This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 8099.42 141
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7799.77 53
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 11099.66 103
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 53
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 89
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6899.76 58
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8399.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 87
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7799.74 69
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6899.73 73
SR-MVS99.67 1398.25 1499.94 25
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5899.77 53
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6899.73 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16398.92 5899.22 2798.84 4199.76 3599.56 122
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 122
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8999.76 58
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 8099.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 129
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 133
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 69
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8699.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9999.64 11099.36 147
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8999.75 65
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7598.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12297.45 11799.57 13998.89 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13599.82 24
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 23
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11599.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11598.11 8699.40 16699.28 150
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11799.76 58
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7499.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9399.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15499.17 157
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7899.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11799.58 116
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9199.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10699.52 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9399.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9799.14 161
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 11099.69 93
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11299.71 6899.76 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8396.28 14097.47 3999.58 894.70 5998.99 3399.85 4097.24 11499.55 1099.34 997.73 19899.56 122
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 116
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8399.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10299.48 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9299.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13999.07 164
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12198.92 3499.78 2899.90 3
TSAR-MVS + COLMAP96.79 8996.55 12997.06 6297.70 7098.46 13999.07 4596.23 4499.38 2391.32 11098.80 4385.61 16998.69 7097.64 13196.92 12999.37 16899.06 165
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7599.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 116
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 69
OPM-MVS96.22 10795.85 14896.65 7697.75 6898.54 13499.00 5095.53 4796.88 17789.88 11795.95 12086.46 16298.07 9097.65 13096.63 13699.67 9798.83 174
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12599.58 116
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9997.85 9899.68 8999.15 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP-MVS96.37 10396.58 12796.13 8997.31 7798.44 14198.45 6895.22 5098.86 8888.58 12198.33 6487.00 15497.67 10597.23 14596.56 13999.56 14299.62 113
ACMM96.26 996.67 9796.69 12696.66 7597.29 7898.46 13996.48 13695.09 5199.21 4693.19 8898.78 4586.73 15898.17 8497.84 11996.32 14599.74 4499.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
abl_698.09 4099.33 4299.22 9398.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 8099.41 142
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 8099.57 121
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 110
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16198.59 7598.55 5799.29 17399.84 19
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8298.88 5198.99 2999.74 4499.86 15
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 103
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 8099.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 99
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 133
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 106
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9699.06 3899.52 199.82 1099.79 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS96.74 9296.51 13297.01 6896.71 8698.62 12898.73 6094.38 6498.94 8294.46 6497.33 8587.03 15398.07 9097.20 14796.87 13099.72 5899.54 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8998.82 5498.87 3899.81 1699.89 6
ACMP96.25 1096.62 10096.72 12596.50 8396.96 8498.75 11997.80 9594.30 6698.85 9093.12 8998.78 4586.61 16097.23 11597.73 12596.61 13799.62 11599.71 87
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu96.30 10598.53 6293.70 12898.97 5098.24 15297.36 10894.23 6798.85 9079.18 17999.19 1998.47 6794.09 18397.89 11698.21 8098.39 18998.85 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8997.06 12494.09 6898.72 11195.14 5298.47 5896.29 9198.43 8198.65 6697.44 11899.45 15898.94 167
thres100view90096.72 9396.47 13597.00 6996.31 9299.52 5398.28 7894.01 6997.35 16494.52 6195.90 12186.93 15599.09 4998.07 10297.87 9799.81 1699.63 112
thres40096.71 9496.45 13797.02 6696.28 9599.63 2598.41 6994.00 7097.82 15494.42 6695.74 12586.26 16499.18 4098.20 9397.79 10299.81 1699.70 89
tfpn200view996.75 9196.51 13297.03 6496.31 9299.67 1298.41 6993.99 7197.35 16494.52 6195.90 12186.93 15599.14 4498.26 8997.80 10199.82 1099.70 89
thres600view796.69 9596.43 13997.00 6996.28 9599.67 1298.41 6993.99 7197.85 15394.29 6995.96 11985.91 16799.19 3898.26 8997.63 10699.82 1099.73 73
thres20096.76 9096.53 13097.03 6496.31 9299.67 1298.37 7293.99 7197.68 15994.49 6395.83 12486.77 15799.18 4098.26 8997.82 10099.82 1099.66 103
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13593.55 14594.41 11598.88 6498.04 10798.24 7999.75 3999.76 58
Anonymous2023121197.10 8197.06 11897.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16394.58 11498.90 6197.72 12698.10 8799.71 6899.75 65
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10198.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7996.61 15795.43 16797.74 19697.93 190
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14493.75 7799.26 4093.38 8693.73 14499.35 5696.47 13698.96 4298.46 6199.77 3399.90 3
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13192.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 31
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9993.71 7998.47 12495.75 4298.78 4593.20 12998.91 6098.52 7998.44 6299.81 1699.53 126
LGP-MVS_train96.23 10696.89 12295.46 10397.32 7598.77 11598.81 5893.60 8098.58 11685.52 14199.08 3086.67 15997.83 10397.87 11797.51 11199.69 8099.73 73
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 39
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14496.53 13593.42 8299.04 7393.02 9298.03 7294.32 11797.47 11097.93 11397.77 10399.75 3999.88 10
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12293.39 8399.35 2894.40 6798.79 4499.59 5394.24 18198.04 10798.29 7799.73 5199.80 31
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS93.96 1595.02 13196.44 13893.36 13897.05 8399.28 8790.43 19893.39 8398.02 14296.02 3994.92 13492.07 13383.52 20795.38 18495.82 16199.72 5899.59 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 8099.09 3599.42 599.83 899.80 31
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12693.23 8699.17 5192.60 9898.75 4896.19 9398.17 8498.19 9496.10 15399.72 5899.77 53
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12793.23 8699.15 5292.56 9998.74 4996.12 9698.17 8498.21 9296.10 15399.73 5199.78 45
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9893.22 8898.98 7892.64 9694.97 13291.71 13598.93 5798.62 6998.52 6099.82 1099.72 84
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 8098.06 9093.22 8899.43 2192.30 10296.90 9889.83 14598.55 7798.00 11098.14 8399.64 11099.70 89
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9493.22 8898.82 9791.40 10996.94 9698.56 6695.70 15399.14 3399.41 699.79 2599.75 65
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 31
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10493.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12297.80 9593.05 9398.76 10794.39 6899.07 3197.03 8598.55 7798.31 8897.61 10799.43 16199.21 156
ET-MVSNet_ETH3D96.17 10896.99 12095.21 10588.53 20598.54 13498.28 7892.61 9498.85 9093.60 8399.06 3290.39 13998.63 7395.98 17996.68 13499.61 11799.41 142
CVMVSNet95.33 12797.09 11693.27 14095.23 13098.39 14695.49 15392.58 9597.71 15883.00 15794.44 13993.28 12793.92 18797.79 12098.54 5999.41 16499.45 139
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8898.05 10697.91 9599.74 4499.73 73
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13798.63 6392.10 9798.68 11295.96 4199.23 1891.79 13496.87 12298.76 5997.37 12299.57 13999.68 98
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10392.04 9898.48 12388.03 12498.39 6299.91 3194.03 18499.33 2399.23 1799.81 1699.25 153
UniMVSNet_NR-MVSNet94.59 14295.47 15193.55 13291.85 17797.89 16495.03 15992.00 9997.33 16686.12 13593.19 15187.29 15196.60 13296.12 17496.70 13399.72 5899.80 31
TranMVSNet+NR-MVSNet93.67 15894.14 17093.13 14191.28 19697.58 18195.60 15191.97 10097.06 17384.05 14490.64 16882.22 19096.17 14394.94 19396.78 13199.69 8099.78 45
tfpnnormal93.85 15794.12 17293.54 13393.22 15798.24 15295.45 15491.96 10194.61 20383.91 14690.74 16581.75 19397.04 11797.49 13696.16 15199.68 8999.84 19
TDRefinement93.04 16793.57 18492.41 14796.58 8798.77 11597.78 9791.96 10198.12 13980.84 16889.13 17779.87 20387.78 20396.44 16294.50 18999.54 14898.15 185
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14298.96 10697.46 10691.75 10397.86 15290.07 11596.02 11897.25 8296.21 14098.04 10798.38 6799.60 12599.65 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14898.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9698.44 6299.76 3599.87 12
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10897.65 10191.68 10598.00 14397.01 3197.72 8194.83 10998.85 6598.44 8498.86 3999.41 16499.52 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMH95.42 1495.27 12895.96 14494.45 11596.83 8598.78 11494.72 17191.67 10698.95 7986.82 13496.42 11283.67 18097.00 11897.48 13796.68 13499.69 8099.76 58
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13799.16 4397.66 12899.05 2499.76 3599.90 3
DU-MVS93.98 15294.44 16793.44 13591.66 18297.77 16695.03 15991.57 10897.17 17086.12 13593.13 15381.13 19596.60 13295.10 19097.01 12899.67 9799.80 31
NR-MVSNet94.01 15094.51 16593.44 13592.56 16297.77 16695.67 14891.57 10897.17 17085.84 13893.13 15380.53 19795.29 16797.01 15296.17 15099.69 8099.75 65
TransMVSNet (Re)93.45 16094.08 17392.72 14692.83 15897.62 17994.94 16291.54 11095.65 20083.06 15688.93 17983.53 18194.25 18097.41 13897.03 12699.67 9798.40 183
Baseline_NR-MVSNet93.87 15593.98 17793.75 12591.66 18297.02 19695.53 15291.52 11197.16 17287.77 12887.93 18983.69 17996.35 13895.10 19097.23 12399.68 8999.73 73
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8798.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10299.78 45
baseline97.45 7298.70 5995.99 9495.89 10599.36 7598.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9498.60 7398.60 5599.42 16399.86 15
GBi-Net96.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
test196.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
FMVSNet397.02 8398.12 7995.73 10093.59 15597.98 15898.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10698.61 7098.62 5399.61 11799.65 106
ACMH+95.51 1395.40 12496.00 14294.70 11096.33 9098.79 11296.79 12891.32 11498.77 10687.18 13195.60 12985.46 17096.97 11997.15 14896.59 13899.59 13199.65 106
UniMVSNet (Re)94.58 14395.34 15393.71 12792.25 16998.08 15794.97 16191.29 11897.03 17587.94 12593.97 14386.25 16596.07 14596.27 17195.97 15899.72 5899.79 39
UniMVSNet_ETH3D93.15 16492.33 19794.11 11993.91 14698.61 13094.81 16890.98 11997.06 17387.51 13082.27 20576.33 21197.87 10194.79 19497.47 11699.56 14299.81 29
FMVSNet296.64 9897.50 9795.63 10293.81 14997.98 15898.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9798.63 6898.80 4699.68 8999.67 99
Vis-MVSNetpermissive96.16 10998.22 7493.75 12595.33 12999.70 1197.27 11290.85 12198.30 13185.51 14295.72 12796.45 8793.69 19098.70 6499.00 2899.84 599.69 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-LLR95.50 12297.32 10993.37 13795.49 12498.74 12096.44 13890.82 12298.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10395.86 14690.82 12298.38 12792.54 10096.66 10497.33 7995.75 15197.75 12498.34 7299.60 12599.40 145
test_part195.56 12095.38 15295.78 9696.07 9998.16 15597.57 10290.78 12497.43 16393.04 9189.12 17889.41 14697.93 9596.38 16597.38 12199.29 17399.78 45
CHOSEN 1792x268896.41 10296.99 12095.74 9998.01 6699.72 697.70 10090.78 12499.13 6090.03 11687.35 19195.36 10398.33 8398.59 7598.91 3699.59 13199.87 12
thisisatest051594.61 14196.89 12291.95 15892.00 17298.47 13892.01 19390.73 12698.18 13683.96 14594.51 13795.13 10693.38 19197.38 13994.74 18799.61 11799.79 39
pm-mvs194.27 14695.57 15092.75 14592.58 16198.13 15694.87 16690.71 12796.70 18383.78 14889.94 17189.85 14494.96 17497.58 13397.07 12599.61 11799.72 84
GA-MVS93.93 15496.31 14191.16 17493.61 15398.79 11295.39 15690.69 12898.25 13473.28 20096.15 11688.42 14894.39 17997.76 12395.35 16999.58 13599.45 139
v14892.36 18592.88 19291.75 16391.63 18597.66 17392.64 19090.55 12996.09 19283.34 15388.19 18480.00 20092.74 19593.98 19894.58 18899.58 13599.69 93
pmnet_mix0292.44 17994.68 16289.83 18992.46 16497.65 17589.92 20390.49 13098.76 10773.05 20291.78 15890.08 14294.86 17594.53 19591.94 20298.21 19298.01 189
v2v48292.77 17393.52 18791.90 16191.59 18797.63 17694.57 17890.31 13196.80 18179.22 17888.74 18181.55 19496.04 14795.26 18694.97 18099.66 10299.69 93
pmmvs495.09 12995.90 14594.14 11892.29 16797.70 16995.45 15490.31 13198.60 11490.70 11293.25 15089.90 14396.67 12997.13 14995.42 16899.44 16099.28 150
FC-MVSNet-test96.07 11197.94 8793.89 12293.60 15498.67 12596.62 13290.30 13398.76 10788.62 12095.57 13097.63 7794.48 17797.97 11197.48 11599.71 6899.52 129
CANet_DTU96.64 9899.08 3993.81 12497.10 8299.42 6698.85 5690.01 13499.31 3179.98 17599.78 299.10 6097.42 11198.35 8698.05 8999.47 15699.53 126
WR-MVS93.43 16294.48 16692.21 15091.52 18997.69 17194.66 17589.98 13596.86 17883.43 15290.12 16985.03 17493.94 18696.02 17895.82 16199.71 6899.82 24
V4293.05 16693.90 18092.04 15491.91 17497.66 17394.91 16389.91 13696.85 17980.58 17089.66 17283.43 18395.37 16595.03 19294.90 18299.59 13199.78 45
FMVSNet195.77 11696.41 14095.03 10693.42 15697.86 16597.11 12189.89 13798.53 12092.00 10589.17 17593.23 12898.15 8798.07 10298.34 7299.61 11799.69 93
PEN-MVS92.72 17493.20 19092.15 15291.29 19497.31 19394.67 17489.81 13896.19 19081.83 16488.58 18279.06 20695.61 15795.21 18796.27 14699.72 5899.82 24
DTE-MVSNet92.42 18292.85 19391.91 16090.87 19996.97 19794.53 17989.81 13895.86 19981.59 16588.83 18077.88 20995.01 17394.34 19796.35 14499.64 11099.73 73
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18399.48 137
N_pmnet92.21 18794.60 16489.42 19191.88 17597.38 19289.15 20589.74 14197.89 15073.75 19887.94 18892.23 13293.85 18896.10 17593.20 19698.15 19397.43 194
baseline296.36 10497.82 9094.65 11194.60 14199.09 9996.45 13789.63 14298.36 12991.29 11197.60 8494.13 12096.37 13798.45 8297.70 10499.54 14899.41 142
MDA-MVSNet-bldmvs87.84 20189.22 20486.23 19981.74 21196.77 20083.74 21189.57 14394.50 20572.83 20496.64 10564.47 21692.71 19681.43 21192.28 20096.81 20798.47 179
TAMVS95.53 12196.50 13494.39 11693.86 14899.03 10096.67 13089.55 14497.33 16690.64 11393.02 15691.58 13696.21 14097.72 12697.43 11999.43 16199.36 147
DeepMVS_CXcopyleft96.85 19887.43 20889.27 14598.30 13175.55 19395.05 13179.47 20492.62 19789.48 20795.18 21295.96 205
CP-MVSNet93.25 16394.00 17692.38 14891.65 18497.56 18394.38 18089.20 14696.05 19483.16 15589.51 17381.97 19196.16 14496.43 16396.56 13999.71 6899.89 6
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18397.15 11889.19 14799.08 6588.23 12294.97 13294.73 11197.84 10297.86 11898.26 7899.60 12599.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS92.72 17493.36 18891.98 15791.62 18697.52 18594.13 18488.98 14895.94 19781.51 16687.35 19179.95 20295.91 14996.37 16696.49 14199.70 7799.89 6
HyFIR lowres test95.99 11296.56 12895.32 10497.99 6799.65 1796.54 13388.86 14998.44 12589.77 11984.14 20197.05 8499.03 5298.55 7798.19 8299.73 5199.86 15
TinyColmap94.00 15194.35 16893.60 12995.89 10598.26 15097.49 10588.82 15098.56 11883.21 15491.28 16280.48 19896.68 12897.34 14196.26 14899.53 15098.24 184
WR-MVS_H93.54 15994.67 16392.22 14991.95 17397.91 16394.58 17788.75 15196.64 18483.88 14790.66 16785.13 17394.40 17896.54 16195.91 16099.73 5199.89 6
EU-MVSNet92.80 17194.76 16190.51 18191.88 17596.74 20192.48 19188.69 15296.21 18979.00 18091.51 15987.82 14991.83 19995.87 18196.27 14699.21 17698.92 171
USDC94.26 14794.83 15993.59 13096.02 10098.44 14197.84 9388.65 15398.86 8882.73 16094.02 14180.56 19696.76 12597.28 14496.15 15299.55 14498.50 178
SixPastTwentyTwo93.44 16195.32 15491.24 17292.11 17098.40 14592.77 18988.64 15498.09 14077.83 18493.51 14785.74 16896.52 13596.91 15494.89 18499.59 13199.73 73
testgi95.67 11897.48 9993.56 13195.07 13399.00 10195.33 15788.47 15598.80 10086.90 13397.30 8792.33 13195.97 14897.66 12897.91 9599.60 12599.38 146
v114492.81 17094.03 17591.40 16991.68 18197.60 18094.73 17088.40 15696.71 18278.48 18288.14 18684.46 17895.45 16496.31 17095.22 17399.65 10699.76 58
pmmvs691.90 18992.53 19691.17 17391.81 17897.63 17693.23 18688.37 15793.43 20880.61 16977.32 20987.47 15094.12 18296.58 15995.72 16398.88 18599.53 126
Effi-MVS+95.81 11597.31 11294.06 12095.09 13299.35 7897.24 11488.22 15898.54 11985.38 14398.52 5588.68 14798.70 6898.32 8797.93 9299.74 4499.84 19
v892.87 16893.87 18191.72 16592.05 17197.50 18694.79 16988.20 15996.85 17980.11 17490.01 17082.86 18795.48 16195.15 18994.90 18299.66 10299.80 31
Effi-MVS+-dtu95.74 11798.04 8293.06 14293.92 14599.16 9697.90 9288.16 16099.07 7082.02 16398.02 7394.32 11796.74 12698.53 7897.56 10999.61 11799.62 113
v119292.43 18193.61 18391.05 17591.53 18897.43 18994.61 17687.99 16196.60 18576.72 18787.11 19382.74 18895.85 15096.35 16895.30 17199.60 12599.74 69
LTVRE_ROB93.20 1692.84 16994.92 15690.43 18392.83 15898.63 12797.08 12387.87 16297.91 14968.42 20993.54 14679.46 20596.62 13197.55 13497.40 12099.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GeoE95.98 11497.24 11494.51 11395.02 13499.38 7198.02 9187.86 16398.37 12887.86 12792.99 15793.54 12498.56 7698.61 7097.92 9399.73 5199.85 18
CMPMVSbinary70.31 1890.74 19291.06 20090.36 18497.32 7597.43 18992.97 18887.82 16493.50 20775.34 19583.27 20384.90 17592.19 19892.64 20291.21 20696.50 20994.46 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v192192092.36 18593.57 18490.94 17791.39 19297.39 19194.70 17287.63 16596.60 18576.63 18886.98 19482.89 18695.75 15196.26 17295.14 17699.55 14499.73 73
v14419292.38 18393.55 18691.00 17691.44 19097.47 18894.27 18187.41 16696.52 18778.03 18387.50 19082.65 18995.32 16695.82 18295.15 17599.55 14499.78 45
FMVSNet595.42 12396.47 13594.20 11792.26 16895.99 20495.66 14987.15 16797.87 15193.46 8596.68 10393.79 12397.52 10797.10 15197.21 12499.11 18096.62 204
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11897.27 11286.97 16899.09 6389.83 11893.51 14797.78 7596.18 14297.53 13595.71 16499.35 16998.41 180
Fast-Effi-MVS+95.38 12596.52 13194.05 12194.15 14499.14 9897.24 11486.79 16998.53 12087.62 12994.51 13787.06 15298.76 6698.60 7398.04 9099.72 5899.77 53
v124091.99 18893.33 18990.44 18291.29 19497.30 19494.25 18286.79 16996.43 18875.49 19486.34 19781.85 19295.29 16796.42 16495.22 17399.52 15199.73 73
TESTMET0.1,194.95 13297.32 10992.20 15192.62 16098.74 12096.44 13886.67 17198.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
pmmvs592.71 17694.27 16990.90 17891.42 19197.74 16893.23 18686.66 17295.99 19678.96 18191.45 16083.44 18295.55 15897.30 14395.05 17899.58 13598.93 168
Anonymous2023120690.70 19393.93 17886.92 19890.21 20396.79 19990.30 20086.61 17396.05 19469.25 20788.46 18384.86 17685.86 20597.11 15096.47 14299.30 17297.80 191
pmmvs-eth3d89.81 19689.65 20390.00 18686.94 20795.38 20691.08 19486.39 17494.57 20482.27 16283.03 20464.94 21493.96 18596.57 16093.82 19399.35 16999.24 154
test-mter94.86 13597.32 10992.00 15692.41 16598.82 11196.18 14386.35 17598.05 14182.28 16196.48 11194.39 11695.46 16398.17 9596.20 14999.32 17199.13 162
v1092.79 17294.06 17491.31 17191.78 17997.29 19594.87 16686.10 17696.97 17679.82 17688.16 18584.56 17795.63 15596.33 16995.31 17099.65 10699.80 31
MIMVSNet188.61 19990.68 20186.19 20081.56 21295.30 20887.78 20785.98 17794.19 20672.30 20578.84 20878.90 20790.06 20096.59 15895.47 16699.46 15795.49 206
v7n91.61 19092.95 19190.04 18590.56 20097.69 17193.74 18585.59 17895.89 19876.95 18686.60 19678.60 20893.76 18997.01 15294.99 17999.65 10699.87 12
test20.0390.65 19493.71 18287.09 19690.44 20196.24 20289.74 20485.46 17995.59 20172.99 20390.68 16685.33 17184.41 20695.94 18095.10 17799.52 15197.06 199
anonymousdsp93.12 16595.86 14789.93 18891.09 19798.25 15195.12 15885.08 18097.44 16273.30 19990.89 16490.78 13895.25 16997.91 11495.96 15999.71 6899.82 24
IterMVS94.81 13697.71 9291.42 16794.83 13997.63 17697.38 10785.08 18098.93 8375.67 19294.02 14197.64 7696.66 13098.45 8297.60 10898.90 18499.72 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu95.38 12598.20 7592.09 15393.91 14698.87 10997.35 10985.01 18299.08 6581.09 16798.10 6996.36 9095.62 15698.43 8597.03 12699.55 14499.50 135
IterMVS-SCA-FT94.89 13497.87 8991.42 16794.86 13897.70 16997.24 11484.88 18398.93 8375.74 19194.26 14098.25 7096.69 12798.52 7997.68 10599.10 18199.73 73
new_pmnet90.45 19592.84 19487.66 19588.96 20496.16 20388.71 20684.66 18497.56 16071.91 20685.60 19986.58 16193.28 19296.07 17693.54 19598.46 18794.39 208
EG-PatchMatch MVS92.45 17893.92 17990.72 18092.56 16298.43 14394.88 16584.54 18597.18 16979.55 17786.12 19883.23 18493.15 19497.22 14696.00 15599.67 9799.27 152
PM-MVS89.55 19790.30 20288.67 19387.06 20695.60 20590.88 19684.51 18696.14 19175.75 19086.89 19563.47 21794.64 17696.85 15593.89 19299.17 17999.29 149
new-patchmatchnet86.12 20387.30 20584.74 20286.92 20895.19 20983.57 21284.42 18792.67 20965.66 21080.32 20664.72 21589.41 20192.33 20589.21 20798.43 18896.69 202
FPMVS83.82 20484.61 20682.90 20490.39 20290.71 21290.85 19784.10 18895.47 20265.15 21183.44 20274.46 21275.48 20981.63 21079.42 21291.42 21487.14 212
MDTV_nov1_ep1395.57 11997.48 9993.35 13995.43 12698.97 10597.19 11783.72 18998.92 8587.91 12697.75 7996.12 9697.88 10096.84 15695.64 16597.96 19498.10 186
gm-plane-assit89.44 19892.82 19585.49 20191.37 19395.34 20779.55 21582.12 19091.68 21164.79 21387.98 18780.26 19995.66 15498.51 8197.56 10999.45 15898.41 180
pmmvs388.19 20091.27 19984.60 20385.60 20993.66 21085.68 21081.13 19192.36 21063.66 21589.51 17377.10 21093.22 19396.37 16692.40 19898.30 19197.46 193
tpm cat194.06 14994.90 15793.06 14295.42 12898.52 13696.64 13180.67 19297.82 15492.63 9793.39 14995.00 10796.06 14691.36 20691.58 20596.98 20696.66 203
CostFormer94.25 14894.88 15893.51 13495.43 12698.34 14996.21 14280.64 19397.94 14894.01 7298.30 6586.20 16697.52 10792.71 20192.69 19797.23 20598.02 188
PMVScopyleft72.60 1776.39 20777.66 21074.92 20881.04 21369.37 22068.47 21780.54 19485.39 21365.07 21273.52 21072.91 21365.67 21580.35 21276.81 21388.71 21585.25 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dps94.63 14095.31 15593.84 12395.53 12298.71 12396.54 13380.12 19597.81 15697.21 2896.98 9492.37 13096.34 13992.46 20391.77 20397.26 20497.08 198
EPMVS95.05 13096.86 12492.94 14495.84 10798.96 10696.68 12979.87 19699.05 7190.15 11497.12 9395.99 9897.49 10995.17 18894.75 18697.59 20096.96 200
MDTV_nov1_ep13_2view92.44 17995.66 14988.68 19291.05 19897.92 16292.17 19279.64 19798.83 9576.20 18991.45 16093.51 12595.04 17295.68 18393.70 19497.96 19498.53 177
PatchmatchNetpermissive94.70 13797.08 11791.92 15995.53 12298.85 11095.77 14779.54 19898.95 7985.98 13798.52 5596.45 8797.39 11295.32 18594.09 19197.32 20297.38 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 15695.88 14691.50 16695.69 11498.62 12895.64 15079.41 19998.80 10083.76 15095.63 12896.13 9597.25 11392.92 20092.31 19997.27 20396.74 201
SCA94.95 13297.44 10292.04 15495.55 12199.16 9696.26 14179.30 20099.02 7485.73 14098.18 6797.13 8397.69 10496.03 17794.91 18197.69 19997.65 192
CR-MVSNet94.57 14497.34 10791.33 17094.90 13698.59 13197.15 11879.14 20197.98 14480.42 17196.59 10993.50 12696.85 12398.10 9797.49 11399.50 15399.15 158
Patchmtry98.59 13197.15 11879.14 20180.42 171
ADS-MVSNet94.65 13997.04 11991.88 16295.68 11598.99 10395.89 14579.03 20399.15 5285.81 13996.96 9598.21 7297.10 11694.48 19694.24 19097.74 19697.21 196
tpm92.38 18394.79 16089.56 19094.30 14397.50 18694.24 18378.97 20497.72 15774.93 19697.97 7482.91 18596.60 13293.65 19994.81 18598.33 19098.98 166
MIMVSNet94.49 14597.59 9690.87 17991.74 18098.70 12494.68 17378.73 20597.98 14483.71 15197.71 8294.81 11096.96 12097.97 11197.92 9399.40 16698.04 187
PatchT93.96 15397.36 10690.00 18694.76 14098.65 12690.11 20178.57 20697.96 14780.42 17196.07 11794.10 12196.85 12398.10 9797.49 11399.26 17599.15 158
RPMNet94.66 13897.16 11591.75 16394.98 13598.59 13197.00 12578.37 20797.98 14483.78 14896.27 11494.09 12296.91 12197.36 14096.73 13299.48 15499.09 163
E-PMN68.30 20968.43 21168.15 21074.70 21871.56 21955.64 21977.24 20877.48 21639.46 21951.95 21641.68 22173.28 21170.65 21479.51 21188.61 21686.20 214
EMVS68.12 21068.11 21268.14 21175.51 21771.76 21855.38 22077.20 20977.78 21537.79 22053.59 21443.61 22074.72 21067.05 21576.70 21488.27 21786.24 213
PMMVS277.26 20679.47 20974.70 20976.00 21588.37 21474.22 21676.34 21078.31 21454.13 21769.96 21152.50 21970.14 21384.83 20988.71 20897.35 20193.58 210
gg-mvs-nofinetune90.85 19194.14 17087.02 19794.89 13799.25 8998.64 6276.29 21188.24 21257.50 21679.93 20795.45 10295.18 17098.77 5898.07 8899.62 11599.24 154
Gipumacopyleft81.40 20581.78 20780.96 20783.21 21085.61 21679.73 21476.25 21297.33 16664.21 21455.32 21355.55 21886.04 20492.43 20492.20 20196.32 21093.99 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS-HIRNet92.51 17795.97 14388.48 19493.73 15298.37 14790.33 19975.36 21398.32 13077.78 18589.15 17694.87 10895.14 17197.62 13296.39 14398.51 18697.11 197
test_method87.27 20291.58 19882.25 20575.65 21687.52 21586.81 20972.60 21497.51 16173.20 20185.07 20079.97 20188.69 20297.31 14295.24 17296.53 20898.41 180
MVEpermissive67.97 1965.53 21167.43 21363.31 21259.33 21974.20 21753.09 22170.43 21566.27 21743.13 21845.98 21730.62 22270.65 21279.34 21386.30 20983.25 21889.33 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20597.73 6988.71 21380.18 21368.65 21699.15 5286.98 13299.47 985.31 17268.35 21487.51 20883.81 21091.64 213
testmvs31.24 21240.15 21420.86 21412.61 22017.99 22125.16 22213.30 21748.42 21824.82 22153.07 21530.13 22428.47 21642.73 21637.65 21520.79 21951.04 216
test12326.75 21334.25 21518.01 2157.93 22117.18 22224.85 22312.36 21844.83 21916.52 22241.80 21818.10 22528.29 21733.08 21734.79 21618.10 22049.95 217
GG-mvs-BLEND69.11 20898.13 7835.26 2133.49 22298.20 15494.89 1642.38 21998.42 1265.82 22396.37 11398.60 645.97 21898.75 6197.98 9199.01 18298.61 175
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def69.05 208
9.1499.79 45
our_test_392.30 16697.58 18190.09 202
ambc80.99 20880.04 21490.84 21190.91 19596.09 19274.18 19762.81 21230.59 22382.44 20896.25 17391.77 20395.91 21198.56 176
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 218
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117