.09 15062.13 16980.40 11191.15 7889.02 11594.88 8792.59 112
thres20082.77 11181.25 12084.54 9490.38 9893.05 9089.13 9082.67 9674.40 14169.53 12565.69 14463.03 16180.63 10791.15 7889.42 10494.88 8792.04 124
DI_MVS_plusplus_trai86.41 7685.54 8987.42 7489.24 10993.13 8892.16 5382.65 9882.30 8380.75 7368.30 13080.41 7685.01 7590.56 9590.07 8594.70 9894.01 82
TDRefinement79.05 15077.05 16981.39 13388.45 11789.00 15486.92 12682.65 9874.21 14464.41 15159.17 18059.16 18574.52 16185.23 16385.09 16591.37 17387.51 170
canonicalmvs89.36 5389.92 4888.70 6291.38 8195.92 4491.81 5882.61 10090.37 4182.73 6182.09 5279.28 8788.30 5091.17 7693.59 2895.36 6697.04 26
IS_MVSNet86.18 7788.18 6283.85 10891.02 8594.72 6887.48 11482.46 10181.05 9770.28 12076.98 8082.20 7076.65 14793.97 3493.38 3695.18 7594.97 63
EPP-MVSNet86.55 7487.76 6985.15 9090.52 9394.41 7087.24 12082.32 10281.79 8973.60 10578.57 7382.41 6882.07 9291.23 7290.39 7995.14 7995.48 56
CLD-MVS88.66 5788.52 5888.82 6091.37 8294.22 7292.82 4982.08 10388.27 5285.14 4581.86 5378.53 9185.93 7291.17 7690.61 7595.55 5795.00 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Vis-MVSNet (Re-imp)83.65 10486.81 7779.96 14990.46 9692.71 9684.84 15082.00 10480.93 9962.44 16576.29 8382.32 6965.54 19592.29 5991.66 5794.49 11091.47 139
PatchMatch-RL83.34 10681.36 11885.65 8490.33 10089.52 14384.36 15481.82 10580.87 10179.29 7874.04 9762.85 16386.05 7188.40 12087.04 13792.04 16486.77 174
UniMVSNet_ETH3D79.24 14876.47 17482.48 12285.66 14690.97 11386.08 13681.63 10664.48 19568.94 13054.47 19557.65 19178.83 13385.20 16688.91 11793.72 14093.60 90
diffmvs86.52 7586.76 7886.23 8088.31 11992.63 9989.58 8081.61 10786.14 5980.26 7479.00 7077.27 9883.58 7988.94 11389.06 11394.05 12594.29 76
DROMVSNet89.96 4990.77 4589.01 5890.54 9295.15 5891.34 6281.43 10885.27 6483.08 5682.83 4987.22 5090.97 3194.79 1893.38 3696.73 996.71 34
IB-MVS79.09 1282.60 11382.19 11183.07 11691.08 8493.55 8280.90 18181.35 10976.56 12680.87 7064.81 15369.97 13468.87 18285.64 15690.06 8695.36 6694.74 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal77.46 16674.86 19180.49 14586.34 13988.92 15584.33 15581.26 11061.39 20361.70 17351.99 20253.66 20874.84 15888.63 11687.38 13294.50 10892.08 122
TransMVSNet (Re)76.57 17375.16 19078.22 16585.60 14787.24 16882.46 16681.23 11159.80 20759.05 18957.07 18959.14 18666.60 19388.09 12286.82 13994.37 11787.95 167
test_part183.23 10880.55 13086.35 7988.60 11690.61 11790.78 6681.13 11270.89 16583.01 5755.72 19374.60 10882.19 9087.79 12589.26 10792.39 16095.01 61
Vis-MVSNetpermissive84.38 10086.68 7981.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7569.98 17992.68 5591.90 5595.33 6994.58 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet85.88 8286.17 8085.54 8789.10 11289.85 13389.34 8480.70 11483.04 7578.08 8676.19 8479.00 8882.42 8989.67 10490.30 8093.63 14495.12 60
WR-MVS76.63 17278.02 16075.02 18684.14 16889.76 13778.34 19480.64 11569.56 17252.32 20061.26 16561.24 17160.66 20084.45 17487.07 13593.99 12892.77 105
ET-MVSNet_ETH3D84.65 9385.58 8883.56 11274.99 21392.62 10190.29 7180.38 11682.16 8473.01 11183.41 4671.10 12987.05 6587.77 12690.17 8395.62 5291.82 128
GBi-Net84.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
test184.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
FMVSNet384.44 9884.64 9484.21 10184.32 16490.13 12689.85 7680.37 11781.17 9375.50 9369.63 11979.69 8479.62 12689.72 10390.52 7895.59 5591.58 137
CDS-MVSNet81.63 12582.09 11281.09 13887.21 13190.28 12287.46 11680.33 12069.06 17570.66 11771.30 11073.87 11467.99 18589.58 10589.87 9292.87 15690.69 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+85.33 8585.08 9185.63 8589.69 10693.42 8589.90 7580.31 12179.32 11172.48 11473.52 10274.03 11386.55 6990.99 8489.98 8894.83 8994.27 80
FMVSNet283.87 10183.73 10384.05 10684.20 16589.95 12889.70 7780.21 12279.17 11474.89 9865.91 14077.49 9779.75 12390.87 8791.00 6695.52 5991.71 130
MVS_Test86.93 7387.24 7286.56 7790.10 10493.47 8390.31 7080.12 12383.55 7378.12 8479.58 6779.80 8285.45 7490.17 9790.59 7695.29 7193.53 92
thisisatest053085.15 8985.86 8484.33 9889.19 11192.57 10287.22 12180.11 12482.15 8574.41 10078.15 7573.80 11679.90 11990.99 8489.58 9995.13 8093.75 88
tttt051785.11 9085.81 8584.30 9989.24 10992.68 9887.12 12580.11 12481.98 8674.31 10278.08 7673.57 11879.90 11991.01 8289.58 9995.11 8293.77 87
DTE-MVSNet75.14 18975.44 18874.80 18883.18 17787.19 16978.25 19680.11 12466.05 18748.31 20760.88 17054.67 20364.54 19682.57 18686.17 15294.43 11490.53 148
PEN-MVS76.02 18276.07 17875.95 18183.17 17887.97 16279.65 18580.07 12766.57 18551.45 20260.94 16955.47 20166.81 19182.72 18486.80 14094.59 10392.03 125
MVSTER86.03 7986.12 8185.93 8388.62 11589.93 13189.33 8579.91 12881.87 8881.35 6681.07 6174.91 10780.66 10692.13 6590.10 8495.68 4892.80 104
v2v48279.84 13878.07 15881.90 12783.75 17090.21 12587.17 12279.85 12970.65 16765.93 14261.93 16360.07 17680.82 10285.25 16286.71 14193.88 13391.70 134
CP-MVSNet76.36 17976.41 17576.32 17882.73 18788.64 15779.39 18879.62 13067.21 18153.70 19660.72 17155.22 20267.91 18783.52 18086.34 15094.55 10693.19 94
FMVSNet181.64 12480.61 12882.84 11882.36 19089.20 14988.67 9879.58 13170.79 16672.63 11358.95 18372.26 12579.34 12990.73 9090.72 7094.47 11191.62 135
PS-CasMVS75.90 18475.86 18375.96 18082.59 18888.46 16079.23 19179.56 13266.00 18852.77 19859.48 17954.35 20667.14 19083.37 18186.23 15194.47 11193.10 96
RPSCF83.46 10583.36 10483.59 11187.75 12287.35 16784.82 15179.46 13383.84 7278.12 8482.69 5179.87 8082.60 8882.47 18781.13 19088.78 19286.13 179
pm-mvs178.51 15877.75 16379.40 15284.83 16189.30 14683.55 16179.38 13462.64 19963.68 15758.73 18564.68 15370.78 17889.79 10287.84 12694.17 12291.28 141
WR-MVS_H75.84 18576.93 17174.57 19182.86 18489.50 14478.34 19479.36 13566.90 18352.51 19960.20 17559.71 17959.73 20183.61 17985.77 15994.65 10092.84 102
v14878.59 15676.84 17280.62 14383.61 17389.16 15083.65 16079.24 13669.38 17369.34 12759.88 17760.41 17575.19 15483.81 17884.63 17192.70 15890.63 146
CHOSEN 1792x268882.16 11680.91 12683.61 11091.14 8392.01 10689.55 8279.15 13779.87 10670.29 11952.51 20172.56 12381.39 9688.87 11588.17 12490.15 18592.37 121
GeoE84.62 9483.98 10185.35 8989.34 10892.83 9588.34 10578.95 13879.29 11277.16 9268.10 13174.56 10983.40 8189.31 11089.23 10994.92 8594.57 73
baseline282.80 11082.86 10882.73 12087.68 12590.50 11984.92 14978.93 13978.07 12173.06 10975.08 9169.77 13577.31 14388.90 11486.94 13894.50 10890.74 143
USDC80.69 13079.89 13981.62 13186.48 13789.11 15286.53 13178.86 14081.15 9663.48 15872.98 10459.12 18781.16 9987.10 13185.01 16693.23 15084.77 186
FC-MVSNet-test76.53 17581.62 11570.58 20084.99 15785.73 17974.81 20278.85 14177.00 12539.13 21875.90 8573.50 11954.08 20786.54 14585.99 15791.65 16986.68 175
pmmvs479.99 13578.08 15782.22 12583.04 18087.16 17084.95 14778.80 14278.64 11774.53 9964.61 15459.41 18379.45 12884.13 17684.54 17392.53 15988.08 164
IterMVS-LS83.28 10782.95 10783.65 10988.39 11888.63 15886.80 12978.64 14376.56 12673.43 10772.52 10775.35 10480.81 10386.43 14888.51 12293.84 13592.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS79.52 14379.71 14379.30 15385.68 14590.36 12184.55 15278.44 14470.47 17057.87 19168.52 12961.38 17076.21 14989.40 10987.89 12593.04 15489.96 151
v114479.38 14777.83 16181.18 13783.62 17290.23 12387.15 12478.35 14569.13 17464.02 15560.20 17559.41 18380.14 11786.78 13886.57 14593.81 13792.53 117
HyFIR lowres test81.62 12679.45 14684.14 10491.00 8693.38 8688.27 10678.19 14676.28 12870.18 12148.78 20573.69 11783.52 8087.05 13387.83 12893.68 14289.15 155
TinyColmap76.73 17073.95 19479.96 14985.16 15585.64 18182.34 16978.19 14670.63 16862.06 16860.69 17249.61 21380.81 10385.12 16783.69 17891.22 17782.27 194
Effi-MVS+-dtu82.05 11781.76 11382.38 12387.72 12390.56 11886.90 12878.05 14873.85 14866.85 13771.29 11171.90 12682.00 9386.64 14385.48 16292.76 15792.58 113
test-LLR79.47 14579.84 14079.03 15587.47 12782.40 20181.24 17878.05 14873.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
test0.0.03 176.03 18178.51 15073.12 19687.47 12785.13 18776.32 19978.05 14873.19 15650.98 20570.64 11369.28 13855.53 20385.33 16184.38 17490.39 18381.63 197
v119278.94 15177.33 16580.82 14083.25 17689.90 13286.91 12777.72 15168.63 17862.61 16459.17 18057.53 19280.62 10986.89 13586.47 14793.79 13892.75 107
Fast-Effi-MVS+83.77 10382.98 10684.69 9287.98 12091.87 10788.10 10877.70 15278.10 12073.04 11069.13 12568.51 14286.66 6790.49 9689.85 9394.67 9992.88 101
v14419278.81 15277.22 16780.67 14282.95 18189.79 13686.40 13277.42 15368.26 18063.13 16059.50 17858.13 18880.08 11885.93 15286.08 15494.06 12492.83 103
v879.90 13778.39 15481.66 13083.97 16989.81 13487.16 12377.40 15471.49 16067.71 13361.24 16662.49 16579.83 12285.48 16086.17 15293.89 13292.02 126
LTVRE_ROB74.41 1675.78 18674.72 19277.02 17285.88 14189.22 14882.44 16877.17 15550.57 21745.45 21165.44 14652.29 21081.25 9785.50 15987.42 13189.94 18792.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192078.57 15776.99 17080.41 14782.93 18289.63 14286.38 13377.14 15668.31 17961.80 17258.89 18456.79 19580.19 11686.50 14786.05 15694.02 12692.76 106
pmmvs674.83 19072.89 19777.09 17082.11 19187.50 16680.88 18276.97 15752.79 21561.91 17146.66 20760.49 17369.28 18186.74 14185.46 16391.39 17290.56 147
thisisatest051579.76 14080.59 12978.80 15784.40 16388.91 15679.48 18776.94 15872.29 15867.33 13567.82 13365.99 14970.80 17788.50 11887.84 12693.86 13492.75 107
v1079.62 14178.19 15681.28 13683.73 17189.69 13987.27 11976.86 15970.50 16965.46 14460.58 17360.47 17480.44 11086.91 13486.63 14493.93 12992.55 115
v124078.15 15976.53 17380.04 14882.85 18589.48 14585.61 14376.77 16067.05 18261.18 17958.37 18656.16 19979.89 12186.11 15186.08 15493.92 13092.47 119
V4279.59 14278.43 15380.94 13982.79 18689.71 13886.66 13076.73 16171.38 16167.42 13461.01 16862.30 16778.39 13585.56 15886.48 14693.65 14392.60 111
v7n77.22 16776.23 17778.38 16481.89 19389.10 15382.24 17276.36 16265.96 18961.21 17856.56 19055.79 20075.07 15786.55 14486.68 14293.52 14592.95 100
SixPastTwentyTwo76.02 18275.72 18476.36 17783.38 17487.54 16575.50 20176.22 16365.50 19257.05 19270.64 11353.97 20774.54 16080.96 19282.12 18791.44 17189.35 154
MDA-MVSNet-bldmvs66.22 20564.49 20868.24 20361.67 21782.11 20370.07 21076.16 16459.14 20947.94 20854.35 19635.82 22367.33 18964.94 21575.68 20486.30 20579.36 204
test20.0368.31 20370.05 20466.28 20782.41 18980.84 20567.35 21276.11 16558.44 21040.80 21753.77 19854.54 20442.28 21483.07 18281.96 18988.73 19377.76 208
pmmvs-eth3d74.32 19371.96 19977.08 17177.33 20782.71 19778.41 19376.02 16666.65 18465.98 14154.23 19749.02 21573.14 17082.37 18882.69 18491.61 17086.05 180
Anonymous2023120670.80 19970.59 20371.04 19981.60 19582.49 20074.64 20375.87 16764.17 19649.27 20644.85 21153.59 20954.68 20683.07 18282.34 18690.17 18483.65 189
baseline84.89 9186.06 8383.52 11387.25 13089.67 14087.76 11075.68 16884.92 6878.40 8280.10 6380.98 7380.20 11586.69 14287.05 13691.86 16792.99 98
CANet_DTU85.43 8487.72 7182.76 11990.95 8893.01 9289.99 7375.46 16982.67 7664.91 15083.14 4780.09 7980.68 10592.03 6691.03 6494.57 10592.08 122
MS-PatchMatch81.79 12281.44 11782.19 12690.35 9989.29 14788.08 10975.36 17077.60 12269.00 12964.37 15678.87 9077.14 14688.03 12385.70 16093.19 15286.24 178
CVMVSNet76.70 17178.46 15274.64 19083.34 17584.48 18981.83 17474.58 17168.88 17651.23 20469.77 11870.05 13367.49 18884.27 17583.81 17689.38 18987.96 166
testgi71.92 19874.20 19369.27 20284.58 16283.06 19373.40 20574.39 17264.04 19746.17 21068.90 12857.15 19448.89 21184.07 17783.08 18188.18 19579.09 206
pmmvs576.93 16976.33 17677.62 16781.97 19288.40 16181.32 17774.35 17365.42 19361.42 17563.07 15957.95 19073.23 16985.60 15785.35 16493.41 14888.55 159
MIMVSNet165.00 20666.24 20763.55 20958.41 22080.01 20869.00 21174.03 17455.81 21341.88 21536.81 21649.48 21447.89 21281.32 19182.40 18590.08 18677.88 207
EG-PatchMatch MVS76.40 17875.47 18777.48 16885.86 14390.22 12482.45 16773.96 17559.64 20859.60 18552.75 20062.20 16868.44 18488.23 12187.50 12994.55 10687.78 168
CMPMVSbinary56.49 1773.84 19571.73 20176.31 17985.20 15385.67 18075.80 20073.23 17662.26 20065.40 14553.40 19959.70 18071.77 17480.25 19579.56 19386.45 20481.28 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FA-MVS(training)85.65 8385.79 8785.48 8890.44 9793.47 8388.66 10073.11 17783.34 7482.26 6271.79 10878.39 9283.14 8391.00 8389.47 10395.28 7393.06 97
anonymousdsp77.94 16179.00 14776.71 17479.03 20287.83 16379.58 18672.87 17865.80 19058.86 19065.82 14162.48 16675.99 15086.77 13988.66 11993.92 13095.68 53
pmnet_mix0271.95 19771.83 20072.10 19781.40 19780.63 20773.78 20472.85 17970.90 16454.89 19462.17 16257.42 19362.92 19876.80 20573.98 20986.74 20380.87 201
Fast-Effi-MVS+-dtu79.95 13680.69 12779.08 15486.36 13889.14 15185.85 13772.28 18072.85 15759.32 18670.43 11768.42 14477.57 14186.14 15086.44 14893.11 15391.39 140
IterMVS-SCA-FT79.41 14680.20 13478.49 16285.88 14186.26 17483.95 15771.94 18173.55 15261.94 16970.48 11670.50 13175.23 15385.81 15584.61 17291.99 16690.18 150
PM-MVS74.17 19473.10 19575.41 18376.07 21082.53 19977.56 19771.69 18271.04 16261.92 17061.23 16747.30 21674.82 15981.78 19079.80 19190.42 18288.05 165
TAMVS76.42 17677.16 16875.56 18283.05 17985.55 18280.58 18371.43 18365.40 19461.04 18067.27 13569.22 14067.99 18584.88 17084.78 16989.28 19083.01 192
N_pmnet66.85 20466.63 20567.11 20678.73 20374.66 21470.53 20971.07 18466.46 18646.54 20951.68 20351.91 21155.48 20474.68 20972.38 21080.29 21574.65 211
new-patchmatchnet63.80 20763.31 20964.37 20876.49 20875.99 21263.73 21570.99 18557.27 21143.08 21345.86 20943.80 21745.13 21373.20 21070.68 21386.80 20276.34 210
CostFormer80.94 12980.21 13381.79 12887.69 12488.58 15987.47 11570.66 18680.02 10477.88 8873.03 10371.40 12778.24 13679.96 19679.63 19288.82 19188.84 156
tpm cat177.78 16375.28 18980.70 14187.14 13285.84 17885.81 13870.40 18777.44 12378.80 8163.72 15764.01 15776.55 14875.60 20875.21 20685.51 20885.12 183
MDTV_nov1_ep1379.14 14979.49 14578.74 15985.40 14986.89 17184.32 15670.29 18878.85 11569.42 12675.37 8973.29 12175.64 15280.61 19379.48 19487.36 19881.91 195
FMVSNet575.50 18876.07 17874.83 18776.16 20981.19 20481.34 17670.21 18973.20 15561.59 17458.97 18268.33 14568.50 18385.87 15485.85 15891.18 17879.11 205
dps78.02 16075.94 18280.44 14686.06 14086.62 17382.58 16569.98 19075.14 13577.76 9069.08 12659.93 17878.47 13479.47 19877.96 19987.78 19683.40 190
EU-MVSNet69.98 20172.30 19867.28 20575.67 21279.39 20973.12 20669.94 19163.59 19842.80 21462.93 16056.71 19755.07 20579.13 20178.55 19787.06 20185.82 182
IterMVS78.79 15379.71 14377.71 16685.26 15285.91 17784.54 15369.84 19273.38 15361.25 17770.53 11570.35 13274.43 16285.21 16583.80 17790.95 17988.77 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMVScopyleft50.48 1855.81 21251.93 21460.33 21172.90 21449.34 22048.78 21969.51 19343.49 22054.25 19536.26 21741.04 22239.71 21665.07 21460.70 21576.85 21767.58 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS63.63 20860.08 21367.78 20480.01 20071.50 21672.88 20769.41 19461.82 20253.11 19745.12 21042.11 22050.86 20966.69 21363.84 21480.41 21469.46 214
SCA79.51 14480.15 13578.75 15886.58 13687.70 16483.07 16368.53 19581.31 9266.40 13973.83 9875.38 10379.30 13080.49 19479.39 19588.63 19482.96 193
CR-MVSNet78.71 15478.86 14878.55 16185.85 14485.15 18582.30 17068.23 19674.71 13865.37 14664.39 15569.59 13777.18 14485.10 16884.87 16792.34 16288.21 162
Patchmtry85.54 18382.30 17068.23 19665.37 146
PatchmatchNetpermissive78.67 15578.85 14978.46 16386.85 13586.03 17583.77 15968.11 19880.88 10066.19 14072.90 10573.40 12078.06 13779.25 20077.71 20087.75 19781.75 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet74.69 19175.60 18673.62 19376.02 21185.31 18481.21 18067.43 19971.02 16359.07 18854.48 19464.07 15566.14 19486.52 14686.64 14391.83 16881.17 199
PMMVS81.65 12384.05 10078.86 15678.56 20482.63 19883.10 16267.22 20081.39 9170.11 12284.91 4379.74 8382.12 9187.31 12985.70 16092.03 16586.67 177
tpm76.30 18076.05 18076.59 17586.97 13383.01 19583.83 15867.06 20171.83 15963.87 15669.56 12262.88 16273.41 16879.79 19778.59 19684.41 20986.68 175
CHOSEN 280x42080.28 13381.66 11478.67 16082.92 18379.24 21085.36 14566.79 20278.11 11970.32 11875.03 9279.87 8081.09 10089.07 11183.16 18085.54 20787.17 171
EPMVS77.53 16578.07 15876.90 17386.89 13484.91 18882.18 17366.64 20381.00 9864.11 15472.75 10669.68 13674.42 16379.36 19978.13 19887.14 20080.68 202
MDTV_nov1_ep13_2view73.21 19672.91 19673.56 19480.01 20084.28 19178.62 19266.43 20468.64 17759.12 18760.39 17459.69 18169.81 18078.82 20277.43 20187.36 19881.11 200
tpmrst76.55 17475.99 18177.20 16987.32 12983.05 19482.86 16465.62 20578.61 11867.22 13669.19 12465.71 15075.87 15176.75 20675.33 20584.31 21083.28 191
gm-plane-assit70.29 20070.65 20269.88 20185.03 15678.50 21158.41 21865.47 20650.39 21840.88 21649.60 20450.11 21275.14 15691.43 7189.78 9494.32 11884.73 187
RPMNet77.07 16877.63 16476.42 17685.56 14885.15 18581.37 17565.27 20774.71 13860.29 18263.71 15866.59 14873.64 16582.71 18582.12 18792.38 16188.39 160
MVS-HIRNet68.83 20266.39 20671.68 19877.58 20675.52 21366.45 21365.05 20862.16 20162.84 16144.76 21256.60 19871.96 17378.04 20375.06 20786.18 20672.56 212
PatchT76.42 17677.81 16274.80 18878.46 20584.30 19071.82 20865.03 20973.89 14665.37 14661.58 16466.70 14777.18 14485.10 16884.87 16790.94 18088.21 162
gg-mvs-nofinetune75.64 18777.26 16673.76 19287.92 12192.20 10487.32 11764.67 21051.92 21635.35 22046.44 20877.05 10071.97 17292.64 5691.02 6595.34 6889.53 153
Gipumacopyleft49.17 21347.05 21651.65 21359.67 21948.39 22141.98 22263.47 21155.64 21433.33 22214.90 22013.78 22741.34 21569.31 21272.30 21170.11 21855.00 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ADS-MVSNet74.53 19275.69 18573.17 19581.57 19680.71 20679.27 19063.03 21279.27 11359.94 18467.86 13268.32 14671.08 17677.33 20476.83 20284.12 21279.53 203
TESTMET0.1,177.78 16379.84 14075.38 18480.86 19982.40 20181.24 17862.72 21373.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
test-mter77.79 16280.02 13775.18 18581.18 19882.85 19680.52 18462.03 21473.62 15162.16 16773.55 10173.83 11573.81 16484.67 17183.34 17991.37 17388.31 161
new_pmnet59.28 21061.47 21256.73 21261.66 21868.29 21859.57 21754.91 21560.83 20434.38 22144.66 21343.65 21849.90 21071.66 21171.56 21279.94 21669.67 213
E-PMN31.40 21626.80 21936.78 21551.39 22229.96 22420.20 22554.17 21625.93 22312.75 22514.73 2218.58 22934.10 21927.36 22137.83 22048.07 22343.18 221
EMVS30.49 21825.44 22036.39 21651.47 22129.89 22520.17 22654.00 21726.49 22212.02 22613.94 2238.84 22834.37 21825.04 22234.37 22146.29 22439.53 222
pmmvs361.89 20961.74 21162.06 21064.30 21670.83 21764.22 21452.14 21848.78 21944.47 21241.67 21441.70 22163.03 19776.06 20776.02 20384.18 21177.14 209
PMMVS241.68 21544.74 21738.10 21446.97 22352.32 21940.63 22348.08 21935.51 2217.36 22726.86 21924.64 22516.72 22155.24 21859.03 21668.85 21959.59 218
MVEpermissive30.17 1930.88 21733.52 21827.80 22023.78 22539.16 22318.69 22746.90 22021.88 22415.39 22414.37 2227.31 23024.41 22041.63 22056.22 21737.64 22554.07 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft48.31 22248.03 22026.08 22156.42 21225.77 22347.51 20631.31 22451.30 20848.49 21953.61 22161.52 216
test_method41.78 21448.10 21534.42 21710.74 22619.78 22744.64 22117.73 22259.83 20638.67 21935.82 21854.41 20534.94 21762.87 21643.13 21959.81 22060.82 217
tmp_tt32.73 21843.96 22421.15 22626.71 2248.99 22365.67 19151.39 20356.01 19142.64 21911.76 22256.60 21750.81 21853.55 222
testmvs1.03 2191.63 2210.34 2210.09 2280.35 2280.61 2290.16 2241.49 2250.10 2293.15 2240.15 2310.86 2241.32 2231.18 2220.20 2263.76 224
GG-mvs-BLEND57.56 21182.61 11028.34 2190.22 22790.10 12779.37 1890.14 22579.56 1090.40 22871.25 11283.40 630.30 22586.27 14983.87 17589.59 18883.83 188
test1230.87 2201.40 2220.25 2220.03 2290.25 2290.35 2300.08 2261.21 2260.05 2302.84 2250.03 2320.89 2230.43 2241.16 2230.13 2273.87 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def56.08 193
9.1492.16 17
our_test_381.81 19483.96 19276.61 198
ambc61.92 21070.98 21573.54 21563.64 21660.06 20552.23 20138.44 21519.17 22657.12 20282.33 18975.03 20883.21 21384.89 184
MTAPA92.97 291.03 23
MTMP93.14 190.21 31
Patchmatch-RL test8.55 228
XVS93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
X-MVStestdata93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
mPP-MVS97.06 1388.08 46
NP-MVS87.47 55