DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 20 | 98.70 25 | 98.31 38 | 97.97 22 | 95.76 20 | 96.31 14 | 92.01 27 | 91.43 40 | 95.42 40 | 96.46 22 | 97.65 11 | 97.69 1 | 98.49 31 | 98.12 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 92.65 2 | 95.50 33 | 96.96 19 | 93.79 51 | 96.44 57 | 98.21 42 | 93.51 96 | 94.08 36 | 96.94 4 | 89.29 44 | 93.08 32 | 96.77 28 | 93.82 54 | 97.68 9 | 97.40 4 | 95.59 178 | 98.65 16 |
|
DeepC-MVS | | 92.10 3 | 95.22 34 | 94.77 41 | 95.75 30 | 97.77 38 | 98.54 25 | 97.63 28 | 95.96 17 | 95.07 31 | 88.85 48 | 85.35 74 | 91.85 54 | 95.82 30 | 96.88 28 | 97.10 12 | 98.44 38 | 98.63 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 90.69 4 | 94.32 46 | 92.99 57 | 95.87 28 | 97.91 34 | 96.49 92 | 95.95 51 | 94.12 35 | 94.94 32 | 94.09 12 | 85.90 70 | 90.77 63 | 95.58 33 | 94.52 84 | 93.32 97 | 97.55 115 | 95.00 146 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator+ | | 90.56 5 | 95.06 36 | 94.56 45 | 95.65 31 | 98.11 32 | 98.15 45 | 97.19 33 | 91.59 51 | 95.11 30 | 93.23 22 | 81.99 101 | 94.71 43 | 95.43 36 | 96.48 39 | 96.88 18 | 98.35 46 | 98.63 17 |
|
TAPA-MVS | | 90.35 6 | 93.69 53 | 93.52 51 | 93.90 47 | 96.89 52 | 97.62 63 | 96.15 45 | 91.67 50 | 94.94 32 | 85.97 73 | 87.72 58 | 91.96 53 | 94.40 44 | 93.76 99 | 93.06 107 | 98.30 54 | 95.58 134 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
3Dnovator | | 90.28 7 | 94.70 42 | 94.34 48 | 95.11 35 | 98.06 33 | 98.21 42 | 96.89 38 | 91.03 57 | 94.72 37 | 91.45 29 | 82.87 92 | 93.10 50 | 94.61 41 | 96.24 48 | 97.08 13 | 98.63 21 | 98.16 43 |
|
PCF-MVS | | 90.19 8 | 92.98 56 | 92.07 71 | 94.04 43 | 96.39 58 | 97.87 51 | 96.03 48 | 95.47 29 | 87.16 116 | 85.09 91 | 84.81 78 | 93.21 49 | 93.46 60 | 91.98 133 | 91.98 129 | 97.78 98 | 97.51 71 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMP | | 89.13 9 | 92.03 66 | 91.70 77 | 92.41 71 | 94.92 77 | 96.44 96 | 93.95 82 | 89.96 67 | 91.81 63 | 85.48 86 | 90.97 42 | 79.12 122 | 92.42 72 | 93.28 112 | 92.55 116 | 97.76 100 | 97.74 64 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 88.76 10 | 91.70 75 | 90.43 90 | 93.19 57 | 95.56 67 | 95.14 110 | 93.35 100 | 91.48 52 | 92.26 58 | 87.12 63 | 84.02 82 | 79.34 121 | 93.99 50 | 94.07 93 | 92.68 113 | 97.62 114 | 95.50 135 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OpenMVS |  | 88.18 11 | 92.51 61 | 91.61 78 | 93.55 53 | 97.74 39 | 98.02 49 | 95.66 53 | 90.46 61 | 89.14 101 | 86.50 69 | 75.80 135 | 90.38 69 | 92.69 69 | 94.99 67 | 95.30 57 | 98.27 58 | 97.63 65 |
|
ACMH+ | | 85.75 12 | 87.19 126 | 86.02 142 | 88.56 115 | 93.42 103 | 94.41 119 | 89.91 148 | 87.66 107 | 83.45 152 | 72.25 146 | 76.42 132 | 71.99 153 | 90.78 89 | 89.86 166 | 90.94 143 | 97.32 121 | 95.11 145 |
|
ACMH | | 85.51 13 | 87.31 124 | 86.59 134 | 88.14 120 | 93.96 89 | 94.51 115 | 89.00 164 | 87.99 96 | 81.58 162 | 70.15 159 | 78.41 119 | 71.78 154 | 90.60 94 | 91.30 142 | 91.99 128 | 97.17 128 | 96.58 100 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 85.10 14 | 87.98 118 | 87.97 119 | 87.99 122 | 94.55 80 | 96.86 86 | 84.52 194 | 88.21 94 | 86.48 126 | 88.54 52 | 74.41 143 | 77.74 134 | 74.10 201 | 89.65 171 | 92.85 111 | 98.06 79 | 97.80 63 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
COLMAP_ROB |  | 84.39 15 | 87.61 121 | 86.03 141 | 89.46 105 | 95.54 69 | 94.48 116 | 91.77 126 | 90.14 66 | 87.16 116 | 75.50 130 | 73.41 150 | 76.86 140 | 87.33 131 | 90.05 165 | 89.76 175 | 96.48 159 | 90.46 187 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LTVRE_ROB | | 81.71 16 | 82.44 186 | 81.84 184 | 83.13 176 | 89.01 155 | 92.99 156 | 88.90 165 | 82.32 161 | 66.26 213 | 54.02 214 | 74.68 142 | 59.62 211 | 88.87 118 | 90.71 153 | 92.02 127 | 95.68 175 | 96.62 97 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CMPMVS |  | 61.19 17 | 79.86 196 | 77.46 204 | 82.66 185 | 91.54 131 | 91.82 185 | 83.25 197 | 81.57 169 | 70.51 209 | 68.64 170 | 59.89 204 | 66.77 177 | 79.63 184 | 84.00 203 | 84.30 199 | 91.34 205 | 84.89 208 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMVS |  | 56.77 18 | 61.27 211 | 58.64 214 | 64.35 210 | 75.66 213 | 54.60 221 | 53.62 221 | 74.23 197 | 53.69 218 | 58.37 207 | 44.27 217 | 49.38 219 | 44.16 218 | 69.51 216 | 65.35 216 | 80.07 217 | 73.66 216 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 39.81 19 | 39.52 216 | 41.58 217 | 37.11 217 | 33.93 224 | 49.06 222 | 26.45 226 | 54.22 218 | 29.46 222 | 24.15 223 | 20.77 221 | 10.60 229 | 34.42 219 | 51.12 219 | 65.27 217 | 49.49 224 | 64.81 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dmvs_re | | | 87.31 124 | 86.10 139 | 88.74 113 | 89.84 147 | 94.28 122 | 92.66 108 | 89.41 78 | 82.61 157 | 74.69 132 | 74.69 141 | 69.47 163 | 87.78 124 | 92.38 124 | 93.23 98 | 98.03 81 | 96.02 122 |
|
TPM-MVS | | | | | | 98.33 29 | 97.85 53 | 97.06 36 | | | 89.97 40 | 93.26 31 | 97.16 25 | 93.12 64 | | | 97.79 96 | 95.95 124 |
|
FA-MVS(training) | | | 90.79 87 | 91.33 81 | 90.17 99 | 93.76 98 | 97.22 73 | 92.74 107 | 77.79 188 | 90.60 75 | 88.03 54 | 78.80 116 | 87.41 74 | 91.00 87 | 95.40 62 | 93.43 93 | 97.70 106 | 96.46 103 |
|
test2506 | | | 90.93 84 | 89.20 103 | 92.95 63 | 94.97 75 | 98.30 39 | 94.53 66 | 90.25 64 | 89.91 90 | 88.39 53 | 83.23 88 | 64.17 192 | 90.69 91 | 96.75 32 | 96.10 44 | 98.87 8 | 95.97 123 |
|
test1111 | | | 90.47 93 | 89.10 105 | 92.07 75 | 94.92 77 | 98.30 39 | 94.17 79 | 90.30 63 | 89.56 97 | 83.92 94 | 73.25 152 | 73.66 147 | 90.26 97 | 96.77 30 | 96.14 42 | 98.87 8 | 96.04 120 |
|
ECVR-MVS |  | | 90.77 88 | 89.27 101 | 92.52 68 | 94.97 75 | 98.30 39 | 94.53 66 | 90.25 64 | 89.91 90 | 85.80 78 | 73.64 145 | 74.31 146 | 90.69 91 | 96.75 32 | 96.10 44 | 98.87 8 | 95.91 127 |
|
DVP-MVS++ | | | 98.07 1 | 98.46 1 | 97.62 1 | 99.08 3 | 99.29 2 | 98.84 3 | 96.63 4 | 97.89 1 | 95.35 3 | 97.83 4 | 99.48 3 | 96.98 9 | 97.99 2 | 97.14 11 | 98.82 11 | 99.60 1 |
|
GeoE | | | 89.29 110 | 88.68 109 | 89.99 102 | 92.75 117 | 96.03 103 | 93.07 105 | 83.79 143 | 86.98 118 | 81.34 104 | 74.72 140 | 78.92 123 | 91.22 83 | 93.31 110 | 93.21 101 | 97.78 98 | 97.60 69 |
|
test_method | | | 58.10 213 | 64.61 213 | 50.51 213 | 28.26 225 | 41.71 224 | 61.28 219 | 32.07 220 | 75.92 196 | 52.04 216 | 47.94 214 | 61.83 201 | 51.80 215 | 79.83 210 | 63.95 218 | 77.60 219 | 81.05 212 |
|
pmnet_mix02 | | | 80.14 195 | 80.21 196 | 80.06 194 | 86.61 194 | 89.66 201 | 80.40 205 | 82.20 163 | 82.29 160 | 61.35 201 | 71.52 157 | 66.67 178 | 76.75 193 | 82.55 206 | 80.18 209 | 93.05 195 | 88.62 197 |
|
RE-MVS-def | | | | | | | | | | | 60.19 203 | | | | | | | |
|
SED-MVS | | | 97.98 2 | 98.36 2 | 97.54 4 | 98.94 16 | 99.29 2 | 98.81 4 | 96.64 3 | 97.14 3 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 12 | 98.00 1 | 97.24 8 | 98.75 17 | 99.25 3 |
|
SF-MVS | | | 97.20 12 | 97.29 14 | 97.10 9 | 98.95 15 | 98.51 29 | 97.51 29 | 96.48 7 | 96.17 16 | 94.64 6 | 97.32 6 | 97.57 19 | 96.23 26 | 96.78 29 | 96.15 41 | 98.79 14 | 98.55 27 |
|
9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
ET-MVSNet_ETH3D | | | 89.93 99 | 90.84 88 | 88.87 111 | 79.60 212 | 96.19 99 | 94.43 68 | 86.56 114 | 90.63 72 | 80.75 111 | 90.71 44 | 77.78 133 | 93.73 56 | 91.36 141 | 93.45 92 | 98.15 69 | 95.77 129 |
|
UniMVSNet_ETH3D | | | 84.57 155 | 81.40 189 | 88.28 118 | 89.34 154 | 94.38 121 | 90.33 134 | 86.50 115 | 74.74 200 | 77.52 123 | 59.90 203 | 62.04 200 | 88.78 120 | 88.82 181 | 92.65 114 | 97.22 125 | 97.24 80 |
|
EIA-MVS | | | 92.72 59 | 92.96 58 | 92.44 70 | 93.86 95 | 97.76 57 | 93.13 102 | 88.65 89 | 89.78 94 | 86.68 67 | 86.69 63 | 87.57 73 | 93.74 55 | 96.07 51 | 95.32 56 | 98.58 23 | 97.53 70 |
|
ETV-MVS | | | 93.80 51 | 94.57 44 | 92.91 65 | 93.98 88 | 97.50 65 | 93.62 93 | 88.70 87 | 91.95 60 | 87.57 60 | 90.21 47 | 90.79 62 | 94.56 42 | 97.20 19 | 96.35 31 | 99.02 1 | 97.98 51 |
|
CS-MVS | | | 94.53 44 | 94.73 42 | 94.31 42 | 96.30 60 | 98.53 26 | 94.98 61 | 89.24 82 | 93.37 48 | 90.24 39 | 88.96 54 | 89.76 71 | 96.09 28 | 97.48 13 | 96.42 26 | 98.99 2 | 98.59 21 |
|
DVP-MVS |  | | 97.93 3 | 98.23 3 | 97.58 3 | 99.05 6 | 99.31 1 | 98.64 6 | 96.62 5 | 97.56 2 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 4 | 97.31 6 | 98.77 15 | 99.26 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SR-MVS | | | | | | 98.93 18 | | | 96.00 16 | | | | 97.75 15 | | | | | |
|
DPM-MVS | | | 95.07 35 | 94.84 40 | 95.34 34 | 97.44 43 | 97.49 66 | 97.76 26 | 95.52 24 | 94.88 34 | 88.92 47 | 87.25 59 | 96.44 30 | 94.41 43 | 95.78 55 | 96.11 43 | 97.99 86 | 95.95 124 |
|
thisisatest0530 | | | 91.04 82 | 91.74 75 | 90.21 96 | 92.93 113 | 97.00 81 | 92.06 121 | 87.63 108 | 90.74 69 | 81.51 102 | 86.81 61 | 82.48 102 | 89.23 109 | 94.81 76 | 93.03 109 | 97.90 91 | 97.33 78 |
|
Anonymous202405211 | | | | 88.00 117 | | 93.16 107 | 96.38 97 | 93.58 94 | 89.34 79 | 87.92 112 | | 65.04 189 | 83.03 97 | 92.07 75 | 92.67 117 | 93.33 95 | 96.96 142 | 97.63 65 |
|
DCV-MVSNet | | | 91.24 78 | 91.26 82 | 91.22 89 | 92.84 114 | 93.44 141 | 93.82 87 | 86.75 113 | 91.33 68 | 85.61 82 | 84.00 83 | 85.46 86 | 91.27 82 | 92.91 114 | 93.62 85 | 97.02 138 | 98.05 50 |
|
tttt0517 | | | 91.01 83 | 91.71 76 | 90.19 98 | 92.98 109 | 97.07 80 | 91.96 124 | 87.63 108 | 90.61 74 | 81.42 103 | 86.76 62 | 82.26 106 | 89.23 109 | 94.86 74 | 93.03 109 | 97.90 91 | 97.36 76 |
|
our_test_3 | | | | | | 86.93 189 | 89.77 200 | 81.61 202 | | | | | | | | | | |
|
thisisatest0515 | | | 85.70 141 | 87.00 131 | 84.19 164 | 88.16 167 | 93.67 136 | 84.20 196 | 84.14 139 | 83.39 153 | 72.91 141 | 76.79 127 | 74.75 145 | 78.82 188 | 92.57 121 | 91.26 141 | 96.94 144 | 96.56 102 |
|
SMA-MVS |  | | 97.53 7 | 97.93 7 | 97.07 10 | 99.21 1 | 99.02 8 | 98.08 19 | 96.25 11 | 96.36 12 | 93.57 15 | 96.56 14 | 99.27 5 | 96.78 16 | 97.91 4 | 97.43 3 | 98.51 26 | 98.94 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 97.83 4 | 98.13 4 | 97.48 5 | 98.83 22 | 99.19 4 | 98.99 1 | 96.70 1 | 96.05 18 | 94.39 9 | 98.30 1 | 99.47 4 | 97.02 6 | 97.75 7 | 97.02 14 | 98.98 3 | 99.10 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
thres100view900 | | | 89.36 108 | 87.61 125 | 91.39 85 | 93.90 93 | 96.86 86 | 94.35 71 | 89.66 75 | 85.87 128 | 81.15 106 | 76.46 130 | 70.38 158 | 91.17 84 | 94.09 92 | 93.43 93 | 98.13 71 | 96.16 115 |
|
tfpnnormal | | | 83.80 169 | 81.26 191 | 86.77 136 | 89.60 151 | 93.26 149 | 89.72 153 | 87.60 110 | 72.78 202 | 70.44 157 | 60.53 202 | 61.15 204 | 85.55 148 | 92.72 116 | 91.44 138 | 97.71 104 | 96.92 91 |
|
tfpn200view9 | | | 89.55 105 | 87.86 120 | 91.53 82 | 93.90 93 | 97.26 70 | 94.31 74 | 89.74 71 | 85.87 128 | 81.15 106 | 76.46 130 | 70.38 158 | 91.76 79 | 94.92 70 | 93.51 87 | 98.28 57 | 96.61 98 |
|
CHOSEN 280x420 | | | 90.77 88 | 92.14 70 | 89.17 109 | 93.86 95 | 92.81 163 | 93.16 101 | 80.22 178 | 90.21 82 | 84.67 93 | 89.89 49 | 91.38 60 | 90.57 95 | 94.94 69 | 92.11 124 | 92.52 199 | 93.65 163 |
|
CANet | | | 94.85 38 | 94.92 39 | 94.78 37 | 97.25 47 | 98.52 28 | 97.20 32 | 91.81 48 | 93.25 49 | 91.06 31 | 86.29 66 | 94.46 44 | 92.99 65 | 97.02 24 | 96.68 20 | 98.34 48 | 98.20 41 |
|
Fast-Effi-MVS+-dtu | | | 86.25 132 | 87.70 123 | 84.56 159 | 90.37 146 | 93.70 134 | 90.54 132 | 78.14 185 | 83.50 150 | 65.37 191 | 81.59 105 | 75.83 144 | 86.09 146 | 91.70 136 | 91.70 134 | 96.88 151 | 95.84 128 |
|
Effi-MVS+-dtu | | | 87.51 122 | 88.13 116 | 86.77 136 | 91.10 136 | 94.90 112 | 90.91 129 | 82.67 155 | 83.47 151 | 71.55 148 | 81.11 107 | 77.04 138 | 89.41 104 | 92.65 119 | 91.68 136 | 95.00 189 | 96.09 118 |
|
CANet_DTU | | | 90.74 90 | 92.93 59 | 88.19 119 | 94.36 81 | 96.61 88 | 94.34 72 | 84.66 131 | 90.66 71 | 68.75 169 | 90.41 46 | 86.89 77 | 89.78 100 | 95.46 60 | 94.87 64 | 97.25 124 | 95.62 132 |
|
MVS_0304 | | | 94.30 47 | 94.68 43 | 93.86 50 | 96.33 59 | 98.48 30 | 97.41 30 | 91.20 53 | 92.75 53 | 86.96 65 | 86.03 69 | 93.81 47 | 92.64 70 | 96.89 27 | 96.54 25 | 98.61 22 | 98.24 39 |
|
MSP-MVS | | | 97.70 6 | 98.09 5 | 97.24 6 | 99.00 11 | 99.17 5 | 98.76 5 | 96.41 9 | 96.91 5 | 93.88 14 | 97.72 5 | 99.04 7 | 96.93 11 | 97.29 17 | 97.31 6 | 98.45 37 | 99.23 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
IterMVS-SCA-FT | | | 85.44 147 | 86.71 132 | 83.97 168 | 90.59 144 | 90.84 196 | 89.73 152 | 78.34 184 | 84.07 148 | 66.40 185 | 77.27 126 | 78.66 125 | 83.06 166 | 91.20 143 | 90.10 167 | 95.72 173 | 94.78 147 |
|
TSAR-MVS + MP. | | | 97.31 9 | 97.64 9 | 96.92 13 | 97.28 46 | 98.56 23 | 98.61 7 | 95.48 28 | 96.72 8 | 94.03 13 | 96.73 12 | 98.29 9 | 97.15 4 | 97.61 12 | 96.42 26 | 98.96 6 | 99.13 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 91.08 80 | 89.34 100 | 93.11 61 | 96.18 61 | 96.13 101 | 96.39 43 | 92.39 43 | 82.97 155 | 81.74 101 | 82.55 98 | 80.20 118 | 93.97 52 | 94.62 80 | 93.23 98 | 98.00 85 | 95.73 130 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMMP_NAP | | | 96.93 16 | 97.27 15 | 96.53 23 | 99.06 5 | 98.95 9 | 98.24 13 | 96.06 15 | 95.66 21 | 90.96 32 | 95.63 24 | 97.71 16 | 96.53 20 | 97.66 10 | 96.68 20 | 98.30 54 | 98.61 20 |
|
ambc | | | | 67.96 211 | | 73.69 215 | 79.79 216 | 73.82 213 | | 71.61 204 | 59.80 205 | 46.00 215 | 20.79 225 | 66.15 209 | 86.92 191 | 80.11 210 | 89.13 214 | 90.50 186 |
|
CS-MVS-test | | | 94.63 43 | 95.28 36 | 93.88 49 | 96.56 56 | 98.67 13 | 93.41 98 | 89.31 80 | 94.27 41 | 89.64 42 | 90.84 43 | 91.64 57 | 95.58 33 | 97.04 23 | 96.17 39 | 98.77 15 | 98.32 36 |
|
Effi-MVS+ | | | 89.79 102 | 89.83 98 | 89.74 103 | 92.98 109 | 96.45 95 | 93.48 97 | 84.24 136 | 87.62 114 | 76.45 127 | 81.76 102 | 77.56 136 | 93.48 59 | 94.61 81 | 93.59 86 | 97.82 95 | 97.22 83 |
|
new-patchmatchnet | | | 72.32 206 | 71.09 209 | 73.74 205 | 81.17 211 | 84.86 213 | 72.21 215 | 77.48 189 | 68.32 211 | 54.89 212 | 55.10 209 | 49.31 220 | 63.68 211 | 79.30 211 | 76.46 212 | 93.03 196 | 84.32 210 |
|
pmmvs6 | | | 80.90 192 | 78.77 198 | 83.38 175 | 85.84 198 | 91.61 188 | 86.01 189 | 82.54 157 | 64.17 214 | 70.43 158 | 54.14 212 | 67.06 175 | 80.73 182 | 90.50 157 | 89.17 181 | 94.74 190 | 94.75 148 |
|
pmmvs5 | | | 83.37 174 | 82.68 175 | 84.18 165 | 87.13 186 | 93.18 151 | 86.74 183 | 82.08 164 | 76.48 191 | 67.28 180 | 71.26 158 | 62.70 196 | 84.71 155 | 90.77 150 | 90.12 165 | 97.15 129 | 94.24 154 |
|
Fast-Effi-MVS+ | | | 88.56 115 | 87.99 118 | 89.22 108 | 91.56 130 | 95.21 108 | 92.29 114 | 82.69 154 | 86.82 119 | 77.73 122 | 76.24 133 | 73.39 148 | 93.36 61 | 94.22 90 | 93.64 84 | 97.65 111 | 96.43 105 |
|
Anonymous20231211 | | | 89.82 101 | 88.18 115 | 91.74 78 | 92.52 120 | 96.09 102 | 93.38 99 | 89.30 81 | 88.95 103 | 85.90 76 | 64.55 193 | 84.39 90 | 92.41 73 | 92.24 128 | 93.06 107 | 96.93 147 | 97.95 53 |
|
pmmvs-eth3d | | | 79.78 197 | 77.58 202 | 82.34 188 | 81.57 210 | 87.46 208 | 82.92 198 | 81.28 172 | 75.33 199 | 71.34 150 | 61.88 197 | 52.41 216 | 81.59 179 | 87.56 186 | 86.90 188 | 95.36 184 | 91.48 177 |
|
GG-mvs-BLEND | | | 62.84 210 | 90.21 92 | 30.91 218 | 0.57 227 | 94.45 117 | 86.99 181 | 0.34 224 | 88.71 105 | 0.98 227 | 81.55 106 | 91.58 58 | 0.86 224 | 92.66 118 | 91.43 139 | 95.73 172 | 91.11 182 |
|
Anonymous20231206 | | | 78.09 200 | 78.11 201 | 78.07 200 | 85.19 203 | 89.17 202 | 80.99 203 | 81.24 174 | 75.46 198 | 58.25 208 | 54.78 211 | 59.90 210 | 66.73 208 | 88.94 180 | 88.26 184 | 96.01 167 | 90.25 189 |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 21 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 27 | | | | | |
|
gm-plane-assit | | | 77.65 201 | 78.50 199 | 76.66 201 | 87.96 169 | 85.43 212 | 64.70 218 | 74.50 196 | 64.15 215 | 51.26 217 | 61.32 200 | 58.17 213 | 84.11 162 | 95.16 65 | 93.83 81 | 97.45 119 | 91.41 178 |
|
train_agg | | | 96.15 25 | 96.64 25 | 95.58 33 | 98.44 27 | 98.03 48 | 98.14 18 | 95.40 31 | 93.90 45 | 87.72 59 | 96.26 17 | 98.10 10 | 95.75 31 | 96.25 47 | 95.45 55 | 98.01 84 | 98.47 31 |
|
gg-mvs-nofinetune | | | 81.83 189 | 83.58 162 | 79.80 196 | 91.57 129 | 96.54 91 | 93.79 88 | 68.80 212 | 62.71 216 | 43.01 222 | 55.28 208 | 85.06 88 | 83.65 164 | 96.13 49 | 94.86 65 | 97.98 89 | 94.46 151 |
|
SCA | | | 86.25 132 | 87.52 128 | 84.77 155 | 91.59 128 | 93.90 128 | 89.11 161 | 73.25 205 | 90.38 79 | 72.84 142 | 83.26 87 | 83.79 93 | 88.49 121 | 86.07 195 | 85.56 193 | 93.33 192 | 89.67 193 |
|
MS-PatchMatch | | | 87.63 120 | 87.61 125 | 87.65 127 | 93.95 90 | 94.09 125 | 92.60 110 | 81.52 170 | 86.64 121 | 76.41 128 | 73.46 149 | 85.94 83 | 85.01 154 | 92.23 129 | 90.00 169 | 96.43 162 | 90.93 184 |
|
Patchmatch-RL test | | | | | | | | 18.47 227 | | | | | | | | | | |
|
tmp_tt | | | | | 50.24 214 | 68.55 218 | 46.86 223 | 48.90 223 | 18.28 221 | 86.51 125 | 68.32 172 | 70.19 165 | 65.33 183 | 26.69 221 | 74.37 213 | 66.80 215 | 70.72 221 | |
|
canonicalmvs | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 82 | 97.86 52 | 95.45 57 | 87.86 103 | 94.00 44 | 87.47 61 | 88.32 56 | 82.37 105 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
anonymousdsp | | | 84.51 157 | 85.85 147 | 82.95 181 | 86.30 197 | 93.51 140 | 85.77 191 | 80.38 177 | 78.25 182 | 63.42 197 | 73.51 148 | 72.20 151 | 84.64 156 | 93.21 113 | 92.16 123 | 97.19 127 | 98.14 45 |
|
v144192 | | | 83.48 173 | 82.23 178 | 84.94 153 | 86.65 192 | 92.84 160 | 89.63 155 | 82.48 158 | 77.87 183 | 67.36 179 | 65.33 187 | 63.50 193 | 86.51 138 | 89.72 169 | 89.99 170 | 97.03 137 | 96.35 108 |
|
v1921920 | | | 83.30 175 | 82.09 181 | 84.70 156 | 86.59 195 | 92.67 166 | 89.82 151 | 82.23 162 | 78.32 180 | 65.76 188 | 64.64 192 | 62.35 197 | 86.78 137 | 90.34 158 | 90.02 168 | 97.02 138 | 96.31 111 |
|
FC-MVSNet-train | | | 90.55 91 | 90.19 93 | 90.97 91 | 93.78 97 | 95.16 109 | 92.11 120 | 88.85 84 | 87.64 113 | 83.38 97 | 84.36 81 | 78.41 128 | 89.53 102 | 94.69 78 | 93.15 104 | 98.15 69 | 97.92 56 |
|
UA-Net | | | 90.81 85 | 92.58 62 | 88.74 113 | 94.87 79 | 97.44 67 | 92.61 109 | 88.22 93 | 82.35 159 | 78.93 119 | 85.20 76 | 95.61 38 | 79.56 185 | 96.52 38 | 96.57 24 | 98.23 63 | 94.37 153 |
|
v1192 | | | 83.56 172 | 82.35 177 | 84.98 152 | 86.84 191 | 92.84 160 | 90.01 145 | 82.70 153 | 78.54 179 | 66.48 183 | 64.88 190 | 62.91 194 | 86.91 135 | 90.72 152 | 90.25 160 | 96.94 144 | 96.32 110 |
|
FC-MVSNet-test | | | 86.15 135 | 89.10 105 | 82.71 184 | 89.83 148 | 93.18 151 | 87.88 174 | 84.69 130 | 86.54 123 | 62.18 200 | 82.39 99 | 83.31 95 | 74.18 200 | 92.52 122 | 91.86 131 | 97.50 117 | 93.88 160 |
|
v1144 | | | 84.03 166 | 82.88 174 | 85.37 147 | 87.17 184 | 93.15 154 | 90.18 139 | 83.31 150 | 78.83 178 | 67.85 175 | 65.99 182 | 64.99 187 | 86.79 136 | 90.75 151 | 90.33 158 | 96.90 149 | 96.15 116 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
HFP-MVS | | | 97.11 14 | 97.19 16 | 97.00 12 | 98.97 13 | 98.73 12 | 98.37 11 | 95.69 21 | 96.60 9 | 93.28 20 | 96.87 8 | 96.64 29 | 97.27 2 | 96.64 35 | 96.33 35 | 98.44 38 | 98.56 22 |
|
v148 | | | 83.61 171 | 82.10 180 | 85.37 147 | 87.34 180 | 92.94 158 | 87.48 176 | 85.72 124 | 78.92 177 | 73.87 137 | 65.71 185 | 64.69 190 | 81.78 177 | 87.82 184 | 89.35 179 | 96.01 167 | 95.26 142 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
v7n | | | 82.25 187 | 81.54 187 | 83.07 179 | 85.55 201 | 92.58 168 | 86.68 185 | 81.10 175 | 76.54 190 | 65.97 187 | 62.91 196 | 60.56 206 | 82.36 171 | 91.07 147 | 90.35 157 | 96.77 156 | 96.80 93 |
|
DI_MVS_plusplus_trai | | | 91.05 81 | 90.15 94 | 92.11 74 | 92.67 119 | 96.61 88 | 96.03 48 | 88.44 91 | 90.25 80 | 85.92 75 | 73.73 144 | 84.89 89 | 91.92 76 | 94.17 91 | 94.07 78 | 97.68 109 | 97.31 79 |
|
HPM-MVS++ |  | | 97.22 11 | 97.40 12 | 97.01 11 | 99.08 3 | 98.55 24 | 98.19 14 | 96.48 7 | 96.02 19 | 93.28 20 | 96.26 17 | 98.71 8 | 96.76 17 | 97.30 16 | 96.25 37 | 98.30 54 | 98.68 15 |
|
XVS | | | | | | 95.68 64 | 98.66 14 | 94.96 62 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
v1240 | | | 82.88 181 | 81.66 185 | 84.29 162 | 86.46 196 | 92.52 172 | 89.06 162 | 81.82 167 | 77.16 187 | 65.09 192 | 64.17 194 | 61.50 202 | 86.36 139 | 90.12 162 | 90.13 162 | 96.95 143 | 96.04 120 |
|
pm-mvs1 | | | 84.55 156 | 83.46 163 | 85.82 142 | 88.16 167 | 93.39 143 | 89.05 163 | 85.36 127 | 74.03 201 | 72.43 145 | 65.08 188 | 71.11 155 | 82.30 172 | 93.48 105 | 91.70 134 | 97.64 112 | 95.43 139 |
|
X-MVStestdata | | | | | | 95.68 64 | 98.66 14 | 94.96 62 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
X-MVS | | | 96.07 26 | 96.33 28 | 95.77 29 | 98.94 16 | 98.66 14 | 97.94 23 | 95.41 30 | 95.12 28 | 88.03 54 | 93.00 33 | 96.06 32 | 95.85 29 | 96.65 34 | 96.35 31 | 98.47 32 | 98.48 30 |
|
v8 | | | 84.45 161 | 83.30 170 | 85.80 143 | 87.53 178 | 92.95 157 | 90.31 136 | 82.46 159 | 80.46 167 | 71.43 149 | 66.99 175 | 67.16 174 | 86.14 144 | 89.26 175 | 90.22 161 | 96.94 144 | 96.06 119 |
|
v10 | | | 84.18 162 | 83.17 172 | 85.37 147 | 87.34 180 | 92.68 165 | 90.32 135 | 81.33 171 | 79.93 175 | 69.23 167 | 66.33 180 | 65.74 182 | 87.03 133 | 90.84 149 | 90.38 156 | 96.97 140 | 96.29 112 |
|
v2v482 | | | 84.51 157 | 83.05 173 | 86.20 141 | 87.25 182 | 93.28 147 | 90.22 138 | 85.40 126 | 79.94 174 | 69.78 162 | 67.74 172 | 65.15 186 | 87.57 127 | 89.12 177 | 90.55 154 | 96.97 140 | 95.60 133 |
|
V42 | | | 84.48 159 | 83.36 169 | 85.79 144 | 87.14 185 | 93.28 147 | 90.03 143 | 83.98 141 | 80.30 169 | 71.20 152 | 66.90 177 | 67.17 173 | 85.55 148 | 89.35 172 | 90.27 159 | 96.82 154 | 96.27 113 |
|
SD-MVS | | | 97.35 8 | 97.73 8 | 96.90 14 | 97.35 44 | 98.66 14 | 97.85 25 | 96.25 11 | 96.86 6 | 94.54 8 | 96.75 11 | 99.13 6 | 96.99 7 | 96.94 26 | 96.58 23 | 98.39 44 | 99.20 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GA-MVS | | | 85.08 150 | 85.65 148 | 84.42 161 | 89.77 149 | 94.25 123 | 89.26 158 | 84.62 132 | 81.19 165 | 62.25 199 | 75.72 136 | 68.44 168 | 84.14 161 | 93.57 102 | 91.68 136 | 96.49 158 | 94.71 149 |
|
MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 21 | 98.33 29 | 98.17 44 | 96.94 37 | 94.61 34 | 94.70 38 | 94.37 10 | 89.20 52 | 95.96 35 | 96.81 13 | 95.57 58 | 97.33 5 | 98.24 62 | 98.47 31 |
|
APDe-MVS | | | 97.79 5 | 97.96 6 | 97.60 2 | 99.20 2 | 99.10 6 | 98.88 2 | 96.68 2 | 96.81 7 | 94.64 6 | 97.84 3 | 98.02 11 | 97.24 3 | 97.74 8 | 97.02 14 | 98.97 5 | 99.16 6 |
|
TSAR-MVS + COLMAP | | | 92.39 63 | 92.31 68 | 92.47 69 | 95.35 74 | 96.46 94 | 96.13 46 | 92.04 47 | 95.33 26 | 80.11 114 | 94.95 29 | 77.35 137 | 94.05 49 | 94.49 86 | 93.08 105 | 97.15 129 | 94.53 150 |
|
CVMVSNet | | | 83.83 168 | 85.53 149 | 81.85 191 | 89.60 151 | 90.92 194 | 87.81 175 | 83.21 151 | 80.11 171 | 60.16 204 | 76.47 129 | 78.57 126 | 76.79 192 | 89.76 167 | 90.13 162 | 93.51 191 | 92.75 173 |
|
TSAR-MVS + ACMM | | | 96.19 23 | 97.39 13 | 94.78 37 | 97.70 40 | 98.41 35 | 97.72 27 | 95.49 27 | 96.47 11 | 86.66 68 | 96.35 15 | 97.85 13 | 93.99 50 | 97.19 20 | 96.37 30 | 97.12 132 | 99.13 7 |
|
pmmvs4 | | | 86.00 139 | 84.28 158 | 88.00 121 | 87.80 171 | 92.01 182 | 89.94 147 | 84.91 129 | 86.79 120 | 80.98 109 | 73.41 150 | 66.34 180 | 88.12 122 | 89.31 174 | 88.90 183 | 96.24 165 | 93.20 169 |
|
EU-MVSNet | | | 78.43 198 | 80.25 195 | 76.30 202 | 83.81 206 | 87.27 210 | 80.99 203 | 79.52 180 | 76.01 194 | 54.12 213 | 70.44 163 | 64.87 188 | 67.40 207 | 86.23 194 | 85.54 194 | 91.95 204 | 91.41 178 |
|
test-LLR | | | 86.88 127 | 88.28 112 | 85.24 150 | 91.22 133 | 92.07 179 | 87.41 177 | 83.62 145 | 84.58 137 | 69.33 165 | 83.00 89 | 82.79 98 | 84.24 158 | 92.26 126 | 89.81 172 | 95.64 176 | 93.44 164 |
|
TESTMET0.1,1 | | | 86.11 137 | 88.28 112 | 83.59 171 | 87.80 171 | 92.07 179 | 87.41 177 | 77.12 190 | 84.58 137 | 69.33 165 | 83.00 89 | 82.79 98 | 84.24 158 | 92.26 126 | 89.81 172 | 95.64 176 | 93.44 164 |
|
test-mter | | | 86.09 138 | 88.38 111 | 83.43 174 | 87.89 170 | 92.61 167 | 86.89 182 | 77.11 191 | 84.30 142 | 68.62 171 | 82.57 97 | 82.45 103 | 84.34 157 | 92.40 123 | 90.11 166 | 95.74 171 | 94.21 156 |
|
ACMMPR | | | 96.92 17 | 96.96 19 | 96.87 15 | 98.99 12 | 98.78 11 | 98.38 10 | 95.52 24 | 96.57 10 | 92.81 24 | 96.06 20 | 95.90 36 | 97.07 5 | 96.60 37 | 96.34 34 | 98.46 34 | 98.42 33 |
|
testgi | | | 81.94 188 | 84.09 159 | 79.43 197 | 89.53 153 | 90.83 197 | 82.49 200 | 81.75 168 | 80.59 166 | 59.46 206 | 82.82 93 | 65.75 181 | 67.97 205 | 90.10 163 | 89.52 177 | 95.39 182 | 89.03 194 |
|
test20.03 | | | 76.41 203 | 78.49 200 | 73.98 204 | 85.64 200 | 87.50 207 | 75.89 210 | 80.71 176 | 70.84 208 | 51.07 218 | 68.06 171 | 61.40 203 | 54.99 214 | 88.28 182 | 87.20 187 | 95.58 179 | 86.15 204 |
|
thres600view7 | | | 89.28 111 | 87.47 130 | 91.39 85 | 94.12 84 | 97.25 71 | 93.94 84 | 89.74 71 | 85.62 133 | 80.63 112 | 75.24 139 | 69.33 164 | 91.66 81 | 94.92 70 | 93.23 98 | 98.27 58 | 96.72 95 |
|
ADS-MVSNet | | | 84.08 164 | 84.95 152 | 83.05 180 | 91.53 132 | 91.75 186 | 88.16 171 | 70.70 209 | 89.96 89 | 69.51 164 | 78.83 115 | 76.97 139 | 86.29 141 | 84.08 202 | 84.60 198 | 92.13 203 | 88.48 200 |
|
MP-MVS |  | | 96.56 21 | 96.72 23 | 96.37 24 | 98.93 18 | 98.48 30 | 98.04 20 | 95.55 23 | 94.32 40 | 90.95 34 | 95.88 22 | 97.02 26 | 96.29 25 | 96.77 30 | 96.01 47 | 98.47 32 | 98.56 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
testmvs | | | 4.35 218 | 6.54 220 | 1.79 219 | 0.60 226 | 1.82 227 | 3.06 228 | 0.95 222 | 7.22 223 | 0.88 228 | 12.38 223 | 1.25 230 | 3.87 223 | 6.09 222 | 5.58 221 | 1.40 225 | 11.42 223 |
|
thres400 | | | 89.40 107 | 87.58 127 | 91.53 82 | 94.06 87 | 97.21 74 | 94.19 78 | 89.83 69 | 85.69 130 | 81.08 108 | 75.50 137 | 69.76 162 | 91.80 77 | 94.79 77 | 93.51 87 | 98.20 66 | 96.60 99 |
|
test123 | | | 3.48 219 | 5.31 221 | 1.34 220 | 0.20 228 | 1.52 228 | 2.17 229 | 0.58 223 | 6.13 224 | 0.31 229 | 9.85 224 | 0.31 231 | 3.90 222 | 2.65 223 | 5.28 222 | 0.87 226 | 11.46 222 |
|
thres200 | | | 89.49 106 | 87.72 122 | 91.55 81 | 93.95 90 | 97.25 71 | 94.34 72 | 89.74 71 | 85.66 131 | 81.18 105 | 76.12 134 | 70.19 161 | 91.80 77 | 94.92 70 | 93.51 87 | 98.27 58 | 96.40 106 |
|
test0.0.03 1 | | | 85.58 143 | 87.69 124 | 83.11 177 | 91.22 133 | 92.54 170 | 85.60 193 | 83.62 145 | 85.66 131 | 67.84 176 | 82.79 94 | 79.70 120 | 73.51 203 | 91.15 146 | 90.79 145 | 96.88 151 | 91.23 181 |
|
pmmvs3 | | | 71.13 208 | 71.06 210 | 71.21 208 | 73.54 216 | 80.19 215 | 71.69 216 | 64.86 214 | 62.04 217 | 52.10 215 | 54.92 210 | 48.00 221 | 75.03 198 | 83.75 204 | 83.24 203 | 90.04 212 | 85.27 206 |
|
EMVS | | | 39.04 217 | 34.32 219 | 44.54 216 | 58.25 222 | 39.35 225 | 27.61 225 | 62.55 216 | 35.99 220 | 16.40 226 | 20.04 222 | 14.77 227 | 44.80 216 | 33.12 221 | 44.10 220 | 57.61 223 | 52.89 221 |
|
E-PMN | | | 40.00 215 | 35.74 218 | 44.98 215 | 57.69 223 | 39.15 226 | 28.05 224 | 62.70 215 | 35.52 221 | 17.78 225 | 20.90 220 | 14.36 228 | 44.47 217 | 35.89 220 | 47.86 219 | 59.15 222 | 56.47 220 |
|
PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 26 | 99.04 7 | 98.63 19 | 98.32 12 | 92.76 42 | 93.42 47 | 90.49 37 | 96.30 16 | 95.31 41 | 96.71 18 | 96.46 40 | 96.02 46 | 98.38 45 | 98.19 42 |
|
MCST-MVS | | | 96.83 18 | 97.06 17 | 96.57 19 | 98.88 20 | 98.47 32 | 98.02 21 | 96.16 14 | 95.58 23 | 90.96 32 | 95.78 23 | 97.84 14 | 96.46 22 | 97.00 25 | 96.17 39 | 98.94 7 | 98.55 27 |
|
MVS_Test | | | 91.81 72 | 92.19 69 | 91.37 87 | 93.24 105 | 96.95 83 | 94.43 68 | 86.25 117 | 91.45 67 | 83.45 96 | 86.31 65 | 85.15 87 | 92.93 66 | 93.99 94 | 94.71 67 | 97.92 90 | 96.77 94 |
|
MDA-MVSNet-bldmvs | | | 73.81 204 | 72.56 208 | 75.28 203 | 72.52 217 | 88.87 203 | 74.95 212 | 82.67 155 | 71.57 205 | 55.02 211 | 65.96 183 | 42.84 223 | 76.11 195 | 70.61 215 | 81.47 206 | 90.38 211 | 86.59 203 |
|
CDPH-MVS | | | 94.80 41 | 95.50 33 | 93.98 46 | 98.34 28 | 98.06 47 | 97.41 30 | 93.23 39 | 92.81 52 | 82.98 98 | 92.51 34 | 94.82 42 | 93.53 58 | 96.08 50 | 96.30 36 | 98.42 40 | 97.94 54 |
|
casdiffmvs |  | | 91.72 74 | 91.16 85 | 92.38 72 | 93.16 107 | 97.15 76 | 93.95 82 | 89.49 77 | 91.58 66 | 86.03 72 | 80.75 109 | 80.95 114 | 93.16 62 | 95.25 63 | 95.22 60 | 98.50 29 | 97.23 81 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
diffmvs |  | | 91.37 77 | 91.09 86 | 91.70 79 | 92.71 118 | 96.47 93 | 94.03 80 | 88.78 85 | 92.74 54 | 85.43 88 | 83.63 86 | 80.37 116 | 91.76 79 | 93.39 108 | 93.78 82 | 97.50 117 | 97.23 81 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline2 | | | 88.97 112 | 89.50 99 | 88.36 116 | 91.14 135 | 95.30 107 | 90.13 142 | 85.17 128 | 87.24 115 | 80.80 110 | 84.46 80 | 78.44 127 | 85.60 147 | 93.54 104 | 91.87 130 | 97.31 122 | 95.66 131 |
|
baseline1 | | | 90.81 85 | 90.29 91 | 91.42 84 | 93.67 100 | 95.86 105 | 93.94 84 | 89.69 74 | 89.29 100 | 82.85 99 | 82.91 91 | 80.30 117 | 89.60 101 | 95.05 66 | 94.79 66 | 98.80 12 | 93.82 161 |
|
PMMVS2 | | | 53.68 214 | 55.72 216 | 51.30 212 | 58.84 221 | 67.02 219 | 54.23 220 | 60.97 217 | 47.50 219 | 19.42 224 | 34.81 218 | 31.97 224 | 30.88 220 | 65.84 217 | 69.99 213 | 83.47 216 | 72.92 217 |
|
PM-MVS | | | 80.29 194 | 79.30 197 | 81.45 193 | 81.91 209 | 88.23 205 | 82.61 199 | 79.01 182 | 79.99 173 | 67.15 181 | 69.07 168 | 51.39 217 | 82.92 168 | 87.55 187 | 85.59 192 | 95.08 186 | 93.28 167 |
|
PS-CasMVS | | | 82.53 184 | 81.54 187 | 83.68 170 | 87.08 188 | 92.54 170 | 86.20 188 | 83.46 149 | 76.46 192 | 65.73 189 | 65.71 185 | 59.41 212 | 81.61 178 | 89.06 178 | 90.55 154 | 98.03 81 | 97.07 87 |
|
UniMVSNet_NR-MVSNet | | | 86.80 128 | 85.86 146 | 87.89 125 | 88.17 166 | 94.07 126 | 90.15 140 | 88.51 90 | 84.20 145 | 73.45 139 | 72.38 156 | 70.30 160 | 88.95 115 | 90.25 159 | 92.21 121 | 98.12 72 | 97.62 67 |
|
PEN-MVS | | | 82.49 185 | 81.58 186 | 83.56 172 | 86.93 189 | 92.05 181 | 86.71 184 | 83.84 142 | 76.94 189 | 64.68 193 | 67.24 173 | 60.11 208 | 81.17 180 | 87.78 185 | 90.70 151 | 98.02 83 | 96.21 114 |
|
TransMVSNet (Re) | | | 82.67 183 | 80.93 194 | 84.69 157 | 88.71 158 | 91.50 190 | 87.90 173 | 87.15 111 | 71.54 207 | 68.24 173 | 63.69 195 | 64.67 191 | 78.51 189 | 91.65 137 | 90.73 150 | 97.64 112 | 92.73 174 |
|
DTE-MVSNet | | | 81.76 190 | 81.04 192 | 82.60 186 | 86.63 193 | 91.48 192 | 85.97 190 | 83.70 144 | 76.45 193 | 62.44 198 | 67.16 174 | 59.98 209 | 78.98 187 | 87.15 189 | 89.93 171 | 97.88 93 | 95.12 144 |
|
DU-MVS | | | 86.12 136 | 84.81 154 | 87.66 126 | 87.77 173 | 93.78 131 | 90.15 140 | 87.87 101 | 84.40 139 | 73.45 139 | 70.59 161 | 64.82 189 | 88.95 115 | 90.14 160 | 92.33 118 | 97.76 100 | 97.62 67 |
|
UniMVSNet (Re) | | | 86.22 134 | 85.46 151 | 87.11 131 | 88.34 164 | 94.42 118 | 89.65 154 | 87.10 112 | 84.39 141 | 74.61 133 | 70.41 164 | 68.10 169 | 85.10 153 | 91.17 145 | 91.79 132 | 97.84 94 | 97.94 54 |
|
CP-MVSNet | | | 83.11 179 | 82.15 179 | 84.23 163 | 87.20 183 | 92.70 164 | 86.42 186 | 83.53 148 | 77.83 184 | 67.67 177 | 66.89 178 | 60.53 207 | 82.47 170 | 89.23 176 | 90.65 152 | 98.08 76 | 97.20 84 |
|
WR-MVS_H | | | 82.86 182 | 82.66 176 | 83.10 178 | 87.44 179 | 93.33 145 | 85.71 192 | 83.20 152 | 77.36 186 | 68.20 174 | 66.37 179 | 65.23 185 | 76.05 196 | 89.35 172 | 90.13 162 | 97.99 86 | 96.89 92 |
|
WR-MVS | | | 83.14 177 | 83.38 168 | 82.87 182 | 87.55 177 | 93.29 146 | 86.36 187 | 84.21 137 | 80.05 172 | 66.41 184 | 66.91 176 | 66.92 176 | 75.66 197 | 88.96 179 | 90.56 153 | 97.05 136 | 96.96 89 |
|
NR-MVSNet | | | 85.46 146 | 84.54 156 | 86.52 139 | 88.33 165 | 93.78 131 | 90.45 133 | 87.87 101 | 84.40 139 | 71.61 147 | 70.59 161 | 62.09 199 | 82.79 169 | 91.75 135 | 91.75 133 | 98.10 75 | 97.44 73 |
|
Baseline_NR-MVSNet | | | 85.28 148 | 83.42 166 | 87.46 130 | 87.77 173 | 90.80 198 | 89.90 150 | 87.69 105 | 83.93 149 | 74.16 135 | 64.72 191 | 66.43 179 | 87.48 130 | 90.14 160 | 90.83 144 | 97.73 103 | 97.11 86 |
|
TranMVSNet+NR-MVSNet | | | 85.57 144 | 84.41 157 | 86.92 133 | 87.67 176 | 93.34 144 | 90.31 136 | 88.43 92 | 83.07 154 | 70.11 160 | 69.99 167 | 65.28 184 | 86.96 134 | 89.73 168 | 92.27 119 | 98.06 79 | 97.17 85 |
|
TSAR-MVS + GP. | | | 95.86 28 | 96.95 21 | 94.60 41 | 94.07 86 | 98.11 46 | 96.30 44 | 91.76 49 | 95.67 20 | 91.07 30 | 96.82 10 | 97.69 17 | 95.71 32 | 95.96 52 | 95.75 50 | 98.68 18 | 98.63 17 |
|
mPP-MVS | | | | | | 98.76 23 | | | | | | | 95.49 39 | | | | | |
|
SixPastTwentyTwo | | | 83.12 178 | 83.44 165 | 82.74 183 | 87.71 175 | 93.11 155 | 82.30 201 | 82.33 160 | 79.24 176 | 64.33 194 | 78.77 117 | 62.75 195 | 84.11 162 | 88.11 183 | 87.89 185 | 95.70 174 | 94.21 156 |
|
casdiffmvs_mvg |  | | 91.94 68 | 91.25 83 | 92.75 67 | 93.41 104 | 97.19 75 | 95.48 56 | 89.77 70 | 89.86 92 | 86.41 70 | 81.02 108 | 82.23 107 | 92.93 66 | 95.44 61 | 95.61 52 | 98.51 26 | 97.40 75 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
LGP-MVS_train | | | 91.83 71 | 92.04 72 | 91.58 80 | 95.46 70 | 96.18 100 | 95.97 50 | 89.85 68 | 90.45 77 | 77.76 121 | 91.92 38 | 80.07 119 | 92.34 74 | 94.27 88 | 93.47 91 | 98.11 74 | 97.90 59 |
|
baseline | | | 91.19 79 | 91.89 74 | 90.38 92 | 92.76 115 | 95.04 111 | 93.55 95 | 84.54 134 | 92.92 50 | 85.71 80 | 86.68 64 | 86.96 76 | 89.28 108 | 92.00 132 | 92.62 115 | 96.46 160 | 96.99 88 |
|
EPNet_dtu | | | 88.32 117 | 90.61 89 | 85.64 146 | 96.79 54 | 92.27 175 | 92.03 122 | 90.31 62 | 89.05 102 | 65.44 190 | 89.43 50 | 85.90 84 | 74.22 199 | 92.76 115 | 92.09 125 | 95.02 188 | 92.76 172 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 88.57 114 | 87.82 121 | 89.44 106 | 95.46 70 | 96.89 85 | 93.74 90 | 85.87 120 | 89.63 95 | 77.42 124 | 61.38 199 | 83.31 95 | 88.80 119 | 93.44 107 | 93.16 103 | 95.37 183 | 96.95 90 |
|
EPNet | | | 93.92 50 | 94.40 46 | 93.36 54 | 97.89 35 | 96.55 90 | 96.08 47 | 92.14 45 | 91.65 64 | 89.16 45 | 94.07 30 | 90.17 70 | 87.78 124 | 95.24 64 | 94.97 63 | 97.09 134 | 98.15 44 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
APD-MVS |  | | 97.12 13 | 97.05 18 | 97.19 7 | 99.04 7 | 98.63 19 | 98.45 8 | 96.54 6 | 94.81 36 | 93.50 16 | 96.10 19 | 97.40 22 | 96.81 13 | 97.05 22 | 96.82 19 | 98.80 12 | 98.56 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 97.30 10 | 97.41 11 | 97.18 8 | 99.02 10 | 98.60 21 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 11 | 95.54 25 | 97.99 12 | 96.99 7 | 97.97 3 | 97.17 9 | 98.57 24 | 98.50 29 |
|
NCCC | | | 96.75 19 | 96.67 24 | 96.85 16 | 99.03 9 | 98.44 34 | 98.15 16 | 96.28 10 | 96.32 13 | 92.39 25 | 92.16 35 | 97.55 20 | 96.68 19 | 97.32 14 | 96.65 22 | 98.55 25 | 98.26 38 |
|
CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 17 | 98.85 21 | 98.58 22 | 98.18 15 | 95.51 26 | 95.34 25 | 92.94 23 | 95.21 28 | 96.25 31 | 96.79 15 | 96.44 42 | 95.77 49 | 98.35 46 | 98.56 22 |
|
NP-MVS | | | | | | | | | | 91.63 65 | | | | | | | | |
|
EG-PatchMatch MVS | | | 81.70 191 | 81.31 190 | 82.15 189 | 88.75 157 | 93.81 130 | 87.14 180 | 78.89 183 | 71.57 205 | 64.12 196 | 61.20 201 | 68.46 167 | 76.73 194 | 91.48 138 | 90.77 147 | 97.28 123 | 91.90 175 |
|
tpm cat1 | | | 84.13 163 | 81.99 183 | 86.63 138 | 91.74 126 | 91.50 190 | 90.68 130 | 75.69 194 | 86.12 127 | 85.44 87 | 72.39 155 | 70.72 156 | 85.16 152 | 80.89 209 | 81.56 205 | 91.07 207 | 90.71 185 |
|
SteuartSystems-ACMMP | | | 97.10 15 | 97.49 10 | 96.65 18 | 98.97 13 | 98.95 9 | 98.43 9 | 95.96 17 | 95.12 28 | 91.46 28 | 96.85 9 | 97.60 18 | 96.37 24 | 97.76 6 | 97.16 10 | 98.68 18 | 98.97 11 |
Skip Steuart: Steuart Systems R&D Blog. |
CostFormer | | | 86.78 129 | 86.05 140 | 87.62 129 | 92.15 122 | 93.20 150 | 91.55 127 | 75.83 193 | 88.11 111 | 85.29 89 | 81.76 102 | 76.22 142 | 87.80 123 | 84.45 200 | 85.21 196 | 93.12 194 | 93.42 166 |
|
CR-MVSNet | | | 85.48 145 | 86.29 137 | 84.53 160 | 91.08 138 | 92.10 177 | 89.18 159 | 73.30 203 | 84.75 135 | 71.08 153 | 73.12 154 | 77.91 132 | 86.27 142 | 91.48 138 | 90.75 148 | 96.27 164 | 93.94 158 |
|
Patchmtry | | | | | | | 92.39 174 | 89.18 159 | 73.30 203 | | 71.08 153 | | | | | | | |
|
PatchT | | | 83.86 167 | 85.51 150 | 81.94 190 | 88.41 163 | 91.56 189 | 78.79 208 | 71.57 207 | 84.08 147 | 71.08 153 | 70.62 160 | 76.13 143 | 86.27 142 | 91.48 138 | 90.75 148 | 95.52 181 | 93.94 158 |
|
tpmrst | | | 83.72 170 | 83.45 164 | 84.03 167 | 92.21 121 | 91.66 187 | 88.74 167 | 73.58 202 | 88.14 110 | 72.67 143 | 77.37 124 | 72.11 152 | 86.34 140 | 82.94 205 | 82.05 204 | 90.63 209 | 89.86 192 |
|
tpm | | | 83.16 176 | 83.64 161 | 82.60 186 | 90.75 140 | 91.05 193 | 88.49 169 | 73.99 198 | 82.36 158 | 67.08 182 | 78.10 120 | 68.79 165 | 84.17 160 | 85.95 196 | 85.96 191 | 91.09 206 | 93.23 168 |
|
DELS-MVS | | | 93.71 52 | 93.47 52 | 94.00 44 | 96.82 53 | 98.39 36 | 96.80 39 | 91.07 56 | 89.51 98 | 89.94 41 | 83.80 84 | 89.29 72 | 90.95 88 | 97.32 14 | 97.65 2 | 98.42 40 | 98.32 36 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
RPMNet | | | 84.82 154 | 85.90 145 | 83.56 172 | 91.10 136 | 92.10 177 | 88.73 168 | 71.11 208 | 84.75 135 | 68.79 168 | 73.56 146 | 77.62 135 | 85.33 151 | 90.08 164 | 89.43 178 | 96.32 163 | 93.77 162 |
|
MVSTER | | | 91.73 73 | 91.61 78 | 91.86 77 | 93.18 106 | 94.56 113 | 94.37 70 | 87.90 99 | 90.16 85 | 88.69 51 | 89.23 51 | 81.28 113 | 88.92 117 | 95.75 56 | 93.95 80 | 98.12 72 | 96.37 107 |
|
CPTT-MVS | | | 95.54 31 | 95.07 37 | 96.10 25 | 97.88 36 | 97.98 50 | 97.92 24 | 94.86 32 | 94.56 39 | 92.16 26 | 91.01 41 | 95.71 37 | 96.97 10 | 94.56 83 | 93.50 90 | 96.81 155 | 98.14 45 |
|
GBi-Net | | | 90.21 96 | 90.11 95 | 90.32 94 | 88.66 160 | 93.65 137 | 94.25 75 | 85.78 121 | 90.03 86 | 85.56 83 | 77.38 121 | 86.13 80 | 89.38 105 | 93.97 95 | 94.16 74 | 98.31 51 | 95.47 136 |
|
PVSNet_Blended_VisFu | | | 91.92 69 | 92.39 67 | 91.36 88 | 95.45 72 | 97.85 53 | 92.25 115 | 89.54 76 | 88.53 108 | 87.47 61 | 79.82 112 | 90.53 66 | 85.47 150 | 96.31 46 | 95.16 61 | 97.99 86 | 98.56 22 |
|
PVSNet_BlendedMVS | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 62 | 97.83 55 | 93.74 90 | 90.58 59 | 91.86 61 | 90.69 35 | 85.87 72 | 82.04 108 | 90.01 98 | 96.39 43 | 95.26 58 | 98.34 48 | 97.81 61 |
|
PVSNet_Blended | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 62 | 97.83 55 | 93.74 90 | 90.58 59 | 91.86 61 | 90.69 35 | 85.87 72 | 82.04 108 | 90.01 98 | 96.39 43 | 95.26 58 | 98.34 48 | 97.81 61 |
|
FMVSNet5 | | | 84.47 160 | 84.72 155 | 84.18 165 | 83.30 207 | 88.43 204 | 88.09 172 | 79.42 181 | 84.25 143 | 74.14 136 | 73.15 153 | 78.74 124 | 83.65 164 | 91.19 144 | 91.19 142 | 96.46 160 | 86.07 205 |
|
test1 | | | 90.21 96 | 90.11 95 | 90.32 94 | 88.66 160 | 93.65 137 | 94.25 75 | 85.78 121 | 90.03 86 | 85.56 83 | 77.38 121 | 86.13 80 | 89.38 105 | 93.97 95 | 94.16 74 | 98.31 51 | 95.47 136 |
|
new_pmnet | | | 72.29 207 | 73.25 207 | 71.16 209 | 75.35 214 | 81.38 214 | 73.72 214 | 69.27 211 | 75.97 195 | 49.84 219 | 56.27 206 | 56.12 215 | 69.08 204 | 81.73 208 | 80.86 207 | 89.72 213 | 80.44 213 |
|
FMVSNet3 | | | 90.19 98 | 90.06 97 | 90.34 93 | 88.69 159 | 93.85 129 | 94.58 65 | 85.78 121 | 90.03 86 | 85.56 83 | 77.38 121 | 86.13 80 | 89.22 111 | 93.29 111 | 94.36 71 | 98.20 66 | 95.40 140 |
|
dps | | | 85.00 151 | 83.21 171 | 87.08 132 | 90.73 141 | 92.55 169 | 89.34 156 | 75.29 195 | 84.94 134 | 87.01 64 | 79.27 114 | 67.69 172 | 87.27 132 | 84.22 201 | 83.56 201 | 92.83 197 | 90.25 189 |
|
FMVSNet2 | | | 89.61 104 | 89.14 104 | 90.16 100 | 88.66 160 | 93.65 137 | 94.25 75 | 85.44 125 | 88.57 107 | 84.96 92 | 73.53 147 | 83.82 92 | 89.38 105 | 94.23 89 | 94.68 68 | 98.31 51 | 95.47 136 |
|
FMVSNet1 | | | 87.33 123 | 86.00 143 | 88.89 110 | 87.13 186 | 92.83 162 | 93.08 104 | 84.46 135 | 81.35 164 | 82.20 100 | 66.33 180 | 77.96 131 | 88.96 114 | 93.97 95 | 94.16 74 | 97.54 116 | 95.38 141 |
|
N_pmnet | | | 77.55 202 | 76.68 205 | 78.56 199 | 85.43 202 | 87.30 209 | 78.84 207 | 81.88 166 | 78.30 181 | 60.61 202 | 61.46 198 | 62.15 198 | 74.03 202 | 82.04 207 | 80.69 208 | 90.59 210 | 84.81 209 |
|
UGNet | | | 91.52 76 | 93.41 53 | 89.32 107 | 94.13 83 | 97.15 76 | 91.83 125 | 89.01 83 | 90.62 73 | 85.86 77 | 86.83 60 | 91.73 56 | 77.40 190 | 94.68 79 | 94.43 69 | 97.71 104 | 98.40 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EC-MVSNet | | | 94.19 48 | 95.05 38 | 93.18 58 | 93.56 102 | 97.65 62 | 95.34 58 | 86.37 116 | 92.05 59 | 88.71 50 | 89.91 48 | 93.32 48 | 96.14 27 | 97.29 17 | 96.42 26 | 98.98 3 | 98.70 14 |
|
MDTV_nov1_ep13_2view | | | 80.43 193 | 80.94 193 | 79.84 195 | 84.82 204 | 90.87 195 | 84.23 195 | 73.80 199 | 80.28 170 | 64.33 194 | 70.05 166 | 68.77 166 | 79.67 183 | 84.83 199 | 83.50 202 | 92.17 201 | 88.25 202 |
|
MDTV_nov1_ep13 | | | 86.64 131 | 87.50 129 | 85.65 145 | 90.73 141 | 93.69 135 | 89.96 146 | 78.03 187 | 89.48 99 | 76.85 126 | 84.92 77 | 82.42 104 | 86.14 144 | 86.85 192 | 86.15 189 | 92.17 201 | 88.97 196 |
|
MIMVSNet1 | | | 73.19 205 | 73.70 206 | 72.60 207 | 65.42 220 | 86.69 211 | 75.56 211 | 79.65 179 | 67.87 212 | 55.30 210 | 45.24 216 | 56.41 214 | 63.79 210 | 86.98 190 | 87.66 186 | 95.85 169 | 85.04 207 |
|
MIMVSNet | | | 82.97 180 | 84.00 160 | 81.77 192 | 82.23 208 | 92.25 176 | 87.40 179 | 72.73 206 | 81.48 163 | 69.55 163 | 68.79 169 | 72.42 150 | 81.82 176 | 92.23 129 | 92.25 120 | 96.89 150 | 88.61 198 |
|
IterMVS-LS | | | 88.60 113 | 88.45 110 | 88.78 112 | 92.02 124 | 92.44 173 | 92.00 123 | 83.57 147 | 86.52 124 | 78.90 120 | 78.61 118 | 81.34 112 | 89.12 112 | 90.68 154 | 93.18 102 | 97.10 133 | 96.35 108 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 88.34 116 | 88.71 108 | 87.90 124 | 90.70 143 | 94.54 114 | 92.38 111 | 86.02 118 | 80.37 168 | 79.42 117 | 79.30 113 | 83.43 94 | 82.04 173 | 93.39 108 | 94.01 79 | 96.86 153 | 95.93 126 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS | | | 85.25 149 | 86.49 135 | 83.80 169 | 90.42 145 | 90.77 199 | 90.02 144 | 78.04 186 | 84.10 146 | 66.27 186 | 77.28 125 | 78.41 128 | 83.01 167 | 90.88 148 | 89.72 176 | 95.04 187 | 94.24 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_111021_LR | | | 94.84 39 | 95.57 32 | 94.00 44 | 97.11 49 | 97.72 61 | 94.88 64 | 91.16 55 | 95.24 27 | 88.74 49 | 96.03 21 | 91.52 59 | 94.33 47 | 95.96 52 | 95.01 62 | 97.79 96 | 97.49 72 |
|
HQP-MVS | | | 92.39 63 | 92.49 64 | 92.29 73 | 95.65 66 | 95.94 104 | 95.64 54 | 92.12 46 | 92.46 57 | 79.65 116 | 91.97 37 | 82.68 101 | 92.92 68 | 93.47 106 | 92.77 112 | 97.74 102 | 98.12 47 |
|
QAPM | | | 94.13 49 | 94.33 49 | 93.90 47 | 97.82 37 | 98.37 37 | 96.47 42 | 90.89 58 | 92.73 55 | 85.63 81 | 85.35 74 | 93.87 45 | 94.17 48 | 95.71 57 | 95.90 48 | 98.40 42 | 98.42 33 |
|
Vis-MVSNet |  | | 89.36 108 | 91.49 80 | 86.88 134 | 92.10 123 | 97.60 64 | 92.16 119 | 85.89 119 | 84.21 144 | 75.20 131 | 82.58 96 | 87.13 75 | 77.40 190 | 95.90 54 | 95.63 51 | 98.51 26 | 97.36 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS-HIRNet | | | 78.16 199 | 77.57 203 | 78.83 198 | 85.83 199 | 87.76 206 | 76.67 209 | 70.22 210 | 75.82 197 | 67.39 178 | 55.61 207 | 70.52 157 | 81.96 175 | 86.67 193 | 85.06 197 | 90.93 208 | 81.58 211 |
|
HyFIR lowres test | | | 87.87 119 | 86.42 136 | 89.57 104 | 95.56 67 | 96.99 82 | 92.37 112 | 84.15 138 | 86.64 121 | 77.17 125 | 57.65 205 | 83.97 91 | 91.08 86 | 92.09 131 | 92.44 117 | 97.09 134 | 95.16 143 |
|
EPMVS | | | 85.77 140 | 86.24 138 | 85.23 151 | 92.76 115 | 93.78 131 | 89.91 148 | 73.60 201 | 90.19 83 | 74.22 134 | 82.18 100 | 78.06 130 | 87.55 128 | 85.61 197 | 85.38 195 | 93.32 193 | 88.48 200 |
|
TAMVS | | | 84.94 153 | 84.95 152 | 84.93 154 | 88.82 156 | 93.18 151 | 88.44 170 | 81.28 172 | 77.16 187 | 73.76 138 | 75.43 138 | 76.57 141 | 82.04 173 | 90.59 155 | 90.79 145 | 95.22 185 | 90.94 183 |
|
IS_MVSNet | | | 91.87 70 | 93.35 54 | 90.14 101 | 94.09 85 | 97.73 59 | 93.09 103 | 88.12 95 | 88.71 105 | 79.98 115 | 84.49 79 | 90.63 65 | 87.49 129 | 97.07 21 | 96.96 16 | 98.07 77 | 97.88 60 |
|
RPSCF | | | 89.68 103 | 89.24 102 | 90.20 97 | 92.97 111 | 92.93 159 | 92.30 113 | 87.69 105 | 90.44 78 | 85.12 90 | 91.68 39 | 85.84 85 | 90.69 91 | 87.34 188 | 86.07 190 | 92.46 200 | 90.37 188 |
|
Vis-MVSNet (Re-imp) | | | 90.54 92 | 92.76 60 | 87.94 123 | 93.73 99 | 96.94 84 | 92.17 118 | 87.91 98 | 88.77 104 | 76.12 129 | 83.68 85 | 90.80 61 | 79.49 186 | 96.34 45 | 96.35 31 | 98.21 65 | 96.46 103 |
|
MVS_111021_HR | | | 94.84 39 | 95.91 30 | 93.60 52 | 97.35 44 | 98.46 33 | 95.08 60 | 91.19 54 | 94.18 42 | 85.97 73 | 95.38 26 | 92.56 52 | 93.61 57 | 96.61 36 | 96.25 37 | 98.40 42 | 97.92 56 |
|
CSCG | | | 95.68 30 | 95.46 35 | 95.93 27 | 98.71 24 | 99.07 7 | 97.13 35 | 93.55 37 | 95.48 24 | 93.35 19 | 90.61 45 | 93.82 46 | 95.16 37 | 94.60 82 | 95.57 53 | 97.70 106 | 99.08 10 |
|
PatchMatch-RL | | | 90.30 95 | 88.93 107 | 91.89 76 | 95.41 73 | 95.68 106 | 90.94 128 | 88.67 88 | 89.80 93 | 86.95 66 | 85.90 70 | 72.51 149 | 92.46 71 | 93.56 103 | 92.18 122 | 96.93 147 | 92.89 171 |
|
TDRefinement | | | 84.97 152 | 83.39 167 | 86.81 135 | 92.97 111 | 94.12 124 | 92.18 116 | 87.77 104 | 82.78 156 | 71.31 151 | 68.43 170 | 68.07 170 | 81.10 181 | 89.70 170 | 89.03 182 | 95.55 180 | 91.62 176 |
|
USDC | | | 86.73 130 | 85.96 144 | 87.63 128 | 91.64 127 | 93.97 127 | 92.76 106 | 84.58 133 | 88.19 109 | 70.67 156 | 80.10 111 | 67.86 171 | 89.43 103 | 91.81 134 | 89.77 174 | 96.69 157 | 90.05 191 |
|
EPP-MVSNet | | | 92.13 65 | 93.06 56 | 91.05 90 | 93.66 101 | 97.30 69 | 92.18 116 | 87.90 99 | 90.24 81 | 83.63 95 | 86.14 68 | 90.52 68 | 90.76 90 | 94.82 75 | 94.38 70 | 98.18 68 | 97.98 51 |
|
PMMVS | | | 89.88 100 | 91.19 84 | 88.35 117 | 89.73 150 | 91.97 183 | 90.62 131 | 81.92 165 | 90.57 76 | 80.58 113 | 92.16 35 | 86.85 78 | 91.17 84 | 92.31 125 | 91.35 140 | 96.11 166 | 93.11 170 |
|
ACMMP |  | | 95.54 31 | 95.49 34 | 95.61 32 | 98.27 31 | 98.53 26 | 97.16 34 | 94.86 32 | 94.88 34 | 89.34 43 | 95.36 27 | 91.74 55 | 95.50 35 | 95.51 59 | 94.16 74 | 98.50 29 | 98.22 40 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 93.69 53 | 92.50 63 | 95.06 36 | 97.11 49 | 97.36 68 | 93.88 86 | 93.30 38 | 95.64 22 | 93.44 18 | 80.32 110 | 90.73 64 | 94.99 39 | 93.58 101 | 93.33 95 | 97.67 110 | 96.57 101 |
|
PatchmatchNet |  | | 85.70 141 | 86.65 133 | 84.60 158 | 91.79 125 | 93.40 142 | 89.27 157 | 73.62 200 | 90.19 83 | 72.63 144 | 82.74 95 | 81.93 110 | 87.64 126 | 84.99 198 | 84.29 200 | 92.64 198 | 89.00 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 95.86 28 | 96.93 22 | 94.61 40 | 97.60 42 | 98.65 18 | 96.49 41 | 93.13 40 | 94.07 43 | 87.91 58 | 97.12 7 | 97.17 24 | 93.90 53 | 96.46 40 | 96.93 17 | 98.64 20 | 98.10 49 |
|
OMC-MVS | | | 94.49 45 | 94.36 47 | 94.64 39 | 97.17 48 | 97.73 59 | 95.49 55 | 92.25 44 | 96.18 15 | 90.34 38 | 88.51 55 | 92.88 51 | 94.90 40 | 94.92 70 | 94.17 73 | 97.69 108 | 96.15 116 |
|
AdaColmap |  | | 95.02 37 | 93.71 50 | 96.54 22 | 98.51 26 | 97.76 57 | 96.69 40 | 95.94 19 | 93.72 46 | 93.50 16 | 89.01 53 | 90.53 66 | 96.49 21 | 94.51 85 | 93.76 83 | 98.07 77 | 96.69 96 |
|
DeepMVS_CX |  | | | | | | 71.82 218 | 68.37 217 | 48.05 219 | 77.38 185 | 46.88 220 | 65.77 184 | 47.03 222 | 67.48 206 | 64.27 218 | | 76.89 220 | 76.72 214 |
|
TinyColmap | | | 84.04 165 | 82.01 182 | 86.42 140 | 90.87 139 | 91.84 184 | 88.89 166 | 84.07 140 | 82.11 161 | 69.89 161 | 71.08 159 | 60.81 205 | 89.04 113 | 90.52 156 | 89.19 180 | 95.76 170 | 88.50 199 |
|
MAR-MVS | | | 92.71 60 | 92.63 61 | 92.79 66 | 97.70 40 | 97.15 76 | 93.75 89 | 87.98 97 | 90.71 70 | 85.76 79 | 86.28 67 | 86.38 79 | 94.35 46 | 94.95 68 | 95.49 54 | 97.22 125 | 97.44 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MSDG | | | 90.42 94 | 88.25 114 | 92.94 64 | 96.67 55 | 94.41 119 | 93.96 81 | 92.91 41 | 89.59 96 | 86.26 71 | 76.74 128 | 80.92 115 | 90.43 96 | 92.60 120 | 92.08 126 | 97.44 120 | 91.41 178 |
|
LS3D | | | 91.97 67 | 90.98 87 | 93.12 60 | 97.03 51 | 97.09 79 | 95.33 59 | 95.59 22 | 92.47 56 | 79.26 118 | 81.60 104 | 82.77 100 | 94.39 45 | 94.28 87 | 94.23 72 | 97.14 131 | 94.45 152 |
|
CLD-MVS | | | 92.50 62 | 91.96 73 | 93.13 59 | 93.93 92 | 96.24 98 | 95.69 52 | 88.77 86 | 92.92 50 | 89.01 46 | 88.19 57 | 81.74 111 | 93.13 63 | 93.63 100 | 93.08 105 | 98.23 63 | 97.91 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FPMVS | | | 69.87 209 | 67.10 212 | 73.10 206 | 84.09 205 | 78.35 217 | 79.40 206 | 76.41 192 | 71.92 203 | 57.71 209 | 54.06 213 | 50.04 218 | 56.72 212 | 71.19 214 | 68.70 214 | 84.25 215 | 75.43 215 |
|
Gipuma |  | | 58.52 212 | 56.17 215 | 61.27 211 | 67.14 219 | 58.06 220 | 52.16 222 | 68.40 213 | 69.00 210 | 45.02 221 | 22.79 219 | 20.57 226 | 55.11 213 | 76.27 212 | 79.33 211 | 79.80 218 | 67.16 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |