DeepC-MVS | | 66.32 2 | 73.85 23 | 78.10 22 | 68.90 23 | 67.92 50 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 22 | 61.13 20 | 67.36 36 | 76.10 33 | 63.40 8 | 79.11 8 | 78.41 10 | 83.52 5 | 88.16 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ |  | | 76.01 9 | 80.47 11 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 12 | 78.80 14 | 82.53 10 | 64.40 5 | 78.74 9 | 78.84 5 | 81.81 32 | 87.46 18 |
|
SMA-MVS |  | | 77.32 6 | 82.51 6 | 71.26 7 | 75.43 14 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 6 | 64.36 8 | 78.19 15 | 83.46 5 | 63.61 7 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 2 | 66.42 1 | 80.41 3 | 78.65 6 | 82.65 17 | 90.92 2 |
|
SteuartSystems-ACMMP | | | 75.23 12 | 79.60 14 | 70.13 13 | 76.81 7 | 78.92 12 | 81.74 8 | 57.99 5 | 75.30 30 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 9 |
Skip Steuart: Steuart Systems R&D Blog. |
DVP-MVS | | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 4 | 82.05 1 | 81.64 10 | 57.96 6 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 9 | 79.99 6 | 78.56 7 | 82.31 22 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 77.82 4 | 83.46 4 | 71.24 8 | 75.26 16 | 80.22 7 | 82.95 4 | 57.85 7 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 6 | 66.24 2 | 78.21 17 | 78.56 7 | 80.34 47 | 89.39 6 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 78.11 3 | 83.84 3 | 71.42 5 | 77.82 6 | 81.32 3 | 82.92 6 | 57.81 8 | 84.04 7 | 63.19 13 | 88.63 2 | 86.00 3 | 64.52 4 | 78.71 10 | 77.63 15 | 82.26 23 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 77.58 5 | 82.93 5 | 71.35 6 | 77.86 5 | 80.55 6 | 83.38 1 | 57.61 9 | 85.57 4 | 61.11 21 | 86.10 6 | 82.98 7 | 64.76 3 | 78.29 14 | 76.78 22 | 83.40 6 | 90.20 4 |
|
xxxxxxxxxxxxxcwj | | | 74.63 16 | 77.07 27 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 52.03 120 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
SF-MVS | | | 77.13 7 | 81.70 7 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 84.46 4 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
APD-MVS |  | | 75.80 10 | 80.90 10 | 69.86 16 | 75.42 15 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 15 | 59.32 27 | 85.28 7 | 80.82 17 | 63.96 6 | 76.89 29 | 76.08 27 | 81.58 38 | 88.30 11 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 75.62 11 | 79.91 13 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 17 | 63.04 14 | 70.69 24 | 81.15 15 | 62.99 10 | 80.23 4 | 79.54 3 | 83.11 9 | 89.16 7 |
|
ACMMP_NAP | | | 76.15 8 | 81.17 8 | 70.30 11 | 74.09 20 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 11 | 79.02 13 | 80.48 18 | 62.24 18 | 80.05 5 | 79.12 4 | 82.94 12 | 88.64 8 |
|
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 23 | 80.51 15 | 57.09 14 | 78.25 21 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 19 | 79.13 7 | 78.51 9 | 83.01 11 | 87.68 17 |
|
HFP-MVS | | | 74.87 14 | 78.86 19 | 70.21 12 | 73.99 21 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 20 | 64.27 9 | 74.54 20 | 77.75 28 | 62.96 11 | 78.70 11 | 77.82 12 | 83.02 10 | 86.91 21 |
|
MP-MVS |  | | 74.31 18 | 78.87 17 | 68.99 22 | 73.49 23 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 28 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 21 | 77.78 21 | 77.93 11 | 82.18 28 | 88.06 13 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 74.25 20 | 77.97 23 | 69.91 15 | 73.43 24 | 74.06 44 | 79.69 19 | 56.44 18 | 80.74 14 | 64.98 4 | 68.72 30 | 79.98 20 | 62.92 12 | 78.24 16 | 77.77 14 | 81.99 30 | 86.30 23 |
|
ACMMPR | | | 73.79 24 | 78.41 20 | 68.40 25 | 72.35 28 | 77.79 19 | 79.32 21 | 56.38 19 | 77.67 24 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 23 | 78.32 13 | 77.80 13 | 82.68 16 | 86.51 22 |
|
OPM-MVS | | | 69.33 38 | 71.05 46 | 67.32 28 | 72.34 29 | 75.70 33 | 79.57 20 | 56.34 20 | 55.21 73 | 53.81 54 | 59.51 63 | 68.96 55 | 59.67 35 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 40 |
|
train_agg | | | 73.89 22 | 78.25 21 | 68.80 24 | 75.25 17 | 72.27 52 | 79.75 18 | 56.05 21 | 74.87 33 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 26 | 77.39 25 | 76.01 28 | 81.71 35 | 85.61 30 |
|
CP-MVS | | | 72.63 28 | 76.95 28 | 67.59 27 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 22 | 75.65 27 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 36 | 86.97 20 |
|
X-MVS | | | 71.18 33 | 75.66 33 | 65.96 36 | 71.71 30 | 76.96 26 | 77.26 33 | 55.88 23 | 72.75 38 | 54.48 49 | 64.39 41 | 74.47 38 | 54.19 67 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 27 |
|
TSAR-MVS + MP. | | | 75.22 13 | 80.06 12 | 69.56 17 | 74.61 18 | 72.74 50 | 80.59 14 | 55.70 24 | 80.80 13 | 62.65 16 | 86.25 5 | 82.92 8 | 62.07 20 | 76.89 29 | 75.66 30 | 81.77 34 | 85.19 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPNet | | | 65.14 57 | 69.54 54 | 60.00 58 | 66.61 56 | 67.67 74 | 67.53 64 | 55.32 25 | 62.67 60 | 46.22 80 | 67.74 33 | 65.93 66 | 48.07 110 | 72.17 57 | 72.12 50 | 76.28 91 | 78.47 67 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SD-MVS | | | 74.43 17 | 78.87 17 | 69.26 20 | 74.39 19 | 73.70 46 | 79.06 25 | 55.24 26 | 81.04 12 | 62.71 15 | 80.18 12 | 82.61 9 | 61.70 22 | 75.43 41 | 73.92 44 | 82.44 21 | 85.22 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPM-MVS | | | 72.80 27 | 75.90 30 | 69.19 21 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 27 | 75.96 26 | 62.06 19 | 63.96 43 | 76.58 30 | 58.55 40 | 76.66 33 | 76.77 23 | 82.60 19 | 83.68 42 |
|
CDPH-MVS | | | 71.47 32 | 75.82 32 | 66.41 32 | 72.97 26 | 77.15 25 | 78.14 30 | 54.71 28 | 69.88 48 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 52 | 76.22 34 | 76.57 24 | 82.62 18 | 85.09 34 |
|
SR-MVS | | | | | | 71.46 34 | | | 54.67 29 | | | | 81.54 13 | | | | | |
|
PGM-MVS | | | 72.89 26 | 77.13 26 | 67.94 26 | 72.47 27 | 77.25 24 | 79.27 22 | 54.63 30 | 73.71 35 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 15 | 77.36 18 | 82.57 20 | 85.62 29 |
|
MCST-MVS | | | 73.67 25 | 77.39 25 | 69.33 19 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 31 | 75.33 28 | 59.99 25 | 67.96 32 | 79.23 22 | 62.43 17 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 30 | 76.11 29 | 67.21 29 | 68.93 46 | 77.46 21 | 76.54 35 | 54.35 32 | 74.92 32 | 58.64 31 | 65.18 38 | 74.04 43 | 62.62 15 | 77.92 19 | 77.02 21 | 82.16 29 | 86.21 24 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 60.30 7 | 67.58 48 | 68.82 58 | 66.13 34 | 70.59 37 | 72.01 54 | 76.54 35 | 54.26 33 | 65.64 54 | 54.78 47 | 50.35 105 | 61.72 80 | 58.74 38 | 75.79 39 | 75.03 34 | 81.88 31 | 81.17 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 9 | 66.41 32 | 67.75 52 | 78.87 13 | 75.61 39 | 54.16 34 | 84.86 5 | 58.22 33 | 77.94 16 | 81.01 16 | 62.52 16 | 78.34 12 | 77.38 16 | 80.16 50 | 88.40 10 |
|
ACMMP |  | | 71.57 31 | 75.84 31 | 66.59 31 | 70.30 40 | 76.85 29 | 78.46 28 | 53.95 35 | 73.52 36 | 55.56 39 | 70.13 26 | 71.36 48 | 58.55 40 | 77.00 28 | 76.23 26 | 82.71 15 | 85.81 28 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LGP-MVS_train | | | 68.87 40 | 72.03 42 | 65.18 40 | 69.33 44 | 74.03 45 | 76.67 34 | 53.88 36 | 68.46 49 | 52.05 60 | 63.21 46 | 63.89 69 | 56.31 56 | 75.99 37 | 74.43 40 | 82.83 14 | 84.18 36 |
|
AdaColmap |  | | 67.89 46 | 68.85 57 | 66.77 30 | 73.73 22 | 74.30 43 | 75.28 40 | 53.58 37 | 70.24 46 | 57.59 35 | 51.19 102 | 59.19 91 | 60.74 28 | 75.33 43 | 73.72 46 | 79.69 55 | 77.96 70 |
|
ACMP | | 61.42 5 | 68.72 43 | 71.37 44 | 65.64 38 | 69.06 45 | 74.45 42 | 75.88 38 | 53.30 38 | 68.10 50 | 55.74 38 | 61.53 58 | 62.29 76 | 56.97 51 | 74.70 45 | 74.23 42 | 82.88 13 | 84.31 35 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HQP-MVS | | | 70.88 34 | 75.02 34 | 66.05 35 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 39 | 72.89 37 | 54.88 45 | 70.03 27 | 70.48 50 | 57.26 48 | 76.02 36 | 75.01 36 | 81.78 33 | 86.21 24 |
|
TranMVSNet+NR-MVSNet | | | 55.87 115 | 60.14 105 | 50.88 119 | 59.46 95 | 63.82 111 | 57.93 125 | 52.98 40 | 48.94 111 | 20.52 185 | 52.87 90 | 47.33 144 | 36.81 164 | 69.12 83 | 69.03 72 | 77.56 75 | 69.89 122 |
|
UniMVSNet_NR-MVSNet | | | 56.94 108 | 61.14 91 | 52.05 117 | 60.02 92 | 65.21 104 | 57.44 127 | 52.93 41 | 49.37 105 | 24.31 178 | 54.62 86 | 50.54 127 | 39.04 150 | 68.69 85 | 68.84 74 | 78.53 65 | 70.72 116 |
|
CSCG | | | 74.68 15 | 79.22 15 | 69.40 18 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 42 | 79.34 18 | 63.99 10 | 70.49 25 | 82.02 11 | 60.35 31 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 14 |
|
3Dnovator+ | | 62.63 4 | 69.51 36 | 72.62 40 | 65.88 37 | 68.21 49 | 76.47 30 | 73.50 49 | 52.74 43 | 70.85 44 | 58.65 30 | 55.97 76 | 69.95 51 | 61.11 25 | 76.80 31 | 75.09 33 | 81.09 43 | 83.23 45 |
|
CPTT-MVS | | | 68.76 42 | 73.01 38 | 63.81 48 | 65.42 62 | 73.66 47 | 76.39 37 | 52.08 44 | 72.61 39 | 50.33 63 | 60.73 59 | 72.65 46 | 59.43 37 | 73.32 53 | 72.12 50 | 79.19 60 | 85.99 26 |
|
Baseline_NR-MVSNet | | | 53.50 132 | 57.89 129 | 48.37 144 | 54.60 134 | 59.25 145 | 56.10 137 | 51.84 45 | 49.32 106 | 17.92 192 | 45.38 142 | 47.68 139 | 36.93 163 | 68.11 98 | 65.95 115 | 72.84 131 | 69.57 127 |
|
DU-MVS | | | 55.41 120 | 59.59 111 | 50.54 122 | 54.60 134 | 62.97 115 | 57.44 127 | 51.80 46 | 48.62 119 | 24.31 178 | 51.99 97 | 47.00 147 | 39.04 150 | 68.11 98 | 67.75 87 | 76.03 98 | 70.72 116 |
|
NR-MVSNet | | | 55.35 121 | 59.46 115 | 50.56 121 | 61.33 84 | 62.97 115 | 57.91 126 | 51.80 46 | 48.62 119 | 20.59 184 | 51.99 97 | 44.73 172 | 34.10 174 | 68.58 88 | 68.64 76 | 77.66 71 | 70.67 120 |
|
MVS_111021_HR | | | 67.62 47 | 70.39 50 | 64.39 44 | 69.77 42 | 70.45 58 | 71.44 55 | 51.72 48 | 60.77 64 | 55.06 43 | 62.14 55 | 66.40 65 | 58.13 43 | 76.13 35 | 74.79 38 | 80.19 49 | 82.04 49 |
|
DTE-MVSNet | | | 48.03 171 | 53.28 158 | 41.91 178 | 54.64 132 | 57.50 161 | 44.63 194 | 51.66 49 | 41.02 174 | 7.97 212 | 46.26 131 | 40.90 185 | 20.24 198 | 60.45 162 | 62.89 149 | 72.33 143 | 63.97 164 |
|
PEN-MVS | | | 49.21 161 | 54.32 151 | 43.24 174 | 54.33 137 | 59.26 144 | 47.04 181 | 51.37 50 | 41.67 170 | 9.97 206 | 46.22 132 | 41.80 183 | 22.97 196 | 60.52 161 | 64.03 138 | 73.73 118 | 66.75 143 |
|
ACMH+ | | 53.71 12 | 59.26 82 | 60.28 100 | 58.06 70 | 64.17 70 | 68.46 65 | 67.51 65 | 50.93 51 | 52.46 90 | 35.83 132 | 40.83 172 | 45.12 166 | 52.32 87 | 69.88 77 | 69.00 73 | 77.59 74 | 76.21 87 |
|
TSAR-MVS + GP. | | | 69.71 35 | 73.92 37 | 64.80 43 | 68.27 48 | 70.56 57 | 71.90 51 | 50.75 52 | 71.38 42 | 57.46 36 | 68.68 31 | 75.42 34 | 60.10 33 | 73.47 52 | 73.99 43 | 80.32 48 | 83.97 38 |
|
UniMVSNet (Re) | | | 55.15 125 | 60.39 99 | 49.03 134 | 55.31 128 | 64.59 108 | 55.77 142 | 50.63 53 | 48.66 118 | 20.95 183 | 51.47 100 | 50.40 128 | 34.41 173 | 67.81 105 | 67.89 83 | 77.11 82 | 71.88 110 |
|
CP-MVSNet | | | 48.37 166 | 53.53 155 | 42.34 176 | 51.35 159 | 58.01 158 | 46.56 182 | 50.54 54 | 41.62 171 | 10.61 202 | 46.53 130 | 40.68 188 | 23.18 194 | 58.71 171 | 61.83 155 | 71.81 146 | 67.36 142 |
|
PS-CasMVS | | | 48.18 168 | 53.25 159 | 42.27 177 | 51.26 160 | 57.94 159 | 46.51 183 | 50.52 55 | 41.30 172 | 10.56 203 | 45.35 144 | 40.34 190 | 23.04 195 | 58.66 172 | 61.79 156 | 71.74 148 | 67.38 141 |
|
MAR-MVS | | | 68.04 45 | 70.74 48 | 64.90 42 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 56 | 63.81 56 | 55.52 40 | 54.88 82 | 69.90 52 | 57.39 47 | 75.42 42 | 74.79 38 | 79.71 52 | 80.03 57 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 64.36 45 | 70.08 41 | 77.45 22 | 72.88 50 | 50.15 57 | 71.31 43 | 54.77 48 | 62.79 50 | 77.99 27 | 56.80 53 | | | 81.50 39 | 83.91 39 |
|
WR-MVS | | | 48.78 165 | 55.06 147 | 41.45 180 | 55.50 127 | 60.40 134 | 43.77 195 | 49.99 58 | 41.92 168 | 8.10 211 | 45.24 145 | 45.56 160 | 17.47 200 | 61.57 158 | 64.60 132 | 73.85 116 | 66.14 151 |
|
PCF-MVS | | 59.98 8 | 67.32 49 | 71.04 47 | 62.97 50 | 64.77 64 | 74.49 40 | 74.78 43 | 49.54 59 | 67.44 51 | 54.39 52 | 58.35 68 | 72.81 45 | 55.79 63 | 71.54 60 | 69.24 69 | 78.57 63 | 83.41 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
WR-MVS_H | | | 47.65 172 | 53.67 154 | 40.63 183 | 51.45 157 | 59.74 141 | 44.71 193 | 49.37 60 | 40.69 176 | 7.61 213 | 46.04 135 | 44.34 177 | 17.32 201 | 57.79 177 | 61.18 158 | 73.30 127 | 65.86 153 |
|
PHI-MVS | | | 69.27 39 | 74.84 35 | 62.76 51 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 61 | 70.61 45 | 50.93 61 | 69.62 28 | 74.84 36 | 57.25 49 | 75.53 40 | 74.32 41 | 78.35 68 | 84.17 37 |
|
ACMH | | 52.42 13 | 58.24 97 | 59.56 114 | 56.70 86 | 66.34 58 | 69.59 60 | 66.71 73 | 49.12 62 | 46.08 137 | 28.90 160 | 42.67 167 | 41.20 184 | 52.60 84 | 71.39 61 | 70.28 62 | 76.51 87 | 75.72 90 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet_Blended_VisFu | | | 63.65 60 | 66.92 61 | 59.83 61 | 60.03 91 | 73.44 48 | 66.33 76 | 48.95 63 | 52.20 91 | 50.81 62 | 56.07 75 | 60.25 87 | 53.56 73 | 73.23 54 | 70.01 65 | 79.30 57 | 83.24 44 |
|
LS3D | | | 60.20 79 | 61.70 88 | 58.45 68 | 64.18 69 | 67.77 71 | 67.19 66 | 48.84 64 | 61.67 62 | 41.27 106 | 45.89 137 | 51.81 121 | 54.18 68 | 68.78 84 | 66.50 108 | 75.03 107 | 69.48 129 |
|
TSAR-MVS + ACMM | | | 72.56 29 | 79.07 16 | 64.96 41 | 73.24 25 | 73.16 49 | 78.50 27 | 48.80 65 | 79.34 18 | 55.32 41 | 85.04 8 | 81.49 14 | 58.57 39 | 75.06 44 | 73.75 45 | 75.35 105 | 85.61 30 |
|
CANet | | | 68.77 41 | 73.01 38 | 63.83 47 | 68.30 47 | 75.19 35 | 73.73 48 | 47.90 66 | 63.86 55 | 54.84 46 | 67.51 34 | 74.36 41 | 57.62 44 | 74.22 48 | 73.57 48 | 80.56 45 | 82.36 46 |
|
MVS_0304 | | | 69.49 37 | 73.96 36 | 64.28 46 | 67.92 50 | 76.13 32 | 74.90 42 | 47.60 67 | 63.29 58 | 54.09 53 | 67.44 35 | 76.35 32 | 59.53 36 | 75.81 38 | 75.03 34 | 81.62 37 | 83.70 41 |
|
Anonymous202405211 | | | | 60.60 96 | | 63.44 75 | 66.71 90 | 61.00 111 | 47.23 68 | 50.62 97 | | 36.85 182 | 60.63 86 | 43.03 136 | 69.17 81 | 67.72 88 | 75.41 102 | 72.54 108 |
|
QAPM | | | 65.27 54 | 69.49 55 | 60.35 56 | 65.43 61 | 72.20 53 | 65.69 85 | 47.23 68 | 63.46 57 | 49.14 68 | 53.56 88 | 71.04 49 | 57.01 50 | 72.60 56 | 71.41 53 | 77.62 72 | 82.14 48 |
|
UniMVSNet_ETH3D | | | 52.62 136 | 55.98 140 | 48.70 139 | 51.04 163 | 60.71 133 | 56.87 133 | 46.74 70 | 42.52 166 | 26.96 169 | 42.50 168 | 45.95 159 | 37.87 157 | 66.22 131 | 65.15 130 | 72.74 133 | 68.78 136 |
|
FC-MVSNet-train | | | 58.40 93 | 63.15 85 | 52.85 111 | 64.29 67 | 61.84 121 | 55.98 141 | 46.47 71 | 53.06 83 | 34.96 135 | 61.95 57 | 56.37 104 | 39.49 148 | 68.67 86 | 68.36 79 | 75.92 99 | 71.81 111 |
|
CDS-MVSNet | | | 52.42 138 | 57.06 137 | 47.02 155 | 53.92 141 | 58.30 154 | 55.50 145 | 46.47 71 | 42.52 166 | 29.38 158 | 49.50 108 | 52.85 117 | 28.49 186 | 66.70 124 | 66.89 98 | 68.34 161 | 62.63 171 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PVSNet_BlendedMVS | | | 61.63 72 | 64.82 75 | 57.91 75 | 57.21 118 | 67.55 77 | 63.47 101 | 46.08 73 | 54.72 74 | 52.46 57 | 58.59 66 | 60.73 83 | 51.82 92 | 70.46 70 | 65.20 127 | 76.44 88 | 76.50 84 |
|
PVSNet_Blended | | | 61.63 72 | 64.82 75 | 57.91 75 | 57.21 118 | 67.55 77 | 63.47 101 | 46.08 73 | 54.72 74 | 52.46 57 | 58.59 66 | 60.73 83 | 51.82 92 | 70.46 70 | 65.20 127 | 76.44 88 | 76.50 84 |
|
MSLP-MVS++ | | | 68.17 44 | 70.72 49 | 65.19 39 | 69.41 43 | 70.64 56 | 74.99 41 | 45.76 75 | 70.20 47 | 60.17 24 | 56.42 74 | 73.01 44 | 61.14 24 | 72.80 55 | 70.54 60 | 79.70 53 | 81.42 51 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 51 | 63.11 49 | 66.63 55 | 74.52 39 | 71.56 54 | 45.76 75 | 67.37 52 | 55.00 44 | 54.31 87 | 68.19 59 | 58.49 42 | 73.97 50 | 73.63 47 | 81.22 42 | 80.23 56 |
|
Effi-MVS+ | | | 63.28 61 | 65.96 68 | 60.17 57 | 64.26 68 | 68.06 69 | 68.78 59 | 45.71 77 | 54.08 76 | 46.64 77 | 55.92 77 | 63.13 73 | 55.94 61 | 70.38 73 | 71.43 52 | 79.68 56 | 78.70 64 |
|
UA-Net | | | 58.50 90 | 64.68 78 | 51.30 118 | 66.97 53 | 67.13 83 | 53.68 157 | 45.65 78 | 49.51 104 | 31.58 147 | 62.91 49 | 68.47 57 | 35.85 167 | 68.20 96 | 67.28 93 | 74.03 115 | 69.24 133 |
|
DELS-MVS | | | 65.87 52 | 70.30 52 | 60.71 54 | 64.05 72 | 72.68 51 | 70.90 56 | 45.43 79 | 57.49 68 | 49.05 70 | 64.43 40 | 68.66 56 | 55.11 65 | 74.31 46 | 73.02 49 | 79.70 53 | 81.51 50 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
IS_MVSNet | | | 57.95 100 | 64.26 80 | 50.60 120 | 61.62 83 | 65.25 103 | 57.18 129 | 45.42 80 | 50.79 95 | 26.49 171 | 57.81 70 | 60.05 88 | 34.51 171 | 71.24 66 | 70.20 64 | 78.36 67 | 74.44 99 |
|
test_part1 | | | 63.06 63 | 65.27 72 | 60.47 55 | 66.24 60 | 70.17 59 | 71.86 52 | 45.36 81 | 53.75 77 | 49.61 65 | 44.85 147 | 65.53 67 | 48.93 101 | 71.39 61 | 70.65 58 | 80.82 44 | 80.59 54 |
|
Vis-MVSNet (Re-imp) | | | 50.37 153 | 57.73 133 | 41.80 179 | 57.53 107 | 54.35 169 | 45.70 187 | 45.24 82 | 49.80 100 | 13.43 198 | 58.23 69 | 56.42 102 | 20.11 199 | 62.96 150 | 63.36 144 | 68.76 160 | 58.96 184 |
|
TransMVSNet (Re) | | | 51.92 145 | 55.38 144 | 47.88 150 | 60.95 87 | 59.90 139 | 53.95 154 | 45.14 83 | 39.47 183 | 24.85 175 | 43.87 153 | 46.51 153 | 29.15 183 | 67.55 110 | 65.23 126 | 73.26 128 | 65.16 159 |
|
v144192 | | | 58.23 98 | 59.40 116 | 56.87 83 | 57.56 105 | 66.89 85 | 65.70 83 | 45.01 84 | 44.06 151 | 42.88 95 | 46.61 126 | 48.09 134 | 53.49 77 | 66.94 122 | 65.90 117 | 76.61 85 | 77.29 73 |
|
baseline1 | | | 54.48 129 | 58.69 121 | 49.57 126 | 60.63 89 | 58.29 155 | 55.70 143 | 44.95 85 | 49.20 107 | 29.62 156 | 54.77 83 | 54.75 110 | 35.29 168 | 67.15 118 | 64.08 137 | 71.21 151 | 62.58 172 |
|
v1192 | | | 58.51 89 | 59.66 110 | 57.17 80 | 57.82 104 | 67.72 72 | 66.21 78 | 44.83 86 | 44.15 150 | 43.49 93 | 46.68 124 | 47.94 135 | 53.55 74 | 67.39 113 | 66.51 107 | 77.13 81 | 77.20 75 |
|
EPP-MVSNet | | | 59.39 81 | 65.45 71 | 52.32 115 | 60.96 86 | 67.70 73 | 58.42 123 | 44.75 87 | 49.71 101 | 27.23 168 | 59.03 64 | 62.20 77 | 43.34 132 | 70.71 69 | 69.13 71 | 79.25 59 | 79.63 59 |
|
v1921920 | | | 57.89 101 | 59.02 119 | 56.58 87 | 57.55 106 | 66.66 91 | 64.72 94 | 44.70 88 | 43.55 154 | 42.73 96 | 46.17 134 | 46.93 148 | 53.51 75 | 66.78 123 | 65.75 119 | 76.29 90 | 77.28 74 |
|
ETV-MVS | | | 63.23 62 | 66.08 67 | 59.91 60 | 63.13 76 | 68.13 68 | 67.62 63 | 44.62 89 | 53.39 80 | 46.23 79 | 58.74 65 | 58.19 94 | 57.45 46 | 73.60 51 | 71.38 54 | 80.39 46 | 79.13 61 |
|
v1240 | | | 57.55 103 | 58.63 123 | 56.29 88 | 57.30 116 | 66.48 92 | 63.77 99 | 44.56 90 | 42.77 164 | 42.48 98 | 45.64 140 | 46.28 155 | 53.46 78 | 66.32 129 | 65.80 118 | 76.16 94 | 77.13 76 |
|
v1144 | | | 58.88 85 | 60.16 104 | 57.39 79 | 58.03 102 | 67.26 80 | 67.14 68 | 44.46 91 | 45.17 142 | 44.33 90 | 47.81 119 | 49.92 131 | 53.20 82 | 67.77 106 | 66.62 105 | 77.15 80 | 76.58 81 |
|
casdiffmvs | | | 64.09 59 | 68.13 60 | 59.37 64 | 61.81 80 | 68.32 67 | 68.48 60 | 44.45 92 | 61.95 61 | 49.12 69 | 63.04 48 | 69.67 53 | 53.83 71 | 70.46 70 | 66.06 113 | 78.55 64 | 77.43 72 |
|
GeoE | | | 62.43 68 | 64.79 77 | 59.68 62 | 64.15 71 | 67.17 82 | 68.80 58 | 44.42 93 | 55.65 72 | 47.38 72 | 51.54 99 | 62.51 74 | 54.04 70 | 69.99 76 | 68.07 81 | 79.28 58 | 78.57 65 |
|
DI_MVS_plusplus_trai | | | 61.88 70 | 65.17 74 | 58.06 70 | 60.05 90 | 65.26 101 | 66.03 79 | 44.22 94 | 55.75 71 | 46.73 75 | 54.64 85 | 68.12 60 | 54.13 69 | 69.13 82 | 66.66 102 | 77.18 79 | 76.61 80 |
|
v10 | | | 59.17 84 | 60.60 96 | 57.50 78 | 57.95 103 | 66.73 87 | 67.09 71 | 44.11 95 | 46.85 130 | 45.42 83 | 48.18 118 | 51.07 123 | 53.63 72 | 67.84 104 | 66.59 106 | 76.79 83 | 76.92 77 |
|
pmmvs4 | | | 54.66 128 | 56.07 139 | 53.00 109 | 54.63 133 | 57.08 163 | 60.43 114 | 44.10 96 | 51.69 93 | 40.55 110 | 46.55 129 | 44.79 171 | 45.95 120 | 62.54 152 | 63.66 141 | 72.36 142 | 66.20 149 |
|
FMVSNet2 | | | 55.04 126 | 59.95 108 | 49.31 128 | 52.42 149 | 61.44 123 | 57.03 130 | 44.08 97 | 49.55 102 | 30.40 152 | 46.89 123 | 58.84 92 | 38.22 153 | 67.07 120 | 66.21 111 | 73.69 119 | 69.65 124 |
|
GBi-Net | | | 55.20 122 | 60.25 101 | 49.31 128 | 52.42 149 | 61.44 123 | 57.03 130 | 44.04 98 | 49.18 108 | 30.47 149 | 48.28 114 | 58.19 94 | 38.22 153 | 68.05 101 | 66.96 95 | 73.69 119 | 69.65 124 |
|
test1 | | | 55.20 122 | 60.25 101 | 49.31 128 | 52.42 149 | 61.44 123 | 57.03 130 | 44.04 98 | 49.18 108 | 30.47 149 | 48.28 114 | 58.19 94 | 38.22 153 | 68.05 101 | 66.96 95 | 73.69 119 | 69.65 124 |
|
FMVSNet3 | | | 54.78 127 | 59.58 113 | 49.17 131 | 52.37 152 | 61.31 127 | 56.72 135 | 44.04 98 | 49.18 108 | 30.47 149 | 48.28 114 | 58.19 94 | 38.09 156 | 65.48 140 | 65.20 127 | 73.31 126 | 69.45 132 |
|
tfpnnormal | | | 50.16 155 | 52.19 167 | 47.78 152 | 56.86 121 | 58.37 153 | 54.15 153 | 44.01 101 | 38.35 191 | 25.94 172 | 36.10 183 | 37.89 197 | 34.50 172 | 65.93 134 | 63.42 143 | 71.26 150 | 65.28 157 |
|
FMVSNet1 | | | 54.08 130 | 58.68 122 | 48.71 138 | 50.90 165 | 61.35 126 | 56.73 134 | 43.94 102 | 45.91 138 | 29.32 159 | 42.72 166 | 56.26 105 | 37.70 158 | 68.05 101 | 66.96 95 | 73.69 119 | 69.50 128 |
|
ET-MVSNet_ETH3D | | | 58.38 94 | 61.57 89 | 54.67 96 | 42.15 196 | 65.26 101 | 65.70 83 | 43.82 103 | 48.84 112 | 42.34 99 | 59.76 62 | 47.76 138 | 56.68 54 | 67.02 121 | 68.60 78 | 77.33 78 | 73.73 106 |
|
DCV-MVSNet | | | 59.49 80 | 64.00 81 | 54.23 97 | 61.81 80 | 64.33 109 | 61.42 107 | 43.77 104 | 52.85 87 | 38.94 120 | 55.62 79 | 62.15 78 | 43.24 135 | 69.39 80 | 67.66 89 | 76.22 93 | 75.97 88 |
|
tfpn200view9 | | | 52.53 137 | 55.51 142 | 49.06 133 | 57.31 114 | 60.24 135 | 55.42 147 | 43.77 104 | 42.85 162 | 27.81 164 | 43.00 164 | 45.06 168 | 37.32 160 | 66.38 126 | 64.54 133 | 72.71 135 | 66.54 144 |
|
thres600view7 | | | 51.91 146 | 55.14 146 | 48.14 146 | 57.43 110 | 60.18 136 | 54.60 152 | 43.73 106 | 42.61 165 | 25.20 174 | 43.10 163 | 44.47 175 | 35.19 169 | 66.36 127 | 63.28 145 | 72.66 137 | 66.01 152 |
|
thres200 | | | 52.39 139 | 55.37 145 | 48.90 135 | 57.39 111 | 60.18 136 | 55.60 144 | 43.73 106 | 42.93 160 | 27.41 166 | 43.35 159 | 45.09 167 | 36.61 165 | 66.36 127 | 63.92 140 | 72.66 137 | 65.78 154 |
|
Anonymous20231211 | | | 57.71 102 | 60.79 94 | 54.13 99 | 61.68 82 | 65.81 97 | 60.81 112 | 43.70 108 | 51.97 92 | 39.67 115 | 34.82 187 | 63.59 70 | 43.31 133 | 68.55 90 | 66.63 104 | 75.59 100 | 74.13 102 |
|
IterMVS-LS | | | 58.30 96 | 61.39 90 | 54.71 95 | 59.92 93 | 58.40 152 | 59.42 117 | 43.64 109 | 48.71 116 | 40.25 113 | 57.53 71 | 58.55 93 | 52.15 89 | 65.42 142 | 65.34 123 | 72.85 130 | 75.77 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 56.98 106 | 58.24 127 | 55.50 92 | 64.66 65 | 68.62 64 | 61.48 106 | 43.63 110 | 38.44 189 | 41.44 103 | 38.05 179 | 46.18 157 | 43.95 128 | 71.71 59 | 70.61 59 | 77.87 69 | 74.08 103 |
|
MVS_111021_LR | | | 63.05 64 | 66.43 64 | 59.10 65 | 61.33 84 | 63.77 112 | 65.87 82 | 43.58 111 | 60.20 65 | 53.70 55 | 62.09 56 | 62.38 75 | 55.84 62 | 70.24 74 | 68.08 80 | 74.30 112 | 78.28 69 |
|
thres400 | | | 52.38 140 | 55.51 142 | 48.74 137 | 57.49 109 | 60.10 138 | 55.45 146 | 43.54 112 | 42.90 161 | 26.72 170 | 43.34 160 | 45.03 170 | 36.61 165 | 66.20 132 | 64.53 134 | 72.66 137 | 66.43 145 |
|
v2v482 | | | 58.69 88 | 60.12 107 | 57.03 81 | 57.16 120 | 66.05 94 | 67.17 67 | 43.52 113 | 46.33 134 | 45.19 86 | 49.46 109 | 51.02 124 | 52.51 85 | 67.30 114 | 66.03 114 | 76.61 85 | 74.62 98 |
|
LTVRE_ROB | | 44.17 16 | 47.06 177 | 50.15 180 | 43.44 171 | 51.39 158 | 58.42 151 | 42.90 197 | 43.51 114 | 22.27 213 | 14.85 196 | 41.94 171 | 34.57 203 | 45.43 121 | 62.28 155 | 62.77 151 | 62.56 183 | 68.83 135 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test20.03 | | | 40.38 197 | 44.20 197 | 35.92 196 | 53.73 142 | 49.05 185 | 38.54 204 | 43.49 115 | 32.55 202 | 9.54 207 | 27.88 202 | 39.12 193 | 12.24 207 | 56.28 186 | 54.69 185 | 57.96 193 | 49.83 203 |
|
test-LLR | | | 49.28 159 | 50.29 177 | 48.10 147 | 55.26 129 | 47.16 192 | 49.52 168 | 43.48 116 | 39.22 184 | 31.98 143 | 43.65 156 | 47.93 136 | 41.29 143 | 56.80 181 | 55.36 180 | 67.08 167 | 61.94 173 |
|
test0.0.03 1 | | | 43.15 188 | 46.95 190 | 38.72 188 | 55.26 129 | 50.56 181 | 42.48 198 | 43.48 116 | 38.16 193 | 15.11 194 | 35.07 186 | 44.69 173 | 16.47 202 | 55.95 189 | 54.34 188 | 59.54 188 | 49.87 202 |
|
pmmvs-eth3d | | | 51.33 147 | 52.25 166 | 50.26 124 | 50.82 166 | 54.65 168 | 56.03 139 | 43.45 118 | 43.51 155 | 37.20 129 | 39.20 176 | 39.04 194 | 42.28 138 | 61.85 157 | 62.78 150 | 71.78 147 | 64.72 161 |
|
Vis-MVSNet |  | | 58.48 91 | 65.70 70 | 50.06 125 | 53.40 143 | 67.20 81 | 60.24 115 | 43.32 119 | 48.83 113 | 30.23 153 | 62.38 54 | 61.61 81 | 40.35 146 | 71.03 67 | 69.77 66 | 72.82 132 | 79.11 62 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 57.03 105 | 65.25 73 | 47.44 153 | 46.54 182 | 66.73 87 | 56.30 136 | 43.28 120 | 50.06 98 | 32.99 139 | 62.57 53 | 63.26 72 | 33.31 176 | 68.25 93 | 67.58 90 | 72.20 144 | 78.29 68 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v7n | | | 55.67 117 | 57.46 135 | 53.59 103 | 56.06 124 | 65.29 100 | 61.06 110 | 43.26 121 | 40.17 180 | 37.99 124 | 40.79 173 | 45.27 165 | 47.09 114 | 67.67 108 | 66.21 111 | 76.08 96 | 76.82 78 |
|
canonicalmvs | | | 65.62 53 | 72.06 41 | 58.11 69 | 63.94 73 | 71.05 55 | 64.49 95 | 43.18 122 | 74.08 34 | 47.35 73 | 64.17 42 | 71.97 47 | 51.17 94 | 71.87 58 | 70.74 57 | 78.51 66 | 80.56 55 |
|
IB-MVS | | 54.11 11 | 58.36 95 | 60.70 95 | 55.62 91 | 58.67 98 | 68.02 70 | 61.56 104 | 43.15 123 | 46.09 136 | 44.06 91 | 44.24 150 | 50.99 126 | 48.71 104 | 66.70 124 | 70.33 61 | 77.60 73 | 78.50 66 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
OpenMVS |  | 57.13 9 | 62.81 65 | 65.75 69 | 59.39 63 | 66.47 57 | 69.52 61 | 64.26 97 | 43.07 124 | 61.34 63 | 50.19 64 | 47.29 122 | 64.41 68 | 54.60 66 | 70.18 75 | 68.62 77 | 77.73 70 | 78.89 63 |
|
thres100view900 | | | 52.04 143 | 54.81 149 | 48.80 136 | 57.31 114 | 59.33 143 | 55.30 148 | 42.92 125 | 42.85 162 | 27.81 164 | 43.00 164 | 45.06 168 | 36.99 162 | 64.74 145 | 63.51 142 | 72.47 140 | 65.21 158 |
|
v8 | | | 58.88 85 | 60.57 98 | 56.92 82 | 57.35 113 | 65.69 98 | 66.69 74 | 42.64 126 | 47.89 125 | 45.77 81 | 49.04 110 | 52.98 116 | 52.77 83 | 67.51 111 | 65.57 120 | 76.26 92 | 75.30 96 |
|
pm-mvs1 | | | 51.02 149 | 55.55 141 | 45.73 159 | 54.16 138 | 58.52 150 | 50.92 164 | 42.56 127 | 40.32 178 | 25.67 173 | 43.66 155 | 50.34 129 | 30.06 181 | 65.85 136 | 63.97 139 | 70.99 153 | 66.21 148 |
|
MSDG | | | 58.46 92 | 58.97 120 | 57.85 77 | 66.27 59 | 66.23 93 | 67.72 62 | 42.33 128 | 53.43 79 | 43.68 92 | 43.39 158 | 45.35 162 | 49.75 98 | 68.66 87 | 67.77 86 | 77.38 76 | 67.96 138 |
|
Effi-MVS+-dtu | | | 60.34 78 | 62.32 87 | 58.03 72 | 64.31 66 | 67.44 79 | 65.99 80 | 42.26 129 | 49.55 102 | 42.00 102 | 48.92 112 | 59.79 89 | 56.27 57 | 68.07 100 | 67.03 94 | 77.35 77 | 75.45 94 |
|
HyFIR lowres test | | | 56.87 109 | 58.60 124 | 54.84 94 | 56.62 123 | 69.27 62 | 64.77 93 | 42.21 130 | 45.66 140 | 37.50 127 | 33.08 190 | 57.47 99 | 53.33 79 | 65.46 141 | 67.94 82 | 74.60 109 | 71.35 113 |
|
pmmvs6 | | | 48.35 167 | 51.64 169 | 44.51 167 | 51.92 155 | 57.94 159 | 49.44 170 | 42.17 131 | 34.45 198 | 24.62 177 | 28.87 201 | 46.90 149 | 29.07 185 | 64.60 146 | 63.08 146 | 69.83 157 | 65.68 155 |
|
EIA-MVS | | | 61.53 74 | 63.79 82 | 58.89 66 | 63.82 74 | 67.61 75 | 65.35 88 | 42.15 132 | 49.98 99 | 45.66 82 | 57.47 72 | 56.62 101 | 56.59 55 | 70.91 68 | 69.15 70 | 79.78 51 | 74.80 97 |
|
MVS_Test | | | 62.40 69 | 66.23 66 | 57.94 73 | 59.77 94 | 64.77 107 | 66.50 75 | 41.76 133 | 57.26 69 | 49.33 67 | 62.68 52 | 67.47 64 | 53.50 76 | 68.57 89 | 66.25 110 | 76.77 84 | 76.58 81 |
|
gg-mvs-nofinetune | | | 49.07 163 | 52.56 163 | 45.00 164 | 61.99 79 | 59.78 140 | 53.55 159 | 41.63 134 | 31.62 205 | 12.08 200 | 29.56 199 | 53.28 115 | 29.57 182 | 66.27 130 | 64.49 135 | 71.19 152 | 62.92 168 |
|
CHOSEN 1792x2688 | | | 55.85 116 | 58.01 128 | 53.33 104 | 57.26 117 | 62.82 117 | 63.29 103 | 41.55 135 | 46.65 132 | 38.34 121 | 34.55 188 | 53.50 113 | 52.43 86 | 67.10 119 | 67.56 91 | 67.13 166 | 73.92 105 |
|
MS-PatchMatch | | | 58.19 99 | 60.20 103 | 55.85 90 | 65.17 63 | 64.16 110 | 64.82 92 | 41.48 136 | 50.95 94 | 42.17 101 | 45.38 142 | 56.42 102 | 48.08 109 | 68.30 92 | 66.70 101 | 73.39 123 | 69.46 131 |
|
TSAR-MVS + COLMAP | | | 62.65 67 | 69.90 53 | 54.19 98 | 46.31 183 | 66.73 87 | 65.49 87 | 41.36 137 | 76.57 25 | 46.31 78 | 76.80 17 | 56.68 100 | 53.27 81 | 69.50 79 | 66.65 103 | 72.40 141 | 76.36 86 |
|
diffmvs | | | 61.64 71 | 66.55 63 | 55.90 89 | 56.63 122 | 63.71 113 | 67.13 69 | 41.27 138 | 59.49 66 | 46.70 76 | 63.93 44 | 68.01 61 | 50.46 95 | 67.30 114 | 65.51 121 | 73.24 129 | 77.87 71 |
|
CNLPA | | | 62.78 66 | 66.31 65 | 58.65 67 | 58.47 100 | 68.41 66 | 65.98 81 | 41.22 139 | 78.02 23 | 56.04 37 | 46.65 125 | 59.50 90 | 57.50 45 | 69.67 78 | 65.27 125 | 72.70 136 | 76.67 79 |
|
USDC | | | 51.11 148 | 53.71 153 | 48.08 148 | 44.76 188 | 55.99 166 | 53.01 161 | 40.90 140 | 52.49 89 | 36.14 131 | 44.67 148 | 33.66 205 | 43.27 134 | 63.23 148 | 61.10 159 | 70.39 156 | 64.82 160 |
|
MDA-MVSNet-bldmvs | | | 41.36 191 | 43.15 201 | 39.27 187 | 28.74 211 | 52.68 175 | 44.95 192 | 40.84 141 | 32.89 201 | 18.13 191 | 31.61 193 | 22.09 216 | 38.97 152 | 50.45 203 | 56.11 175 | 64.01 176 | 56.23 190 |
|
EPNet_dtu | | | 52.05 142 | 58.26 126 | 44.81 165 | 54.10 139 | 50.09 184 | 52.01 162 | 40.82 142 | 53.03 84 | 27.41 166 | 54.90 81 | 57.96 98 | 26.72 188 | 62.97 149 | 62.70 152 | 67.78 164 | 66.19 150 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TinyColmap | | | 47.08 175 | 47.56 189 | 46.52 156 | 42.35 195 | 53.44 172 | 51.77 163 | 40.70 143 | 43.44 156 | 31.92 145 | 29.78 198 | 23.72 215 | 45.04 125 | 61.99 156 | 59.54 167 | 67.35 165 | 61.03 176 |
|
thisisatest0530 | | | 56.68 110 | 59.68 109 | 53.19 107 | 52.97 145 | 60.96 131 | 59.41 118 | 40.51 144 | 48.26 122 | 41.06 108 | 52.67 91 | 46.30 154 | 49.78 96 | 67.66 109 | 67.83 84 | 75.39 103 | 74.07 104 |
|
tttt0517 | | | 56.53 112 | 59.59 111 | 52.95 110 | 52.66 148 | 60.99 130 | 59.21 120 | 40.51 144 | 47.89 125 | 40.40 111 | 52.50 94 | 46.04 158 | 49.78 96 | 67.75 107 | 67.83 84 | 75.15 106 | 74.17 101 |
|
baseline2 | | | 55.89 114 | 57.82 130 | 53.64 101 | 57.36 112 | 61.09 129 | 59.75 116 | 40.45 146 | 47.38 128 | 41.26 107 | 51.23 101 | 46.90 149 | 48.11 108 | 65.63 139 | 64.38 136 | 74.90 108 | 68.16 137 |
|
FC-MVSNet-test | | | 39.65 198 | 48.35 186 | 29.49 203 | 44.43 189 | 39.28 209 | 30.23 212 | 40.44 147 | 43.59 153 | 3.12 219 | 53.00 89 | 42.03 181 | 10.02 215 | 55.09 192 | 54.77 184 | 48.66 207 | 50.71 197 |
|
PLC |  | 52.09 14 | 59.21 83 | 62.47 86 | 55.41 93 | 53.24 144 | 64.84 106 | 64.47 96 | 40.41 148 | 65.92 53 | 44.53 89 | 46.19 133 | 55.69 108 | 55.33 64 | 68.24 95 | 65.30 124 | 74.50 110 | 71.09 114 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SixPastTwentyTwo | | | 47.55 174 | 50.25 179 | 44.41 168 | 47.30 180 | 54.31 170 | 47.81 176 | 40.36 149 | 33.76 199 | 19.93 187 | 43.75 154 | 32.77 207 | 42.07 139 | 59.82 164 | 60.94 160 | 68.98 158 | 66.37 147 |
|
GA-MVS | | | 55.67 117 | 58.33 125 | 52.58 114 | 55.23 131 | 63.09 114 | 61.08 109 | 40.15 150 | 42.95 159 | 37.02 130 | 52.61 92 | 47.68 139 | 47.51 112 | 65.92 135 | 65.35 122 | 74.49 111 | 70.68 119 |
|
thisisatest0515 | | | 53.85 131 | 56.84 138 | 50.37 123 | 50.25 169 | 58.17 156 | 55.99 140 | 39.90 151 | 41.88 169 | 38.16 123 | 45.91 136 | 45.30 163 | 44.58 126 | 66.15 133 | 66.89 98 | 73.36 125 | 73.57 107 |
|
TDRefinement | | | 49.31 158 | 52.44 164 | 45.67 161 | 30.44 209 | 59.42 142 | 59.24 119 | 39.78 152 | 48.76 115 | 31.20 148 | 35.73 184 | 29.90 209 | 42.81 137 | 64.24 147 | 62.59 154 | 70.55 154 | 66.43 145 |
|
CS-MVS-test | | | 64.70 58 | 68.77 59 | 59.95 59 | 62.45 78 | 67.57 76 | 67.13 69 | 39.63 153 | 57.12 70 | 49.45 66 | 63.17 47 | 67.51 63 | 59.69 34 | 74.02 49 | 71.18 55 | 81.37 41 | 80.78 53 |
|
CS-MVS | | | 65.17 55 | 68.96 56 | 60.75 53 | 62.97 77 | 67.13 83 | 68.08 61 | 39.49 154 | 58.10 67 | 52.28 59 | 63.25 45 | 69.60 54 | 60.23 32 | 74.25 47 | 71.03 56 | 81.45 40 | 79.32 60 |
|
SCA | | | 50.99 150 | 53.22 160 | 48.40 143 | 51.07 162 | 56.78 164 | 50.25 166 | 39.05 155 | 48.31 121 | 41.38 104 | 49.54 107 | 46.70 152 | 46.00 119 | 58.31 173 | 56.28 173 | 62.65 181 | 56.60 189 |
|
CLD-MVS | | | 67.02 50 | 71.57 43 | 61.71 52 | 71.01 35 | 74.81 38 | 71.62 53 | 38.91 156 | 71.86 41 | 60.70 22 | 64.97 39 | 67.88 62 | 51.88 91 | 76.77 32 | 74.98 37 | 76.11 95 | 69.75 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
dps | | | 50.42 152 | 51.20 173 | 49.51 127 | 55.88 125 | 56.07 165 | 53.73 155 | 38.89 157 | 43.66 152 | 40.36 112 | 45.66 139 | 37.63 199 | 45.23 123 | 59.05 166 | 56.18 174 | 62.94 180 | 60.16 180 |
|
CR-MVSNet | | | 50.47 151 | 52.61 162 | 47.98 149 | 49.03 174 | 52.94 173 | 48.27 173 | 38.86 158 | 44.41 146 | 39.59 116 | 44.34 149 | 44.65 174 | 46.63 116 | 58.97 168 | 60.31 163 | 65.48 171 | 62.66 169 |
|
Patchmtry | | | | | | | 47.61 190 | 48.27 173 | 38.86 158 | | 39.59 116 | | | | | | | |
|
Anonymous20231206 | | | 42.28 189 | 45.89 192 | 38.07 190 | 51.96 154 | 48.98 186 | 43.66 196 | 38.81 160 | 38.74 188 | 14.32 197 | 26.74 203 | 40.90 185 | 20.94 197 | 56.64 184 | 54.67 186 | 58.71 189 | 54.59 191 |
|
v148 | | | 55.58 119 | 57.61 134 | 53.20 106 | 54.59 136 | 61.86 120 | 61.18 108 | 38.70 161 | 44.30 149 | 42.25 100 | 47.53 120 | 50.24 130 | 48.73 103 | 65.15 143 | 62.61 153 | 73.79 117 | 71.61 112 |
|
PatchMatch-RL | | | 50.11 156 | 51.56 170 | 48.43 142 | 46.23 184 | 51.94 177 | 50.21 167 | 38.62 162 | 46.62 133 | 37.51 126 | 42.43 169 | 39.38 192 | 52.24 88 | 60.98 160 | 59.56 166 | 65.76 170 | 60.01 182 |
|
OMC-MVS | | | 65.16 56 | 71.35 45 | 57.94 73 | 52.95 146 | 68.82 63 | 69.00 57 | 38.28 163 | 79.89 16 | 55.20 42 | 62.76 51 | 68.31 58 | 56.14 60 | 71.30 63 | 68.70 75 | 76.06 97 | 79.67 58 |
|
tpm cat1 | | | 53.30 134 | 53.41 156 | 53.17 108 | 58.16 101 | 59.15 146 | 63.73 100 | 38.27 164 | 50.73 96 | 46.98 74 | 45.57 141 | 44.00 178 | 49.20 100 | 55.90 190 | 54.02 189 | 62.65 181 | 64.50 163 |
|
V42 | | | 56.97 107 | 60.14 105 | 53.28 105 | 48.16 175 | 62.78 118 | 66.30 77 | 37.93 165 | 47.44 127 | 42.68 97 | 48.19 117 | 52.59 118 | 51.90 90 | 67.46 112 | 65.94 116 | 72.72 134 | 76.55 83 |
|
MVSTER | | | 57.19 104 | 61.11 92 | 52.62 113 | 50.82 166 | 58.79 148 | 61.55 105 | 37.86 166 | 48.81 114 | 41.31 105 | 57.43 73 | 52.10 119 | 48.60 105 | 68.19 97 | 66.75 100 | 75.56 101 | 75.68 93 |
|
CVMVSNet | | | 46.38 180 | 52.01 168 | 39.81 185 | 42.40 194 | 50.26 182 | 46.15 184 | 37.68 167 | 40.03 181 | 15.09 195 | 46.56 128 | 47.56 141 | 33.72 175 | 56.50 185 | 55.65 178 | 63.80 177 | 67.53 139 |
|
PatchmatchNet |  | | 49.92 157 | 51.29 171 | 48.32 145 | 51.83 156 | 51.86 178 | 53.38 160 | 37.63 168 | 47.90 124 | 40.83 109 | 48.54 113 | 45.30 163 | 45.19 124 | 56.86 180 | 53.99 191 | 61.08 186 | 54.57 192 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+ | | | 60.36 76 | 63.35 83 | 56.87 83 | 58.70 96 | 65.86 95 | 65.08 90 | 37.11 169 | 53.00 85 | 45.36 84 | 52.12 95 | 56.07 106 | 56.27 57 | 71.28 64 | 69.42 67 | 78.71 61 | 75.69 91 |
|
DROMVSNet | | | 60.36 76 | 63.35 83 | 56.87 83 | 58.70 96 | 65.86 95 | 65.08 90 | 37.11 169 | 53.00 85 | 45.36 84 | 52.12 95 | 56.07 106 | 56.27 57 | 71.28 64 | 69.42 67 | 78.71 61 | 75.69 91 |
|
CANet_DTU | | | 58.88 85 | 64.68 78 | 52.12 116 | 55.77 126 | 66.75 86 | 63.92 98 | 37.04 171 | 53.32 81 | 37.45 128 | 59.81 61 | 61.81 79 | 44.43 127 | 68.25 93 | 67.47 92 | 74.12 114 | 75.33 95 |
|
COLMAP_ROB |  | 46.52 15 | 51.99 144 | 54.86 148 | 48.63 140 | 49.13 173 | 61.73 122 | 60.53 113 | 36.57 172 | 53.14 82 | 32.95 140 | 37.10 180 | 38.68 195 | 40.49 145 | 65.72 137 | 63.08 146 | 72.11 145 | 64.60 162 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TAPA-MVS | | 54.74 10 | 60.85 75 | 66.61 62 | 54.12 100 | 47.38 179 | 65.33 99 | 65.35 88 | 36.51 173 | 75.16 31 | 48.82 71 | 54.70 84 | 63.51 71 | 53.31 80 | 68.36 91 | 64.97 131 | 73.37 124 | 74.27 100 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
new-patchmatchnet | | | 33.24 205 | 37.20 206 | 28.62 205 | 44.32 191 | 38.26 210 | 29.68 213 | 36.05 174 | 31.97 204 | 6.33 215 | 26.59 204 | 27.33 210 | 11.12 214 | 50.08 205 | 41.05 209 | 44.23 210 | 45.15 207 |
|
CostFormer | | | 56.57 111 | 59.13 118 | 53.60 102 | 57.52 108 | 61.12 128 | 66.94 72 | 35.95 175 | 53.44 78 | 44.68 88 | 55.87 78 | 54.44 111 | 48.21 107 | 60.37 163 | 58.33 170 | 68.27 162 | 70.33 121 |
|
MVS-HIRNet | | | 42.24 190 | 41.15 203 | 43.51 170 | 44.06 192 | 40.74 204 | 35.77 208 | 35.35 176 | 35.38 197 | 38.34 121 | 25.63 205 | 38.55 196 | 43.48 131 | 50.77 201 | 47.03 204 | 64.07 175 | 49.98 200 |
|
PatchT | | | 48.08 169 | 51.03 174 | 44.64 166 | 42.96 193 | 50.12 183 | 40.36 202 | 35.09 177 | 43.17 157 | 39.59 116 | 42.00 170 | 39.96 191 | 46.63 116 | 58.97 168 | 60.31 163 | 63.21 178 | 62.66 169 |
|
testgi | | | 38.71 199 | 43.64 199 | 32.95 200 | 52.30 153 | 48.63 188 | 35.59 209 | 35.05 178 | 31.58 206 | 9.03 210 | 30.29 195 | 40.75 187 | 11.19 213 | 55.30 191 | 53.47 194 | 54.53 200 | 45.48 206 |
|
IterMVS-SCA-FT | | | 52.18 141 | 57.75 132 | 45.68 160 | 51.01 164 | 62.06 119 | 55.10 150 | 34.75 179 | 44.85 143 | 32.86 141 | 51.13 103 | 51.22 122 | 48.74 102 | 62.47 153 | 61.51 157 | 51.61 205 | 71.02 115 |
|
baseline | | | 55.19 124 | 60.88 93 | 48.55 141 | 49.87 170 | 58.10 157 | 58.70 122 | 34.75 179 | 52.82 88 | 39.48 119 | 60.18 60 | 60.86 82 | 45.41 122 | 61.05 159 | 60.74 162 | 63.10 179 | 72.41 109 |
|
IterMVS | | | 53.45 133 | 57.12 136 | 49.17 131 | 49.23 172 | 60.93 132 | 59.05 121 | 34.63 181 | 44.53 145 | 33.22 137 | 51.09 104 | 51.01 125 | 48.38 106 | 62.43 154 | 60.79 161 | 70.54 155 | 69.05 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Gipuma |  | | 25.87 207 | 26.91 210 | 24.66 207 | 28.98 210 | 20.17 215 | 20.46 214 | 34.62 182 | 29.55 207 | 9.10 208 | 4.91 218 | 5.31 222 | 15.76 204 | 49.37 207 | 49.10 201 | 39.03 211 | 29.95 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDTV_nov1_ep13 | | | 50.32 154 | 52.43 165 | 47.86 151 | 49.87 170 | 54.70 167 | 58.10 124 | 34.29 183 | 45.59 141 | 37.71 125 | 47.44 121 | 47.42 143 | 41.86 140 | 58.07 176 | 55.21 182 | 65.34 173 | 58.56 185 |
|
EU-MVSNet | | | 40.63 195 | 45.65 194 | 34.78 199 | 39.11 200 | 46.94 195 | 40.02 203 | 34.03 184 | 33.50 200 | 10.37 204 | 35.57 185 | 37.80 198 | 23.65 193 | 51.90 198 | 50.21 199 | 61.49 185 | 63.62 167 |
|
RPMNet | | | 46.41 178 | 48.72 184 | 43.72 169 | 47.77 178 | 52.94 173 | 46.02 186 | 33.92 185 | 44.41 146 | 31.82 146 | 36.89 181 | 37.42 200 | 37.41 159 | 53.88 196 | 54.02 189 | 65.37 172 | 61.47 175 |
|
MIMVSNet1 | | | 35.51 202 | 41.41 202 | 28.63 204 | 27.53 213 | 43.36 203 | 38.09 205 | 33.82 186 | 32.01 203 | 6.77 214 | 21.63 209 | 35.43 202 | 11.97 209 | 55.05 193 | 53.99 191 | 53.59 202 | 48.36 205 |
|
MDTV_nov1_ep13_2view | | | 47.62 173 | 49.72 182 | 45.18 163 | 48.05 176 | 53.70 171 | 54.90 151 | 33.80 187 | 39.90 182 | 29.79 155 | 38.85 177 | 41.89 182 | 39.17 149 | 58.99 167 | 55.55 179 | 65.34 173 | 59.17 183 |
|
tpmrst | | | 48.08 169 | 49.88 181 | 45.98 157 | 52.71 147 | 48.11 189 | 53.62 158 | 33.70 188 | 48.70 117 | 39.74 114 | 48.96 111 | 46.23 156 | 40.29 147 | 50.14 204 | 49.28 200 | 55.80 195 | 57.71 187 |
|
anonymousdsp | | | 52.84 135 | 57.78 131 | 47.06 154 | 40.24 199 | 58.95 147 | 53.70 156 | 33.54 189 | 36.51 196 | 32.69 142 | 43.88 152 | 45.40 161 | 47.97 111 | 67.17 116 | 70.28 62 | 74.22 113 | 82.29 47 |
|
EPMVS | | | 44.66 184 | 47.86 188 | 40.92 182 | 47.97 177 | 44.70 201 | 47.58 178 | 33.27 190 | 48.11 123 | 29.58 157 | 49.65 106 | 44.38 176 | 34.65 170 | 51.71 199 | 47.90 202 | 52.49 203 | 48.57 204 |
|
pmnet_mix02 | | | 40.48 196 | 43.80 198 | 36.61 194 | 45.79 186 | 40.45 206 | 42.12 199 | 33.18 191 | 40.30 179 | 24.11 180 | 38.76 178 | 37.11 201 | 24.30 192 | 52.97 197 | 46.66 206 | 50.17 206 | 50.33 199 |
|
pmmvs5 | | | 47.07 176 | 51.02 175 | 42.46 175 | 45.18 187 | 51.47 179 | 48.23 175 | 33.09 192 | 38.17 192 | 28.62 162 | 46.60 127 | 43.48 179 | 30.74 179 | 58.28 174 | 58.63 169 | 68.92 159 | 60.48 178 |
|
Fast-Effi-MVS+-dtu | | | 56.30 113 | 59.29 117 | 52.82 112 | 58.64 99 | 64.89 105 | 65.56 86 | 32.89 193 | 45.80 139 | 35.04 134 | 45.89 137 | 54.14 112 | 49.41 99 | 67.16 117 | 66.45 109 | 75.37 104 | 70.69 118 |
|
MIMVSNet | | | 43.79 187 | 48.53 185 | 38.27 189 | 41.46 197 | 48.97 187 | 50.81 165 | 32.88 194 | 44.55 144 | 22.07 181 | 32.05 191 | 47.15 145 | 24.76 191 | 58.73 170 | 56.09 176 | 57.63 194 | 52.14 193 |
|
ADS-MVSNet | | | 40.67 194 | 43.38 200 | 37.50 192 | 44.36 190 | 39.79 208 | 42.09 200 | 32.67 195 | 44.34 148 | 28.87 161 | 40.76 174 | 40.37 189 | 30.22 180 | 48.34 208 | 45.87 207 | 46.81 209 | 44.21 208 |
|
gm-plane-assit | | | 44.74 183 | 45.95 191 | 43.33 172 | 60.88 88 | 46.79 197 | 36.97 206 | 32.24 196 | 24.15 211 | 11.79 201 | 29.26 200 | 32.97 206 | 46.64 115 | 65.09 144 | 62.95 148 | 71.45 149 | 60.42 179 |
|
tpm | | | 48.82 164 | 51.27 172 | 45.96 158 | 54.10 139 | 47.35 191 | 56.05 138 | 30.23 197 | 46.70 131 | 43.21 94 | 52.54 93 | 47.55 142 | 37.28 161 | 54.11 195 | 50.50 198 | 54.90 198 | 60.12 181 |
|
CMPMVS |  | 37.70 17 | 49.24 160 | 52.71 161 | 45.19 162 | 45.97 185 | 51.23 180 | 47.44 179 | 29.31 198 | 43.04 158 | 44.69 87 | 34.45 189 | 48.35 133 | 43.64 129 | 62.59 151 | 59.82 165 | 60.08 187 | 69.48 129 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PM-MVS | | | 44.55 185 | 48.13 187 | 40.37 184 | 32.85 208 | 46.82 196 | 46.11 185 | 29.28 199 | 40.48 177 | 29.99 154 | 39.98 175 | 34.39 204 | 41.80 141 | 56.08 188 | 53.88 193 | 62.19 184 | 65.31 156 |
|
FMVSNet5 | | | 40.96 192 | 45.81 193 | 35.29 198 | 34.30 203 | 44.55 202 | 47.28 180 | 28.84 200 | 40.76 175 | 21.62 182 | 29.85 197 | 42.44 180 | 24.77 190 | 57.53 178 | 55.00 183 | 54.93 197 | 50.56 198 |
|
TAMVS | | | 44.02 186 | 49.18 183 | 37.99 191 | 47.03 181 | 45.97 198 | 45.04 190 | 28.47 201 | 39.11 186 | 20.23 186 | 43.22 162 | 48.52 132 | 28.49 186 | 58.15 175 | 57.95 172 | 58.71 189 | 51.36 195 |
|
E-PMN | | | 15.09 210 | 13.19 214 | 17.30 209 | 27.80 212 | 12.62 218 | 7.81 219 | 27.54 202 | 14.62 217 | 3.19 217 | 6.89 215 | 2.52 225 | 15.09 205 | 15.93 214 | 20.22 213 | 22.38 214 | 19.53 214 |
|
EMVS | | | 14.49 211 | 12.45 215 | 16.87 211 | 27.02 214 | 12.56 219 | 8.13 218 | 27.19 203 | 15.05 216 | 3.14 218 | 6.69 216 | 2.67 224 | 15.08 206 | 14.60 216 | 18.05 214 | 20.67 215 | 17.56 216 |
|
N_pmnet | | | 32.67 206 | 36.85 207 | 27.79 206 | 40.55 198 | 32.13 211 | 35.80 207 | 26.79 204 | 37.24 195 | 9.10 208 | 32.02 192 | 30.94 208 | 16.30 203 | 47.22 209 | 41.21 208 | 38.21 212 | 37.21 209 |
|
PMVS |  | 27.84 18 | 33.81 204 | 35.28 208 | 32.09 201 | 34.13 204 | 24.81 214 | 32.51 211 | 26.48 205 | 26.41 209 | 19.37 188 | 23.76 206 | 24.02 214 | 25.18 189 | 50.78 200 | 47.24 203 | 54.89 199 | 49.95 201 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS | | | 49.20 162 | 54.28 152 | 43.28 173 | 34.13 204 | 45.70 199 | 48.98 171 | 26.09 206 | 46.31 135 | 34.92 136 | 55.22 80 | 53.47 114 | 47.48 113 | 59.43 165 | 59.04 168 | 68.05 163 | 60.77 177 |
|
FPMVS | | | 38.36 200 | 40.41 204 | 35.97 195 | 38.92 201 | 39.85 207 | 45.50 188 | 25.79 207 | 41.13 173 | 18.70 189 | 30.10 196 | 24.56 213 | 31.86 178 | 49.42 206 | 46.80 205 | 55.04 196 | 51.03 196 |
|
MVE |  | 12.28 19 | 13.53 212 | 15.72 212 | 10.96 213 | 7.39 219 | 15.71 217 | 6.05 220 | 23.73 208 | 10.29 219 | 3.01 220 | 5.77 217 | 3.41 223 | 11.91 210 | 20.11 212 | 29.79 211 | 13.67 218 | 24.98 212 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CHOSEN 280x420 | | | 40.80 193 | 45.05 196 | 35.84 197 | 32.95 207 | 29.57 212 | 44.98 191 | 23.71 209 | 37.54 194 | 18.42 190 | 31.36 194 | 47.07 146 | 46.41 118 | 56.71 183 | 54.65 187 | 48.55 208 | 58.47 186 |
|
RPSCF | | | 46.41 178 | 54.42 150 | 37.06 193 | 25.70 216 | 45.14 200 | 45.39 189 | 20.81 210 | 62.79 59 | 35.10 133 | 44.92 146 | 55.60 109 | 43.56 130 | 56.12 187 | 52.45 195 | 51.80 204 | 63.91 165 |
|
TESTMET0.1,1 | | | 46.09 181 | 50.29 177 | 41.18 181 | 36.91 202 | 47.16 192 | 49.52 168 | 20.32 211 | 39.22 184 | 31.98 143 | 43.65 156 | 47.93 136 | 41.29 143 | 56.80 181 | 55.36 180 | 67.08 167 | 61.94 173 |
|
test-mter | | | 45.30 182 | 50.37 176 | 39.38 186 | 33.65 206 | 46.99 194 | 47.59 177 | 18.59 212 | 38.75 187 | 28.00 163 | 43.28 161 | 46.82 151 | 41.50 142 | 57.28 179 | 55.78 177 | 66.93 169 | 63.70 166 |
|
pmmvs3 | | | 35.10 203 | 38.47 205 | 31.17 202 | 26.37 215 | 40.47 205 | 34.51 210 | 18.09 213 | 24.75 210 | 16.88 193 | 23.05 207 | 26.69 211 | 32.69 177 | 50.73 202 | 51.60 196 | 58.46 192 | 51.98 194 |
|
PMMVS2 | | | 15.84 209 | 19.68 211 | 11.35 212 | 15.74 218 | 16.95 216 | 13.31 216 | 17.64 214 | 16.08 215 | 0.36 222 | 13.12 212 | 11.47 219 | 1.69 217 | 28.82 211 | 27.24 212 | 19.38 217 | 24.09 213 |
|
new_pmnet | | | 23.19 208 | 28.17 209 | 17.37 208 | 17.03 217 | 24.92 213 | 19.66 215 | 16.16 215 | 27.05 208 | 4.42 216 | 20.77 210 | 19.20 217 | 12.19 208 | 37.71 210 | 36.38 210 | 34.77 213 | 31.17 210 |
|
test_method | | | 12.44 213 | 14.66 213 | 9.85 214 | 1.30 221 | 3.32 221 | 13.00 217 | 3.21 216 | 22.42 212 | 10.22 205 | 14.13 211 | 25.64 212 | 11.43 212 | 19.75 213 | 11.61 216 | 19.96 216 | 5.79 217 |
|
DeepMVS_CX |  | | | | | | 6.95 220 | 5.98 221 | 2.25 217 | 11.73 218 | 2.07 221 | 11.85 213 | 5.43 221 | 11.75 211 | 11.40 217 | | 8.10 220 | 18.38 215 |
|
tmp_tt | | | | | 5.40 215 | 3.97 220 | 2.35 222 | 3.26 222 | 0.44 218 | 17.56 214 | 12.09 199 | 11.48 214 | 7.14 220 | 1.98 216 | 15.68 215 | 15.49 215 | 10.69 219 | |
|
GG-mvs-BLEND | | | 36.62 201 | 53.39 157 | 17.06 210 | 0.01 222 | 58.61 149 | 48.63 172 | 0.01 219 | 47.13 129 | 0.02 223 | 43.98 151 | 60.64 85 | 0.03 218 | 54.92 194 | 51.47 197 | 53.64 201 | 56.99 188 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 221 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 221 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 221 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
testmvs | | | 0.01 214 | 0.02 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.01 224 | 0.00 220 | 0.01 220 | 0.00 224 | 0.03 220 | 0.00 226 | 0.01 219 | 0.01 218 | 0.01 217 | 0.00 221 | 0.06 219 |
|
test123 | | | 0.01 214 | 0.02 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 220 | 0.01 220 | 0.00 224 | 0.04 219 | 0.00 226 | 0.01 219 | 0.00 219 | 0.01 217 | 0.00 221 | 0.07 218 |
|
RE-MVS-def | | | | | | | | | | | 33.01 138 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 12 | | | | | |
|
our_test_3 | | | | | | 51.15 161 | 57.31 162 | 55.12 149 | | | | | | | | | | |
|
ambc | | | | 45.54 195 | | 50.66 168 | 52.63 176 | 40.99 201 | | 38.36 190 | 24.67 176 | 22.62 208 | 13.94 218 | 29.14 184 | 65.71 138 | 58.06 171 | 58.60 191 | 67.43 140 |
|
MTAPA | | | | | | | | | | | 65.14 3 | | 80.20 19 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 17 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 223 | | | | | | | | | | |
|
XVS | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 40 | | | | | | | | |
|