This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12599.13 6
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
SR-MVS98.93 1996.00 1797.75 14
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
MTAPA95.36 297.46 20
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
9.1497.28 23
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP95.70 196.90 26
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17198.65 14
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 75
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 120
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14898.14 43
UA-Net90.81 8292.58 6188.74 10994.87 7597.44 6392.61 10388.22 8882.35 15378.93 11485.20 7595.61 3879.56 17996.52 3496.57 2398.23 5894.37 147
mPP-MVS98.76 2495.49 39
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 10099.08 9
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12691.98 12397.78 9297.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10196.15 115
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 10098.30 4995.58 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UGNet91.52 7493.41 5289.32 10394.13 8097.15 7091.83 11989.01 7890.62 7385.86 7486.83 5991.73 5677.40 18494.68 7394.43 6497.71 9898.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND62.84 20490.21 8930.91 2130.57 22194.45 11186.99 1750.34 21988.71 1000.98 22181.55 10491.58 570.86 21892.66 11291.43 13395.73 16591.11 176
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 72
CHOSEN 280x42090.77 8492.14 6989.17 10593.86 9292.81 15793.16 9780.22 17490.21 8184.67 8989.89 4891.38 5990.57 9094.94 6392.11 11892.52 19393.65 157
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11893.73 9596.94 7892.17 11287.91 9488.77 9976.12 12483.68 8490.80 6079.49 18096.34 4196.35 2898.21 6096.46 103
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10895.00 140
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10396.57 101
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 11084.49 7890.63 6487.49 12397.07 1996.96 1598.07 7397.88 58
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10989.54 7488.53 10387.47 5879.82 10990.53 6585.47 14496.31 4295.16 5697.99 8198.56 19
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 96
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 11087.90 9590.24 8083.63 9086.14 6790.52 6790.76 8794.82 6994.38 6598.18 6397.98 49
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11995.24 5894.97 5897.09 12798.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8597.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 70
Vis-MVSNetpermissive89.36 10291.49 7986.88 12992.10 11897.60 6092.16 11385.89 11484.21 13975.20 12682.58 9487.13 7277.40 18495.90 5095.63 4798.51 2197.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline91.19 7791.89 7390.38 8992.76 10995.04 10593.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10292.00 12592.62 10896.46 15396.99 88
CANet_DTU90.74 8592.93 5888.19 11494.36 7796.61 8294.34 6984.66 12790.66 7168.75 16390.41 4686.89 7489.78 9495.46 5694.87 5997.25 11795.62 126
PMMVS89.88 9491.19 8188.35 11289.73 14491.97 17790.62 12581.92 16190.57 7580.58 10892.16 3586.85 7591.17 8292.31 11891.35 13496.11 15993.11 164
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11897.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GBi-Net90.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
test190.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
FMVSNet390.19 9290.06 9490.34 9088.69 15393.85 12294.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10693.29 10594.36 6698.20 6195.40 134
MS-PatchMatch87.63 11487.61 11987.65 12293.95 8794.09 11892.60 10481.52 16686.64 11676.41 12373.46 14385.94 8085.01 14892.23 12290.00 16396.43 15590.93 178
EPNet_dtu88.32 11190.61 8685.64 14196.79 5592.27 16992.03 11690.31 6489.05 9765.44 18489.43 4985.90 8174.22 19392.76 10992.09 11995.02 18292.76 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15392.30 10787.69 10190.44 7785.12 8691.68 3985.84 8290.69 8887.34 18286.07 18492.46 19490.37 182
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13493.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10893.62 8097.02 13198.05 48
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 94
gg-mvs-nofinetune81.83 18383.58 15679.80 19191.57 12496.54 8593.79 8468.80 20762.71 21143.01 21655.28 20285.06 8583.65 15896.13 4594.86 6097.98 8494.46 145
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11396.61 8296.03 4888.44 8690.25 7985.92 7273.73 13984.89 8691.92 7494.17 8594.07 7397.68 10297.31 79
Anonymous2023121189.82 9588.18 10991.74 7492.52 11496.09 9693.38 9489.30 7788.95 9885.90 7364.55 18684.39 8792.41 7192.24 12193.06 10096.93 14097.95 51
HyFIR lowres test87.87 11386.42 13089.57 10095.56 6696.99 7692.37 10684.15 13486.64 11677.17 12057.65 19983.97 8891.08 8492.09 12492.44 11097.09 12795.16 137
FMVSNet289.61 9889.14 9990.16 9688.66 15493.65 13094.25 7285.44 12188.57 10284.96 8873.53 14183.82 8989.38 9994.23 8394.68 6398.31 4695.47 130
SCA86.25 12687.52 12284.77 15091.59 12393.90 12189.11 15573.25 20090.38 7872.84 13683.26 8683.79 9088.49 11686.07 18985.56 18793.33 18689.67 187
CDS-MVSNet88.34 11088.71 10287.90 11990.70 13894.54 10892.38 10586.02 11380.37 16279.42 11279.30 11083.43 9182.04 16793.39 10294.01 7496.86 14695.93 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test86.15 12989.10 10082.71 17989.83 14293.18 14587.88 16884.69 12686.54 11862.18 19482.39 9783.31 9274.18 19492.52 11691.86 12597.50 11093.88 154
CHOSEN 1792x268888.57 10887.82 11589.44 10295.46 6996.89 7993.74 8685.87 11589.63 9177.42 11961.38 19383.31 9288.80 11493.44 10193.16 9695.37 17696.95 90
Anonymous20240521188.00 11193.16 10196.38 9193.58 9089.34 7687.92 10765.04 18283.03 9492.07 7392.67 11193.33 8996.96 13597.63 64
test-LLR86.88 12188.28 10685.24 14591.22 12892.07 17387.41 17183.62 14184.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
TESTMET0.1,186.11 13188.28 10683.59 16687.80 16592.07 17387.41 17177.12 18584.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11381.60 10282.77 9794.39 4494.28 8194.23 6797.14 12494.45 146
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9895.64 5592.12 4792.46 5779.65 11191.97 3782.68 9892.92 6693.47 10092.77 10597.74 9698.12 45
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11587.63 10490.74 6981.51 9786.81 6082.48 9989.23 10494.81 7093.03 10297.90 8697.33 78
test-mter86.09 13288.38 10583.43 16987.89 16492.61 16186.89 17677.11 18684.30 13768.62 16582.57 9582.45 10084.34 15192.40 11790.11 16095.74 16494.21 150
MDTV_nov1_ep1386.64 12587.50 12385.65 14090.73 13693.69 12889.96 14078.03 18389.48 9476.85 12184.92 7682.42 10186.14 13886.85 18686.15 18392.17 19588.97 190
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11887.63 10490.61 7481.42 9886.76 6182.26 10389.23 10494.86 6893.03 10297.90 8697.36 76
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PatchmatchNetpermissive85.70 13586.65 12784.60 15391.79 12093.40 13589.27 15173.62 19590.19 8272.63 13882.74 9381.93 10687.64 12084.99 19284.29 19492.64 19289.00 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9898.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS88.60 10788.45 10488.78 10892.02 11992.44 16792.00 11783.57 14386.52 11978.90 11578.61 11481.34 10889.12 10790.68 14793.18 9597.10 12696.35 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10794.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11295.75 5293.95 7598.12 6896.37 106
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 81
MSDG90.42 8888.25 10892.94 6296.67 5694.41 11393.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9192.60 11492.08 12097.44 11391.41 172
diffmvs91.37 7591.09 8391.70 7592.71 11296.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 11097.23 81
baseline190.81 8290.29 8891.42 8093.67 9695.86 9993.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9595.05 6094.79 6198.80 793.82 155
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 15081.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 124
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11691.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
test0.0.03 185.58 13787.69 11883.11 17291.22 12892.54 16485.60 18783.62 14185.66 12667.84 17082.79 9279.70 11673.51 19791.15 13990.79 13996.88 14491.23 175
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10493.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10697.62 10795.50 129
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10692.55 10997.76 9497.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE89.29 10488.68 10389.99 9892.75 11196.03 9793.07 10183.79 13986.98 11381.34 9974.72 13678.92 11991.22 8193.31 10493.21 9497.78 9297.60 69
FMVSNet584.47 15484.72 14984.18 16083.30 20188.43 19888.09 16679.42 17784.25 13874.14 13073.15 14678.74 12083.65 15891.19 13791.19 13696.46 15386.07 199
IterMVS-SCA-FT85.44 14186.71 12683.97 16390.59 13990.84 19089.73 14678.34 18084.07 14366.40 17977.27 12278.66 12183.06 16091.20 13690.10 16195.72 16694.78 141
test_part187.53 11684.97 14590.52 8892.11 11793.31 13993.32 9685.79 11679.56 17087.38 6062.89 19078.60 12289.25 10390.65 14892.17 11695.24 17897.62 66
CVMVSNet83.83 16285.53 14281.85 18689.60 14590.92 18887.81 16983.21 14780.11 16560.16 19876.47 12578.57 12376.79 18689.76 16190.13 15693.51 18592.75 167
baseline288.97 10689.50 9688.36 11191.14 13095.30 10190.13 13685.17 12487.24 11080.80 10584.46 7978.44 12485.60 14193.54 9891.87 12497.31 11595.66 125
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10392.11 11488.85 7987.64 10883.38 9284.36 8078.41 12589.53 9694.69 7293.15 9798.15 6497.92 54
IterMVS85.25 14386.49 12983.80 16490.42 14090.77 19390.02 13878.04 18284.10 14166.27 18077.28 12178.41 12583.01 16190.88 14189.72 17095.04 18194.24 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS85.77 13486.24 13285.23 14692.76 10993.78 12489.91 14273.60 19690.19 8274.22 12882.18 9878.06 12787.55 12285.61 19185.38 18993.32 18788.48 194
FMVSNet187.33 11886.00 13688.89 10687.13 18092.83 15693.08 10084.46 13181.35 15882.20 9566.33 17377.96 12888.96 10993.97 8994.16 6997.54 10995.38 135
CR-MVSNet85.48 13986.29 13184.53 15591.08 13392.10 17189.18 15373.30 19884.75 13071.08 14773.12 14777.91 12986.27 13691.48 13190.75 14296.27 15793.94 152
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10779.60 20696.19 9394.43 6486.56 11090.63 7280.75 10690.71 4477.78 13093.73 5691.36 13493.45 8798.15 6495.77 123
IB-MVS85.10 1487.98 11287.97 11387.99 11794.55 7696.86 8084.52 18888.21 8986.48 12188.54 5074.41 13877.74 13174.10 19589.65 16592.85 10498.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPMNet84.82 14885.90 13883.56 16791.10 13192.10 17188.73 16271.11 20384.75 13068.79 16273.56 14077.62 13285.33 14590.08 15889.43 17296.32 15693.77 156
Effi-MVS+89.79 9689.83 9589.74 9992.98 10396.45 8993.48 9384.24 13287.62 10976.45 12281.76 10077.56 13393.48 5994.61 7593.59 8197.82 9097.22 83
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10994.95 2977.35 13494.05 4994.49 8093.08 9897.15 12294.53 144
Effi-MVS+-dtu87.51 11788.13 11086.77 13191.10 13194.90 10690.91 12382.67 15183.47 14671.55 14281.11 10577.04 13589.41 9892.65 11391.68 13095.00 18396.09 117
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13696.23 2696.78 2696.15 3798.79 998.55 24
ADS-MVSNet84.08 15884.95 14683.05 17591.53 12791.75 18088.16 16570.70 20489.96 8869.51 15878.83 11276.97 13786.29 13584.08 19684.60 19292.13 19788.48 194
COLMAP_ROBcopyleft84.39 1587.61 11586.03 13489.46 10195.54 6894.48 11091.77 12090.14 6587.16 11175.50 12573.41 14476.86 13887.33 12590.05 15989.76 16996.48 15290.46 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAMVS84.94 14784.95 14684.93 14988.82 15093.18 14588.44 16481.28 16877.16 18273.76 13275.43 13476.57 13982.04 16790.59 14990.79 13995.22 17990.94 177
CostFormer86.78 12386.05 13387.62 12492.15 11693.20 14491.55 12175.83 18888.11 10685.29 8581.76 10076.22 14087.80 11884.45 19485.21 19093.12 18893.42 160
PatchT83.86 16185.51 14381.94 18588.41 15791.56 18378.79 20271.57 20284.08 14271.08 14770.62 15376.13 14186.27 13691.48 13190.75 14295.52 17493.94 152
Fast-Effi-MVS+-dtu86.25 12687.70 11784.56 15490.37 14193.70 12790.54 12678.14 18183.50 14565.37 18581.59 10375.83 14286.09 14091.70 12991.70 12896.88 14495.84 122
thisisatest051585.70 13587.00 12584.19 15988.16 16193.67 12984.20 19084.14 13583.39 14872.91 13576.79 12374.75 14378.82 18292.57 11591.26 13596.94 13796.56 102
Fast-Effi-MVS+88.56 10987.99 11289.22 10491.56 12595.21 10292.29 10882.69 15086.82 11477.73 11776.24 12973.39 14493.36 6194.22 8493.64 7997.65 10496.43 104
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 10090.94 12288.67 8389.80 8986.95 6485.90 6972.51 14592.46 6993.56 9792.18 11596.93 14092.89 165
MIMVSNet82.97 17484.00 15481.77 18782.23 20292.25 17087.40 17372.73 20181.48 15769.55 15768.79 16272.42 14681.82 17092.23 12292.25 11396.89 14388.61 192
anonymousdsp84.51 15185.85 14082.95 17686.30 19193.51 13385.77 18580.38 17378.25 17763.42 19173.51 14272.20 14784.64 15093.21 10792.16 11797.19 12098.14 43
tpmrst83.72 16483.45 15884.03 16292.21 11591.66 18188.74 16173.58 19788.14 10572.67 13777.37 12072.11 14886.34 13482.94 19982.05 19890.63 20389.86 186
ACMH+85.75 1287.19 12086.02 13588.56 11093.42 9894.41 11389.91 14287.66 10383.45 14772.25 14076.42 12871.99 14990.78 8689.86 16090.94 13797.32 11495.11 139
ACMH85.51 1387.31 11986.59 12888.14 11593.96 8694.51 10989.00 15887.99 9181.58 15670.15 15378.41 11571.78 15090.60 8991.30 13591.99 12297.17 12196.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.55 15083.46 15785.82 13788.16 16193.39 13689.05 15785.36 12374.03 19672.43 13965.08 18171.11 15182.30 16693.48 9991.70 12897.64 10595.43 133
tpm cat184.13 15781.99 17786.63 13391.74 12191.50 18490.68 12475.69 18986.12 12285.44 8372.39 14870.72 15285.16 14680.89 20381.56 19991.07 20190.71 179
MVS-HIRNet78.16 19377.57 19778.83 19385.83 19387.76 20076.67 20370.22 20575.82 19267.39 17255.61 20170.52 15381.96 16986.67 18785.06 19190.93 20281.58 205
thres100view90089.36 10287.61 11991.39 8193.90 9096.86 8094.35 6889.66 7385.87 12381.15 10176.46 12670.38 15491.17 8294.09 8693.43 8898.13 6796.16 114
tfpn200view989.55 9987.86 11491.53 7893.90 9097.26 6694.31 7189.74 6985.87 12381.15 10176.46 12670.38 15491.76 7794.92 6493.51 8298.28 5296.61 98
UniMVSNet_NR-MVSNet86.80 12285.86 13987.89 12088.17 16094.07 11990.15 13488.51 8584.20 14073.45 13372.38 14970.30 15688.95 11090.25 15392.21 11498.12 6897.62 66
thres20089.49 10087.72 11691.55 7793.95 8797.25 6794.34 6989.74 6985.66 12681.18 10076.12 13070.19 15791.80 7594.92 6493.51 8298.27 5396.40 105
thres40089.40 10187.58 12191.53 7894.06 8497.21 6994.19 7589.83 6885.69 12581.08 10375.50 13369.76 15891.80 7594.79 7193.51 8298.20 6196.60 99
thres600view789.28 10587.47 12491.39 8194.12 8197.25 6793.94 8089.74 6985.62 12880.63 10775.24 13569.33 15991.66 7994.92 6493.23 9298.27 5396.72 95
tpm83.16 17083.64 15582.60 18190.75 13591.05 18788.49 16373.99 19382.36 15267.08 17678.10 11668.79 16084.17 15485.95 19085.96 18591.09 20093.23 162
MDTV_nov1_ep13_2view80.43 18780.94 18779.84 19084.82 19890.87 18984.23 18973.80 19480.28 16464.33 18870.05 15968.77 16179.67 17784.83 19383.50 19692.17 19588.25 196
EG-PatchMatch MVS81.70 18581.31 18482.15 18488.75 15193.81 12387.14 17478.89 17971.57 20064.12 19061.20 19568.46 16276.73 18891.48 13190.77 14197.28 11691.90 169
GA-MVS85.08 14485.65 14184.42 15689.77 14394.25 11689.26 15284.62 12881.19 15962.25 19375.72 13268.44 16384.14 15593.57 9691.68 13096.49 15194.71 143
UniMVSNet (Re)86.22 12885.46 14487.11 12688.34 15894.42 11289.65 14887.10 10884.39 13674.61 12770.41 15768.10 16485.10 14791.17 13891.79 12697.84 8997.94 52
TDRefinement84.97 14683.39 16186.81 13092.97 10594.12 11792.18 11087.77 10082.78 15171.31 14568.43 16368.07 16581.10 17589.70 16489.03 17695.55 17391.62 170
USDC86.73 12485.96 13787.63 12391.64 12293.97 12092.76 10284.58 12988.19 10470.67 15080.10 10867.86 16689.43 9791.81 12789.77 16896.69 15090.05 185
dps85.00 14583.21 16587.08 12790.73 13692.55 16389.34 15075.29 19084.94 12987.01 6279.27 11167.69 16787.27 12684.22 19583.56 19592.83 19190.25 183
V4284.48 15383.36 16385.79 13987.14 17993.28 14190.03 13783.98 13780.30 16371.20 14666.90 17067.17 16885.55 14289.35 16690.27 15396.82 14796.27 112
v884.45 15583.30 16485.80 13887.53 17292.95 15190.31 13082.46 15580.46 16171.43 14366.99 16867.16 16986.14 13889.26 16990.22 15596.94 13796.06 118
pmmvs680.90 18678.77 19283.38 17085.84 19291.61 18286.01 18382.54 15364.17 20970.43 15254.14 20667.06 17080.73 17690.50 15189.17 17594.74 18494.75 142
WR-MVS83.14 17183.38 16282.87 17787.55 17193.29 14086.36 18184.21 13380.05 16666.41 17866.91 16966.92 17175.66 19188.96 17390.56 14797.05 12996.96 89
CMPMVSbinary61.19 1779.86 19077.46 19882.66 18091.54 12691.82 17983.25 19181.57 16570.51 20468.64 16459.89 19866.77 17279.63 17884.00 19784.30 19391.34 19984.89 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0280.14 18980.21 19080.06 18986.61 18889.66 19580.40 19982.20 15982.29 15461.35 19571.52 15066.67 17376.75 18782.55 20080.18 20393.05 18988.62 191
Baseline_NR-MVSNet85.28 14283.42 16087.46 12587.77 16790.80 19289.90 14487.69 10183.93 14474.16 12964.72 18466.43 17487.48 12490.14 15490.83 13897.73 9797.11 86
pmmvs486.00 13384.28 15288.00 11687.80 16592.01 17689.94 14184.91 12586.79 11580.98 10473.41 14466.34 17588.12 11789.31 16888.90 17796.24 15893.20 163
testgi81.94 18284.09 15379.43 19289.53 14790.83 19182.49 19481.75 16480.59 16059.46 20082.82 9165.75 17667.97 19990.10 15789.52 17195.39 17589.03 188
v1084.18 15683.17 16685.37 14287.34 17492.68 15990.32 12981.33 16779.93 16969.23 16166.33 17365.74 17787.03 12790.84 14290.38 15096.97 13396.29 111
tmp_tt50.24 20968.55 21246.86 21748.90 21718.28 21686.51 12068.32 16670.19 15865.33 17826.69 21574.37 20766.80 20970.72 215
TranMVSNet+NR-MVSNet85.57 13884.41 15186.92 12887.67 17093.34 13790.31 13088.43 8783.07 14970.11 15469.99 16065.28 17986.96 12889.73 16292.27 11298.06 7597.17 85
WR-MVS_H82.86 17682.66 17083.10 17387.44 17393.33 13885.71 18683.20 14877.36 18168.20 16866.37 17265.23 18076.05 19089.35 16690.13 15697.99 8196.89 92
v2v48284.51 15183.05 16786.20 13687.25 17693.28 14190.22 13285.40 12279.94 16869.78 15667.74 16565.15 18187.57 12189.12 17190.55 14896.97 13395.60 127
v114484.03 16082.88 16885.37 14287.17 17893.15 14890.18 13383.31 14678.83 17367.85 16965.99 17564.99 18286.79 13090.75 14490.33 15296.90 14296.15 115
EU-MVSNet78.43 19280.25 18976.30 19783.81 20087.27 20480.99 19779.52 17676.01 18954.12 20770.44 15664.87 18367.40 20186.23 18885.54 18891.95 19891.41 172
DU-MVS86.12 13084.81 14887.66 12187.77 16793.78 12490.15 13487.87 9784.40 13473.45 13370.59 15464.82 18488.95 11090.14 15492.33 11197.76 9497.62 66
v14883.61 16582.10 17485.37 14287.34 17492.94 15287.48 17085.72 12078.92 17273.87 13165.71 17864.69 18581.78 17187.82 17889.35 17396.01 16095.26 136
TransMVSNet (Re)82.67 17780.93 18884.69 15288.71 15291.50 18487.90 16787.15 10771.54 20268.24 16763.69 18864.67 18678.51 18391.65 13090.73 14497.64 10592.73 168
v14419283.48 16782.23 17284.94 14886.65 18692.84 15489.63 14982.48 15477.87 17867.36 17365.33 18063.50 18786.51 13289.72 16389.99 16497.03 13096.35 107
v119283.56 16682.35 17184.98 14786.84 18592.84 15490.01 13982.70 14978.54 17466.48 17764.88 18362.91 18886.91 12990.72 14590.25 15496.94 13796.32 109
SixPastTwentyTwo83.12 17283.44 15982.74 17887.71 16993.11 14982.30 19582.33 15679.24 17164.33 18878.77 11362.75 18984.11 15688.11 17787.89 17995.70 16794.21 150
pmmvs583.37 16882.68 16984.18 16087.13 18093.18 14586.74 17782.08 16076.48 18667.28 17471.26 15162.70 19084.71 14990.77 14390.12 15997.15 12294.24 148
v192192083.30 16982.09 17584.70 15186.59 18992.67 16089.82 14582.23 15878.32 17565.76 18264.64 18562.35 19186.78 13190.34 15290.02 16297.02 13196.31 110
N_pmnet77.55 19676.68 19978.56 19485.43 19687.30 20378.84 20181.88 16278.30 17660.61 19661.46 19262.15 19274.03 19682.04 20180.69 20290.59 20484.81 203
NR-MVSNet85.46 14084.54 15086.52 13488.33 15993.78 12490.45 12787.87 9784.40 13471.61 14170.59 15462.09 19382.79 16391.75 12891.75 12798.10 7197.44 73
UniMVSNet_ETH3D84.57 14981.40 18388.28 11389.34 14894.38 11590.33 12886.50 11174.74 19577.52 11859.90 19762.04 19488.78 11588.82 17592.65 10797.22 11897.24 80
test_method58.10 20764.61 20750.51 20828.26 21941.71 21861.28 21332.07 21575.92 19152.04 21047.94 20861.83 19551.80 20979.83 20463.95 21277.60 21381.05 206
v124082.88 17581.66 17984.29 15786.46 19092.52 16689.06 15681.82 16377.16 18265.09 18664.17 18761.50 19686.36 13390.12 15690.13 15696.95 13696.04 119
test20.0376.41 19778.49 19473.98 19985.64 19487.50 20175.89 20480.71 17270.84 20351.07 21268.06 16461.40 19754.99 20888.28 17687.20 18195.58 17286.15 198
tfpnnormal83.80 16381.26 18586.77 13189.60 14593.26 14389.72 14787.60 10672.78 19770.44 15160.53 19661.15 19885.55 14292.72 11091.44 13297.71 9896.92 91
TinyColmap84.04 15982.01 17686.42 13590.87 13491.84 17888.89 16084.07 13682.11 15569.89 15571.08 15260.81 19989.04 10890.52 15089.19 17495.76 16388.50 193
v7n82.25 18181.54 18183.07 17485.55 19592.58 16286.68 17981.10 17176.54 18565.97 18162.91 18960.56 20082.36 16591.07 14090.35 15196.77 14996.80 93
CP-MVSNet83.11 17382.15 17384.23 15887.20 17792.70 15886.42 18083.53 14477.83 17967.67 17166.89 17160.53 20182.47 16489.23 17090.65 14698.08 7297.20 84
PEN-MVS82.49 17981.58 18083.56 16786.93 18392.05 17586.71 17883.84 13876.94 18464.68 18767.24 16660.11 20281.17 17487.78 17990.70 14598.02 7896.21 113
DTE-MVSNet81.76 18481.04 18682.60 18186.63 18791.48 18685.97 18483.70 14076.45 18862.44 19267.16 16759.98 20378.98 18187.15 18389.93 16597.88 8895.12 138
Anonymous2023120678.09 19478.11 19578.07 19585.19 19789.17 19680.99 19781.24 17075.46 19358.25 20254.78 20559.90 20466.73 20288.94 17488.26 17896.01 16090.25 183
LTVRE_ROB81.71 1682.44 18081.84 17883.13 17189.01 14992.99 15088.90 15982.32 15766.26 20854.02 20874.68 13759.62 20588.87 11390.71 14692.02 12195.68 16896.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS82.53 17881.54 18183.68 16587.08 18292.54 16486.20 18283.46 14576.46 18765.73 18365.71 17859.41 20681.61 17289.06 17290.55 14898.03 7797.07 87
gm-plane-assit77.65 19578.50 19376.66 19687.96 16385.43 20664.70 21274.50 19164.15 21051.26 21161.32 19458.17 20784.11 15695.16 5993.83 7697.45 11291.41 172
MIMVSNet173.19 19973.70 20072.60 20265.42 21486.69 20575.56 20579.65 17567.87 20755.30 20445.24 21056.41 20863.79 20486.98 18487.66 18095.85 16285.04 201
new_pmnet72.29 20173.25 20171.16 20475.35 20881.38 20873.72 20869.27 20675.97 19049.84 21356.27 20056.12 20969.08 19881.73 20280.86 20189.72 20780.44 207
pmmvs-eth3d79.78 19177.58 19682.34 18381.57 20487.46 20282.92 19281.28 16875.33 19471.34 14461.88 19152.41 21081.59 17387.56 18086.90 18295.36 17791.48 171
PM-MVS80.29 18879.30 19181.45 18881.91 20388.23 19982.61 19379.01 17879.99 16767.15 17569.07 16151.39 21182.92 16287.55 18185.59 18695.08 18093.28 161
FPMVS69.87 20367.10 20673.10 20184.09 19978.35 21179.40 20076.41 18771.92 19857.71 20354.06 20750.04 21256.72 20671.19 20868.70 20884.25 20975.43 209
PMVScopyleft56.77 1861.27 20558.64 20864.35 20575.66 20754.60 21553.62 21574.23 19253.69 21358.37 20144.27 21149.38 21344.16 21269.51 21065.35 21080.07 21173.66 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet72.32 20071.09 20373.74 20081.17 20584.86 20772.21 20977.48 18468.32 20654.89 20655.10 20349.31 21463.68 20579.30 20576.46 20693.03 19084.32 204
pmmvs371.13 20271.06 20471.21 20373.54 21080.19 20971.69 21064.86 20962.04 21252.10 20954.92 20448.00 21575.03 19283.75 19883.24 19790.04 20685.27 200
DeepMVS_CXcopyleft71.82 21268.37 21148.05 21477.38 18046.88 21465.77 17747.03 21667.48 20064.27 21276.89 21476.72 208
MDA-MVSNet-bldmvs73.81 19872.56 20275.28 19872.52 21188.87 19774.95 20682.67 15171.57 20055.02 20565.96 17642.84 21776.11 18970.61 20981.47 20090.38 20586.59 197
PMMVS253.68 20855.72 21051.30 20758.84 21567.02 21354.23 21460.97 21247.50 21419.42 21834.81 21231.97 21830.88 21465.84 21169.99 20783.47 21072.92 211
ambc67.96 20573.69 20979.79 21073.82 20771.61 19959.80 19946.00 20920.79 21966.15 20386.92 18580.11 20489.13 20890.50 180
Gipumacopyleft58.52 20656.17 20961.27 20667.14 21358.06 21452.16 21668.40 20869.00 20545.02 21522.79 21320.57 22055.11 20776.27 20679.33 20579.80 21267.16 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS39.04 21134.32 21344.54 21158.25 21639.35 21927.61 21962.55 21135.99 21516.40 22020.04 21614.77 22144.80 21033.12 21544.10 21457.61 21752.89 215
E-PMN40.00 20935.74 21244.98 21057.69 21739.15 22028.05 21862.70 21035.52 21617.78 21920.90 21414.36 22244.47 21135.89 21447.86 21359.15 21656.47 214
MVEpermissive39.81 1939.52 21041.58 21137.11 21233.93 21849.06 21626.45 22054.22 21329.46 21724.15 21720.77 21510.60 22334.42 21351.12 21365.27 21149.49 21864.81 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2126.54 2141.79 2140.60 2201.82 2213.06 2220.95 2177.22 2180.88 22212.38 2171.25 2243.87 2176.09 2165.58 2151.40 21911.42 217
test1233.48 2135.31 2151.34 2150.20 2221.52 2222.17 2230.58 2186.13 2190.31 2239.85 2180.31 2253.90 2162.65 2175.28 2160.87 22011.46 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def60.19 197
our_test_386.93 18389.77 19481.61 196
Patchmatch-RL test18.47 221
NP-MVS91.63 65
Patchmtry92.39 16889.18 15373.30 19871.08 147