This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12691.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8993.59 88
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 82
SR-MVS96.58 2690.99 2292.40 13
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12997.63 11
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 11088.54 11494.72 8995.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14897.58 12
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10671.74 10472.47 12087.45 5789.53 10089.09 10593.20 14489.60 145
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11696.45 35
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12777.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 86
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9492.22 5591.85 5093.69 13495.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8987.60 3480.32 7487.07 6190.66 8789.95 8494.62 9596.35 39
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9291.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10394.41 10890.45 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9891.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9692.97 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9393.95 80
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11394.31 11293.82 83
MSDG83.87 9481.02 11687.19 7292.17 7189.80 12889.15 8485.72 5580.61 9579.24 7566.66 13268.75 13682.69 8187.95 11787.44 12394.19 11485.92 174
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9991.75 2373.22 11887.64 5491.49 6489.71 9193.73 13291.82 123
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8395.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9886.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10995.30 6492.57 110
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8794.70 67
UA-Net86.07 7587.78 6584.06 9892.85 6595.11 5487.73 10484.38 6373.22 14773.18 10279.99 6289.22 3771.47 16893.22 4193.03 3994.76 8690.69 137
UniMVSNet_NR-MVSNet81.87 11281.33 11282.50 11485.31 14491.30 10385.70 13284.25 6475.89 12364.21 14566.95 13164.65 14880.22 10687.07 12589.18 10495.27 6794.29 73
ACMH78.52 1481.86 11380.45 12483.51 10790.51 8991.22 10485.62 13584.23 6570.29 16462.21 15969.04 12264.05 15084.48 7487.57 12188.45 11694.01 12092.54 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet80.52 12479.84 13381.33 12884.92 15390.39 11385.53 13784.22 6674.27 13660.68 17464.93 14559.96 17177.48 13586.75 13389.28 9995.12 7493.29 90
Anonymous20240521182.75 10289.58 10092.97 8689.04 8984.13 6778.72 10957.18 18176.64 9783.13 8089.55 9989.92 8593.38 14294.28 76
EPNet_dtu81.98 11183.82 9579.83 14494.10 5185.97 16987.29 11184.08 6880.61 9559.96 17681.62 5577.19 9562.91 19287.21 12386.38 14290.66 17487.77 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 71
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
baseline184.54 8884.43 9184.67 8690.62 8591.16 10588.63 9583.75 7279.78 10071.16 10975.14 8774.10 10877.84 13391.56 6390.67 6896.04 2288.58 151
FC-MVSNet-train85.18 8285.31 8685.03 8490.67 8491.62 10287.66 10583.61 7379.75 10174.37 9678.69 6971.21 12478.91 12591.23 6689.96 8394.96 7794.69 68
UGNet85.90 7888.23 5883.18 10888.96 10694.10 6887.52 10683.60 7481.66 8377.90 8380.76 5983.19 6166.70 18591.13 7590.71 6794.39 10996.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11394.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS81.20 12180.30 12582.25 11784.98 15190.94 10785.70 13283.58 7675.74 12464.21 14565.30 14159.60 17680.22 10686.89 12889.31 9894.77 8594.29 73
NR-MVSNet80.25 12779.98 13180.56 13785.20 14690.94 10785.65 13483.58 7675.74 12461.36 16965.30 14156.75 18972.38 16488.46 11288.80 11195.16 7093.87 81
Baseline_NR-MVSNet79.84 13178.37 14881.55 12584.98 15186.66 16585.06 13983.49 7875.57 12663.31 15258.22 18060.97 16678.00 13186.89 12887.13 12794.47 10493.15 92
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12985.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
ACMH+79.08 1381.84 11480.06 12983.91 10089.92 9890.62 10986.21 12783.48 8073.88 14065.75 13666.38 13365.30 14684.63 7385.90 14687.25 12693.45 14091.13 135
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12492.97 4691.53 5495.15 7196.65 33
Anonymous2023121184.42 9283.02 9886.05 7788.85 10792.70 9088.92 9283.40 8379.99 9878.31 7955.83 18578.92 8683.33 7989.06 10589.76 9093.50 13994.90 61
COLMAP_ROBcopyleft76.78 1580.50 12578.49 14482.85 11090.96 8289.65 13486.20 12883.40 8377.15 11766.54 13162.27 15465.62 14577.89 13285.23 15684.70 16392.11 15684.83 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet (Re)81.22 12081.08 11581.39 12685.35 14391.76 10184.93 14182.88 8576.13 12265.02 14264.94 14463.09 15475.17 14887.71 12089.04 10794.97 7694.88 62
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 72
thres100view90082.55 10781.01 11884.34 9090.30 9492.27 9689.04 8982.77 8775.14 12869.56 11665.72 13663.13 15279.62 11989.97 9389.26 10094.73 8891.61 130
tfpn200view982.86 10281.46 10984.48 8890.30 9493.09 8289.05 8882.71 8875.14 12869.56 11665.72 13663.13 15280.38 10591.15 7289.51 9594.91 7992.50 114
thres40082.68 10581.15 11484.47 8990.52 8792.89 8788.95 9182.71 8874.33 13569.22 12165.31 14062.61 15880.63 10090.96 7989.50 9694.79 8392.45 116
thres600view782.53 10881.02 11684.28 9390.61 8693.05 8388.57 9682.67 9074.12 13868.56 12465.09 14362.13 16380.40 10491.15 7289.02 10894.88 8092.59 108
thres20082.77 10481.25 11384.54 8790.38 9193.05 8389.13 8582.67 9074.40 13469.53 11865.69 13863.03 15580.63 10091.15 7289.42 9794.88 8092.04 120
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10293.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9194.01 79
TDRefinement79.05 14377.05 16281.39 12688.45 11089.00 14786.92 11982.65 9274.21 13764.41 14459.17 17359.16 17974.52 15485.23 15685.09 15891.37 16687.51 163
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
IS_MVSNet86.18 7488.18 5983.85 10191.02 8094.72 6287.48 10782.46 9581.05 9070.28 11376.98 7782.20 6776.65 14093.97 3193.38 3595.18 6894.97 59
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
EPP-MVSNet86.55 7187.76 6685.15 8390.52 8794.41 6487.24 11382.32 9781.79 8273.60 10078.57 7082.41 6582.07 8891.23 6690.39 7395.14 7295.48 52
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Vis-MVSNet (Re-imp)83.65 9786.81 7479.96 14290.46 9092.71 8984.84 14382.00 9980.93 9262.44 15876.29 8082.32 6665.54 18892.29 5391.66 5194.49 10391.47 132
PatchMatch-RL83.34 9981.36 11185.65 7990.33 9389.52 13684.36 14781.82 10080.87 9479.29 7474.04 9362.85 15786.05 6888.40 11387.04 13092.04 15786.77 167
UniMVSNet_ETH3D79.24 14176.47 16782.48 11585.66 13990.97 10686.08 12981.63 10164.48 18868.94 12354.47 18857.65 18478.83 12685.20 15988.91 11093.72 13393.60 87
diffmvs86.52 7286.76 7586.23 7688.31 11292.63 9289.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10689.06 10694.05 11894.29 73
IB-MVS79.09 1282.60 10682.19 10483.07 10991.08 7993.55 7680.90 17481.35 10376.56 11980.87 6664.81 14669.97 13068.87 17585.64 14990.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal77.46 15974.86 18480.49 13886.34 13288.92 14884.33 14881.26 10461.39 19661.70 16651.99 19553.66 20174.84 15188.63 10987.38 12594.50 10192.08 118
TransMVSNet (Re)76.57 16675.16 18378.22 15885.60 14087.24 16182.46 15981.23 10559.80 20059.05 18257.07 18259.14 18066.60 18688.09 11586.82 13294.37 11087.95 160
test_part183.23 10180.55 12386.35 7588.60 10990.61 11090.78 6481.13 10670.89 15883.01 5355.72 18674.60 10482.19 8687.79 11889.26 10092.39 15395.01 57
Vis-MVSNetpermissive84.38 9386.68 7681.70 12287.65 11994.89 5888.14 10080.90 10774.48 13368.23 12577.53 7580.72 7269.98 17292.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10589.85 12689.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8589.67 9790.30 7493.63 13795.12 56
WR-MVS76.63 16578.02 15375.02 17984.14 16189.76 13078.34 18780.64 10969.56 16552.32 19361.26 15861.24 16560.66 19384.45 16787.07 12893.99 12192.77 101
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10574.99 20692.62 9490.29 6880.38 11082.16 7873.01 10583.41 4471.10 12587.05 6287.77 11990.17 7795.62 4691.82 123
GBi-Net84.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
test184.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
FMVSNet384.44 9184.64 9084.21 9484.32 15790.13 11989.85 7480.37 11181.17 8675.50 8969.63 11479.69 8179.62 11989.72 9690.52 7295.59 4991.58 131
CDS-MVSNet81.63 11882.09 10581.09 13187.21 12490.28 11587.46 10980.33 11469.06 16870.66 11071.30 10573.87 11067.99 17889.58 9889.87 8692.87 14990.69 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10873.52 9874.03 10986.55 6690.99 7789.98 8294.83 8294.27 77
FMVSNet283.87 9483.73 9684.05 9984.20 15889.95 12189.70 7580.21 11679.17 10774.89 9365.91 13477.49 9379.75 11690.87 8091.00 6095.52 5391.71 125
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 89
thisisatest053085.15 8385.86 8184.33 9189.19 10492.57 9587.22 11480.11 11882.15 7974.41 9578.15 7273.80 11279.90 11290.99 7789.58 9395.13 7393.75 85
tttt051785.11 8485.81 8284.30 9289.24 10292.68 9187.12 11880.11 11881.98 8074.31 9778.08 7373.57 11479.90 11291.01 7689.58 9395.11 7593.77 84
DTE-MVSNet75.14 18275.44 18174.80 18183.18 17087.19 16278.25 18980.11 11866.05 18048.31 20060.88 16354.67 19664.54 18982.57 17986.17 14594.43 10790.53 141
PEN-MVS76.02 17576.07 17175.95 17483.17 17187.97 15579.65 17880.07 12166.57 17851.45 19560.94 16255.47 19466.81 18482.72 17786.80 13394.59 9692.03 121
MVSTER86.03 7686.12 7885.93 7888.62 10889.93 12489.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9992.13 5990.10 7895.68 4292.80 100
v2v48279.84 13178.07 15181.90 12083.75 16390.21 11887.17 11579.85 12370.65 16065.93 13561.93 15660.07 17080.82 9585.25 15586.71 13493.88 12691.70 128
CP-MVSNet76.36 17276.41 16876.32 17182.73 18088.64 15079.39 18179.62 12467.21 17453.70 18960.72 16455.22 19567.91 18083.52 17386.34 14394.55 9993.19 91
FMVSNet181.64 11780.61 12182.84 11182.36 18389.20 14288.67 9379.58 12570.79 15972.63 10758.95 17672.26 12179.34 12290.73 8390.72 6494.47 10491.62 129
PS-CasMVS75.90 17775.86 17675.96 17382.59 18188.46 15379.23 18479.56 12666.00 18152.77 19159.48 17254.35 19967.14 18383.37 17486.23 14494.47 10493.10 93
RPSCF83.46 9883.36 9783.59 10487.75 11587.35 16084.82 14479.46 12783.84 6978.12 8082.69 4779.87 7782.60 8482.47 18081.13 18388.78 18586.13 172
pm-mvs178.51 15177.75 15679.40 14584.83 15489.30 13983.55 15479.38 12862.64 19263.68 15058.73 17864.68 14770.78 17189.79 9587.84 11994.17 11591.28 134
WR-MVS_H75.84 17876.93 16474.57 18482.86 17789.50 13778.34 18779.36 12966.90 17652.51 19260.20 16859.71 17359.73 19483.61 17285.77 15294.65 9392.84 98
v14878.59 14976.84 16580.62 13683.61 16689.16 14383.65 15379.24 13069.38 16669.34 12059.88 17060.41 16975.19 14783.81 17184.63 16492.70 15190.63 139
CHOSEN 1792x268882.16 10980.91 11983.61 10391.14 7892.01 9989.55 8079.15 13179.87 9970.29 11252.51 19472.56 11981.39 9088.87 10888.17 11790.15 17892.37 117
GeoE84.62 8783.98 9485.35 8289.34 10192.83 8888.34 9878.95 13279.29 10577.16 8868.10 12674.56 10583.40 7889.31 10389.23 10294.92 7894.57 70
baseline282.80 10382.86 10182.73 11387.68 11890.50 11284.92 14278.93 13378.07 11473.06 10375.08 8869.77 13177.31 13688.90 10786.94 13194.50 10190.74 136
USDC80.69 12379.89 13281.62 12486.48 13089.11 14586.53 12478.86 13481.15 8963.48 15172.98 10059.12 18181.16 9287.10 12485.01 15993.23 14384.77 179
FC-MVSNet-test76.53 16881.62 10870.58 19384.99 15085.73 17274.81 19578.85 13577.00 11839.13 21175.90 8273.50 11554.08 20086.54 13885.99 15091.65 16286.68 168
pmmvs479.99 12878.08 15082.22 11883.04 17387.16 16384.95 14078.80 13678.64 11074.53 9464.61 14759.41 17779.45 12184.13 16984.54 16692.53 15288.08 157
IterMVS-LS83.28 10082.95 10083.65 10288.39 11188.63 15186.80 12278.64 13776.56 11973.43 10172.52 10375.35 10080.81 9686.43 14188.51 11593.84 12892.66 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS79.52 13679.71 13679.30 14685.68 13890.36 11484.55 14578.44 13870.47 16357.87 18468.52 12461.38 16476.21 14289.40 10287.89 11893.04 14789.96 144
v114479.38 14077.83 15481.18 13083.62 16590.23 11687.15 11778.35 13969.13 16764.02 14860.20 16859.41 17780.14 11086.78 13186.57 13893.81 13092.53 113
HyFIR lowres test81.62 11979.45 13984.14 9791.00 8193.38 7988.27 9978.19 14076.28 12170.18 11448.78 19873.69 11383.52 7787.05 12687.83 12193.68 13589.15 148
TinyColmap76.73 16373.95 18779.96 14285.16 14885.64 17482.34 16278.19 14070.63 16162.06 16160.69 16549.61 20680.81 9685.12 16083.69 17191.22 17082.27 187
Effi-MVS+-dtu82.05 11081.76 10682.38 11687.72 11690.56 11186.90 12178.05 14273.85 14166.85 13071.29 10671.90 12282.00 8986.64 13685.48 15592.76 15092.58 109
test-LLR79.47 13879.84 13379.03 14887.47 12082.40 19481.24 17178.05 14273.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
test0.0.03 176.03 17478.51 14373.12 18987.47 12085.13 18076.32 19278.05 14273.19 14950.98 19870.64 10869.28 13455.53 19685.33 15484.38 16790.39 17681.63 190
v119278.94 14477.33 15880.82 13383.25 16989.90 12586.91 12077.72 14568.63 17162.61 15759.17 17357.53 18580.62 10286.89 12886.47 14093.79 13192.75 103
Fast-Effi-MVS+83.77 9682.98 9984.69 8587.98 11391.87 10088.10 10177.70 14678.10 11373.04 10469.13 12068.51 13786.66 6490.49 8989.85 8794.67 9292.88 97
v14419278.81 14577.22 16080.67 13582.95 17489.79 12986.40 12577.42 14768.26 17363.13 15359.50 17158.13 18280.08 11185.93 14586.08 14794.06 11792.83 99
v879.90 13078.39 14781.66 12383.97 16289.81 12787.16 11677.40 14871.49 15367.71 12661.24 15962.49 15979.83 11585.48 15386.17 14593.89 12592.02 122
LTVRE_ROB74.41 1675.78 17974.72 18577.02 16585.88 13489.22 14182.44 16177.17 14950.57 21045.45 20465.44 13952.29 20381.25 9185.50 15287.42 12489.94 18092.62 106
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192078.57 15076.99 16380.41 14082.93 17589.63 13586.38 12677.14 15068.31 17261.80 16558.89 17756.79 18880.19 10986.50 14086.05 14994.02 11992.76 102
pmmvs674.83 18372.89 19077.09 16382.11 18487.50 15980.88 17576.97 15152.79 20861.91 16446.66 20060.49 16769.28 17486.74 13485.46 15691.39 16590.56 140
thisisatest051579.76 13380.59 12278.80 15084.40 15688.91 14979.48 18076.94 15272.29 15167.33 12867.82 12865.99 14370.80 17088.50 11187.84 11993.86 12792.75 103
v1079.62 13478.19 14981.28 12983.73 16489.69 13287.27 11276.86 15370.50 16265.46 13760.58 16660.47 16880.44 10386.91 12786.63 13793.93 12292.55 111
v124078.15 15276.53 16680.04 14182.85 17889.48 13885.61 13676.77 15467.05 17561.18 17258.37 17956.16 19279.89 11486.11 14486.08 14793.92 12392.47 115
V4279.59 13578.43 14680.94 13282.79 17989.71 13186.66 12376.73 15571.38 15467.42 12761.01 16162.30 16178.39 12885.56 15186.48 13993.65 13692.60 107
v7n77.22 16076.23 17078.38 15781.89 18689.10 14682.24 16576.36 15665.96 18261.21 17156.56 18355.79 19375.07 15086.55 13786.68 13593.52 13892.95 96
SixPastTwentyTwo76.02 17575.72 17776.36 17083.38 16787.54 15875.50 19476.22 15765.50 18557.05 18570.64 10853.97 20074.54 15380.96 18582.12 18091.44 16489.35 147
MDA-MVSNet-bldmvs66.22 19864.49 20168.24 19661.67 21082.11 19670.07 20376.16 15859.14 20247.94 20154.35 18935.82 21667.33 18264.94 20875.68 19786.30 19879.36 197
test20.0368.31 19670.05 19766.28 20082.41 18280.84 19867.35 20576.11 15958.44 20340.80 21053.77 19154.54 19742.28 20783.07 17581.96 18288.73 18677.76 201
pmmvs-eth3d74.32 18671.96 19277.08 16477.33 20082.71 19078.41 18676.02 16066.65 17765.98 13454.23 19049.02 20873.14 16382.37 18182.69 17791.61 16386.05 173
Anonymous2023120670.80 19270.59 19671.04 19281.60 18882.49 19374.64 19675.87 16164.17 18949.27 19944.85 20453.59 20254.68 19983.07 17582.34 17990.17 17783.65 182
baseline84.89 8586.06 8083.52 10687.25 12389.67 13387.76 10375.68 16284.92 6478.40 7880.10 6080.98 7080.20 10886.69 13587.05 12991.86 16092.99 94
CANet_DTU85.43 8087.72 6882.76 11290.95 8393.01 8589.99 7175.46 16382.67 7264.91 14383.14 4580.09 7680.68 9892.03 6091.03 5894.57 9892.08 118
MS-PatchMatch81.79 11581.44 11082.19 11990.35 9289.29 14088.08 10275.36 16477.60 11569.00 12264.37 14978.87 8777.14 13988.03 11685.70 15393.19 14586.24 171
CVMVSNet76.70 16478.46 14574.64 18383.34 16884.48 18281.83 16774.58 16568.88 16951.23 19769.77 11370.05 12967.49 18184.27 16883.81 16989.38 18287.96 159
testgi71.92 19174.20 18669.27 19584.58 15583.06 18673.40 19874.39 16664.04 19046.17 20368.90 12357.15 18748.89 20484.07 17083.08 17488.18 18879.09 199
pmmvs576.93 16276.33 16977.62 16081.97 18588.40 15481.32 17074.35 16765.42 18661.42 16863.07 15257.95 18373.23 16285.60 15085.35 15793.41 14188.55 152
MIMVSNet165.00 19966.24 20063.55 20258.41 21380.01 20169.00 20474.03 16855.81 20641.88 20836.81 20949.48 20747.89 20581.32 18482.40 17890.08 17977.88 200
EG-PatchMatch MVS76.40 17175.47 18077.48 16185.86 13690.22 11782.45 16073.96 16959.64 20159.60 17852.75 19362.20 16268.44 17788.23 11487.50 12294.55 9987.78 161
CMPMVSbinary56.49 1773.84 18871.73 19476.31 17285.20 14685.67 17375.80 19373.23 17062.26 19365.40 13853.40 19259.70 17471.77 16780.25 18879.56 18686.45 19781.28 191
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
anonymousdsp77.94 15479.00 14076.71 16779.03 19587.83 15679.58 17972.87 17165.80 18358.86 18365.82 13562.48 16075.99 14386.77 13288.66 11293.92 12395.68 49
pmnet_mix0271.95 19071.83 19372.10 19081.40 19080.63 20073.78 19772.85 17270.90 15754.89 18762.17 15557.42 18662.92 19176.80 19873.98 20286.74 19680.87 194
Fast-Effi-MVS+-dtu79.95 12980.69 12079.08 14786.36 13189.14 14485.85 13072.28 17372.85 15059.32 17970.43 11268.42 13877.57 13486.14 14386.44 14193.11 14691.39 133
IterMVS-SCA-FT79.41 13980.20 12778.49 15585.88 13486.26 16783.95 15071.94 17473.55 14561.94 16270.48 11170.50 12775.23 14685.81 14884.61 16591.99 15990.18 143
PM-MVS74.17 18773.10 18875.41 17676.07 20382.53 19277.56 19071.69 17571.04 15561.92 16361.23 16047.30 20974.82 15281.78 18379.80 18490.42 17588.05 158
TAMVS76.42 16977.16 16175.56 17583.05 17285.55 17580.58 17671.43 17665.40 18761.04 17367.27 13069.22 13567.99 17884.88 16384.78 16289.28 18383.01 185
N_pmnet66.85 19766.63 19867.11 19978.73 19674.66 20770.53 20271.07 17766.46 17946.54 20251.68 19651.91 20455.48 19774.68 20272.38 20380.29 20874.65 204
new-patchmatchnet63.80 20063.31 20264.37 20176.49 20175.99 20563.73 20870.99 17857.27 20443.08 20645.86 20243.80 21045.13 20673.20 20370.68 20686.80 19576.34 203
CostFormer80.94 12280.21 12681.79 12187.69 11788.58 15287.47 10870.66 17980.02 9777.88 8473.03 9971.40 12378.24 12979.96 18979.63 18588.82 18488.84 149
tpm cat177.78 15675.28 18280.70 13487.14 12585.84 17185.81 13170.40 18077.44 11678.80 7763.72 15064.01 15176.55 14175.60 20175.21 19985.51 20185.12 176
MDTV_nov1_ep1379.14 14279.49 13878.74 15285.40 14286.89 16484.32 14970.29 18178.85 10869.42 11975.37 8673.29 11775.64 14580.61 18679.48 18787.36 19181.91 188
FMVSNet575.50 18176.07 17174.83 18076.16 20281.19 19781.34 16970.21 18273.20 14861.59 16758.97 17568.33 13968.50 17685.87 14785.85 15191.18 17179.11 198
dps78.02 15375.94 17580.44 13986.06 13386.62 16682.58 15869.98 18375.14 12877.76 8669.08 12159.93 17278.47 12779.47 19177.96 19287.78 18983.40 183
EU-MVSNet69.98 19472.30 19167.28 19875.67 20579.39 20273.12 19969.94 18463.59 19142.80 20762.93 15356.71 19055.07 19879.13 19478.55 19087.06 19485.82 175
IterMVS78.79 14679.71 13677.71 15985.26 14585.91 17084.54 14669.84 18573.38 14661.25 17070.53 11070.35 12874.43 15585.21 15883.80 17090.95 17288.77 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMVScopyleft50.48 1855.81 20551.93 20760.33 20472.90 20749.34 21348.78 21269.51 18643.49 21354.25 18836.26 21041.04 21539.71 20965.07 20760.70 20876.85 21067.58 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS63.63 20160.08 20667.78 19780.01 19371.50 20972.88 20069.41 18761.82 19553.11 19045.12 20342.11 21350.86 20266.69 20663.84 20780.41 20769.46 207
SCA79.51 13780.15 12878.75 15186.58 12987.70 15783.07 15668.53 18881.31 8566.40 13273.83 9475.38 9979.30 12380.49 18779.39 18888.63 18782.96 186
CR-MVSNet78.71 14778.86 14178.55 15485.85 13785.15 17882.30 16368.23 18974.71 13165.37 13964.39 14869.59 13377.18 13785.10 16184.87 16092.34 15588.21 155
Patchmtry85.54 17682.30 16368.23 18965.37 139
PatchmatchNetpermissive78.67 14878.85 14278.46 15686.85 12886.03 16883.77 15268.11 19180.88 9366.19 13372.90 10173.40 11678.06 13079.25 19377.71 19387.75 19081.75 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet74.69 18475.60 17973.62 18676.02 20485.31 17781.21 17367.43 19271.02 15659.07 18154.48 18764.07 14966.14 18786.52 13986.64 13691.83 16181.17 192
PMMVS81.65 11684.05 9378.86 14978.56 19782.63 19183.10 15567.22 19381.39 8470.11 11584.91 4279.74 8082.12 8787.31 12285.70 15392.03 15886.67 170
tpm76.30 17376.05 17376.59 16886.97 12683.01 18883.83 15167.06 19471.83 15263.87 14969.56 11762.88 15673.41 16179.79 19078.59 18984.41 20286.68 168
CHOSEN 280x42080.28 12681.66 10778.67 15382.92 17679.24 20385.36 13866.79 19578.11 11270.32 11175.03 8979.87 7781.09 9389.07 10483.16 17385.54 20087.17 164
EPMVS77.53 15878.07 15176.90 16686.89 12784.91 18182.18 16666.64 19681.00 9164.11 14772.75 10269.68 13274.42 15679.36 19278.13 19187.14 19380.68 195
MDTV_nov1_ep13_2view73.21 18972.91 18973.56 18780.01 19384.28 18478.62 18566.43 19768.64 17059.12 18060.39 16759.69 17569.81 17378.82 19577.43 19487.36 19181.11 193
tpmrst76.55 16775.99 17477.20 16287.32 12283.05 18782.86 15765.62 19878.61 11167.22 12969.19 11965.71 14475.87 14476.75 19975.33 19884.31 20383.28 184
gm-plane-assit70.29 19370.65 19569.88 19485.03 14978.50 20458.41 21165.47 19950.39 21140.88 20949.60 19750.11 20575.14 14991.43 6589.78 8894.32 11184.73 180
RPMNet77.07 16177.63 15776.42 16985.56 14185.15 17881.37 16865.27 20074.71 13160.29 17563.71 15166.59 14273.64 15882.71 17882.12 18092.38 15488.39 153
MVS-HIRNet68.83 19566.39 19971.68 19177.58 19975.52 20666.45 20665.05 20162.16 19462.84 15444.76 20556.60 19171.96 16678.04 19675.06 20086.18 19972.56 205
PatchT76.42 16977.81 15574.80 18178.46 19884.30 18371.82 20165.03 20273.89 13965.37 13961.58 15766.70 14177.18 13785.10 16184.87 16090.94 17388.21 155
gg-mvs-nofinetune75.64 18077.26 15973.76 18587.92 11492.20 9787.32 11064.67 20351.92 20935.35 21346.44 20177.05 9671.97 16592.64 5091.02 5995.34 6289.53 146
Gipumacopyleft49.17 20647.05 20951.65 20659.67 21248.39 21441.98 21563.47 20455.64 20733.33 21514.90 21313.78 22041.34 20869.31 20572.30 20470.11 21155.00 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ADS-MVSNet74.53 18575.69 17873.17 18881.57 18980.71 19979.27 18363.03 20579.27 10659.94 17767.86 12768.32 14071.08 16977.33 19776.83 19584.12 20579.53 196
TESTMET0.1,177.78 15679.84 13375.38 17780.86 19282.40 19481.24 17162.72 20673.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
test-mter77.79 15580.02 13075.18 17881.18 19182.85 18980.52 17762.03 20773.62 14462.16 16073.55 9773.83 11173.81 15784.67 16483.34 17291.37 16688.31 154
new_pmnet59.28 20361.47 20556.73 20561.66 21168.29 21159.57 21054.91 20860.83 19734.38 21444.66 20643.65 21149.90 20371.66 20471.56 20579.94 20969.67 206
E-PMN31.40 20926.80 21236.78 20851.39 21529.96 21720.20 21854.17 20925.93 21612.75 21814.73 2148.58 22234.10 21227.36 21437.83 21348.07 21643.18 214
EMVS30.49 21125.44 21336.39 20951.47 21429.89 21820.17 21954.00 21026.49 21512.02 21913.94 2168.84 22134.37 21125.04 21534.37 21446.29 21739.53 215
pmmvs361.89 20261.74 20462.06 20364.30 20970.83 21064.22 20752.14 21148.78 21244.47 20541.67 20741.70 21463.03 19076.06 20076.02 19684.18 20477.14 202
PMMVS241.68 20844.74 21038.10 20746.97 21652.32 21240.63 21648.08 21235.51 2147.36 22026.86 21224.64 21816.72 21455.24 21159.03 20968.85 21259.59 211
MVEpermissive30.17 1930.88 21033.52 21127.80 21323.78 21839.16 21618.69 22046.90 21321.88 21715.39 21714.37 2157.31 22324.41 21341.63 21356.22 21037.64 21854.07 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft48.31 21548.03 21326.08 21456.42 20525.77 21647.51 19931.31 21751.30 20148.49 21253.61 21461.52 209
test_method41.78 20748.10 20834.42 21010.74 21919.78 22044.64 21417.73 21559.83 19938.67 21235.82 21154.41 19834.94 21062.87 20943.13 21259.81 21360.82 210
tmp_tt32.73 21143.96 21721.15 21926.71 2178.99 21665.67 18451.39 19656.01 18442.64 21211.76 21556.60 21050.81 21153.55 215
testmvs1.03 2121.63 2140.34 2140.09 2210.35 2210.61 2220.16 2171.49 2180.10 2223.15 2170.15 2240.86 2171.32 2161.18 2150.20 2193.76 217
GG-mvs-BLEND57.56 20482.61 10328.34 2120.22 22090.10 12079.37 1820.14 21879.56 1020.40 22171.25 10783.40 600.30 21886.27 14283.87 16889.59 18183.83 181
test1230.87 2131.40 2150.25 2150.03 2220.25 2220.35 2230.08 2191.21 2190.05 2232.84 2180.03 2250.89 2160.43 2171.16 2160.13 2203.87 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def56.08 186
9.1492.16 16
our_test_381.81 18783.96 18576.61 191
ambc61.92 20370.98 20873.54 20863.64 20960.06 19852.23 19438.44 20819.17 21957.12 19582.33 18275.03 20183.21 20684.89 177
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 221
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53