This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 799.31 198.64 696.62 597.56 295.08 696.61 1499.64 197.32 197.91 497.31 698.77 1699.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 298.36 297.54 498.94 1899.29 298.81 496.64 397.14 395.16 597.96 299.61 296.92 1298.00 197.24 898.75 1899.25 3
DVP-MVS++98.07 198.46 197.62 199.08 499.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
DPE-MVScopyleft97.83 498.13 497.48 598.83 2499.19 498.99 196.70 196.05 2094.39 1198.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1299.21 199.02 898.08 2096.25 1296.36 1293.57 1796.56 1599.27 596.78 1797.91 497.43 398.51 2798.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 897.73 896.90 1697.35 4698.66 1597.85 2696.25 1296.86 694.54 1096.75 1299.13 696.99 796.94 2796.58 2398.39 4599.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.70 698.09 597.24 799.00 1299.17 598.76 596.41 1096.91 593.88 1697.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.22 1197.40 1297.01 1399.08 498.55 2598.19 1596.48 796.02 2193.28 2296.26 1898.71 896.76 1897.30 1696.25 3798.30 5598.68 15
TSAR-MVS + MP.97.31 997.64 996.92 1597.28 4898.56 2498.61 795.48 3096.72 894.03 1596.73 1398.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg96.15 2696.64 2695.58 3598.44 2998.03 5098.14 1995.40 3393.90 4787.72 6196.26 1898.10 1095.75 3396.25 4995.45 5698.01 8598.47 32
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 797.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
CNVR-MVS97.30 1097.41 1197.18 999.02 1198.60 2298.15 1796.24 1496.12 1894.10 1395.54 2697.99 1296.99 797.97 397.17 998.57 2598.50 30
TSAR-MVS + ACMM96.19 2497.39 1394.78 3997.70 4198.41 3797.72 2895.49 2996.47 1186.66 7196.35 1697.85 1393.99 5397.19 2196.37 3097.12 13299.13 7
MCST-MVS96.83 1997.06 1796.57 2198.88 2298.47 3498.02 2296.16 1595.58 2590.96 3595.78 2497.84 1496.46 2397.00 2696.17 3998.94 798.55 27
SR-MVS98.93 2096.00 1897.75 15
ACMMP_NAP96.93 1797.27 1596.53 2599.06 698.95 998.24 1496.06 1695.66 2390.96 3595.63 2597.71 1696.53 2197.66 1096.68 2098.30 5598.61 20
TSAR-MVS + GP.95.86 2996.95 2194.60 4494.07 8898.11 4896.30 4591.76 5295.67 2291.07 3396.82 1197.69 1795.71 3495.96 5495.75 5298.68 1998.63 17
SteuartSystems-ACMMP97.10 1597.49 1096.65 2098.97 1498.95 998.43 995.96 1995.12 3091.46 3096.85 1097.60 1896.37 2597.76 697.16 1098.68 1998.97 11
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS97.20 1297.29 1497.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 697.57 1996.23 2796.78 3096.15 4198.79 1498.55 27
NCCC96.75 2096.67 2596.85 1899.03 1098.44 3698.15 1796.28 1196.32 1392.39 2792.16 3697.55 2096.68 2097.32 1496.65 2298.55 2698.26 40
MTAPA95.36 297.46 21
APD-MVScopyleft97.12 1397.05 1897.19 899.04 898.63 2098.45 896.54 694.81 3893.50 1896.10 2097.40 2296.81 1497.05 2396.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
zzz-MVS96.98 1696.68 2497.33 699.09 398.71 1398.43 996.01 1796.11 1995.19 492.89 3497.32 2396.84 1397.20 1996.09 4798.44 3898.46 34
9.1497.28 24
PHI-MVS95.86 2996.93 2294.61 4397.60 4398.65 1996.49 4293.13 4294.07 4587.91 6097.12 897.17 2593.90 5696.46 4296.93 1798.64 2198.10 51
MP-MVScopyleft96.56 2296.72 2396.37 2698.93 2098.48 3298.04 2195.55 2594.32 4290.95 3795.88 2397.02 2696.29 2696.77 3296.01 4998.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP95.70 196.90 27
DeepPCF-MVS92.65 295.50 3596.96 1993.79 5496.44 5998.21 4493.51 9794.08 3896.94 489.29 4693.08 3296.77 2893.82 5797.68 997.40 495.59 17898.65 16
HFP-MVS97.11 1497.19 1697.00 1498.97 1498.73 1298.37 1295.69 2396.60 993.28 2296.87 996.64 2997.27 296.64 3796.33 3598.44 3898.56 22
abl_694.78 3997.46 4497.99 5295.76 5391.80 5193.72 4891.25 3291.33 4296.47 3094.28 5098.14 7297.39 78
DPM-MVS95.07 3794.84 4195.34 3697.44 4597.49 6897.76 2795.52 2694.88 3688.92 4987.25 6196.44 3194.41 4595.78 5796.11 4497.99 8795.95 126
CP-MVS96.68 2196.59 2796.77 1998.85 2398.58 2398.18 1695.51 2895.34 2792.94 2595.21 2996.25 3296.79 1696.44 4495.77 5198.35 4798.56 22
XVS95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVStestdata95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVS96.07 2796.33 2995.77 3198.94 1898.66 1597.94 2495.41 3295.12 3088.03 5693.00 3396.06 3395.85 3196.65 3696.35 3198.47 3298.48 31
MSLP-MVS++96.05 2895.63 3296.55 2398.33 3198.17 4696.94 3894.61 3694.70 4094.37 1289.20 5495.96 3696.81 1495.57 6097.33 598.24 6398.47 32
ACMMPR96.92 1896.96 1996.87 1798.99 1398.78 1198.38 1195.52 2696.57 1092.81 2696.06 2195.90 3797.07 596.60 3996.34 3498.46 3498.42 35
CPTT-MVS95.54 3395.07 3896.10 2797.88 3797.98 5397.92 2594.86 3494.56 4192.16 2891.01 4395.71 3896.97 1094.56 8493.50 9196.81 15598.14 47
UA-Net90.81 8692.58 6488.74 11694.87 8197.44 6992.61 11088.22 9482.35 16078.93 12185.20 7895.61 3979.56 18696.52 4096.57 2498.23 6494.37 154
mPP-MVS98.76 2595.49 40
DeepC-MVS_fast93.32 196.48 2396.42 2896.56 2298.70 2798.31 4097.97 2395.76 2296.31 1492.01 2991.43 4195.42 4196.46 2397.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS96.16 2596.33 2995.95 2899.04 898.63 2098.32 1392.76 4493.42 5090.49 4096.30 1795.31 4296.71 1996.46 4296.02 4898.38 4698.19 44
CDPH-MVS94.80 4395.50 3493.98 4998.34 3098.06 4997.41 3293.23 4192.81 5582.98 10092.51 3594.82 4393.53 6196.08 5296.30 3698.42 4197.94 56
3Dnovator+90.56 595.06 3894.56 4695.65 3398.11 3398.15 4797.19 3591.59 5495.11 3293.23 2481.99 10394.71 4495.43 3896.48 4196.88 1898.35 4798.63 17
CANet94.85 4094.92 4094.78 3997.25 4998.52 2997.20 3491.81 5093.25 5291.06 3486.29 6894.46 4592.99 6797.02 2596.68 2098.34 4998.20 43
QAPM94.13 5194.33 5193.90 5097.82 3898.37 3996.47 4390.89 6192.73 5885.63 8385.35 7693.87 4694.17 5195.71 5995.90 5098.40 4398.42 35
CSCG95.68 3195.46 3695.93 2998.71 2699.07 797.13 3793.55 3995.48 2693.35 2190.61 4793.82 4795.16 3994.60 8395.57 5497.70 10699.08 10
MVS_030494.30 4994.68 4493.86 5396.33 6198.48 3297.41 3291.20 5692.75 5686.96 6886.03 7193.81 4892.64 7196.89 2896.54 2598.61 2398.24 41
DROMVSNet94.19 5095.05 3993.18 6193.56 10497.65 6495.34 5986.37 11792.05 6288.71 5289.91 5093.32 4996.14 2997.29 1796.42 2698.98 398.70 14
PCF-MVS90.19 892.98 5892.07 7394.04 4696.39 6097.87 5496.03 4995.47 3187.16 11885.09 9384.81 8093.21 5093.46 6391.98 13391.98 13097.78 9897.51 74
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator90.28 794.70 4494.34 5095.11 3798.06 3498.21 4496.89 3991.03 6094.72 3991.45 3182.87 9493.10 5194.61 4396.24 5097.08 1398.63 2298.16 45
OMC-MVS94.49 4794.36 4894.64 4297.17 5097.73 6195.49 5792.25 4696.18 1590.34 4188.51 5792.88 5294.90 4294.92 7194.17 7497.69 10896.15 119
MVS_111021_HR94.84 4195.91 3193.60 5597.35 4698.46 3595.08 6191.19 5794.18 4485.97 7595.38 2792.56 5393.61 6096.61 3896.25 3798.40 4397.92 58
TAPA-MVS90.35 693.69 5593.52 5393.90 5096.89 5497.62 6596.15 4691.67 5394.94 3485.97 7587.72 6091.96 5494.40 4693.76 10093.06 10798.30 5595.58 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.10 395.22 3694.77 4295.75 3297.77 3998.54 2697.63 2995.96 1995.07 3388.85 5085.35 7691.85 5595.82 3296.88 2997.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft95.54 3395.49 3595.61 3498.27 3298.53 2797.16 3694.86 3494.88 3689.34 4595.36 2891.74 5695.50 3795.51 6194.16 7598.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UGNet91.52 7793.41 5589.32 11094.13 8597.15 7791.83 12689.01 8490.62 7685.86 7986.83 6291.73 5777.40 19194.68 8094.43 7097.71 10498.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test94.63 4595.28 3793.88 5296.56 5898.67 1493.41 9989.31 8194.27 4389.64 4490.84 4591.64 5895.58 3597.04 2496.17 3998.77 1698.32 38
GG-mvs-BLEND62.84 21190.21 9330.91 2200.57 22894.45 11886.99 1820.34 22688.71 1070.98 22881.55 10891.58 590.86 22592.66 11991.43 14095.73 17291.11 183
MVS_111021_LR94.84 4195.57 3394.00 4797.11 5197.72 6394.88 6591.16 5895.24 2988.74 5196.03 2291.52 6094.33 4995.96 5495.01 6397.79 9797.49 75
CHOSEN 280x42090.77 8992.14 7289.17 11293.86 9792.81 16493.16 10380.22 18090.21 8584.67 9589.89 5191.38 6190.57 9694.94 7092.11 12592.52 20093.65 164
Vis-MVSNet (Re-imp)90.54 9392.76 6287.94 12593.73 10196.94 8592.17 11987.91 9988.77 10676.12 13183.68 8790.80 6279.49 18796.34 4796.35 3198.21 6696.46 106
ETV-MVS93.80 5394.57 4592.91 6893.98 9097.50 6793.62 9488.70 8891.95 6387.57 6290.21 4990.79 6394.56 4497.20 1996.35 3199.02 197.98 53
PLCcopyleft90.69 494.32 4892.99 5995.87 3097.91 3596.49 9395.95 5294.12 3794.94 3494.09 1485.90 7290.77 6495.58 3594.52 8593.32 9897.55 11595.00 147
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA93.69 5592.50 6595.06 3897.11 5197.36 7093.88 8793.30 4095.64 2493.44 2080.32 11190.73 6594.99 4193.58 10293.33 9697.67 11096.57 104
IS_MVSNet91.87 7193.35 5690.14 10494.09 8797.73 6193.09 10588.12 9688.71 10779.98 11784.49 8190.63 6687.49 13097.07 2296.96 1698.07 7997.88 62
PVSNet_Blended_VisFu91.92 7092.39 6991.36 9095.45 7497.85 5692.25 11689.54 7888.53 11087.47 6379.82 11390.53 6785.47 15196.31 4895.16 6297.99 8798.56 22
AdaColmapbinary95.02 3993.71 5296.54 2498.51 2897.76 5996.69 4195.94 2193.72 4893.50 1889.01 5590.53 6796.49 2294.51 8693.76 8498.07 7996.69 99
EPP-MVSNet92.13 6793.06 5891.05 9293.66 10397.30 7192.18 11787.90 10090.24 8483.63 9786.14 7090.52 6990.76 9194.82 7694.38 7198.18 6997.98 53
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5697.74 4098.02 5195.66 5590.46 6489.14 10386.50 7275.80 13690.38 7092.69 7094.99 6895.30 5898.27 5997.63 67
EPNet93.92 5294.40 4793.36 5797.89 3696.55 9196.08 4892.14 4791.65 6789.16 4794.07 3190.17 7187.78 12695.24 6594.97 6497.09 13498.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS94.53 4694.73 4394.31 4596.30 6298.53 2794.98 6289.24 8393.37 5190.24 4288.96 5689.76 7296.09 3097.48 1396.42 2698.99 298.59 21
DELS-MVS93.71 5493.47 5494.00 4796.82 5598.39 3896.80 4091.07 5989.51 10089.94 4383.80 8689.29 7390.95 8997.32 1497.65 298.42 4198.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 9089.78 9686.68 7086.69 6587.57 7493.74 5896.07 5395.32 5798.58 2497.53 73
FA-MVS(training)90.79 8891.33 8390.17 10293.76 10097.22 7592.74 10977.79 19090.60 7888.03 5678.80 11787.41 7591.00 8895.40 6393.43 9497.70 10696.46 106
Vis-MVSNetpermissive89.36 10991.49 8286.88 13692.10 12597.60 6692.16 12085.89 12084.21 14675.20 13382.58 9887.13 7677.40 19195.90 5695.63 5398.51 2797.36 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline91.19 8091.89 7690.38 9592.76 11695.04 11293.55 9684.54 13692.92 5385.71 8286.68 6686.96 7789.28 10992.00 13292.62 11596.46 16096.99 91
CANet_DTU90.74 9192.93 6188.19 12194.36 8396.61 8994.34 7384.66 13390.66 7468.75 17090.41 4886.89 7889.78 10195.46 6294.87 6597.25 12495.62 133
PMMVS89.88 10191.19 8588.35 11989.73 15191.97 18490.62 13281.92 16790.57 7980.58 11592.16 3686.85 7991.17 8592.31 12591.35 14196.11 16693.11 171
MAR-MVS92.71 6292.63 6392.79 6997.70 4197.15 7793.75 9087.98 9890.71 7385.76 8186.28 6986.38 8094.35 4894.95 6995.49 5597.22 12597.44 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GBi-Net90.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
test190.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
FMVSNet390.19 9990.06 9890.34 9688.69 16093.85 12994.58 6685.78 12390.03 8985.56 8577.38 12286.13 8189.22 11393.29 11294.36 7298.20 6795.40 141
MS-PatchMatch87.63 12187.61 12687.65 12993.95 9294.09 12592.60 11181.52 17286.64 12376.41 13073.46 14985.94 8485.01 15592.23 12990.00 17096.43 16290.93 185
EPNet_dtu88.32 11890.61 9085.64 14896.79 5692.27 17692.03 12390.31 6589.05 10465.44 19189.43 5285.90 8574.22 20092.76 11692.09 12695.02 18992.76 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.68 10489.24 10390.20 10092.97 11292.93 16092.30 11487.69 10690.44 8185.12 9291.68 4085.84 8690.69 9287.34 18986.07 19192.46 20190.37 189
DCV-MVSNet91.24 7991.26 8491.22 9192.84 11593.44 14193.82 8886.75 11491.33 7185.61 8484.00 8585.46 8791.27 8392.91 11593.62 8697.02 13898.05 52
MVS_Test91.81 7392.19 7191.37 8993.24 10696.95 8494.43 6986.25 11891.45 7083.45 9886.31 6785.15 8892.93 6893.99 9594.71 6897.92 9196.77 97
gg-mvs-nofinetune81.83 19083.58 16379.80 19891.57 13196.54 9293.79 8968.80 21462.71 21843.01 22355.28 20985.06 8983.65 16596.13 5194.86 6697.98 9094.46 152
DI_MVS_plusplus_trai91.05 8290.15 9592.11 7692.67 12096.61 8996.03 4988.44 9290.25 8385.92 7773.73 14484.89 9091.92 7794.17 9294.07 7997.68 10997.31 82
Anonymous2023121189.82 10288.18 11691.74 8092.52 12196.09 10393.38 10089.30 8288.95 10585.90 7864.55 19384.39 9192.41 7492.24 12893.06 10796.93 14797.95 55
HyFIR lowres test87.87 12086.42 13789.57 10795.56 6996.99 8392.37 11384.15 14086.64 12377.17 12757.65 20683.97 9291.08 8792.09 13192.44 11797.09 13495.16 144
FMVSNet289.61 10589.14 10590.16 10388.66 16193.65 13794.25 7685.44 12788.57 10984.96 9473.53 14783.82 9389.38 10694.23 9094.68 6998.31 5295.47 137
SCA86.25 13387.52 12984.77 15791.59 13093.90 12889.11 16273.25 20790.38 8272.84 14383.26 8983.79 9488.49 12386.07 19685.56 19493.33 19389.67 194
CDS-MVSNet88.34 11788.71 10987.90 12690.70 14594.54 11592.38 11286.02 11980.37 16979.42 11979.30 11483.43 9582.04 17493.39 10994.01 8096.86 15395.93 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test86.15 13689.10 10682.71 18689.83 14993.18 15287.88 17584.69 13286.54 12562.18 20182.39 10183.31 9674.18 20192.52 12391.86 13297.50 11793.88 161
CHOSEN 1792x268888.57 11587.82 12289.44 10995.46 7296.89 8693.74 9185.87 12189.63 9777.42 12661.38 20083.31 9688.80 12193.44 10893.16 10395.37 18396.95 93
Anonymous20240521188.00 11893.16 10896.38 9893.58 9589.34 8087.92 11465.04 18983.03 9892.07 7692.67 11893.33 9696.96 14297.63 67
test-LLR86.88 12888.28 11385.24 15291.22 13592.07 18087.41 17883.62 14784.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
TESTMET0.1,186.11 13888.28 11383.59 17387.80 17292.07 18087.41 17877.12 19284.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
LS3D91.97 6990.98 8893.12 6397.03 5397.09 8095.33 6095.59 2492.47 5979.26 12081.60 10682.77 10194.39 4794.28 8894.23 7397.14 13194.45 153
HQP-MVS92.39 6592.49 6692.29 7595.65 6895.94 10595.64 5692.12 4892.46 6079.65 11891.97 3882.68 10292.92 6993.47 10792.77 11297.74 10298.12 49
thisisatest053091.04 8391.74 7790.21 9992.93 11497.00 8292.06 12287.63 10990.74 7281.51 10486.81 6382.48 10389.23 11194.81 7793.03 10997.90 9297.33 81
test-mter86.09 13988.38 11283.43 17687.89 17192.61 16886.89 18377.11 19384.30 14468.62 17282.57 9982.45 10484.34 15892.40 12490.11 16795.74 17194.21 157
MDTV_nov1_ep1386.64 13287.50 13085.65 14790.73 14393.69 13589.96 14778.03 18989.48 10176.85 12884.92 7982.42 10586.14 14586.85 19386.15 19092.17 20288.97 197
canonicalmvs93.08 5793.09 5793.07 6594.24 8497.86 5595.45 5887.86 10494.00 4687.47 6388.32 5882.37 10695.13 4093.96 9996.41 2998.27 5998.73 13
tttt051791.01 8491.71 7890.19 10192.98 11097.07 8191.96 12587.63 10990.61 7781.42 10586.76 6482.26 10789.23 11194.86 7593.03 10997.90 9297.36 79
PVSNet_BlendedMVS92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PVSNet_Blended92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PatchmatchNetpermissive85.70 14286.65 13484.60 16091.79 12793.40 14289.27 15873.62 20290.19 8672.63 14582.74 9781.93 11087.64 12784.99 19984.29 20192.64 19989.00 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS92.50 6491.96 7593.13 6293.93 9496.24 9995.69 5488.77 8792.92 5389.01 4888.19 5981.74 11193.13 6693.63 10193.08 10598.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS88.60 11488.45 11188.78 11592.02 12692.44 17492.00 12483.57 14986.52 12678.90 12278.61 11981.34 11289.12 11490.68 15493.18 10297.10 13396.35 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSTER91.73 7491.61 8091.86 7993.18 10794.56 11494.37 7187.90 10090.16 8888.69 5389.23 5381.28 11388.92 11995.75 5893.95 8198.12 7496.37 110
casdiffmvs91.72 7591.16 8692.38 7493.16 10897.15 7793.95 8389.49 7991.58 6986.03 7480.75 11080.95 11493.16 6595.25 6495.22 6198.50 2997.23 84
MSDG90.42 9588.25 11592.94 6796.67 5794.41 12093.96 8292.91 4389.59 9886.26 7376.74 12980.92 11590.43 9792.60 12192.08 12797.44 12091.41 179
diffmvs91.37 7891.09 8791.70 8192.71 11996.47 9494.03 8188.78 8692.74 5785.43 9083.63 8880.37 11691.76 8093.39 10993.78 8397.50 11797.23 84
baseline190.81 8690.29 9291.42 8693.67 10295.86 10693.94 8589.69 7689.29 10282.85 10182.91 9380.30 11789.60 10295.05 6794.79 6798.80 1293.82 162
OPM-MVS91.08 8189.34 10193.11 6496.18 6396.13 10296.39 4492.39 4582.97 15781.74 10382.55 10080.20 11893.97 5594.62 8193.23 9998.00 8695.73 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LGP-MVS_train91.83 7292.04 7491.58 8295.46 7296.18 10195.97 5189.85 7190.45 8077.76 12391.92 3980.07 11992.34 7594.27 8993.47 9298.11 7697.90 61
test0.0.03 185.58 14487.69 12583.11 17991.22 13592.54 17185.60 19483.62 14785.66 13367.84 17782.79 9679.70 12073.51 20491.15 14690.79 14696.88 15191.23 182
ACMM88.76 1091.70 7690.43 9193.19 6095.56 6995.14 11193.35 10191.48 5592.26 6187.12 6684.02 8479.34 12193.99 5394.07 9492.68 11397.62 11495.50 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP89.13 992.03 6891.70 7992.41 7394.92 7996.44 9793.95 8389.96 7091.81 6685.48 8890.97 4479.12 12292.42 7393.28 11392.55 11697.76 10097.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE89.29 11188.68 11089.99 10592.75 11896.03 10493.07 10783.79 14586.98 12081.34 10674.72 14178.92 12391.22 8493.31 11193.21 10197.78 9897.60 72
FMVSNet584.47 16184.72 15684.18 16783.30 20888.43 20588.09 17379.42 18384.25 14574.14 13773.15 15378.74 12483.65 16591.19 14491.19 14396.46 16086.07 206
IterMVS-SCA-FT85.44 14886.71 13383.97 17090.59 14690.84 19789.73 15378.34 18684.07 15066.40 18677.27 12778.66 12583.06 16791.20 14390.10 16895.72 17394.78 148
test_part187.53 12384.97 15290.52 9492.11 12493.31 14693.32 10285.79 12279.56 17787.38 6562.89 19778.60 12689.25 11090.65 15592.17 12395.24 18597.62 69
CVMVSNet83.83 16985.53 14981.85 19389.60 15290.92 19587.81 17683.21 15380.11 17260.16 20576.47 13078.57 12776.79 19389.76 16890.13 16393.51 19292.75 174
baseline288.97 11389.50 10088.36 11891.14 13795.30 10890.13 14385.17 13087.24 11780.80 11284.46 8278.44 12885.60 14893.54 10591.87 13197.31 12295.66 132
FC-MVSNet-train90.55 9290.19 9490.97 9393.78 9995.16 11092.11 12188.85 8587.64 11583.38 9984.36 8378.41 12989.53 10394.69 7993.15 10498.15 7097.92 58
IterMVS85.25 15086.49 13683.80 17190.42 14790.77 20090.02 14578.04 18884.10 14866.27 18777.28 12678.41 12983.01 16890.88 14889.72 17795.04 18894.24 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS85.77 14186.24 13985.23 15392.76 11693.78 13189.91 14973.60 20390.19 8674.22 13582.18 10278.06 13187.55 12985.61 19885.38 19693.32 19488.48 201
FMVSNet187.33 12586.00 14388.89 11387.13 18792.83 16393.08 10684.46 13781.35 16582.20 10266.33 18077.96 13288.96 11693.97 9694.16 7597.54 11695.38 142
CR-MVSNet85.48 14686.29 13884.53 16291.08 14092.10 17889.18 16073.30 20584.75 13771.08 15473.12 15477.91 13386.27 14391.48 13890.75 14996.27 16493.94 159
ET-MVSNet_ETH3D89.93 10090.84 8988.87 11479.60 21396.19 10094.43 6986.56 11590.63 7580.75 11390.71 4677.78 13493.73 5991.36 14193.45 9398.15 7095.77 130
IB-MVS85.10 1487.98 11987.97 12087.99 12494.55 8296.86 8784.52 19588.21 9586.48 12888.54 5474.41 14377.74 13574.10 20289.65 17292.85 11198.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPMNet84.82 15585.90 14583.56 17491.10 13892.10 17888.73 16971.11 21084.75 13768.79 16973.56 14677.62 13685.33 15290.08 16589.43 17996.32 16393.77 163
Effi-MVS+89.79 10389.83 9989.74 10692.98 11096.45 9693.48 9884.24 13887.62 11676.45 12981.76 10477.56 13793.48 6294.61 8293.59 8797.82 9697.22 86
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7696.46 9596.13 4792.04 4995.33 2880.11 11694.95 3077.35 13894.05 5294.49 8793.08 10597.15 12994.53 151
Effi-MVS+-dtu87.51 12488.13 11786.77 13891.10 13894.90 11390.91 13082.67 15783.47 15371.55 14981.11 10977.04 13989.41 10592.65 12091.68 13795.00 19096.09 121
xxxxxxxxxxxxxcwj95.62 3294.35 4997.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 676.98 14096.23 2796.78 3096.15 4198.79 1498.55 27
ADS-MVSNet84.08 16584.95 15383.05 18291.53 13491.75 18788.16 17270.70 21189.96 9269.51 16578.83 11676.97 14186.29 14284.08 20384.60 19992.13 20488.48 201
COLMAP_ROBcopyleft84.39 1587.61 12286.03 14189.46 10895.54 7194.48 11791.77 12790.14 6987.16 11875.50 13273.41 15076.86 14287.33 13290.05 16689.76 17696.48 15990.46 188
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAMVS84.94 15484.95 15384.93 15688.82 15793.18 15288.44 17181.28 17477.16 18973.76 13975.43 13976.57 14382.04 17490.59 15690.79 14695.22 18690.94 184
CostFormer86.78 13086.05 14087.62 13192.15 12393.20 15191.55 12875.83 19588.11 11385.29 9181.76 10476.22 14487.80 12584.45 20185.21 19793.12 19593.42 167
PatchT83.86 16885.51 15081.94 19288.41 16491.56 19078.79 20971.57 20984.08 14971.08 15470.62 16076.13 14586.27 14391.48 13890.75 14995.52 18193.94 159
Fast-Effi-MVS+-dtu86.25 13387.70 12484.56 16190.37 14893.70 13490.54 13378.14 18783.50 15265.37 19281.59 10775.83 14686.09 14791.70 13691.70 13596.88 15195.84 129
thisisatest051585.70 14287.00 13284.19 16688.16 16893.67 13684.20 19784.14 14183.39 15572.91 14276.79 12874.75 14778.82 18992.57 12291.26 14296.94 14496.56 105
ECVR-MVScopyleft90.77 8989.27 10292.52 7094.97 7798.30 4194.53 6790.25 6789.91 9385.80 8073.64 14574.31 14890.69 9296.75 3496.10 4598.87 895.91 128
test111190.47 9489.10 10692.07 7794.92 7998.30 4194.17 8090.30 6689.56 9983.92 9673.25 15273.66 14990.26 9896.77 3296.14 4398.87 896.04 123
Fast-Effi-MVS+88.56 11687.99 11989.22 11191.56 13295.21 10992.29 11582.69 15686.82 12177.73 12476.24 13473.39 15093.36 6494.22 9193.64 8597.65 11196.43 108
PatchMatch-RL90.30 9688.93 10891.89 7895.41 7595.68 10790.94 12988.67 8989.80 9586.95 6985.90 7272.51 15192.46 7293.56 10492.18 12296.93 14792.89 172
MIMVSNet82.97 18184.00 16181.77 19482.23 20992.25 17787.40 18072.73 20881.48 16469.55 16468.79 16972.42 15281.82 17792.23 12992.25 12096.89 15088.61 199
anonymousdsp84.51 15885.85 14782.95 18386.30 19893.51 14085.77 19280.38 17978.25 18463.42 19873.51 14872.20 15384.64 15793.21 11492.16 12497.19 12798.14 47
tpmrst83.72 17183.45 16584.03 16992.21 12291.66 18888.74 16873.58 20488.14 11272.67 14477.37 12572.11 15486.34 14182.94 20682.05 20590.63 21089.86 193
ACMH+85.75 1287.19 12786.02 14288.56 11793.42 10594.41 12089.91 14987.66 10883.45 15472.25 14776.42 13371.99 15590.78 9089.86 16790.94 14497.32 12195.11 146
ACMH85.51 1387.31 12686.59 13588.14 12293.96 9194.51 11689.00 16587.99 9781.58 16370.15 16078.41 12071.78 15690.60 9591.30 14291.99 12997.17 12896.58 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.55 15783.46 16485.82 14488.16 16893.39 14389.05 16485.36 12974.03 20372.43 14665.08 18871.11 15782.30 17393.48 10691.70 13597.64 11295.43 140
tpm cat184.13 16481.99 18486.63 14091.74 12891.50 19190.68 13175.69 19686.12 12985.44 8972.39 15570.72 15885.16 15380.89 21081.56 20691.07 20890.71 186
MVS-HIRNet78.16 20077.57 20478.83 20085.83 20087.76 20776.67 21070.22 21275.82 19967.39 17955.61 20870.52 15981.96 17686.67 19485.06 19890.93 20981.58 212
thres100view90089.36 10987.61 12691.39 8793.90 9596.86 8794.35 7289.66 7785.87 13081.15 10876.46 13170.38 16091.17 8594.09 9393.43 9498.13 7396.16 118
tfpn200view989.55 10687.86 12191.53 8493.90 9597.26 7294.31 7589.74 7385.87 13081.15 10876.46 13170.38 16091.76 8094.92 7193.51 8898.28 5896.61 101
UniMVSNet_NR-MVSNet86.80 12985.86 14687.89 12788.17 16794.07 12690.15 14188.51 9184.20 14773.45 14072.38 15670.30 16288.95 11790.25 16092.21 12198.12 7497.62 69
thres20089.49 10787.72 12391.55 8393.95 9297.25 7394.34 7389.74 7385.66 13381.18 10776.12 13570.19 16391.80 7894.92 7193.51 8898.27 5996.40 109
thres40089.40 10887.58 12891.53 8494.06 8997.21 7694.19 7989.83 7285.69 13281.08 11075.50 13869.76 16491.80 7894.79 7893.51 8898.20 6796.60 102
thres600view789.28 11287.47 13191.39 8794.12 8697.25 7393.94 8589.74 7385.62 13580.63 11475.24 14069.33 16591.66 8294.92 7193.23 9998.27 5996.72 98
tpm83.16 17783.64 16282.60 18890.75 14291.05 19488.49 17073.99 20082.36 15967.08 18378.10 12168.79 16684.17 16185.95 19785.96 19291.09 20793.23 169
MDTV_nov1_ep13_2view80.43 19480.94 19479.84 19784.82 20590.87 19684.23 19673.80 20180.28 17164.33 19570.05 16668.77 16779.67 18484.83 20083.50 20392.17 20288.25 203
EG-PatchMatch MVS81.70 19281.31 19182.15 19188.75 15893.81 13087.14 18178.89 18571.57 20764.12 19761.20 20268.46 16876.73 19591.48 13890.77 14897.28 12391.90 176
GA-MVS85.08 15185.65 14884.42 16389.77 15094.25 12389.26 15984.62 13481.19 16662.25 20075.72 13768.44 16984.14 16293.57 10391.68 13796.49 15894.71 150
UniMVSNet (Re)86.22 13585.46 15187.11 13388.34 16594.42 11989.65 15587.10 11384.39 14374.61 13470.41 16468.10 17085.10 15491.17 14591.79 13397.84 9597.94 56
TDRefinement84.97 15383.39 16886.81 13792.97 11294.12 12492.18 11787.77 10582.78 15871.31 15268.43 17068.07 17181.10 18289.70 17189.03 18395.55 18091.62 177
USDC86.73 13185.96 14487.63 13091.64 12993.97 12792.76 10884.58 13588.19 11170.67 15780.10 11267.86 17289.43 10491.81 13489.77 17596.69 15790.05 192
dps85.00 15283.21 17287.08 13490.73 14392.55 17089.34 15775.29 19784.94 13687.01 6779.27 11567.69 17387.27 13384.22 20283.56 20292.83 19890.25 190
V4284.48 16083.36 17085.79 14687.14 18693.28 14890.03 14483.98 14380.30 17071.20 15366.90 17767.17 17485.55 14989.35 17390.27 16096.82 15496.27 116
v884.45 16283.30 17185.80 14587.53 17992.95 15890.31 13782.46 16180.46 16871.43 15066.99 17567.16 17586.14 14589.26 17690.22 16296.94 14496.06 122
pmmvs680.90 19378.77 19983.38 17785.84 19991.61 18986.01 19082.54 15964.17 21670.43 15954.14 21367.06 17680.73 18390.50 15889.17 18294.74 19194.75 149
WR-MVS83.14 17883.38 16982.87 18487.55 17893.29 14786.36 18884.21 13980.05 17366.41 18566.91 17666.92 17775.66 19888.96 18090.56 15497.05 13696.96 92
CMPMVSbinary61.19 1779.86 19777.46 20582.66 18791.54 13391.82 18683.25 19881.57 17170.51 21168.64 17159.89 20566.77 17879.63 18584.00 20484.30 20091.34 20684.89 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0280.14 19680.21 19780.06 19686.61 19589.66 20280.40 20682.20 16582.29 16161.35 20271.52 15766.67 17976.75 19482.55 20780.18 21093.05 19688.62 198
Baseline_NR-MVSNet85.28 14983.42 16787.46 13287.77 17490.80 19989.90 15187.69 10683.93 15174.16 13664.72 19166.43 18087.48 13190.14 16190.83 14597.73 10397.11 89
pmmvs486.00 14084.28 15988.00 12387.80 17292.01 18389.94 14884.91 13186.79 12280.98 11173.41 15066.34 18188.12 12489.31 17588.90 18496.24 16593.20 170
testgi81.94 18984.09 16079.43 19989.53 15490.83 19882.49 20181.75 17080.59 16759.46 20782.82 9565.75 18267.97 20690.10 16489.52 17895.39 18289.03 195
v1084.18 16383.17 17385.37 14987.34 18192.68 16690.32 13681.33 17379.93 17669.23 16866.33 18065.74 18387.03 13490.84 14990.38 15796.97 14096.29 115
tmp_tt50.24 21668.55 21946.86 22448.90 22418.28 22386.51 12768.32 17370.19 16565.33 18426.69 22274.37 21466.80 21670.72 222
TranMVSNet+NR-MVSNet85.57 14584.41 15886.92 13587.67 17793.34 14490.31 13788.43 9383.07 15670.11 16169.99 16765.28 18586.96 13589.73 16992.27 11998.06 8197.17 88
WR-MVS_H82.86 18382.66 17783.10 18087.44 18093.33 14585.71 19383.20 15477.36 18868.20 17566.37 17965.23 18676.05 19789.35 17390.13 16397.99 8796.89 95
v2v48284.51 15883.05 17486.20 14387.25 18393.28 14890.22 13985.40 12879.94 17569.78 16367.74 17265.15 18787.57 12889.12 17890.55 15596.97 14095.60 134
v114484.03 16782.88 17585.37 14987.17 18593.15 15590.18 14083.31 15278.83 18067.85 17665.99 18264.99 18886.79 13790.75 15190.33 15996.90 14996.15 119
EU-MVSNet78.43 19980.25 19676.30 20483.81 20787.27 21180.99 20479.52 18276.01 19654.12 21470.44 16364.87 18967.40 20886.23 19585.54 19591.95 20591.41 179
DU-MVS86.12 13784.81 15587.66 12887.77 17493.78 13190.15 14187.87 10284.40 14173.45 14070.59 16164.82 19088.95 11790.14 16192.33 11897.76 10097.62 69
v14883.61 17282.10 18185.37 14987.34 18192.94 15987.48 17785.72 12678.92 17973.87 13865.71 18564.69 19181.78 17887.82 18589.35 18096.01 16795.26 143
TransMVSNet (Re)82.67 18480.93 19584.69 15988.71 15991.50 19187.90 17487.15 11271.54 20968.24 17463.69 19564.67 19278.51 19091.65 13790.73 15197.64 11292.73 175
test250690.93 8589.20 10492.95 6694.97 7798.30 4194.53 6790.25 6789.91 9388.39 5583.23 9064.17 19390.69 9296.75 3496.10 4598.87 895.97 125
v14419283.48 17482.23 17984.94 15586.65 19392.84 16189.63 15682.48 16077.87 18567.36 18065.33 18763.50 19486.51 13989.72 17089.99 17197.03 13796.35 111
v119283.56 17382.35 17884.98 15486.84 19292.84 16190.01 14682.70 15578.54 18166.48 18464.88 19062.91 19586.91 13690.72 15290.25 16196.94 14496.32 113
SixPastTwentyTwo83.12 17983.44 16682.74 18587.71 17693.11 15682.30 20282.33 16279.24 17864.33 19578.77 11862.75 19684.11 16388.11 18487.89 18695.70 17494.21 157
pmmvs583.37 17582.68 17684.18 16787.13 18793.18 15286.74 18482.08 16676.48 19367.28 18171.26 15862.70 19784.71 15690.77 15090.12 16697.15 12994.24 155
v192192083.30 17682.09 18284.70 15886.59 19692.67 16789.82 15282.23 16478.32 18265.76 18964.64 19262.35 19886.78 13890.34 15990.02 16997.02 13896.31 114
N_pmnet77.55 20376.68 20678.56 20185.43 20387.30 21078.84 20881.88 16878.30 18360.61 20361.46 19962.15 19974.03 20382.04 20880.69 20990.59 21184.81 210
NR-MVSNet85.46 14784.54 15786.52 14188.33 16693.78 13190.45 13487.87 10284.40 14171.61 14870.59 16162.09 20082.79 17091.75 13591.75 13498.10 7797.44 76
UniMVSNet_ETH3D84.57 15681.40 19088.28 12089.34 15594.38 12290.33 13586.50 11674.74 20277.52 12559.90 20462.04 20188.78 12288.82 18292.65 11497.22 12597.24 83
test_method58.10 21464.61 21450.51 21528.26 22641.71 22561.28 22032.07 22275.92 19852.04 21747.94 21561.83 20251.80 21679.83 21163.95 21977.60 22081.05 213
v124082.88 18281.66 18684.29 16486.46 19792.52 17389.06 16381.82 16977.16 18965.09 19364.17 19461.50 20386.36 14090.12 16390.13 16396.95 14396.04 123
test20.0376.41 20478.49 20173.98 20685.64 20187.50 20875.89 21180.71 17870.84 21051.07 21968.06 17161.40 20454.99 21588.28 18387.20 18895.58 17986.15 205
tfpnnormal83.80 17081.26 19286.77 13889.60 15293.26 15089.72 15487.60 11172.78 20470.44 15860.53 20361.15 20585.55 14992.72 11791.44 13997.71 10496.92 94
TinyColmap84.04 16682.01 18386.42 14290.87 14191.84 18588.89 16784.07 14282.11 16269.89 16271.08 15960.81 20689.04 11590.52 15789.19 18195.76 17088.50 200
v7n82.25 18881.54 18883.07 18185.55 20292.58 16986.68 18681.10 17776.54 19265.97 18862.91 19660.56 20782.36 17291.07 14790.35 15896.77 15696.80 96
CP-MVSNet83.11 18082.15 18084.23 16587.20 18492.70 16586.42 18783.53 15077.83 18667.67 17866.89 17860.53 20882.47 17189.23 17790.65 15398.08 7897.20 87
PEN-MVS82.49 18681.58 18783.56 17486.93 19092.05 18286.71 18583.84 14476.94 19164.68 19467.24 17360.11 20981.17 18187.78 18690.70 15298.02 8496.21 117
DTE-MVSNet81.76 19181.04 19382.60 18886.63 19491.48 19385.97 19183.70 14676.45 19562.44 19967.16 17459.98 21078.98 18887.15 19089.93 17297.88 9495.12 145
Anonymous2023120678.09 20178.11 20278.07 20285.19 20489.17 20380.99 20481.24 17675.46 20058.25 20954.78 21259.90 21166.73 20988.94 18188.26 18596.01 16790.25 190
LTVRE_ROB81.71 1682.44 18781.84 18583.13 17889.01 15692.99 15788.90 16682.32 16366.26 21554.02 21574.68 14259.62 21288.87 12090.71 15392.02 12895.68 17596.62 100
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS82.53 18581.54 18883.68 17287.08 18992.54 17186.20 18983.46 15176.46 19465.73 19065.71 18559.41 21381.61 17989.06 17990.55 15598.03 8397.07 90
gm-plane-assit77.65 20278.50 20076.66 20387.96 17085.43 21364.70 21974.50 19864.15 21751.26 21861.32 20158.17 21484.11 16395.16 6693.83 8297.45 11991.41 179
MIMVSNet173.19 20673.70 20772.60 20965.42 22186.69 21275.56 21279.65 18167.87 21455.30 21145.24 21756.41 21563.79 21186.98 19187.66 18795.85 16985.04 208
new_pmnet72.29 20873.25 20871.16 21175.35 21581.38 21573.72 21569.27 21375.97 19749.84 22056.27 20756.12 21669.08 20581.73 20980.86 20889.72 21480.44 214
pmmvs-eth3d79.78 19877.58 20382.34 19081.57 21187.46 20982.92 19981.28 17475.33 20171.34 15161.88 19852.41 21781.59 18087.56 18786.90 18995.36 18491.48 178
PM-MVS80.29 19579.30 19881.45 19581.91 21088.23 20682.61 20079.01 18479.99 17467.15 18269.07 16851.39 21882.92 16987.55 18885.59 19395.08 18793.28 168
FPMVS69.87 21067.10 21373.10 20884.09 20678.35 21879.40 20776.41 19471.92 20557.71 21054.06 21450.04 21956.72 21371.19 21568.70 21584.25 21675.43 216
PMVScopyleft56.77 1861.27 21258.64 21564.35 21275.66 21454.60 22253.62 22274.23 19953.69 22058.37 20844.27 21849.38 22044.16 21969.51 21765.35 21780.07 21873.66 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet72.32 20771.09 21073.74 20781.17 21284.86 21472.21 21677.48 19168.32 21354.89 21355.10 21049.31 22163.68 21279.30 21276.46 21393.03 19784.32 211
pmmvs371.13 20971.06 21171.21 21073.54 21780.19 21671.69 21764.86 21662.04 21952.10 21654.92 21148.00 22275.03 19983.75 20583.24 20490.04 21385.27 207
DeepMVS_CXcopyleft71.82 21968.37 21848.05 22177.38 18746.88 22165.77 18447.03 22367.48 20764.27 21976.89 22176.72 215
MDA-MVSNet-bldmvs73.81 20572.56 20975.28 20572.52 21888.87 20474.95 21382.67 15771.57 20755.02 21265.96 18342.84 22476.11 19670.61 21681.47 20790.38 21286.59 204
PMMVS253.68 21555.72 21751.30 21458.84 22267.02 22054.23 22160.97 21947.50 22119.42 22534.81 21931.97 22530.88 22165.84 21869.99 21483.47 21772.92 218
ambc67.96 21273.69 21679.79 21773.82 21471.61 20659.80 20646.00 21620.79 22666.15 21086.92 19280.11 21189.13 21590.50 187
Gipumacopyleft58.52 21356.17 21661.27 21367.14 22058.06 22152.16 22368.40 21569.00 21245.02 22222.79 22020.57 22755.11 21476.27 21379.33 21279.80 21967.16 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS39.04 21834.32 22044.54 21858.25 22339.35 22627.61 22662.55 21835.99 22216.40 22720.04 22314.77 22844.80 21733.12 22244.10 22157.61 22452.89 222
E-PMN40.00 21635.74 21944.98 21757.69 22439.15 22728.05 22562.70 21735.52 22317.78 22620.90 22114.36 22944.47 21835.89 22147.86 22059.15 22356.47 221
MVEpermissive39.81 1939.52 21741.58 21837.11 21933.93 22549.06 22326.45 22754.22 22029.46 22424.15 22420.77 22210.60 23034.42 22051.12 22065.27 21849.49 22564.81 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2196.54 2211.79 2210.60 2271.82 2283.06 2290.95 2247.22 2250.88 22912.38 2241.25 2313.87 2246.09 2235.58 2221.40 22611.42 224
test1233.48 2205.31 2221.34 2220.20 2291.52 2292.17 2300.58 2256.13 2260.31 2309.85 2250.31 2323.90 2232.65 2245.28 2230.87 22711.46 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def60.19 204
our_test_386.93 19089.77 20181.61 203
Patchmatch-RL test18.47 228
NP-MVS91.63 68
Patchmtry92.39 17589.18 16073.30 20571.08 154