This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft95.53 496.13 494.82 296.81 2298.05 497.42 193.09 194.31 991.49 697.12 195.03 393.27 395.55 694.58 1296.86 698.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.61 296.36 294.73 396.84 1998.15 397.08 392.92 295.64 391.84 495.98 495.33 192.83 796.00 194.94 396.90 498.45 3
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 398.99 1
APDe-MVS95.23 595.69 694.70 597.12 1097.81 697.19 292.83 495.06 690.98 996.47 292.77 1093.38 295.34 994.21 1696.68 998.17 5
DVP-MVScopyleft95.56 396.26 394.73 396.93 1698.19 196.62 792.81 596.15 291.73 595.01 795.31 293.41 195.95 394.77 896.90 498.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1294.47 1694.26 797.18 896.99 1696.53 892.68 692.45 2389.96 1694.53 1191.63 2192.89 694.58 2293.82 2396.31 1897.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS94.61 894.96 1094.20 996.75 2497.07 1295.82 1892.60 793.98 1291.09 895.89 692.54 1291.93 1594.40 2793.56 2997.04 297.27 17
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3296.14 992.51 893.87 1490.76 1193.45 1893.84 592.62 995.11 1294.08 1995.58 5497.48 14
NCCC93.69 1993.66 2393.72 1597.37 596.66 2995.93 1792.50 993.40 1888.35 2487.36 3492.33 1492.18 1394.89 1594.09 1896.00 2796.91 26
CNVR-MVS94.37 1294.65 1294.04 1097.29 697.11 1196.00 1192.43 1093.45 1589.85 1890.92 2593.04 992.59 1095.77 594.82 696.11 2597.42 16
MSP-MVS95.12 695.83 594.30 696.82 2197.94 596.98 592.37 1195.40 490.59 1296.16 393.71 692.70 894.80 1794.77 896.37 1497.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS94.53 1095.22 893.73 1495.69 3697.03 1495.77 2191.95 1294.41 891.35 794.97 893.34 891.80 1994.72 2093.99 2095.82 3898.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SMA-MVScopyleft94.70 795.35 793.93 1197.57 397.57 895.98 1291.91 1394.50 790.35 1393.46 1792.72 1191.89 1795.89 495.22 195.88 3198.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP94.06 1494.65 1293.38 1896.97 1597.36 996.12 1091.78 1492.05 2787.34 2994.42 1290.87 2591.87 1895.47 894.59 1196.21 2397.77 11
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS87.86 392.26 3091.86 3392.73 2496.18 2996.87 1995.19 2791.76 1592.17 2686.58 3481.79 5285.85 5190.88 3094.57 2394.61 1095.80 3997.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS93.81 1794.06 1993.53 1696.79 2396.85 2095.95 1491.69 1692.20 2587.17 3190.83 2793.41 791.96 1494.49 2593.50 3097.61 197.12 22
AdaColmapbinary90.29 4388.38 5892.53 2596.10 3195.19 5592.98 4691.40 1789.08 4588.65 2278.35 7281.44 7191.30 2890.81 8890.21 8194.72 9693.59 89
ACMMP_NAP93.94 1694.49 1593.30 1997.03 1397.31 1095.96 1391.30 1893.41 1788.55 2393.00 1990.33 2891.43 2595.53 794.41 1495.53 5897.47 15
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2197.13 996.51 3395.35 2591.19 1993.14 2088.14 2585.26 4089.49 3591.45 2295.17 1095.07 295.85 3696.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS91.72 3491.48 3492.00 3095.53 3795.75 4695.94 1591.07 2091.20 3385.58 4081.63 5690.74 2688.40 4693.40 4293.75 2595.45 6293.85 82
SR-MVS96.58 2590.99 2192.40 13
HFP-MVS94.02 1594.22 1893.78 1397.25 796.85 2095.81 1990.94 2294.12 1190.29 1594.09 1489.98 3192.52 1193.94 3393.49 3295.87 3397.10 23
TSAR-MVS + MP.94.48 1194.97 993.90 1295.53 3797.01 1596.69 690.71 2394.24 1090.92 1094.97 892.19 1593.03 494.83 1693.60 2796.51 1397.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft93.35 2093.59 2493.08 2297.39 496.82 2295.38 2490.71 2390.82 3588.07 2692.83 2190.29 2991.32 2794.03 3093.19 3995.61 5297.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR93.72 1893.94 2093.48 1797.07 1196.93 1795.78 2090.66 2593.88 1389.24 2093.53 1689.08 3892.24 1293.89 3593.50 3095.88 3196.73 30
CP-MVS93.25 2193.26 2693.24 2096.84 1996.51 3395.52 2390.61 2692.37 2488.88 2190.91 2689.52 3491.91 1693.64 4092.78 4595.69 4597.09 24
train_agg92.87 2493.53 2592.09 2996.88 1895.38 5095.94 1590.59 2790.65 3783.65 5294.31 1391.87 2090.30 3293.38 4392.42 5095.17 7596.73 30
X-MVS92.36 2992.75 3091.90 3296.89 1796.70 2595.25 2690.48 2891.50 3283.95 4988.20 3188.82 4089.11 3893.75 3893.43 3395.75 4396.83 28
TSAR-MVS + ACMM92.97 2394.51 1491.16 3695.88 3496.59 3095.09 2890.45 2993.42 1683.01 5594.68 1090.74 2688.74 4294.75 1993.78 2493.82 13697.63 12
PCF-MVS84.60 688.66 5587.75 6889.73 4793.06 6396.02 3893.22 4490.00 3082.44 8080.02 7577.96 7585.16 5587.36 5888.54 11788.54 12094.72 9695.61 52
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepPCF-MVS88.51 292.64 2894.42 1790.56 3994.84 4496.92 1891.31 6289.61 3195.16 584.55 4789.91 2991.45 2290.15 3595.12 1194.81 792.90 15597.58 13
ACMMPcopyleft92.03 3292.16 3191.87 3395.88 3496.55 3194.47 3589.49 3291.71 3085.26 4291.52 2484.48 5790.21 3492.82 5291.63 5795.92 3096.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3391.40 3692.75 2396.01 3295.88 4393.73 4089.00 3389.89 4290.31 1481.28 5888.85 3991.45 2292.88 5194.24 1596.00 2796.76 29
LS3D85.96 7984.37 9687.81 6894.13 4993.27 8690.26 7089.00 3384.91 6672.84 11071.74 10872.47 12387.45 5789.53 10689.09 11193.20 15189.60 151
CPTT-MVS91.39 3690.95 4091.91 3195.06 3995.24 5495.02 2988.98 3591.02 3486.71 3384.89 4288.58 4391.60 2190.82 8789.67 9794.08 12396.45 35
CSCG92.76 2593.16 2792.29 2896.30 2897.74 794.67 3388.98 3592.46 2289.73 1986.67 3792.15 1888.69 4392.26 5992.92 4395.40 6397.89 10
CDPH-MVS91.14 3892.01 3290.11 4196.18 2996.18 3794.89 3088.80 3788.76 4677.88 8689.18 3087.71 4787.29 6093.13 4693.31 3795.62 5095.84 46
OPM-MVS87.56 6985.80 8589.62 4993.90 5294.09 7494.12 3688.18 3875.40 13277.30 8976.41 8177.93 9588.79 4192.20 6190.82 6895.40 6393.72 87
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet89.60 4989.91 4789.24 5496.45 2693.61 8092.95 4788.03 3985.74 5983.36 5387.29 3583.05 6480.98 9992.22 6091.85 5593.69 14195.58 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.92.71 2793.91 2191.30 3491.96 7396.00 4093.43 4187.94 4092.53 2186.27 3993.57 1591.94 1991.44 2493.29 4492.89 4496.78 797.15 21
PGM-MVS92.76 2593.03 2892.45 2797.03 1396.67 2895.73 2287.92 4190.15 4186.53 3592.97 2088.33 4491.69 2093.62 4193.03 4095.83 3796.41 37
3Dnovator+86.06 491.60 3590.86 4292.47 2696.00 3396.50 3594.70 3287.83 4290.49 3889.92 1774.68 9289.35 3690.66 3194.02 3194.14 1795.67 4796.85 27
PHI-MVS92.05 3193.74 2290.08 4294.96 4197.06 1393.11 4587.71 4390.71 3680.78 7092.40 2291.03 2387.68 5394.32 2894.48 1396.21 2396.16 41
HQP-MVS89.13 5389.58 5188.60 6193.53 5593.67 7893.29 4387.58 4488.53 4775.50 9187.60 3380.32 7687.07 6190.66 9389.95 8994.62 10296.35 40
CANet91.33 3791.46 3591.18 3595.01 4096.71 2493.77 3887.39 4587.72 5087.26 3081.77 5389.73 3287.32 5994.43 2693.86 2296.31 1896.02 44
PLCcopyleft83.76 988.61 5786.83 7590.70 3894.22 4892.63 9891.50 5987.19 4689.16 4486.87 3275.51 8780.87 7389.98 3690.01 9889.20 10994.41 11590.45 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM83.27 1087.68 6886.09 8189.54 5093.26 5792.19 10491.43 6086.74 4786.02 5782.85 5675.63 8675.14 10588.41 4590.68 9289.99 8694.59 10392.97 97
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030490.88 3991.35 3790.34 4093.91 5196.79 2394.49 3486.54 4886.57 5582.85 5681.68 5589.70 3387.57 5594.64 2193.93 2196.67 1196.15 42
MVS_111021_HR90.56 4091.29 3889.70 4894.71 4695.63 4891.81 5786.38 4987.53 5181.29 6587.96 3285.43 5387.69 5293.90 3492.93 4296.33 1695.69 49
OMC-MVS90.23 4590.40 4590.03 4493.45 5695.29 5191.89 5586.34 5093.25 1984.94 4581.72 5486.65 5088.90 3991.69 6790.27 8094.65 10093.95 80
DELS-MVS89.71 4889.68 5089.74 4693.75 5396.22 3693.76 3985.84 5182.53 7785.05 4478.96 6984.24 5884.25 7794.91 1494.91 495.78 4296.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA88.40 5887.00 7390.03 4493.73 5494.28 7089.56 7985.81 5291.87 2887.55 2869.53 12281.49 7089.23 3789.45 10788.59 11994.31 11993.82 84
MSDG83.87 10081.02 12287.19 7392.17 7289.80 13389.15 8785.72 5380.61 10079.24 7766.66 13668.75 13982.69 8487.95 12487.44 12994.19 12185.92 180
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7192.72 6893.92 7792.21 5085.57 5491.73 2973.72 10291.75 2373.22 12187.64 5491.49 6989.71 9693.73 13991.82 126
3Dnovator85.17 590.48 4189.90 4891.16 3694.88 4395.74 4793.82 3785.36 5589.28 4387.81 2774.34 9587.40 4888.56 4493.07 4793.74 2696.53 1295.71 48
ACMP83.90 888.32 6188.06 6188.62 6092.18 7193.98 7691.28 6385.24 5686.69 5481.23 6685.62 3975.13 10687.01 6389.83 10089.77 9494.79 9095.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6288.55 5587.89 6792.84 6793.66 7993.35 4285.22 5785.77 5874.03 10186.60 3876.29 10286.62 6691.20 7390.58 7695.29 7095.75 47
QAPM89.49 5089.58 5189.38 5294.73 4595.94 4192.35 4985.00 5885.69 6080.03 7476.97 7987.81 4687.87 5092.18 6392.10 5396.33 1696.40 39
TAPA-MVS84.37 788.91 5488.93 5488.89 5693.00 6494.85 6392.00 5284.84 5991.68 3180.05 7379.77 6484.56 5688.17 4890.11 9789.00 11595.30 6992.57 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
casdiffmvs_mvgpermissive87.97 6587.63 7088.37 6590.55 9094.42 6891.82 5684.69 6084.05 6982.08 6276.57 8079.00 8785.49 7292.35 5792.29 5295.55 5694.70 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR90.14 4690.89 4189.26 5393.23 5894.05 7590.43 6784.65 6190.16 4084.52 4890.14 2883.80 6087.99 4992.50 5690.92 6694.74 9494.70 66
test111184.86 9184.21 9785.61 8391.75 7695.14 5788.63 9984.57 6281.88 8571.21 11365.66 14568.51 14081.19 9693.74 3992.68 4896.31 1891.86 125
test250685.20 8684.11 9886.47 7691.84 7495.28 5289.18 8484.49 6382.59 7575.34 9574.66 9358.07 18881.68 9293.76 3692.71 4696.28 2191.71 128
ECVR-MVScopyleft85.25 8584.47 9486.16 7891.84 7495.28 5289.18 8484.49 6382.59 7573.49 10466.12 13869.28 13681.68 9293.76 3692.71 4696.28 2191.58 135
UA-Net86.07 7787.78 6684.06 10292.85 6695.11 5887.73 11084.38 6573.22 15273.18 10679.99 6389.22 3771.47 17493.22 4593.03 4094.76 9390.69 143
UniMVSNet_NR-MVSNet81.87 11781.33 11882.50 11885.31 15091.30 10985.70 13884.25 6675.89 12864.21 15166.95 13564.65 15280.22 11187.07 13189.18 11095.27 7394.29 73
ACMH78.52 1481.86 11880.45 12983.51 11190.51 9491.22 11085.62 14184.23 6770.29 16962.21 16569.04 12664.05 15484.48 7687.57 12788.45 12294.01 12792.54 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet80.52 13079.84 13981.33 13384.92 15990.39 11885.53 14384.22 6874.27 14160.68 18064.93 15259.96 17677.48 14086.75 13989.28 10695.12 8093.29 91
Anonymous20240521182.75 10889.58 10692.97 9289.04 9284.13 6978.72 11457.18 18876.64 10183.13 8389.55 10589.92 9093.38 14994.28 76
EPNet_dtu81.98 11683.82 10179.83 14994.10 5085.97 17587.29 11784.08 7080.61 10059.96 18281.62 5777.19 9962.91 19887.21 12986.38 14890.66 18087.77 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvspermissive87.45 7087.15 7287.79 7090.15 10294.22 7189.96 7283.93 7185.08 6480.91 6775.81 8577.88 9686.08 6891.86 6690.86 6795.74 4494.37 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6994.82 6489.08 8983.81 7284.91 6686.38 3779.14 6678.11 9382.66 8593.05 4891.10 6195.86 3494.86 62
baseline184.54 9484.43 9584.67 9090.62 8891.16 11188.63 9983.75 7479.78 10571.16 11475.14 8974.10 11177.84 13891.56 6890.67 7396.04 2688.58 157
CS-MVS-test90.29 4390.96 3989.51 5193.18 5995.87 4489.18 8483.72 7588.32 4884.82 4684.89 4285.23 5490.25 3394.04 2992.66 4995.94 2995.69 49
CS-MVS90.34 4290.58 4490.07 4393.11 6095.82 4590.57 6583.62 7687.07 5385.35 4182.98 4683.47 6191.37 2694.94 1393.37 3696.37 1496.41 37
FC-MVSNet-train85.18 8785.31 8985.03 8890.67 8791.62 10887.66 11183.61 7779.75 10674.37 9978.69 7071.21 12778.91 13091.23 7189.96 8894.96 8394.69 68
UGNet85.90 8088.23 5983.18 11288.96 11294.10 7387.52 11283.60 7881.66 8877.90 8580.76 6083.19 6366.70 19191.13 8090.71 7294.39 11696.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS88.39 6088.44 5788.33 6694.90 4295.06 5990.51 6683.59 7985.27 6179.07 7877.13 7782.89 6587.70 5192.19 6292.32 5194.23 12094.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS81.20 12680.30 13082.25 12284.98 15790.94 11385.70 13883.58 8075.74 12964.21 15165.30 14859.60 18180.22 11186.89 13489.31 10594.77 9294.29 73
NR-MVSNet80.25 13379.98 13680.56 14285.20 15290.94 11385.65 14083.58 8075.74 12961.36 17565.30 14856.75 19572.38 17088.46 11988.80 11795.16 7693.87 81
Baseline_NR-MVSNet79.84 13778.37 15481.55 13084.98 15786.66 17185.06 14583.49 8275.57 13163.31 15858.22 18760.97 17178.00 13686.89 13487.13 13394.47 11193.15 93
OpenMVScopyleft82.53 1187.71 6786.84 7488.73 5894.42 4795.06 5991.02 6483.49 8282.50 7982.24 6167.62 13385.48 5285.56 7191.19 7491.30 6095.67 4794.75 64
ACMH+79.08 1381.84 11980.06 13483.91 10489.92 10490.62 11586.21 13383.48 8473.88 14565.75 14166.38 13765.30 15084.63 7585.90 15287.25 13293.45 14791.13 141
ETV-MVS89.22 5289.76 4988.60 6191.60 7794.61 6789.48 8183.46 8585.20 6381.58 6382.75 4882.59 6688.80 4094.57 2393.28 3896.68 995.31 56
PVSNet_Blended_VisFu87.40 7187.80 6586.92 7492.86 6595.40 4988.56 10283.45 8679.55 10882.26 5974.49 9484.03 5979.24 12992.97 5091.53 5995.15 7796.65 33
Anonymous2023121184.42 9883.02 10486.05 7988.85 11392.70 9688.92 9583.40 8779.99 10378.31 8155.83 19278.92 8983.33 8189.06 11189.76 9593.50 14694.90 60
COLMAP_ROBcopyleft76.78 1580.50 13178.49 15082.85 11490.96 8589.65 13986.20 13483.40 8777.15 12266.54 13662.27 16165.62 14977.89 13785.23 16284.70 16992.11 16284.83 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
dmvs_re81.08 12779.92 13782.44 12086.66 13487.70 16287.91 10883.30 8972.86 15565.29 14765.76 14163.43 15676.69 14588.93 11389.50 10194.80 8991.23 140
UniMVSNet (Re)81.22 12581.08 12181.39 13185.35 14991.76 10784.93 14782.88 9076.13 12765.02 14864.94 15163.09 15975.17 15487.71 12689.04 11394.97 8294.88 61
EIA-MVS87.94 6688.05 6287.81 6891.46 7895.00 6188.67 9682.81 9182.53 7780.81 6980.04 6280.20 7787.48 5692.58 5591.61 5895.63 4994.36 72
thres100view90082.55 11281.01 12484.34 9490.30 10092.27 10289.04 9282.77 9275.14 13369.56 12165.72 14263.13 15779.62 12489.97 9989.26 10794.73 9591.61 134
tfpn200view982.86 10781.46 11584.48 9290.30 10093.09 8889.05 9182.71 9375.14 13369.56 12165.72 14263.13 15780.38 11091.15 7789.51 10094.91 8592.50 116
thres40082.68 11081.15 12084.47 9390.52 9292.89 9388.95 9482.71 9374.33 14069.22 12665.31 14762.61 16380.63 10590.96 8589.50 10194.79 9092.45 118
thres600view782.53 11381.02 12284.28 9790.61 8993.05 8988.57 10182.67 9574.12 14368.56 12965.09 15062.13 16880.40 10991.15 7789.02 11494.88 8692.59 110
thres20082.77 10981.25 11984.54 9190.38 9793.05 8989.13 8882.67 9574.40 13969.53 12365.69 14463.03 16080.63 10591.15 7789.42 10494.88 8692.04 122
DI_MVS_plusplus_trai86.41 7585.54 8887.42 7289.24 10893.13 8792.16 5182.65 9782.30 8180.75 7168.30 12980.41 7585.01 7490.56 9490.07 8494.70 9894.01 79
TDRefinement79.05 14977.05 16881.39 13188.45 11589.00 15286.92 12582.65 9774.21 14264.41 15059.17 18059.16 18474.52 16085.23 16285.09 16491.37 17287.51 169
canonicalmvs89.36 5189.92 4688.70 5991.38 7995.92 4291.81 5782.61 9990.37 3982.73 5882.09 5079.28 8688.30 4791.17 7593.59 2895.36 6597.04 25
IS_MVSNet86.18 7688.18 6083.85 10591.02 8394.72 6687.48 11382.46 10081.05 9570.28 11876.98 7882.20 6976.65 14693.97 3293.38 3495.18 7494.97 59
EPP-MVSNet86.55 7387.76 6785.15 8790.52 9294.41 6987.24 11982.32 10181.79 8773.60 10378.57 7182.41 6782.07 9091.23 7190.39 7895.14 7895.48 54
CLD-MVS88.66 5588.52 5688.82 5791.37 8094.22 7192.82 4882.08 10288.27 4985.14 4381.86 5178.53 9185.93 7091.17 7590.61 7495.55 5695.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Vis-MVSNet (Re-imp)83.65 10386.81 7679.96 14790.46 9592.71 9584.84 14982.00 10380.93 9762.44 16476.29 8282.32 6865.54 19492.29 5891.66 5694.49 11091.47 137
PatchMatch-RL83.34 10581.36 11785.65 8190.33 9989.52 14184.36 15381.82 10480.87 9979.29 7674.04 9662.85 16286.05 6988.40 12087.04 13692.04 16386.77 173
UniMVSNet_ETH3D79.24 14776.47 17382.48 11985.66 14590.97 11286.08 13581.63 10564.48 19368.94 12854.47 19457.65 19078.83 13185.20 16588.91 11693.72 14093.60 88
diffmvspermissive86.52 7486.76 7786.23 7788.31 11792.63 9889.58 7881.61 10686.14 5680.26 7279.00 6877.27 9883.58 7888.94 11289.06 11294.05 12594.29 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet89.96 4790.77 4389.01 5590.54 9195.15 5691.34 6181.43 10785.27 6183.08 5482.83 4787.22 4990.97 2994.79 1893.38 3496.73 896.71 32
IB-MVS79.09 1282.60 11182.19 11083.07 11391.08 8293.55 8180.90 18081.35 10876.56 12480.87 6864.81 15369.97 13268.87 18185.64 15590.06 8595.36 6594.74 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal77.46 16574.86 19080.49 14386.34 13888.92 15384.33 15481.26 10961.39 20161.70 17251.99 20153.66 20774.84 15788.63 11687.38 13194.50 10892.08 120
TransMVSNet (Re)76.57 17275.16 18978.22 16385.60 14687.24 16782.46 16581.23 11059.80 20559.05 18857.07 18959.14 18566.60 19288.09 12286.82 13894.37 11787.95 166
Vis-MVSNetpermissive84.38 9986.68 7881.70 12787.65 12494.89 6288.14 10580.90 11174.48 13868.23 13077.53 7680.72 7469.98 17892.68 5391.90 5495.33 6894.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet85.88 8186.17 7985.54 8489.10 11189.85 13189.34 8280.70 11283.04 7378.08 8476.19 8379.00 8782.42 8889.67 10390.30 7993.63 14495.12 57
WR-MVS76.63 17178.02 15975.02 18484.14 16789.76 13578.34 19380.64 11369.56 17052.32 19961.26 16561.24 17060.66 19984.45 17387.07 13493.99 12892.77 103
ET-MVSNet_ETH3D84.65 9285.58 8783.56 10974.99 21292.62 10090.29 6980.38 11482.16 8273.01 10983.41 4471.10 12887.05 6287.77 12590.17 8295.62 5091.82 126
GBi-Net84.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
test184.51 9584.80 9184.17 9984.20 16489.95 12689.70 7580.37 11581.17 9175.50 9169.63 11879.69 8379.75 12190.73 8990.72 6995.52 5991.71 128
FMVSNet384.44 9784.64 9384.21 9884.32 16390.13 12489.85 7480.37 11581.17 9175.50 9169.63 11879.69 8379.62 12489.72 10290.52 7795.59 5391.58 135
CDS-MVSNet81.63 12382.09 11181.09 13687.21 12990.28 12087.46 11580.33 11869.06 17370.66 11571.30 10973.87 11367.99 18489.58 10489.87 9192.87 15690.69 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+85.33 8485.08 9085.63 8289.69 10593.42 8489.90 7380.31 11979.32 10972.48 11273.52 10174.03 11286.55 6790.99 8389.98 8794.83 8894.27 77
FMVSNet283.87 10083.73 10284.05 10384.20 16489.95 12689.70 7580.21 12079.17 11274.89 9665.91 13977.49 9779.75 12190.87 8691.00 6595.52 5991.71 128
MVS_Test86.93 7287.24 7186.56 7590.10 10393.47 8290.31 6880.12 12183.55 7178.12 8279.58 6579.80 8185.45 7390.17 9690.59 7595.29 7093.53 90
thisisatest053085.15 8885.86 8384.33 9589.19 11092.57 10187.22 12080.11 12282.15 8374.41 9878.15 7373.80 11579.90 11790.99 8389.58 9895.13 7993.75 86
tttt051785.11 8985.81 8484.30 9689.24 10892.68 9787.12 12480.11 12281.98 8474.31 10078.08 7473.57 11779.90 11791.01 8189.58 9895.11 8193.77 85
DTE-MVSNet75.14 18875.44 18774.80 18683.18 17687.19 16878.25 19580.11 12266.05 18548.31 20660.88 17054.67 20264.54 19582.57 18586.17 15194.43 11490.53 147
PEN-MVS76.02 18176.07 17775.95 17983.17 17787.97 16079.65 18480.07 12566.57 18351.45 20160.94 16955.47 20066.81 19082.72 18386.80 13994.59 10392.03 123
MVSTER86.03 7886.12 8085.93 8088.62 11489.93 12989.33 8379.91 12681.87 8681.35 6481.07 5974.91 10780.66 10492.13 6490.10 8395.68 4692.80 102
v2v48279.84 13778.07 15781.90 12583.75 16990.21 12387.17 12179.85 12770.65 16565.93 14061.93 16360.07 17580.82 10085.25 16186.71 14093.88 13391.70 132
CP-MVSNet76.36 17876.41 17476.32 17682.73 18688.64 15579.39 18779.62 12867.21 17953.70 19560.72 17155.22 20167.91 18683.52 17986.34 14994.55 10693.19 92
FMVSNet181.64 12280.61 12782.84 11582.36 18989.20 14788.67 9679.58 12970.79 16472.63 11158.95 18372.26 12479.34 12790.73 8990.72 6994.47 11191.62 133
PS-CasMVS75.90 18375.86 18275.96 17882.59 18788.46 15879.23 19079.56 13066.00 18652.77 19759.48 17954.35 20567.14 18983.37 18086.23 15094.47 11193.10 94
RPSCF83.46 10483.36 10383.59 10887.75 12087.35 16684.82 15079.46 13183.84 7078.12 8282.69 4979.87 7982.60 8782.47 18681.13 18988.78 19186.13 178
pm-mvs178.51 15777.75 16279.40 15084.83 16089.30 14483.55 16079.38 13262.64 19763.68 15658.73 18564.68 15170.78 17789.79 10187.84 12594.17 12291.28 139
WR-MVS_H75.84 18476.93 17074.57 18982.86 18389.50 14278.34 19379.36 13366.90 18152.51 19860.20 17559.71 17859.73 20083.61 17885.77 15894.65 10092.84 100
v14878.59 15576.84 17180.62 14183.61 17289.16 14883.65 15979.24 13469.38 17169.34 12559.88 17760.41 17475.19 15383.81 17784.63 17092.70 15890.63 145
CHOSEN 1792x268882.16 11480.91 12583.61 10791.14 8192.01 10589.55 8079.15 13579.87 10470.29 11752.51 20072.56 12281.39 9488.87 11588.17 12390.15 18492.37 119
GeoE84.62 9383.98 10085.35 8689.34 10792.83 9488.34 10378.95 13679.29 11077.16 9068.10 13074.56 10883.40 8089.31 10989.23 10894.92 8494.57 70
baseline282.80 10882.86 10782.73 11787.68 12390.50 11784.92 14878.93 13778.07 11973.06 10775.08 9069.77 13377.31 14188.90 11486.94 13794.50 10890.74 142
USDC80.69 12979.89 13881.62 12986.48 13689.11 15086.53 13078.86 13881.15 9463.48 15772.98 10359.12 18681.16 9787.10 13085.01 16593.23 15084.77 185
FC-MVSNet-test76.53 17481.62 11470.58 19884.99 15685.73 17874.81 20178.85 13977.00 12339.13 21775.90 8473.50 11854.08 20686.54 14485.99 15691.65 16886.68 174
pmmvs479.99 13478.08 15682.22 12383.04 17987.16 16984.95 14678.80 14078.64 11574.53 9764.61 15459.41 18279.45 12684.13 17584.54 17292.53 15988.08 163
IterMVS-LS83.28 10682.95 10683.65 10688.39 11688.63 15686.80 12878.64 14176.56 12473.43 10572.52 10675.35 10480.81 10186.43 14788.51 12193.84 13592.66 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS79.52 14279.71 14279.30 15185.68 14490.36 11984.55 15178.44 14270.47 16857.87 19068.52 12861.38 16976.21 14889.40 10887.89 12493.04 15489.96 150
v114479.38 14677.83 16081.18 13583.62 17190.23 12187.15 12378.35 14369.13 17264.02 15460.20 17559.41 18280.14 11586.78 13786.57 14493.81 13792.53 115
HyFIR lowres test81.62 12479.45 14584.14 10191.00 8493.38 8588.27 10478.19 14476.28 12670.18 11948.78 20473.69 11683.52 7987.05 13287.83 12793.68 14289.15 154
TinyColmap76.73 16973.95 19379.96 14785.16 15485.64 18082.34 16878.19 14470.63 16662.06 16760.69 17249.61 21280.81 10185.12 16683.69 17791.22 17682.27 193
Effi-MVS+-dtu82.05 11581.76 11282.38 12187.72 12190.56 11686.90 12778.05 14673.85 14666.85 13571.29 11071.90 12582.00 9186.64 14285.48 16192.76 15792.58 111
test-LLR79.47 14479.84 13979.03 15387.47 12582.40 20081.24 17778.05 14673.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
test0.0.03 176.03 18078.51 14973.12 19487.47 12585.13 18676.32 19878.05 14673.19 15450.98 20470.64 11269.28 13655.53 20285.33 16084.38 17390.39 18281.63 196
v119278.94 15077.33 16480.82 13883.25 17589.90 13086.91 12677.72 14968.63 17662.61 16359.17 18057.53 19180.62 10786.89 13486.47 14693.79 13892.75 105
Fast-Effi-MVS+83.77 10282.98 10584.69 8987.98 11891.87 10688.10 10677.70 15078.10 11873.04 10869.13 12468.51 14086.66 6590.49 9589.85 9294.67 9992.88 99
v14419278.81 15177.22 16680.67 14082.95 18089.79 13486.40 13177.42 15168.26 17863.13 15959.50 17858.13 18780.08 11685.93 15186.08 15394.06 12492.83 101
v879.90 13678.39 15381.66 12883.97 16889.81 13287.16 12277.40 15271.49 15967.71 13161.24 16662.49 16479.83 12085.48 15986.17 15193.89 13292.02 124
LTVRE_ROB74.41 1675.78 18574.72 19177.02 17085.88 14089.22 14682.44 16777.17 15350.57 21545.45 21065.44 14652.29 20981.25 9585.50 15887.42 13089.94 18692.62 108
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192078.57 15676.99 16980.41 14582.93 18189.63 14086.38 13277.14 15468.31 17761.80 17158.89 18456.79 19480.19 11486.50 14686.05 15594.02 12692.76 104
pmmvs674.83 18972.89 19677.09 16882.11 19087.50 16580.88 18176.97 15552.79 21361.91 17046.66 20660.49 17269.28 18086.74 14085.46 16291.39 17190.56 146
thisisatest051579.76 13980.59 12878.80 15584.40 16288.91 15479.48 18676.94 15672.29 15767.33 13367.82 13265.99 14770.80 17688.50 11887.84 12593.86 13492.75 105
v1079.62 14078.19 15581.28 13483.73 17089.69 13787.27 11876.86 15770.50 16765.46 14260.58 17360.47 17380.44 10886.91 13386.63 14393.93 12992.55 113
v124078.15 15876.53 17280.04 14682.85 18489.48 14385.61 14276.77 15867.05 18061.18 17858.37 18656.16 19879.89 11986.11 15086.08 15393.92 13092.47 117
V4279.59 14178.43 15280.94 13782.79 18589.71 13686.66 12976.73 15971.38 16067.42 13261.01 16862.30 16678.39 13385.56 15786.48 14593.65 14392.60 109
v7n77.22 16676.23 17678.38 16281.89 19289.10 15182.24 17176.36 16065.96 18761.21 17756.56 19055.79 19975.07 15686.55 14386.68 14193.52 14592.95 98
SixPastTwentyTwo76.02 18175.72 18376.36 17583.38 17387.54 16475.50 20076.22 16165.50 19057.05 19170.64 11253.97 20674.54 15980.96 19182.12 18691.44 17089.35 153
MDA-MVSNet-bldmvs66.22 20464.49 20768.24 20161.67 21682.11 20270.07 20976.16 16259.14 20747.94 20754.35 19535.82 22267.33 18864.94 21475.68 20386.30 20479.36 203
test20.0368.31 20270.05 20366.28 20582.41 18880.84 20467.35 21176.11 16358.44 20840.80 21653.77 19754.54 20342.28 21383.07 18181.96 18888.73 19277.76 207
pmmvs-eth3d74.32 19271.96 19877.08 16977.33 20682.71 19678.41 19276.02 16466.65 18265.98 13954.23 19649.02 21473.14 16982.37 18782.69 18391.61 16986.05 179
Anonymous2023120670.80 19870.59 20271.04 19781.60 19482.49 19974.64 20275.87 16564.17 19449.27 20544.85 21053.59 20854.68 20583.07 18182.34 18590.17 18383.65 188
baseline84.89 9086.06 8283.52 11087.25 12889.67 13887.76 10975.68 16684.92 6578.40 8080.10 6180.98 7280.20 11386.69 14187.05 13591.86 16692.99 96
CANet_DTU85.43 8387.72 6982.76 11690.95 8693.01 9189.99 7175.46 16782.67 7464.91 14983.14 4580.09 7880.68 10392.03 6591.03 6394.57 10592.08 120
MS-PatchMatch81.79 12081.44 11682.19 12490.35 9889.29 14588.08 10775.36 16877.60 12069.00 12764.37 15678.87 9077.14 14488.03 12385.70 15993.19 15286.24 177
CVMVSNet76.70 17078.46 15174.64 18883.34 17484.48 18881.83 17374.58 16968.88 17451.23 20369.77 11770.05 13167.49 18784.27 17483.81 17589.38 18887.96 165
testgi71.92 19774.20 19269.27 20084.58 16183.06 19273.40 20474.39 17064.04 19546.17 20968.90 12757.15 19348.89 21084.07 17683.08 18088.18 19479.09 205
pmmvs576.93 16876.33 17577.62 16581.97 19188.40 15981.32 17674.35 17165.42 19161.42 17463.07 15957.95 18973.23 16885.60 15685.35 16393.41 14888.55 158
MIMVSNet165.00 20566.24 20663.55 20758.41 21980.01 20769.00 21074.03 17255.81 21141.88 21436.81 21549.48 21347.89 21181.32 19082.40 18490.08 18577.88 206
EG-PatchMatch MVS76.40 17775.47 18677.48 16685.86 14290.22 12282.45 16673.96 17359.64 20659.60 18452.75 19962.20 16768.44 18388.23 12187.50 12894.55 10687.78 167
CMPMVSbinary56.49 1773.84 19471.73 20076.31 17785.20 15285.67 17975.80 19973.23 17462.26 19865.40 14353.40 19859.70 17971.77 17380.25 19479.56 19286.45 20381.28 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FA-MVS(training)85.65 8285.79 8685.48 8590.44 9693.47 8288.66 9873.11 17583.34 7282.26 5971.79 10778.39 9283.14 8291.00 8289.47 10395.28 7293.06 95
anonymousdsp77.94 16079.00 14676.71 17279.03 20187.83 16179.58 18572.87 17665.80 18858.86 18965.82 14062.48 16575.99 14986.77 13888.66 11893.92 13095.68 51
pmnet_mix0271.95 19671.83 19972.10 19581.40 19680.63 20673.78 20372.85 17770.90 16354.89 19362.17 16257.42 19262.92 19776.80 20473.98 20886.74 20280.87 200
Fast-Effi-MVS+-dtu79.95 13580.69 12679.08 15286.36 13789.14 14985.85 13672.28 17872.85 15659.32 18570.43 11668.42 14277.57 13986.14 14986.44 14793.11 15391.39 138
IterMVS-SCA-FT79.41 14580.20 13278.49 16085.88 14086.26 17383.95 15671.94 17973.55 15061.94 16870.48 11570.50 12975.23 15285.81 15484.61 17191.99 16590.18 149
PM-MVS74.17 19373.10 19475.41 18176.07 20982.53 19877.56 19671.69 18071.04 16161.92 16961.23 16747.30 21574.82 15881.78 18979.80 19090.42 18188.05 164
TAMVS76.42 17577.16 16775.56 18083.05 17885.55 18180.58 18271.43 18165.40 19261.04 17967.27 13469.22 13867.99 18484.88 16984.78 16889.28 18983.01 191
N_pmnet66.85 20366.63 20467.11 20478.73 20274.66 21370.53 20871.07 18266.46 18446.54 20851.68 20251.91 21055.48 20374.68 20872.38 20980.29 21474.65 210
new-patchmatchnet63.80 20663.31 20864.37 20676.49 20775.99 21163.73 21470.99 18357.27 20943.08 21245.86 20843.80 21645.13 21273.20 20970.68 21286.80 20176.34 209
CostFormer80.94 12880.21 13181.79 12687.69 12288.58 15787.47 11470.66 18480.02 10277.88 8673.03 10271.40 12678.24 13479.96 19579.63 19188.82 19088.84 155
tpm cat177.78 16275.28 18880.70 13987.14 13085.84 17785.81 13770.40 18577.44 12178.80 7963.72 15764.01 15576.55 14775.60 20775.21 20585.51 20785.12 182
MDTV_nov1_ep1379.14 14879.49 14478.74 15785.40 14886.89 17084.32 15570.29 18678.85 11369.42 12475.37 8873.29 12075.64 15180.61 19279.48 19387.36 19781.91 194
FMVSNet575.50 18776.07 17774.83 18576.16 20881.19 20381.34 17570.21 18773.20 15361.59 17358.97 18268.33 14368.50 18285.87 15385.85 15791.18 17779.11 204
dps78.02 15975.94 18180.44 14486.06 13986.62 17282.58 16469.98 18875.14 13377.76 8869.08 12559.93 17778.47 13279.47 19777.96 19887.78 19583.40 189
EU-MVSNet69.98 20072.30 19767.28 20375.67 21179.39 20873.12 20569.94 18963.59 19642.80 21362.93 16056.71 19655.07 20479.13 20078.55 19687.06 20085.82 181
IterMVS78.79 15279.71 14277.71 16485.26 15185.91 17684.54 15269.84 19073.38 15161.25 17670.53 11470.35 13074.43 16185.21 16483.80 17690.95 17888.77 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMVScopyleft50.48 1855.81 21151.93 21360.33 20972.90 21349.34 21948.78 21869.51 19143.49 21854.25 19436.26 21641.04 22139.71 21565.07 21360.70 21476.85 21667.58 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS63.63 20760.08 21267.78 20280.01 19971.50 21572.88 20669.41 19261.82 20053.11 19645.12 20942.11 21950.86 20866.69 21263.84 21380.41 21369.46 213
SCA79.51 14380.15 13378.75 15686.58 13587.70 16283.07 16268.53 19381.31 9066.40 13773.83 9775.38 10379.30 12880.49 19379.39 19488.63 19382.96 192
CR-MVSNet78.71 15378.86 14778.55 15985.85 14385.15 18482.30 16968.23 19474.71 13665.37 14464.39 15569.59 13577.18 14285.10 16784.87 16692.34 16188.21 161
Patchmtry85.54 18282.30 16968.23 19465.37 144
PatchmatchNetpermissive78.67 15478.85 14878.46 16186.85 13386.03 17483.77 15868.11 19680.88 9866.19 13872.90 10473.40 11978.06 13579.25 19977.71 19987.75 19681.75 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet74.69 19075.60 18573.62 19176.02 21085.31 18381.21 17967.43 19771.02 16259.07 18754.48 19364.07 15366.14 19386.52 14586.64 14291.83 16781.17 198
PMMVS81.65 12184.05 9978.86 15478.56 20382.63 19783.10 16167.22 19881.39 8970.11 12084.91 4179.74 8282.12 8987.31 12885.70 15992.03 16486.67 176
tpm76.30 17976.05 17976.59 17386.97 13183.01 19483.83 15767.06 19971.83 15863.87 15569.56 12162.88 16173.41 16779.79 19678.59 19584.41 20886.68 174
CHOSEN 280x42080.28 13281.66 11378.67 15882.92 18279.24 20985.36 14466.79 20078.11 11770.32 11675.03 9179.87 7981.09 9889.07 11083.16 17985.54 20687.17 170
EPMVS77.53 16478.07 15776.90 17186.89 13284.91 18782.18 17266.64 20181.00 9664.11 15372.75 10569.68 13474.42 16279.36 19878.13 19787.14 19980.68 201
MDTV_nov1_ep13_2view73.21 19572.91 19573.56 19280.01 19984.28 19078.62 19166.43 20268.64 17559.12 18660.39 17459.69 18069.81 17978.82 20177.43 20087.36 19781.11 199
tpmrst76.55 17375.99 18077.20 16787.32 12783.05 19382.86 16365.62 20378.61 11667.22 13469.19 12365.71 14875.87 15076.75 20575.33 20484.31 20983.28 190
gm-plane-assit70.29 19970.65 20169.88 19985.03 15578.50 21058.41 21765.47 20450.39 21640.88 21549.60 20350.11 21175.14 15591.43 7089.78 9394.32 11884.73 186
RPMNet77.07 16777.63 16376.42 17485.56 14785.15 18481.37 17465.27 20574.71 13660.29 18163.71 15866.59 14673.64 16482.71 18482.12 18692.38 16088.39 159
MVS-HIRNet68.83 20166.39 20571.68 19677.58 20575.52 21266.45 21265.05 20662.16 19962.84 16044.76 21156.60 19771.96 17278.04 20275.06 20686.18 20572.56 211
PatchT76.42 17577.81 16174.80 18678.46 20484.30 18971.82 20765.03 20773.89 14465.37 14461.58 16466.70 14577.18 14285.10 16784.87 16690.94 17988.21 161
gg-mvs-nofinetune75.64 18677.26 16573.76 19087.92 11992.20 10387.32 11664.67 20851.92 21435.35 21946.44 20777.05 10071.97 17192.64 5491.02 6495.34 6789.53 152
Gipumacopyleft49.17 21247.05 21551.65 21159.67 21848.39 22041.98 22163.47 20955.64 21233.33 22114.90 21913.78 22641.34 21469.31 21172.30 21070.11 21755.00 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ADS-MVSNet74.53 19175.69 18473.17 19381.57 19580.71 20579.27 18963.03 21079.27 11159.94 18367.86 13168.32 14471.08 17577.33 20376.83 20184.12 21179.53 202
TESTMET0.1,177.78 16279.84 13975.38 18280.86 19882.40 20081.24 17762.72 21173.72 14762.69 16173.76 9874.42 10973.49 16584.61 17182.99 18191.25 17487.01 171
test-mter77.79 16180.02 13575.18 18381.18 19782.85 19580.52 18362.03 21273.62 14962.16 16673.55 10073.83 11473.81 16384.67 17083.34 17891.37 17288.31 160
new_pmnet59.28 20961.47 21156.73 21061.66 21768.29 21759.57 21654.91 21360.83 20234.38 22044.66 21243.65 21749.90 20971.66 21071.56 21179.94 21569.67 212
E-PMN31.40 21526.80 21836.78 21351.39 22129.96 22320.20 22454.17 21425.93 22112.75 22414.73 2208.58 22834.10 21827.36 22037.83 21948.07 22243.18 220
EMVS30.49 21725.44 21936.39 21451.47 22029.89 22420.17 22554.00 21526.49 22012.02 22513.94 2228.84 22734.37 21725.04 22134.37 22046.29 22339.53 221
pmmvs361.89 20861.74 21062.06 20864.30 21570.83 21664.22 21352.14 21648.78 21744.47 21141.67 21341.70 22063.03 19676.06 20676.02 20284.18 21077.14 208
PMMVS241.68 21444.74 21638.10 21246.97 22252.32 21840.63 22248.08 21735.51 2197.36 22626.86 21824.64 22416.72 22055.24 21759.03 21568.85 21859.59 217
MVEpermissive30.17 1930.88 21633.52 21727.80 21823.78 22439.16 22218.69 22646.90 21821.88 22215.39 22314.37 2217.31 22924.41 21941.63 21956.22 21637.64 22454.07 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft48.31 22148.03 21926.08 21956.42 21025.77 22247.51 20531.31 22351.30 20748.49 21853.61 22061.52 215
test_method41.78 21348.10 21434.42 21510.74 22519.78 22644.64 22017.73 22059.83 20438.67 21835.82 21754.41 20434.94 21662.87 21543.13 21859.81 21960.82 216
tmp_tt32.73 21643.96 22321.15 22526.71 2238.99 22165.67 18951.39 20256.01 19142.64 21811.76 22156.60 21650.81 21753.55 221
testmvs1.03 2181.63 2200.34 2190.09 2270.35 2270.61 2280.16 2221.49 2230.10 2283.15 2230.15 2300.86 2231.32 2221.18 2210.20 2253.76 223
GG-mvs-BLEND57.56 21082.61 10928.34 2170.22 22690.10 12579.37 1880.14 22379.56 1070.40 22771.25 11183.40 620.30 22486.27 14883.87 17489.59 18783.83 187
test1230.87 2191.40 2210.25 2200.03 2280.25 2280.35 2290.08 2241.21 2240.05 2292.84 2240.03 2310.89 2220.43 2231.16 2220.13 2263.87 222
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS96.31 2796.02 3894.89 3086.52 3687.18 3692.17 1686.76 6495.56 5593.85 82
RE-MVS-def56.08 192
9.1492.16 17
our_test_381.81 19383.96 19176.61 197
ambc61.92 20970.98 21473.54 21463.64 21560.06 20352.23 20038.44 21419.17 22557.12 20182.33 18875.03 20783.21 21284.89 183
MTAPA92.97 291.03 23
MTMP93.14 190.21 30
Patchmatch-RL test8.55 227
XVS93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
X-MVStestdata93.11 6096.70 2591.91 5383.95 4988.82 4095.79 40
mPP-MVS97.06 1288.08 45
NP-MVS87.47 52