This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12599.13 6
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 10099.08 9
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17198.65 14
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10989.54 7488.53 10387.47 5879.82 10990.53 6585.47 14496.31 4295.16 5697.99 8198.56 19
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13696.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
UGNet91.52 7493.41 5289.32 10394.13 8097.15 7091.83 11989.01 7890.62 7385.86 7486.83 5991.73 5677.40 18494.68 7394.43 6497.71 9898.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8597.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11995.24 5894.97 5897.09 12798.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp84.51 15185.85 14082.95 17686.30 19193.51 13385.77 18580.38 17378.25 17763.42 19173.51 14272.20 14784.64 15093.21 10792.16 11797.19 12098.14 43
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14898.14 43
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9895.64 5592.12 4792.46 5779.65 11191.97 3782.68 9892.92 6693.47 10092.77 10597.74 9698.12 45
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13493.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10893.62 8097.02 13198.05 48
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 11087.90 9590.24 8083.63 9086.14 6790.52 6790.76 8794.82 6994.38 6598.18 6397.98 49
Anonymous2023121189.82 9588.18 10991.74 7492.52 11496.09 9693.38 9489.30 7788.95 9885.90 7364.55 18684.39 8792.41 7192.24 12193.06 10096.93 14097.95 51
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
UniMVSNet (Re)86.22 12885.46 14487.11 12688.34 15894.42 11289.65 14887.10 10884.39 13674.61 12770.41 15768.10 16485.10 14791.17 13891.79 12697.84 8997.94 52
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10392.11 11488.85 7987.64 10883.38 9284.36 8078.41 12589.53 9694.69 7293.15 9798.15 6497.92 54
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9898.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11691.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 11084.49 7890.63 6487.49 12397.07 1996.96 1598.07 7397.88 58
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
IB-MVS85.10 1487.98 11287.97 11387.99 11794.55 7696.86 8084.52 18888.21 8986.48 12188.54 5074.41 13877.74 13174.10 19589.65 16592.85 10498.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10692.55 10997.76 9497.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
Anonymous20240521188.00 11193.16 10196.38 9193.58 9089.34 7687.92 10765.04 18283.03 9492.07 7392.67 11193.33 8996.96 13597.63 64
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
test_part187.53 11684.97 14590.52 8892.11 11793.31 13993.32 9685.79 11679.56 17087.38 6062.89 19078.60 12289.25 10390.65 14892.17 11695.24 17897.62 66
UniMVSNet_NR-MVSNet86.80 12285.86 13987.89 12088.17 16094.07 11990.15 13488.51 8584.20 14073.45 13372.38 14970.30 15688.95 11090.25 15392.21 11498.12 6897.62 66
DU-MVS86.12 13084.81 14887.66 12187.77 16793.78 12490.15 13487.87 9784.40 13473.45 13370.59 15464.82 18488.95 11090.14 15492.33 11197.76 9497.62 66
GeoE89.29 10488.68 10389.99 9892.75 11196.03 9793.07 10183.79 13986.98 11381.34 9974.72 13678.92 11991.22 8193.31 10493.21 9497.78 9297.60 69
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 70
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12691.98 12397.78 9297.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 72
NR-MVSNet85.46 14084.54 15086.52 13488.33 15993.78 12490.45 12787.87 9784.40 13471.61 14170.59 15462.09 19382.79 16391.75 12891.75 12798.10 7197.44 73
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11897.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 75
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11887.63 10490.61 7481.42 9886.76 6182.26 10389.23 10494.86 6893.03 10297.90 8697.36 76
Vis-MVSNetpermissive89.36 10291.49 7986.88 12992.10 11897.60 6092.16 11385.89 11484.21 13975.20 12682.58 9487.13 7277.40 18495.90 5095.63 4798.51 2197.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11587.63 10490.74 6981.51 9786.81 6082.48 9989.23 10494.81 7093.03 10297.90 8697.33 78
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11396.61 8296.03 4888.44 8690.25 7985.92 7273.73 13984.89 8691.92 7494.17 8594.07 7397.68 10297.31 79
UniMVSNet_ETH3D84.57 14981.40 18388.28 11389.34 14894.38 11590.33 12886.50 11174.74 19577.52 11859.90 19762.04 19488.78 11588.82 17592.65 10797.22 11897.24 80
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 81
diffmvs91.37 7591.09 8391.70 7592.71 11296.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 11097.23 81
Effi-MVS+89.79 9689.83 9589.74 9992.98 10396.45 8993.48 9384.24 13287.62 10976.45 12281.76 10077.56 13393.48 5994.61 7593.59 8197.82 9097.22 83
CP-MVSNet83.11 17382.15 17384.23 15887.20 17792.70 15886.42 18083.53 14477.83 17967.67 17166.89 17160.53 20182.47 16489.23 17090.65 14698.08 7297.20 84
TranMVSNet+NR-MVSNet85.57 13884.41 15186.92 12887.67 17093.34 13790.31 13088.43 8783.07 14970.11 15469.99 16065.28 17986.96 12889.73 16292.27 11298.06 7597.17 85
Baseline_NR-MVSNet85.28 14283.42 16087.46 12587.77 16790.80 19289.90 14487.69 10183.93 14474.16 12964.72 18466.43 17487.48 12490.14 15490.83 13897.73 9797.11 86
PS-CasMVS82.53 17881.54 18183.68 16587.08 18292.54 16486.20 18283.46 14576.46 18765.73 18365.71 17859.41 20681.61 17289.06 17290.55 14898.03 7797.07 87
baseline91.19 7791.89 7390.38 8992.76 10995.04 10593.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10292.00 12592.62 10896.46 15396.99 88
WR-MVS83.14 17183.38 16282.87 17787.55 17193.29 14086.36 18184.21 13380.05 16666.41 17866.91 16966.92 17175.66 19188.96 17390.56 14797.05 12996.96 89
CHOSEN 1792x268888.57 10887.82 11589.44 10295.46 6996.89 7993.74 8685.87 11589.63 9177.42 11961.38 19383.31 9288.80 11493.44 10193.16 9695.37 17696.95 90
tfpnnormal83.80 16381.26 18586.77 13189.60 14593.26 14389.72 14787.60 10672.78 19770.44 15160.53 19661.15 19885.55 14292.72 11091.44 13297.71 9896.92 91
WR-MVS_H82.86 17682.66 17083.10 17387.44 17393.33 13885.71 18683.20 14877.36 18168.20 16866.37 17265.23 18076.05 19089.35 16690.13 15697.99 8196.89 92
v7n82.25 18181.54 18183.07 17485.55 19592.58 16286.68 17981.10 17176.54 18565.97 18162.91 18960.56 20082.36 16591.07 14090.35 15196.77 14996.80 93
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 94
thres600view789.28 10587.47 12491.39 8194.12 8197.25 6793.94 8089.74 6985.62 12880.63 10775.24 13569.33 15991.66 7994.92 6493.23 9298.27 5396.72 95
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 96
LTVRE_ROB81.71 1682.44 18081.84 17883.13 17189.01 14992.99 15088.90 15982.32 15766.26 20854.02 20874.68 13759.62 20588.87 11390.71 14692.02 12195.68 16896.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpn200view989.55 9987.86 11491.53 7893.90 9097.26 6694.31 7189.74 6985.87 12381.15 10176.46 12670.38 15491.76 7794.92 6493.51 8298.28 5296.61 98
thres40089.40 10187.58 12191.53 7894.06 8497.21 6994.19 7589.83 6885.69 12581.08 10375.50 13369.76 15891.80 7594.79 7193.51 8298.20 6196.60 99
ACMH85.51 1387.31 11986.59 12888.14 11593.96 8694.51 10989.00 15887.99 9181.58 15670.15 15378.41 11571.78 15090.60 8991.30 13591.99 12297.17 12196.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10396.57 101
thisisatest051585.70 13587.00 12584.19 15988.16 16193.67 12984.20 19084.14 13583.39 14872.91 13576.79 12374.75 14378.82 18292.57 11591.26 13596.94 13796.56 102
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11893.73 9596.94 7892.17 11287.91 9488.77 9976.12 12483.68 8490.80 6079.49 18096.34 4196.35 2898.21 6096.46 103
Fast-Effi-MVS+88.56 10987.99 11289.22 10491.56 12595.21 10292.29 10882.69 15086.82 11477.73 11776.24 12973.39 14493.36 6194.22 8493.64 7997.65 10496.43 104
thres20089.49 10087.72 11691.55 7793.95 8797.25 6794.34 6989.74 6985.66 12681.18 10076.12 13070.19 15791.80 7594.92 6493.51 8298.27 5396.40 105
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10794.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11295.75 5293.95 7598.12 6896.37 106
v14419283.48 16782.23 17284.94 14886.65 18692.84 15489.63 14982.48 15477.87 17867.36 17365.33 18063.50 18786.51 13289.72 16389.99 16497.03 13096.35 107
IterMVS-LS88.60 10788.45 10488.78 10892.02 11992.44 16792.00 11783.57 14386.52 11978.90 11578.61 11481.34 10889.12 10790.68 14793.18 9597.10 12696.35 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119283.56 16682.35 17184.98 14786.84 18592.84 15490.01 13982.70 14978.54 17466.48 17764.88 18362.91 18886.91 12990.72 14590.25 15496.94 13796.32 109
v192192083.30 16982.09 17584.70 15186.59 18992.67 16089.82 14582.23 15878.32 17565.76 18264.64 18562.35 19186.78 13190.34 15290.02 16297.02 13196.31 110
v1084.18 15683.17 16685.37 14287.34 17492.68 15990.32 12981.33 16779.93 16969.23 16166.33 17365.74 17787.03 12790.84 14290.38 15096.97 13396.29 111
V4284.48 15383.36 16385.79 13987.14 17993.28 14190.03 13783.98 13780.30 16371.20 14666.90 17067.17 16885.55 14289.35 16690.27 15396.82 14796.27 112
PEN-MVS82.49 17981.58 18083.56 16786.93 18392.05 17586.71 17883.84 13876.94 18464.68 18767.24 16660.11 20281.17 17487.78 17990.70 14598.02 7896.21 113
thres100view90089.36 10287.61 11991.39 8193.90 9096.86 8094.35 6889.66 7385.87 12381.15 10176.46 12670.38 15491.17 8294.09 8693.43 8898.13 6796.16 114
v114484.03 16082.88 16885.37 14287.17 17893.15 14890.18 13383.31 14678.83 17367.85 16965.99 17564.99 18286.79 13090.75 14490.33 15296.90 14296.15 115
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10196.15 115
Effi-MVS+-dtu87.51 11788.13 11086.77 13191.10 13194.90 10690.91 12382.67 15183.47 14671.55 14281.11 10577.04 13589.41 9892.65 11391.68 13095.00 18396.09 117
v884.45 15583.30 16485.80 13887.53 17292.95 15190.31 13082.46 15580.46 16171.43 14366.99 16867.16 16986.14 13889.26 16990.22 15596.94 13796.06 118
v124082.88 17581.66 17984.29 15786.46 19092.52 16689.06 15681.82 16377.16 18265.09 18664.17 18761.50 19686.36 13390.12 15690.13 15696.95 13696.04 119
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 120
CDS-MVSNet88.34 11088.71 10287.90 11990.70 13894.54 10892.38 10586.02 11380.37 16279.42 11279.30 11083.43 9182.04 16793.39 10294.01 7496.86 14695.93 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu86.25 12687.70 11784.56 15490.37 14193.70 12790.54 12678.14 18183.50 14565.37 18581.59 10375.83 14286.09 14091.70 12991.70 12896.88 14495.84 122
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10779.60 20696.19 9394.43 6486.56 11090.63 7280.75 10690.71 4477.78 13093.73 5691.36 13493.45 8798.15 6495.77 123
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 15081.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 124
baseline288.97 10689.50 9688.36 11191.14 13095.30 10190.13 13685.17 12487.24 11080.80 10584.46 7978.44 12485.60 14193.54 9891.87 12497.31 11595.66 125
CANet_DTU90.74 8592.93 5888.19 11494.36 7796.61 8294.34 6984.66 12790.66 7168.75 16390.41 4686.89 7489.78 9495.46 5694.87 5997.25 11795.62 126
v2v48284.51 15183.05 16786.20 13687.25 17693.28 14190.22 13285.40 12279.94 16869.78 15667.74 16565.15 18187.57 12189.12 17190.55 14896.97 13395.60 127
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 10098.30 4995.58 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10493.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10697.62 10795.50 129
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net90.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
test190.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
FMVSNet289.61 9889.14 9990.16 9688.66 15493.65 13094.25 7285.44 12188.57 10284.96 8873.53 14183.82 8989.38 9994.23 8394.68 6398.31 4695.47 130
pm-mvs184.55 15083.46 15785.82 13788.16 16193.39 13689.05 15785.36 12374.03 19672.43 13965.08 18171.11 15182.30 16693.48 9991.70 12897.64 10595.43 133
FMVSNet390.19 9290.06 9490.34 9088.69 15393.85 12294.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10693.29 10594.36 6698.20 6195.40 134
FMVSNet187.33 11886.00 13688.89 10687.13 18092.83 15693.08 10084.46 13181.35 15882.20 9566.33 17377.96 12888.96 10993.97 8994.16 6997.54 10995.38 135
v14883.61 16582.10 17485.37 14287.34 17492.94 15287.48 17085.72 12078.92 17273.87 13165.71 17864.69 18581.78 17187.82 17889.35 17396.01 16095.26 136
HyFIR lowres test87.87 11386.42 13089.57 10095.56 6696.99 7692.37 10684.15 13486.64 11677.17 12057.65 19983.97 8891.08 8492.09 12492.44 11097.09 12795.16 137
DTE-MVSNet81.76 18481.04 18682.60 18186.63 18791.48 18685.97 18483.70 14076.45 18862.44 19267.16 16759.98 20378.98 18187.15 18389.93 16597.88 8895.12 138
ACMH+85.75 1287.19 12086.02 13588.56 11093.42 9894.41 11389.91 14287.66 10383.45 14772.25 14076.42 12871.99 14990.78 8689.86 16090.94 13797.32 11495.11 139
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10895.00 140
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT85.44 14186.71 12683.97 16390.59 13990.84 19089.73 14678.34 18084.07 14366.40 17977.27 12278.66 12183.06 16091.20 13690.10 16195.72 16694.78 141
pmmvs680.90 18678.77 19283.38 17085.84 19291.61 18286.01 18382.54 15364.17 20970.43 15254.14 20667.06 17080.73 17690.50 15189.17 17594.74 18494.75 142
GA-MVS85.08 14485.65 14184.42 15689.77 14394.25 11689.26 15284.62 12881.19 15962.25 19375.72 13268.44 16384.14 15593.57 9691.68 13096.49 15194.71 143
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10994.95 2977.35 13494.05 4994.49 8093.08 9897.15 12294.53 144
gg-mvs-nofinetune81.83 18383.58 15679.80 19191.57 12496.54 8593.79 8468.80 20762.71 21143.01 21655.28 20285.06 8583.65 15896.13 4594.86 6097.98 8494.46 145
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11381.60 10282.77 9794.39 4494.28 8194.23 6797.14 12494.45 146
UA-Net90.81 8292.58 6188.74 10994.87 7597.44 6392.61 10388.22 8882.35 15378.93 11485.20 7595.61 3879.56 17996.52 3496.57 2398.23 5894.37 147
pmmvs583.37 16882.68 16984.18 16087.13 18093.18 14586.74 17782.08 16076.48 18667.28 17471.26 15162.70 19084.71 14990.77 14390.12 15997.15 12294.24 148
IterMVS85.25 14386.49 12983.80 16490.42 14090.77 19390.02 13878.04 18284.10 14166.27 18077.28 12178.41 12583.01 16190.88 14189.72 17095.04 18194.24 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter86.09 13288.38 10583.43 16987.89 16492.61 16186.89 17677.11 18684.30 13768.62 16582.57 9582.45 10084.34 15192.40 11790.11 16095.74 16494.21 150
SixPastTwentyTwo83.12 17283.44 15982.74 17887.71 16993.11 14982.30 19582.33 15679.24 17164.33 18878.77 11362.75 18984.11 15688.11 17787.89 17995.70 16794.21 150
CR-MVSNet85.48 13986.29 13184.53 15591.08 13392.10 17189.18 15373.30 19884.75 13071.08 14773.12 14777.91 12986.27 13691.48 13190.75 14296.27 15793.94 152
PatchT83.86 16185.51 14381.94 18588.41 15791.56 18378.79 20271.57 20284.08 14271.08 14770.62 15376.13 14186.27 13691.48 13190.75 14295.52 17493.94 152
FC-MVSNet-test86.15 12989.10 10082.71 17989.83 14293.18 14587.88 16884.69 12686.54 11862.18 19482.39 9783.31 9274.18 19492.52 11691.86 12597.50 11093.88 154
baseline190.81 8290.29 8891.42 8093.67 9695.86 9993.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9595.05 6094.79 6198.80 793.82 155
RPMNet84.82 14885.90 13883.56 16791.10 13192.10 17188.73 16271.11 20384.75 13068.79 16273.56 14077.62 13285.33 14590.08 15889.43 17296.32 15693.77 156
CHOSEN 280x42090.77 8492.14 6989.17 10593.86 9292.81 15793.16 9780.22 17490.21 8184.67 8989.89 4891.38 5990.57 9094.94 6392.11 11892.52 19393.65 157
test-LLR86.88 12188.28 10685.24 14591.22 12892.07 17387.41 17183.62 14184.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
TESTMET0.1,186.11 13188.28 10683.59 16687.80 16592.07 17387.41 17177.12 18584.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
CostFormer86.78 12386.05 13387.62 12492.15 11693.20 14491.55 12175.83 18888.11 10685.29 8581.76 10076.22 14087.80 11884.45 19485.21 19093.12 18893.42 160
PM-MVS80.29 18879.30 19181.45 18881.91 20388.23 19982.61 19379.01 17879.99 16767.15 17569.07 16151.39 21182.92 16287.55 18185.59 18695.08 18093.28 161
tpm83.16 17083.64 15582.60 18190.75 13591.05 18788.49 16373.99 19382.36 15267.08 17678.10 11668.79 16084.17 15485.95 19085.96 18591.09 20093.23 162
pmmvs486.00 13384.28 15288.00 11687.80 16592.01 17689.94 14184.91 12586.79 11580.98 10473.41 14466.34 17588.12 11789.31 16888.90 17796.24 15893.20 163
PMMVS89.88 9491.19 8188.35 11289.73 14491.97 17790.62 12581.92 16190.57 7580.58 10892.16 3586.85 7591.17 8292.31 11891.35 13496.11 15993.11 164
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 10090.94 12288.67 8389.80 8986.95 6485.90 6972.51 14592.46 6993.56 9792.18 11596.93 14092.89 165
EPNet_dtu88.32 11190.61 8685.64 14196.79 5592.27 16992.03 11690.31 6489.05 9765.44 18489.43 4985.90 8174.22 19392.76 10992.09 11995.02 18292.76 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet83.83 16285.53 14281.85 18689.60 14590.92 18887.81 16983.21 14780.11 16560.16 19876.47 12578.57 12376.79 18689.76 16190.13 15693.51 18592.75 167
TransMVSNet (Re)82.67 17780.93 18884.69 15288.71 15291.50 18487.90 16787.15 10771.54 20268.24 16763.69 18864.67 18678.51 18391.65 13090.73 14497.64 10592.73 168
EG-PatchMatch MVS81.70 18581.31 18482.15 18488.75 15193.81 12387.14 17478.89 17971.57 20064.12 19061.20 19568.46 16276.73 18891.48 13190.77 14197.28 11691.90 169
TDRefinement84.97 14683.39 16186.81 13092.97 10594.12 11792.18 11087.77 10082.78 15171.31 14568.43 16368.07 16581.10 17589.70 16489.03 17695.55 17391.62 170
pmmvs-eth3d79.78 19177.58 19682.34 18381.57 20487.46 20282.92 19281.28 16875.33 19471.34 14461.88 19152.41 21081.59 17387.56 18086.90 18295.36 17791.48 171
gm-plane-assit77.65 19578.50 19376.66 19687.96 16385.43 20664.70 21274.50 19164.15 21051.26 21161.32 19458.17 20784.11 15695.16 5993.83 7697.45 11291.41 172
EU-MVSNet78.43 19280.25 18976.30 19783.81 20087.27 20480.99 19779.52 17676.01 18954.12 20770.44 15664.87 18367.40 20186.23 18885.54 18891.95 19891.41 172
MSDG90.42 8888.25 10892.94 6296.67 5694.41 11393.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9192.60 11492.08 12097.44 11391.41 172
test0.0.03 185.58 13787.69 11883.11 17291.22 12892.54 16485.60 18783.62 14185.66 12667.84 17082.79 9279.70 11673.51 19791.15 13990.79 13996.88 14491.23 175
GG-mvs-BLEND62.84 20490.21 8930.91 2130.57 22194.45 11186.99 1750.34 21988.71 1000.98 22181.55 10491.58 570.86 21892.66 11291.43 13395.73 16591.11 176
TAMVS84.94 14784.95 14684.93 14988.82 15093.18 14588.44 16481.28 16877.16 18273.76 13275.43 13476.57 13982.04 16790.59 14990.79 13995.22 17990.94 177
MS-PatchMatch87.63 11487.61 11987.65 12293.95 8794.09 11892.60 10481.52 16686.64 11676.41 12373.46 14385.94 8085.01 14892.23 12290.00 16396.43 15590.93 178
tpm cat184.13 15781.99 17786.63 13391.74 12191.50 18490.68 12475.69 18986.12 12285.44 8372.39 14870.72 15285.16 14680.89 20381.56 19991.07 20190.71 179
ambc67.96 20573.69 20979.79 21073.82 20771.61 19959.80 19946.00 20920.79 21966.15 20386.92 18580.11 20489.13 20890.50 180
COLMAP_ROBcopyleft84.39 1587.61 11586.03 13489.46 10195.54 6894.48 11091.77 12090.14 6587.16 11175.50 12573.41 14476.86 13887.33 12590.05 15989.76 16996.48 15290.46 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15392.30 10787.69 10190.44 7785.12 8691.68 3985.84 8290.69 8887.34 18286.07 18492.46 19490.37 182
Anonymous2023120678.09 19478.11 19578.07 19585.19 19789.17 19680.99 19781.24 17075.46 19358.25 20254.78 20559.90 20466.73 20288.94 17488.26 17896.01 16090.25 183
dps85.00 14583.21 16587.08 12790.73 13692.55 16389.34 15075.29 19084.94 12987.01 6279.27 11167.69 16787.27 12684.22 19583.56 19592.83 19190.25 183
USDC86.73 12485.96 13787.63 12391.64 12293.97 12092.76 10284.58 12988.19 10470.67 15080.10 10867.86 16689.43 9791.81 12789.77 16896.69 15090.05 185
tpmrst83.72 16483.45 15884.03 16292.21 11591.66 18188.74 16173.58 19788.14 10572.67 13777.37 12072.11 14886.34 13482.94 19982.05 19890.63 20389.86 186
SCA86.25 12687.52 12284.77 15091.59 12393.90 12189.11 15573.25 20090.38 7872.84 13683.26 8683.79 9088.49 11686.07 18985.56 18793.33 18689.67 187
testgi81.94 18284.09 15379.43 19289.53 14790.83 19182.49 19481.75 16480.59 16059.46 20082.82 9165.75 17667.97 19990.10 15789.52 17195.39 17589.03 188
PatchmatchNetpermissive85.70 13586.65 12784.60 15391.79 12093.40 13589.27 15173.62 19590.19 8272.63 13882.74 9381.93 10687.64 12084.99 19284.29 19492.64 19289.00 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1386.64 12587.50 12385.65 14090.73 13693.69 12889.96 14078.03 18389.48 9476.85 12184.92 7682.42 10186.14 13886.85 18686.15 18392.17 19588.97 190
pmnet_mix0280.14 18980.21 19080.06 18986.61 18889.66 19580.40 19982.20 15982.29 15461.35 19571.52 15066.67 17376.75 18782.55 20080.18 20393.05 18988.62 191
MIMVSNet82.97 17484.00 15481.77 18782.23 20292.25 17087.40 17372.73 20181.48 15769.55 15768.79 16272.42 14681.82 17092.23 12292.25 11396.89 14388.61 192
TinyColmap84.04 15982.01 17686.42 13590.87 13491.84 17888.89 16084.07 13682.11 15569.89 15571.08 15260.81 19989.04 10890.52 15089.19 17495.76 16388.50 193
ADS-MVSNet84.08 15884.95 14683.05 17591.53 12791.75 18088.16 16570.70 20489.96 8869.51 15878.83 11276.97 13786.29 13584.08 19684.60 19292.13 19788.48 194
EPMVS85.77 13486.24 13285.23 14692.76 10993.78 12489.91 14273.60 19690.19 8274.22 12882.18 9878.06 12787.55 12285.61 19185.38 18993.32 18788.48 194
MDTV_nov1_ep13_2view80.43 18780.94 18779.84 19084.82 19890.87 18984.23 18973.80 19480.28 16464.33 18870.05 15968.77 16179.67 17784.83 19383.50 19692.17 19588.25 196
MDA-MVSNet-bldmvs73.81 19872.56 20275.28 19872.52 21188.87 19774.95 20682.67 15171.57 20055.02 20565.96 17642.84 21776.11 18970.61 20981.47 20090.38 20586.59 197
test20.0376.41 19778.49 19473.98 19985.64 19487.50 20175.89 20480.71 17270.84 20351.07 21268.06 16461.40 19754.99 20888.28 17687.20 18195.58 17286.15 198
FMVSNet584.47 15484.72 14984.18 16083.30 20188.43 19888.09 16679.42 17784.25 13874.14 13073.15 14678.74 12083.65 15891.19 13791.19 13696.46 15386.07 199
pmmvs371.13 20271.06 20471.21 20373.54 21080.19 20971.69 21064.86 20962.04 21252.10 20954.92 20448.00 21575.03 19283.75 19883.24 19790.04 20685.27 200
MIMVSNet173.19 19973.70 20072.60 20265.42 21486.69 20575.56 20579.65 17567.87 20755.30 20445.24 21056.41 20863.79 20486.98 18487.66 18095.85 16285.04 201
CMPMVSbinary61.19 1779.86 19077.46 19882.66 18091.54 12691.82 17983.25 19181.57 16570.51 20468.64 16459.89 19866.77 17279.63 17884.00 19784.30 19391.34 19984.89 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet77.55 19676.68 19978.56 19485.43 19687.30 20378.84 20181.88 16278.30 17660.61 19661.46 19262.15 19274.03 19682.04 20180.69 20290.59 20484.81 203
new-patchmatchnet72.32 20071.09 20373.74 20081.17 20584.86 20772.21 20977.48 18468.32 20654.89 20655.10 20349.31 21463.68 20579.30 20576.46 20693.03 19084.32 204
MVS-HIRNet78.16 19377.57 19778.83 19385.83 19387.76 20076.67 20370.22 20575.82 19267.39 17255.61 20170.52 15381.96 16986.67 18785.06 19190.93 20281.58 205
test_method58.10 20764.61 20750.51 20828.26 21941.71 21861.28 21332.07 21575.92 19152.04 21047.94 20861.83 19551.80 20979.83 20463.95 21277.60 21381.05 206
new_pmnet72.29 20173.25 20171.16 20475.35 20881.38 20873.72 20869.27 20675.97 19049.84 21356.27 20056.12 20969.08 19881.73 20280.86 20189.72 20780.44 207
DeepMVS_CXcopyleft71.82 21268.37 21148.05 21477.38 18046.88 21465.77 17747.03 21667.48 20064.27 21276.89 21476.72 208
FPMVS69.87 20367.10 20673.10 20184.09 19978.35 21179.40 20076.41 18771.92 19857.71 20354.06 20750.04 21256.72 20671.19 20868.70 20884.25 20975.43 209
PMVScopyleft56.77 1861.27 20558.64 20864.35 20575.66 20754.60 21553.62 21574.23 19253.69 21358.37 20144.27 21149.38 21344.16 21269.51 21065.35 21080.07 21173.66 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 20855.72 21051.30 20758.84 21567.02 21354.23 21460.97 21247.50 21419.42 21834.81 21231.97 21830.88 21465.84 21169.99 20783.47 21072.92 211
Gipumacopyleft58.52 20656.17 20961.27 20667.14 21358.06 21452.16 21668.40 20869.00 20545.02 21522.79 21320.57 22055.11 20776.27 20679.33 20579.80 21267.16 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive39.81 1939.52 21041.58 21137.11 21233.93 21849.06 21626.45 22054.22 21329.46 21724.15 21720.77 21510.60 22334.42 21351.12 21365.27 21149.49 21864.81 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN40.00 20935.74 21244.98 21057.69 21739.15 22028.05 21862.70 21035.52 21617.78 21920.90 21414.36 22244.47 21135.89 21447.86 21359.15 21656.47 214
EMVS39.04 21134.32 21344.54 21158.25 21639.35 21927.61 21962.55 21135.99 21516.40 22020.04 21614.77 22144.80 21033.12 21544.10 21457.61 21752.89 215
test1233.48 2135.31 2151.34 2150.20 2221.52 2222.17 2230.58 2186.13 2190.31 2239.85 2180.31 2253.90 2162.65 2175.28 2160.87 22011.46 216
testmvs4.35 2126.54 2141.79 2140.60 2201.82 2213.06 2220.95 2177.22 2180.88 22212.38 2171.25 2243.87 2176.09 2165.58 2151.40 21911.42 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def60.19 197
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
our_test_386.93 18389.77 19481.61 196
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 221
tmp_tt50.24 20968.55 21246.86 21748.90 21718.28 21686.51 12068.32 16670.19 15865.33 17826.69 21574.37 20766.80 20970.72 215
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 16889.18 15373.30 19871.08 147