This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 799.31 198.64 696.62 597.56 295.08 696.61 1499.64 197.32 197.91 497.31 698.77 1799.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1899.29 298.81 496.64 397.14 395.16 597.96 299.61 296.92 1298.00 197.24 898.75 1899.25 3
DVP-MVS++98.07 198.46 197.62 199.08 499.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1299.60 1
DPE-MVScopyleft97.83 498.13 497.48 598.83 2499.19 498.99 196.70 196.05 2094.39 1198.30 199.47 497.02 697.75 797.02 1498.98 299.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1299.21 199.02 898.08 2096.25 1296.36 1293.57 1796.56 1599.27 596.78 1797.91 497.43 398.51 2798.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 897.73 896.90 1697.35 4698.66 1497.85 2696.25 1296.86 694.54 1096.75 1299.13 696.99 796.94 2796.58 2498.39 4599.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.70 698.09 597.24 799.00 1299.17 598.76 596.41 1096.91 593.88 1697.72 599.04 796.93 1197.29 1697.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.22 1197.40 1297.01 1399.08 498.55 2498.19 1596.48 796.02 2193.28 2296.26 1898.71 896.76 1897.30 1596.25 3798.30 5598.68 15
TSAR-MVS + MP.97.31 997.64 996.92 1597.28 4898.56 2398.61 795.48 3096.72 894.03 1596.73 1398.29 997.15 497.61 1296.42 2798.96 599.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg96.15 2696.64 2695.58 3598.44 2998.03 4898.14 1995.40 3393.90 4687.72 5896.26 1898.10 1095.75 3496.25 4995.45 5698.01 8598.47 33
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 797.84 398.02 1197.24 397.74 897.02 1498.97 499.16 6
CNVR-MVS97.30 1097.41 1197.18 999.02 1198.60 2198.15 1796.24 1496.12 1894.10 1395.54 2697.99 1296.99 797.97 397.17 998.57 2598.50 31
TSAR-MVS + ACMM96.19 2497.39 1394.78 3997.70 4198.41 3597.72 2895.49 2996.47 1186.66 6896.35 1697.85 1393.99 5397.19 2296.37 3097.12 13199.13 7
MCST-MVS96.83 1997.06 1796.57 2198.88 2298.47 3298.02 2296.16 1595.58 2590.96 3595.78 2497.84 1496.46 2397.00 2696.17 3998.94 798.55 28
SR-MVS98.93 2096.00 1897.75 15
ACMMP_NAP96.93 1797.27 1596.53 2599.06 698.95 998.24 1496.06 1695.66 2390.96 3595.63 2597.71 1696.53 2197.66 1096.68 2198.30 5598.61 21
TSAR-MVS + GP.95.86 2996.95 2194.60 4494.07 8698.11 4696.30 4591.76 5295.67 2291.07 3396.82 1197.69 1795.71 3595.96 5495.75 5298.68 1998.63 18
SteuartSystems-ACMMP97.10 1597.49 1096.65 2098.97 1498.95 998.43 995.96 1995.12 3091.46 3096.85 1097.60 1896.37 2597.76 697.16 1098.68 1998.97 11
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS97.20 1297.29 1497.10 1098.95 1698.51 2897.51 3096.48 796.17 1694.64 797.32 697.57 1996.23 2796.78 3096.15 4098.79 1598.55 28
NCCC96.75 2096.67 2596.85 1899.03 1098.44 3498.15 1796.28 1196.32 1392.39 2792.16 3697.55 2096.68 2097.32 1396.65 2398.55 2698.26 40
MTAPA95.36 297.46 21
APD-MVScopyleft97.12 1397.05 1897.19 899.04 898.63 1998.45 896.54 694.81 3893.50 1896.10 2097.40 2296.81 1497.05 2496.82 1998.80 1398.56 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
zzz-MVS96.98 1696.68 2497.33 699.09 398.71 1398.43 996.01 1796.11 1995.19 492.89 3497.32 2396.84 1397.20 2096.09 4698.44 3898.46 35
9.1497.28 24
PHI-MVS95.86 2996.93 2294.61 4397.60 4398.65 1896.49 4293.13 4294.07 4487.91 5797.12 897.17 2593.90 5696.46 4296.93 1798.64 2198.10 51
MP-MVScopyleft96.56 2296.72 2396.37 2698.93 2098.48 3098.04 2195.55 2594.32 4290.95 3795.88 2397.02 2696.29 2696.77 3296.01 4998.47 3298.56 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP95.70 196.90 27
DeepPCF-MVS92.65 295.50 3596.96 1993.79 5296.44 5898.21 4293.51 9894.08 3896.94 489.29 4493.08 3296.77 2893.82 5797.68 997.40 495.59 17798.65 17
HFP-MVS97.11 1497.19 1697.00 1498.97 1498.73 1298.37 1295.69 2396.60 993.28 2296.87 996.64 2997.27 296.64 3796.33 3598.44 3898.56 23
abl_694.78 3997.46 4497.99 5095.76 5391.80 5193.72 4791.25 3291.33 4296.47 3094.28 5098.14 7297.39 78
DPM-MVS95.07 3794.84 4095.34 3697.44 4597.49 6797.76 2795.52 2694.88 3688.92 4787.25 6196.44 3194.41 4595.78 5796.11 4397.99 8795.95 125
CP-MVS96.68 2196.59 2796.77 1998.85 2398.58 2298.18 1695.51 2895.34 2792.94 2595.21 2996.25 3296.79 1696.44 4495.77 5198.35 4798.56 23
XVS95.68 6498.66 1494.96 6388.03 5496.06 3398.46 34
X-MVStestdata95.68 6498.66 1494.96 6388.03 5496.06 3398.46 34
X-MVS96.07 2796.33 2995.77 3198.94 1898.66 1497.94 2495.41 3295.12 3088.03 5493.00 3396.06 3395.85 3296.65 3696.35 3198.47 3298.48 32
MSLP-MVS++96.05 2895.63 3296.55 2398.33 3198.17 4496.94 3894.61 3694.70 4094.37 1289.20 5495.96 3696.81 1495.57 6097.33 598.24 6398.47 33
ACMMPR96.92 1896.96 1996.87 1798.99 1398.78 1198.38 1195.52 2696.57 1092.81 2696.06 2195.90 3797.07 596.60 3996.34 3498.46 3498.42 36
CPTT-MVS95.54 3395.07 3796.10 2797.88 3797.98 5197.92 2594.86 3494.56 4192.16 2891.01 4395.71 3896.97 1094.56 8393.50 9196.81 15498.14 47
UA-Net90.81 8692.58 6488.74 11594.87 7997.44 6892.61 10988.22 9282.35 15978.93 12085.20 7895.61 3979.56 18596.52 4096.57 2598.23 6494.37 153
mPP-MVS98.76 2595.49 40
DeepC-MVS_fast93.32 196.48 2396.42 2896.56 2298.70 2798.31 3897.97 2395.76 2296.31 1492.01 2991.43 4195.42 4196.46 2397.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS96.16 2596.33 2995.95 2899.04 898.63 1998.32 1392.76 4493.42 4990.49 4096.30 1795.31 4296.71 1996.46 4296.02 4898.38 4698.19 44
CDPH-MVS94.80 4395.50 3493.98 4898.34 3098.06 4797.41 3293.23 4192.81 5482.98 9992.51 3594.82 4393.53 6196.08 5296.30 3698.42 4197.94 56
3Dnovator+90.56 595.06 3894.56 4595.65 3398.11 3398.15 4597.19 3591.59 5495.11 3293.23 2481.99 10394.71 4495.43 3896.48 4196.88 1898.35 4798.63 18
CANet94.85 4094.92 3994.78 3997.25 4998.52 2797.20 3491.81 5093.25 5091.06 3486.29 6894.46 4592.99 6797.02 2596.68 2198.34 4998.20 43
QAPM94.13 4994.33 5193.90 4997.82 3898.37 3796.47 4390.89 6192.73 5785.63 8185.35 7693.87 4694.17 5195.71 5995.90 5098.40 4398.42 36
CSCG95.68 3195.46 3695.93 2998.71 2699.07 797.13 3793.55 3995.48 2693.35 2190.61 4693.82 4795.16 3994.60 8295.57 5497.70 10699.08 10
MVS_030494.30 4794.68 4393.86 5196.33 6098.48 3097.41 3291.20 5692.75 5586.96 6586.03 7193.81 4892.64 7196.89 2896.54 2698.61 2398.24 41
DROMVSNet94.19 4895.05 3893.18 5993.56 10297.65 6395.34 5986.37 11692.05 6288.71 5089.91 4993.32 4996.14 2997.29 1696.42 2798.98 298.70 14
PCF-MVS90.19 892.98 5892.07 7394.04 4596.39 5997.87 5296.03 4995.47 3187.16 11785.09 9284.81 8093.21 5093.46 6391.98 13291.98 12997.78 9897.51 74
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator90.28 794.70 4494.34 5095.11 3798.06 3498.21 4296.89 3991.03 6094.72 3991.45 3182.87 9493.10 5194.61 4396.24 5097.08 1398.63 2298.16 45
OMC-MVS94.49 4594.36 4894.64 4297.17 5097.73 6095.49 5792.25 4696.18 1590.34 4188.51 5792.88 5294.90 4294.92 7094.17 7497.69 10796.15 118
MVS_111021_HR94.84 4195.91 3193.60 5397.35 4698.46 3395.08 6291.19 5794.18 4385.97 7395.38 2792.56 5393.61 6096.61 3896.25 3798.40 4397.92 58
TAPA-MVS90.35 693.69 5593.52 5393.90 4996.89 5497.62 6496.15 4691.67 5394.94 3485.97 7387.72 6091.96 5494.40 4693.76 9993.06 10698.30 5595.58 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.10 395.22 3694.77 4295.75 3297.77 3998.54 2597.63 2995.96 1995.07 3388.85 4885.35 7691.85 5595.82 3396.88 2997.10 1298.44 3898.63 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS93.79 5294.84 4092.57 6993.72 9997.75 5993.53 9787.65 10793.06 5185.40 8988.62 5691.82 5696.14 2997.23 1996.69 2098.95 698.68 15
ACMMPcopyleft95.54 3395.49 3595.61 3498.27 3298.53 2697.16 3694.86 3494.88 3689.34 4395.36 2891.74 5795.50 3795.51 6194.16 7598.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UGNet91.52 7793.41 5589.32 10994.13 8397.15 7591.83 12589.01 8290.62 7685.86 7786.83 6291.73 5877.40 19094.68 7994.43 7097.71 10498.40 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND62.84 21090.21 9230.91 2190.57 22794.45 11786.99 1810.34 22588.71 1060.98 22781.55 10891.58 590.86 22492.66 11891.43 13995.73 17191.11 182
MVS_111021_LR94.84 4195.57 3394.00 4697.11 5197.72 6294.88 6591.16 5895.24 2988.74 4996.03 2291.52 6094.33 4995.96 5495.01 6397.79 9797.49 75
CHOSEN 280x42090.77 8892.14 7289.17 11193.86 9592.81 16393.16 10380.22 18090.21 8484.67 9489.89 5091.38 6190.57 9594.94 6992.11 12492.52 19993.65 163
CS-MVS-test93.70 5494.53 4692.72 6893.18 10596.58 8995.34 5986.37 11692.52 5886.45 7089.44 5191.29 6296.14 2997.29 1696.03 4798.85 1198.58 22
Vis-MVSNet (Re-imp)90.54 9292.76 6287.94 12493.73 9896.94 8392.17 11887.91 9788.77 10576.12 13083.68 8790.80 6379.49 18696.34 4796.35 3198.21 6696.46 106
ETV-MVS93.80 5194.57 4492.91 6693.98 8897.50 6693.62 9488.70 8691.95 6387.57 5990.21 4890.79 6494.56 4497.20 2096.35 3199.02 197.98 53
PLCcopyleft90.69 494.32 4692.99 5995.87 3097.91 3596.49 9295.95 5294.12 3794.94 3494.09 1485.90 7290.77 6595.58 3694.52 8493.32 9797.55 11495.00 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA93.69 5592.50 6595.06 3897.11 5197.36 6993.88 8793.30 4095.64 2493.44 2080.32 11190.73 6694.99 4193.58 10193.33 9597.67 10996.57 104
IS_MVSNet91.87 7193.35 5690.14 10394.09 8597.73 6093.09 10588.12 9488.71 10679.98 11684.49 8190.63 6787.49 12997.07 2396.96 1698.07 7997.88 62
PVSNet_Blended_VisFu91.92 7092.39 6991.36 9095.45 7297.85 5492.25 11589.54 7888.53 10987.47 6079.82 11390.53 6885.47 15096.31 4895.16 6297.99 8798.56 23
AdaColmapbinary95.02 3993.71 5296.54 2498.51 2897.76 5796.69 4195.94 2193.72 4793.50 1889.01 5590.53 6896.49 2294.51 8593.76 8498.07 7996.69 99
EPP-MVSNet92.13 6793.06 5891.05 9293.66 10197.30 7092.18 11687.90 9890.24 8383.63 9686.14 7090.52 7090.76 9094.82 7594.38 7198.18 6997.98 53
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5497.74 4098.02 4995.66 5590.46 6489.14 10286.50 6975.80 13590.38 7192.69 7094.99 6795.30 5898.27 5997.63 67
EPNet93.92 5094.40 4793.36 5597.89 3696.55 9096.08 4892.14 4791.65 6789.16 4594.07 3190.17 7287.78 12595.24 6494.97 6497.09 13398.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.71 5393.47 5494.00 4696.82 5598.39 3696.80 4091.07 5989.51 9989.94 4283.80 8689.29 7390.95 8897.32 1397.65 298.42 4198.32 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS92.72 6192.96 6092.44 7293.86 9597.76 5793.13 10488.65 8889.78 9586.68 6786.69 6587.57 7493.74 5896.07 5395.32 5798.58 2497.53 73
Vis-MVSNetpermissive89.36 10891.49 8286.88 13592.10 12497.60 6592.16 11985.89 12084.21 14575.20 13282.58 9887.13 7577.40 19095.90 5695.63 5398.51 2797.36 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline91.19 8091.89 7690.38 9592.76 11595.04 11193.55 9684.54 13692.92 5285.71 8086.68 6686.96 7689.28 10892.00 13192.62 11496.46 15996.99 91
CANet_DTU90.74 9092.93 6188.19 12094.36 8196.61 8794.34 7384.66 13390.66 7468.75 16990.41 4786.89 7789.78 10095.46 6294.87 6597.25 12395.62 132
PMMVS89.88 10091.19 8488.35 11889.73 15091.97 18390.62 13181.92 16790.57 7880.58 11492.16 3686.85 7891.17 8592.31 12491.35 14096.11 16593.11 170
MAR-MVS92.71 6292.63 6392.79 6797.70 4197.15 7593.75 9087.98 9690.71 7385.76 7986.28 6986.38 7994.35 4894.95 6895.49 5597.22 12497.44 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GBi-Net90.21 9690.11 9590.32 9788.66 16093.65 13694.25 7685.78 12390.03 8885.56 8377.38 12186.13 8089.38 10593.97 9594.16 7598.31 5295.47 136
test190.21 9690.11 9590.32 9788.66 16093.65 13694.25 7685.78 12390.03 8885.56 8377.38 12186.13 8089.38 10593.97 9594.16 7598.31 5295.47 136
FMVSNet390.19 9890.06 9790.34 9688.69 15993.85 12894.58 6685.78 12390.03 8885.56 8377.38 12186.13 8089.22 11293.29 11194.36 7298.20 6795.40 140
MS-PatchMatch87.63 12087.61 12587.65 12893.95 9094.09 12492.60 11081.52 17286.64 12276.41 12973.46 14885.94 8385.01 15492.23 12890.00 16996.43 16190.93 184
EPNet_dtu88.32 11790.61 8985.64 14796.79 5692.27 17592.03 12290.31 6589.05 10365.44 19089.43 5285.90 8474.22 19992.76 11592.09 12595.02 18892.76 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.68 10389.24 10290.20 10092.97 11192.93 15992.30 11387.69 10490.44 8085.12 9191.68 4085.84 8590.69 9187.34 18886.07 19092.46 20090.37 188
DCV-MVSNet91.24 7991.26 8391.22 9192.84 11493.44 14093.82 8886.75 11391.33 7185.61 8284.00 8585.46 8691.27 8392.91 11493.62 8697.02 13798.05 52
MVS_Test91.81 7392.19 7191.37 8993.24 10496.95 8294.43 6986.25 11891.45 7083.45 9786.31 6785.15 8792.93 6893.99 9494.71 6897.92 9196.77 97
gg-mvs-nofinetune81.83 18983.58 16279.80 19791.57 13096.54 9193.79 8968.80 21362.71 21743.01 22255.28 20885.06 8883.65 16496.13 5194.86 6697.98 9094.46 151
DI_MVS_plusplus_trai91.05 8290.15 9492.11 7692.67 11996.61 8796.03 4988.44 9090.25 8285.92 7573.73 14384.89 8991.92 7794.17 9194.07 7997.68 10897.31 82
Anonymous2023121189.82 10188.18 11591.74 8092.52 12096.09 10293.38 10089.30 8188.95 10485.90 7664.55 19284.39 9092.41 7492.24 12793.06 10696.93 14697.95 55
HyFIR lowres test87.87 11986.42 13689.57 10695.56 6796.99 8192.37 11284.15 14086.64 12277.17 12657.65 20583.97 9191.08 8792.09 13092.44 11697.09 13395.16 143
FMVSNet289.61 10489.14 10490.16 10288.66 16093.65 13694.25 7685.44 12788.57 10884.96 9373.53 14683.82 9289.38 10594.23 8994.68 6998.31 5295.47 136
SCA86.25 13287.52 12884.77 15691.59 12993.90 12789.11 16173.25 20690.38 8172.84 14283.26 8983.79 9388.49 12286.07 19585.56 19393.33 19289.67 193
CDS-MVSNet88.34 11688.71 10887.90 12590.70 14494.54 11492.38 11186.02 11980.37 16879.42 11879.30 11483.43 9482.04 17393.39 10894.01 8096.86 15295.93 126
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test86.15 13589.10 10582.71 18589.83 14893.18 15187.88 17484.69 13286.54 12462.18 20082.39 10183.31 9574.18 20092.52 12291.86 13197.50 11693.88 160
CHOSEN 1792x268888.57 11487.82 12189.44 10895.46 7096.89 8493.74 9185.87 12189.63 9677.42 12561.38 19983.31 9588.80 12093.44 10793.16 10295.37 18296.95 93
Anonymous20240521188.00 11793.16 10796.38 9793.58 9589.34 8087.92 11365.04 18883.03 9792.07 7692.67 11793.33 9596.96 14197.63 67
test-LLR86.88 12788.28 11285.24 15191.22 13492.07 17987.41 17783.62 14784.58 13869.33 16583.00 9182.79 9884.24 15892.26 12589.81 17295.64 17593.44 164
TESTMET0.1,186.11 13788.28 11283.59 17287.80 17192.07 17987.41 17777.12 19184.58 13869.33 16583.00 9182.79 9884.24 15892.26 12589.81 17295.64 17593.44 164
LS3D91.97 6990.98 8793.12 6197.03 5397.09 7895.33 6195.59 2492.47 5979.26 11981.60 10682.77 10094.39 4794.28 8794.23 7397.14 13094.45 152
HQP-MVS92.39 6592.49 6692.29 7595.65 6695.94 10495.64 5692.12 4892.46 6079.65 11791.97 3882.68 10192.92 6993.47 10692.77 11197.74 10298.12 49
thisisatest053091.04 8391.74 7790.21 9992.93 11397.00 8092.06 12187.63 10890.74 7281.51 10386.81 6382.48 10289.23 11094.81 7693.03 10897.90 9297.33 81
test-mter86.09 13888.38 11183.43 17587.89 17092.61 16786.89 18277.11 19284.30 14368.62 17182.57 9982.45 10384.34 15792.40 12390.11 16695.74 17094.21 156
MDTV_nov1_ep1386.64 13187.50 12985.65 14690.73 14293.69 13489.96 14678.03 18989.48 10076.85 12784.92 7982.42 10486.14 14486.85 19286.15 18992.17 20188.97 196
canonicalmvs93.08 5793.09 5793.07 6394.24 8297.86 5395.45 5887.86 10294.00 4587.47 6088.32 5882.37 10595.13 4093.96 9896.41 2998.27 5998.73 13
tttt051791.01 8491.71 7890.19 10192.98 10997.07 7991.96 12487.63 10890.61 7781.42 10486.76 6482.26 10689.23 11094.86 7493.03 10897.90 9297.36 79
PVSNet_BlendedMVS92.80 5992.44 6793.23 5696.02 6297.83 5593.74 9190.58 6291.86 6490.69 3885.87 7482.04 10790.01 9896.39 4595.26 5998.34 4997.81 63
PVSNet_Blended92.80 5992.44 6793.23 5696.02 6297.83 5593.74 9190.58 6291.86 6490.69 3885.87 7482.04 10790.01 9896.39 4595.26 5998.34 4997.81 63
PatchmatchNetpermissive85.70 14186.65 13384.60 15991.79 12693.40 14189.27 15773.62 20190.19 8572.63 14482.74 9781.93 10987.64 12684.99 19884.29 20092.64 19889.00 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS92.50 6491.96 7593.13 6093.93 9296.24 9895.69 5488.77 8592.92 5289.01 4688.19 5981.74 11093.13 6693.63 10093.08 10498.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS88.60 11388.45 11088.78 11492.02 12592.44 17392.00 12383.57 14986.52 12578.90 12178.61 11881.34 11189.12 11390.68 15393.18 10197.10 13296.35 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSTER91.73 7491.61 8091.86 7993.18 10594.56 11394.37 7187.90 9890.16 8788.69 5189.23 5381.28 11288.92 11895.75 5893.95 8198.12 7496.37 109
casdiffmvs91.72 7591.16 8592.38 7493.16 10797.15 7593.95 8389.49 7991.58 6986.03 7280.75 11080.95 11393.16 6595.25 6395.22 6198.50 2997.23 84
MSDG90.42 9488.25 11492.94 6596.67 5794.41 11993.96 8292.91 4389.59 9786.26 7176.74 12880.92 11490.43 9692.60 12092.08 12697.44 11991.41 178
diffmvs91.37 7891.09 8691.70 8192.71 11896.47 9394.03 8188.78 8492.74 5685.43 8883.63 8880.37 11591.76 8093.39 10893.78 8397.50 11697.23 84
baseline190.81 8690.29 9191.42 8693.67 10095.86 10593.94 8589.69 7689.29 10182.85 10082.91 9380.30 11689.60 10195.05 6694.79 6798.80 1393.82 161
OPM-MVS91.08 8189.34 10093.11 6296.18 6196.13 10196.39 4492.39 4582.97 15681.74 10282.55 10080.20 11793.97 5594.62 8093.23 9898.00 8695.73 130
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LGP-MVS_train91.83 7292.04 7491.58 8295.46 7096.18 10095.97 5189.85 7190.45 7977.76 12291.92 3980.07 11892.34 7594.27 8893.47 9298.11 7697.90 61
test0.0.03 185.58 14387.69 12483.11 17891.22 13492.54 17085.60 19383.62 14785.66 13267.84 17682.79 9679.70 11973.51 20391.15 14590.79 14596.88 15091.23 181
ACMM88.76 1091.70 7690.43 9093.19 5895.56 6795.14 11093.35 10191.48 5592.26 6187.12 6384.02 8479.34 12093.99 5394.07 9392.68 11297.62 11395.50 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP89.13 992.03 6891.70 7992.41 7394.92 7796.44 9693.95 8389.96 7091.81 6685.48 8690.97 4479.12 12192.42 7393.28 11292.55 11597.76 10097.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE89.29 11088.68 10989.99 10492.75 11796.03 10393.07 10783.79 14586.98 11981.34 10574.72 14078.92 12291.22 8493.31 11093.21 10097.78 9897.60 72
FMVSNet584.47 16084.72 15584.18 16683.30 20788.43 20488.09 17279.42 18384.25 14474.14 13673.15 15278.74 12383.65 16491.19 14391.19 14296.46 15986.07 205
IterMVS-SCA-FT85.44 14786.71 13283.97 16990.59 14590.84 19689.73 15278.34 18684.07 14966.40 18577.27 12678.66 12483.06 16691.20 14290.10 16795.72 17294.78 147
test_part187.53 12284.97 15190.52 9492.11 12393.31 14593.32 10285.79 12279.56 17687.38 6262.89 19678.60 12589.25 10990.65 15492.17 12295.24 18497.62 69
CVMVSNet83.83 16885.53 14881.85 19289.60 15190.92 19487.81 17583.21 15380.11 17160.16 20476.47 12978.57 12676.79 19289.76 16790.13 16293.51 19192.75 173
baseline288.97 11289.50 9988.36 11791.14 13695.30 10790.13 14285.17 13087.24 11680.80 11184.46 8278.44 12785.60 14793.54 10491.87 13097.31 12195.66 131
FC-MVSNet-train90.55 9190.19 9390.97 9393.78 9795.16 10992.11 12088.85 8387.64 11483.38 9884.36 8378.41 12889.53 10294.69 7893.15 10398.15 7097.92 58
IterMVS85.25 14986.49 13583.80 17090.42 14690.77 19990.02 14478.04 18884.10 14766.27 18677.28 12578.41 12883.01 16790.88 14789.72 17695.04 18794.24 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS85.77 14086.24 13885.23 15292.76 11593.78 13089.91 14873.60 20290.19 8574.22 13482.18 10278.06 13087.55 12885.61 19785.38 19593.32 19388.48 200
FMVSNet187.33 12486.00 14288.89 11287.13 18692.83 16293.08 10684.46 13781.35 16482.20 10166.33 17977.96 13188.96 11593.97 9594.16 7597.54 11595.38 141
CR-MVSNet85.48 14586.29 13784.53 16191.08 13992.10 17789.18 15973.30 20484.75 13671.08 15373.12 15377.91 13286.27 14291.48 13790.75 14896.27 16393.94 158
ET-MVSNet_ETH3D89.93 9990.84 8888.87 11379.60 21296.19 9994.43 6986.56 11490.63 7580.75 11290.71 4577.78 13393.73 5991.36 14093.45 9398.15 7095.77 129
IB-MVS85.10 1487.98 11887.97 11987.99 12394.55 8096.86 8584.52 19488.21 9386.48 12788.54 5274.41 14277.74 13474.10 20189.65 17192.85 11098.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPMNet84.82 15485.90 14483.56 17391.10 13792.10 17788.73 16871.11 20984.75 13668.79 16873.56 14577.62 13585.33 15190.08 16489.43 17896.32 16293.77 162
Effi-MVS+89.79 10289.83 9889.74 10592.98 10996.45 9593.48 9984.24 13887.62 11576.45 12881.76 10477.56 13693.48 6294.61 8193.59 8797.82 9697.22 86
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7496.46 9496.13 4792.04 4995.33 2880.11 11594.95 3077.35 13794.05 5294.49 8693.08 10497.15 12894.53 150
Effi-MVS+-dtu87.51 12388.13 11686.77 13791.10 13794.90 11290.91 12982.67 15783.47 15271.55 14881.11 10977.04 13889.41 10492.65 11991.68 13695.00 18996.09 120
xxxxxxxxxxxxxcwj95.62 3294.35 4997.10 1098.95 1698.51 2897.51 3096.48 796.17 1694.64 797.32 676.98 13996.23 2796.78 3096.15 4098.79 1598.55 28
ADS-MVSNet84.08 16484.95 15283.05 18191.53 13391.75 18688.16 17170.70 21089.96 9169.51 16478.83 11676.97 14086.29 14184.08 20284.60 19892.13 20388.48 200
COLMAP_ROBcopyleft84.39 1587.61 12186.03 14089.46 10795.54 6994.48 11691.77 12690.14 6987.16 11775.50 13173.41 14976.86 14187.33 13190.05 16589.76 17596.48 15890.46 187
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAMVS84.94 15384.95 15284.93 15588.82 15693.18 15188.44 17081.28 17477.16 18873.76 13875.43 13876.57 14282.04 17390.59 15590.79 14595.22 18590.94 183
CostFormer86.78 12986.05 13987.62 13092.15 12293.20 15091.55 12775.83 19488.11 11285.29 9081.76 10476.22 14387.80 12484.45 20085.21 19693.12 19493.42 166
PatchT83.86 16785.51 14981.94 19188.41 16391.56 18978.79 20871.57 20884.08 14871.08 15370.62 15976.13 14486.27 14291.48 13790.75 14895.52 18093.94 158
Fast-Effi-MVS+-dtu86.25 13287.70 12384.56 16090.37 14793.70 13390.54 13278.14 18783.50 15165.37 19181.59 10775.83 14586.09 14691.70 13591.70 13496.88 15095.84 128
thisisatest051585.70 14187.00 13184.19 16588.16 16793.67 13584.20 19684.14 14183.39 15472.91 14176.79 12774.75 14678.82 18892.57 12191.26 14196.94 14396.56 105
ECVR-MVScopyleft90.77 8889.27 10192.52 7094.97 7598.30 3994.53 6790.25 6789.91 9285.80 7873.64 14474.31 14790.69 9196.75 3496.10 4498.87 895.91 127
test111190.47 9389.10 10592.07 7794.92 7798.30 3994.17 8090.30 6689.56 9883.92 9573.25 15173.66 14890.26 9796.77 3296.14 4298.87 896.04 122
Fast-Effi-MVS+88.56 11587.99 11889.22 11091.56 13195.21 10892.29 11482.69 15686.82 12077.73 12376.24 13373.39 14993.36 6494.22 9093.64 8597.65 11096.43 107
PatchMatch-RL90.30 9588.93 10791.89 7895.41 7395.68 10690.94 12888.67 8789.80 9486.95 6685.90 7272.51 15092.46 7293.56 10392.18 12196.93 14692.89 171
MIMVSNet82.97 18084.00 16081.77 19382.23 20892.25 17687.40 17972.73 20781.48 16369.55 16368.79 16872.42 15181.82 17692.23 12892.25 11996.89 14988.61 198
anonymousdsp84.51 15785.85 14682.95 18286.30 19793.51 13985.77 19180.38 17978.25 18363.42 19773.51 14772.20 15284.64 15693.21 11392.16 12397.19 12698.14 47
tpmrst83.72 17083.45 16484.03 16892.21 12191.66 18788.74 16773.58 20388.14 11172.67 14377.37 12472.11 15386.34 14082.94 20582.05 20490.63 20989.86 192
ACMH+85.75 1287.19 12686.02 14188.56 11693.42 10394.41 11989.91 14887.66 10683.45 15372.25 14676.42 13271.99 15490.78 8989.86 16690.94 14397.32 12095.11 145
ACMH85.51 1387.31 12586.59 13488.14 12193.96 8994.51 11589.00 16487.99 9581.58 16270.15 15978.41 11971.78 15590.60 9491.30 14191.99 12897.17 12796.58 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.55 15683.46 16385.82 14388.16 16793.39 14289.05 16385.36 12974.03 20272.43 14565.08 18771.11 15682.30 17293.48 10591.70 13497.64 11195.43 139
tpm cat184.13 16381.99 18386.63 13991.74 12791.50 19090.68 13075.69 19586.12 12885.44 8772.39 15470.72 15785.16 15280.89 20981.56 20591.07 20790.71 185
MVS-HIRNet78.16 19977.57 20378.83 19985.83 19987.76 20676.67 20970.22 21175.82 19867.39 17855.61 20770.52 15881.96 17586.67 19385.06 19790.93 20881.58 211
thres100view90089.36 10887.61 12591.39 8793.90 9396.86 8594.35 7289.66 7785.87 12981.15 10776.46 13070.38 15991.17 8594.09 9293.43 9498.13 7396.16 117
tfpn200view989.55 10587.86 12091.53 8493.90 9397.26 7194.31 7589.74 7385.87 12981.15 10776.46 13070.38 15991.76 8094.92 7093.51 8898.28 5896.61 101
UniMVSNet_NR-MVSNet86.80 12885.86 14587.89 12688.17 16694.07 12590.15 14088.51 8984.20 14673.45 13972.38 15570.30 16188.95 11690.25 15992.21 12098.12 7497.62 69
thres20089.49 10687.72 12291.55 8393.95 9097.25 7294.34 7389.74 7385.66 13281.18 10676.12 13470.19 16291.80 7894.92 7093.51 8898.27 5996.40 108
thres40089.40 10787.58 12791.53 8494.06 8797.21 7494.19 7989.83 7285.69 13181.08 10975.50 13769.76 16391.80 7894.79 7793.51 8898.20 6796.60 102
thres600view789.28 11187.47 13091.39 8794.12 8497.25 7293.94 8589.74 7385.62 13480.63 11375.24 13969.33 16491.66 8294.92 7093.23 9898.27 5996.72 98
tpm83.16 17683.64 16182.60 18790.75 14191.05 19388.49 16973.99 19982.36 15867.08 18278.10 12068.79 16584.17 16085.95 19685.96 19191.09 20693.23 168
MDTV_nov1_ep13_2view80.43 19380.94 19379.84 19684.82 20490.87 19584.23 19573.80 20080.28 17064.33 19470.05 16568.77 16679.67 18384.83 19983.50 20292.17 20188.25 202
EG-PatchMatch MVS81.70 19181.31 19082.15 19088.75 15793.81 12987.14 18078.89 18571.57 20664.12 19661.20 20168.46 16776.73 19491.48 13790.77 14797.28 12291.90 175
GA-MVS85.08 15085.65 14784.42 16289.77 14994.25 12289.26 15884.62 13481.19 16562.25 19975.72 13668.44 16884.14 16193.57 10291.68 13696.49 15794.71 149
UniMVSNet (Re)86.22 13485.46 15087.11 13288.34 16494.42 11889.65 15487.10 11284.39 14274.61 13370.41 16368.10 16985.10 15391.17 14491.79 13297.84 9597.94 56
TDRefinement84.97 15283.39 16786.81 13692.97 11194.12 12392.18 11687.77 10382.78 15771.31 15168.43 16968.07 17081.10 18189.70 17089.03 18295.55 17991.62 176
USDC86.73 13085.96 14387.63 12991.64 12893.97 12692.76 10884.58 13588.19 11070.67 15680.10 11267.86 17189.43 10391.81 13389.77 17496.69 15690.05 191
dps85.00 15183.21 17187.08 13390.73 14292.55 16989.34 15675.29 19684.94 13587.01 6479.27 11567.69 17287.27 13284.22 20183.56 20192.83 19790.25 189
V4284.48 15983.36 16985.79 14587.14 18593.28 14790.03 14383.98 14380.30 16971.20 15266.90 17667.17 17385.55 14889.35 17290.27 15996.82 15396.27 115
v884.45 16183.30 17085.80 14487.53 17892.95 15790.31 13682.46 16180.46 16771.43 14966.99 17467.16 17486.14 14489.26 17590.22 16196.94 14396.06 121
pmmvs680.90 19278.77 19883.38 17685.84 19891.61 18886.01 18982.54 15964.17 21570.43 15854.14 21267.06 17580.73 18290.50 15789.17 18194.74 19094.75 148
WR-MVS83.14 17783.38 16882.87 18387.55 17793.29 14686.36 18784.21 13980.05 17266.41 18466.91 17566.92 17675.66 19788.96 17990.56 15397.05 13596.96 92
CMPMVSbinary61.19 1779.86 19677.46 20482.66 18691.54 13291.82 18583.25 19781.57 17170.51 21068.64 17059.89 20466.77 17779.63 18484.00 20384.30 19991.34 20584.89 208
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0280.14 19580.21 19680.06 19586.61 19489.66 20180.40 20582.20 16582.29 16061.35 20171.52 15666.67 17876.75 19382.55 20680.18 20993.05 19588.62 197
Baseline_NR-MVSNet85.28 14883.42 16687.46 13187.77 17390.80 19889.90 15087.69 10483.93 15074.16 13564.72 19066.43 17987.48 13090.14 16090.83 14497.73 10397.11 89
pmmvs486.00 13984.28 15888.00 12287.80 17192.01 18289.94 14784.91 13186.79 12180.98 11073.41 14966.34 18088.12 12389.31 17488.90 18396.24 16493.20 169
testgi81.94 18884.09 15979.43 19889.53 15390.83 19782.49 20081.75 17080.59 16659.46 20682.82 9565.75 18167.97 20590.10 16389.52 17795.39 18189.03 194
v1084.18 16283.17 17285.37 14887.34 18092.68 16590.32 13581.33 17379.93 17569.23 16766.33 17965.74 18287.03 13390.84 14890.38 15696.97 13996.29 114
tmp_tt50.24 21568.55 21846.86 22348.90 22318.28 22286.51 12668.32 17270.19 16465.33 18326.69 22174.37 21366.80 21570.72 221
TranMVSNet+NR-MVSNet85.57 14484.41 15786.92 13487.67 17693.34 14390.31 13688.43 9183.07 15570.11 16069.99 16665.28 18486.96 13489.73 16892.27 11898.06 8197.17 88
WR-MVS_H82.86 18282.66 17683.10 17987.44 17993.33 14485.71 19283.20 15477.36 18768.20 17466.37 17865.23 18576.05 19689.35 17290.13 16297.99 8796.89 95
v2v48284.51 15783.05 17386.20 14287.25 18293.28 14790.22 13885.40 12879.94 17469.78 16267.74 17165.15 18687.57 12789.12 17790.55 15496.97 13995.60 133
v114484.03 16682.88 17485.37 14887.17 18493.15 15490.18 13983.31 15278.83 17967.85 17565.99 18164.99 18786.79 13690.75 15090.33 15896.90 14896.15 118
EU-MVSNet78.43 19880.25 19576.30 20383.81 20687.27 21080.99 20379.52 18276.01 19554.12 21370.44 16264.87 18867.40 20786.23 19485.54 19491.95 20491.41 178
DU-MVS86.12 13684.81 15487.66 12787.77 17393.78 13090.15 14087.87 10084.40 14073.45 13970.59 16064.82 18988.95 11690.14 16092.33 11797.76 10097.62 69
v14883.61 17182.10 18085.37 14887.34 18092.94 15887.48 17685.72 12678.92 17873.87 13765.71 18464.69 19081.78 17787.82 18489.35 17996.01 16695.26 142
TransMVSNet (Re)82.67 18380.93 19484.69 15888.71 15891.50 19087.90 17387.15 11171.54 20868.24 17363.69 19464.67 19178.51 18991.65 13690.73 15097.64 11192.73 174
test250690.93 8589.20 10392.95 6494.97 7598.30 3994.53 6790.25 6789.91 9288.39 5383.23 9064.17 19290.69 9196.75 3496.10 4498.87 895.97 124
v14419283.48 17382.23 17884.94 15486.65 19292.84 16089.63 15582.48 16077.87 18467.36 17965.33 18663.50 19386.51 13889.72 16989.99 17097.03 13696.35 110
v119283.56 17282.35 17784.98 15386.84 19192.84 16090.01 14582.70 15578.54 18066.48 18364.88 18962.91 19486.91 13590.72 15190.25 16096.94 14396.32 112
SixPastTwentyTwo83.12 17883.44 16582.74 18487.71 17593.11 15582.30 20182.33 16279.24 17764.33 19478.77 11762.75 19584.11 16288.11 18387.89 18595.70 17394.21 156
pmmvs583.37 17482.68 17584.18 16687.13 18693.18 15186.74 18382.08 16676.48 19267.28 18071.26 15762.70 19684.71 15590.77 14990.12 16597.15 12894.24 154
v192192083.30 17582.09 18184.70 15786.59 19592.67 16689.82 15182.23 16478.32 18165.76 18864.64 19162.35 19786.78 13790.34 15890.02 16897.02 13796.31 113
N_pmnet77.55 20276.68 20578.56 20085.43 20287.30 20978.84 20781.88 16878.30 18260.61 20261.46 19862.15 19874.03 20282.04 20780.69 20890.59 21084.81 209
NR-MVSNet85.46 14684.54 15686.52 14088.33 16593.78 13090.45 13387.87 10084.40 14071.61 14770.59 16062.09 19982.79 16991.75 13491.75 13398.10 7797.44 76
UniMVSNet_ETH3D84.57 15581.40 18988.28 11989.34 15494.38 12190.33 13486.50 11574.74 20177.52 12459.90 20362.04 20088.78 12188.82 18192.65 11397.22 12497.24 83
test_method58.10 21364.61 21350.51 21428.26 22541.71 22461.28 21932.07 22175.92 19752.04 21647.94 21461.83 20151.80 21579.83 21063.95 21877.60 21981.05 212
v124082.88 18181.66 18584.29 16386.46 19692.52 17289.06 16281.82 16977.16 18865.09 19264.17 19361.50 20286.36 13990.12 16290.13 16296.95 14296.04 122
test20.0376.41 20378.49 20073.98 20585.64 20087.50 20775.89 21080.71 17870.84 20951.07 21868.06 17061.40 20354.99 21488.28 18287.20 18795.58 17886.15 204
tfpnnormal83.80 16981.26 19186.77 13789.60 15193.26 14989.72 15387.60 11072.78 20370.44 15760.53 20261.15 20485.55 14892.72 11691.44 13897.71 10496.92 94
TinyColmap84.04 16582.01 18286.42 14190.87 14091.84 18488.89 16684.07 14282.11 16169.89 16171.08 15860.81 20589.04 11490.52 15689.19 18095.76 16988.50 199
v7n82.25 18781.54 18783.07 18085.55 20192.58 16886.68 18581.10 17776.54 19165.97 18762.91 19560.56 20682.36 17191.07 14690.35 15796.77 15596.80 96
CP-MVSNet83.11 17982.15 17984.23 16487.20 18392.70 16486.42 18683.53 15077.83 18567.67 17766.89 17760.53 20782.47 17089.23 17690.65 15298.08 7897.20 87
PEN-MVS82.49 18581.58 18683.56 17386.93 18992.05 18186.71 18483.84 14476.94 19064.68 19367.24 17260.11 20881.17 18087.78 18590.70 15198.02 8496.21 116
DTE-MVSNet81.76 19081.04 19282.60 18786.63 19391.48 19285.97 19083.70 14676.45 19462.44 19867.16 17359.98 20978.98 18787.15 18989.93 17197.88 9495.12 144
Anonymous2023120678.09 20078.11 20178.07 20185.19 20389.17 20280.99 20381.24 17675.46 19958.25 20854.78 21159.90 21066.73 20888.94 18088.26 18496.01 16690.25 189
LTVRE_ROB81.71 1682.44 18681.84 18483.13 17789.01 15592.99 15688.90 16582.32 16366.26 21454.02 21474.68 14159.62 21188.87 11990.71 15292.02 12795.68 17496.62 100
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS82.53 18481.54 18783.68 17187.08 18892.54 17086.20 18883.46 15176.46 19365.73 18965.71 18459.41 21281.61 17889.06 17890.55 15498.03 8397.07 90
gm-plane-assit77.65 20178.50 19976.66 20287.96 16985.43 21264.70 21874.50 19764.15 21651.26 21761.32 20058.17 21384.11 16295.16 6593.83 8297.45 11891.41 178
MIMVSNet173.19 20573.70 20672.60 20865.42 22086.69 21175.56 21179.65 18167.87 21355.30 21045.24 21656.41 21463.79 21086.98 19087.66 18695.85 16885.04 207
new_pmnet72.29 20773.25 20771.16 21075.35 21481.38 21473.72 21469.27 21275.97 19649.84 21956.27 20656.12 21569.08 20481.73 20880.86 20789.72 21380.44 213
pmmvs-eth3d79.78 19777.58 20282.34 18981.57 21087.46 20882.92 19881.28 17475.33 20071.34 15061.88 19752.41 21681.59 17987.56 18686.90 18895.36 18391.48 177
PM-MVS80.29 19479.30 19781.45 19481.91 20988.23 20582.61 19979.01 18479.99 17367.15 18169.07 16751.39 21782.92 16887.55 18785.59 19295.08 18693.28 167
FPMVS69.87 20967.10 21273.10 20784.09 20578.35 21779.40 20676.41 19371.92 20457.71 20954.06 21350.04 21856.72 21271.19 21468.70 21484.25 21575.43 215
PMVScopyleft56.77 1861.27 21158.64 21464.35 21175.66 21354.60 22153.62 22174.23 19853.69 21958.37 20744.27 21749.38 21944.16 21869.51 21665.35 21680.07 21773.66 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet72.32 20671.09 20973.74 20681.17 21184.86 21372.21 21577.48 19068.32 21254.89 21255.10 20949.31 22063.68 21179.30 21176.46 21293.03 19684.32 210
pmmvs371.13 20871.06 21071.21 20973.54 21680.19 21571.69 21664.86 21562.04 21852.10 21554.92 21048.00 22175.03 19883.75 20483.24 20390.04 21285.27 206
DeepMVS_CXcopyleft71.82 21868.37 21748.05 22077.38 18646.88 22065.77 18347.03 22267.48 20664.27 21876.89 22076.72 214
MDA-MVSNet-bldmvs73.81 20472.56 20875.28 20472.52 21788.87 20374.95 21282.67 15771.57 20655.02 21165.96 18242.84 22376.11 19570.61 21581.47 20690.38 21186.59 203
PMMVS253.68 21455.72 21651.30 21358.84 22167.02 21954.23 22060.97 21847.50 22019.42 22434.81 21831.97 22430.88 22065.84 21769.99 21383.47 21672.92 217
ambc67.96 21173.69 21579.79 21673.82 21371.61 20559.80 20546.00 21520.79 22566.15 20986.92 19180.11 21089.13 21490.50 186
Gipumacopyleft58.52 21256.17 21561.27 21267.14 21958.06 22052.16 22268.40 21469.00 21145.02 22122.79 21920.57 22655.11 21376.27 21279.33 21179.80 21867.16 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS39.04 21734.32 21944.54 21758.25 22239.35 22527.61 22562.55 21735.99 22116.40 22620.04 22214.77 22744.80 21633.12 22144.10 22057.61 22352.89 221
E-PMN40.00 21535.74 21844.98 21657.69 22339.15 22628.05 22462.70 21635.52 22217.78 22520.90 22014.36 22844.47 21735.89 22047.86 21959.15 22256.47 220
MVEpermissive39.81 1939.52 21641.58 21737.11 21833.93 22449.06 22226.45 22654.22 21929.46 22324.15 22320.77 22110.60 22934.42 21951.12 21965.27 21749.49 22464.81 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2186.54 2201.79 2200.60 2261.82 2273.06 2280.95 2237.22 2240.88 22812.38 2231.25 2303.87 2236.09 2225.58 2211.40 22511.42 223
test1233.48 2195.31 2211.34 2210.20 2281.52 2282.17 2290.58 2246.13 2250.31 2299.85 2240.31 2313.90 2222.65 2235.28 2220.87 22611.46 222
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def60.19 203
our_test_386.93 18989.77 20081.61 202
Patchmatch-RL test18.47 227
NP-MVS91.63 68
Patchmtry92.39 17489.18 15973.30 20471.08 153