This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
baseline190.81 8290.29 8891.42 8093.67 9695.86 9993.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9595.05 6094.79 6198.80 793.82 155
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13696.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 70
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Vis-MVSNetpermissive89.36 10291.49 7986.88 12992.10 11897.60 6092.16 11385.89 11484.21 13975.20 12682.58 9487.13 7277.40 18495.90 5095.63 4798.51 2197.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 81
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8597.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
GBi-Net90.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
test190.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
FMVSNet289.61 9889.14 9990.16 9688.66 15493.65 13094.25 7285.44 12188.57 10284.96 8873.53 14183.82 8989.38 9994.23 8394.68 6398.31 4695.47 130
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 10098.30 4995.58 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tfpn200view989.55 9987.86 11491.53 7893.90 9097.26 6694.31 7189.74 6985.87 12381.15 10176.46 12670.38 15491.76 7794.92 6493.51 8298.28 5296.61 98
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
thres600view789.28 10587.47 12491.39 8194.12 8197.25 6793.94 8089.74 6985.62 12880.63 10775.24 13569.33 15991.66 7994.92 6493.23 9298.27 5396.72 95
thres20089.49 10087.72 11691.55 7793.95 8797.25 6794.34 6989.74 6985.66 12681.18 10076.12 13070.19 15791.80 7594.92 6493.51 8298.27 5396.40 105
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
UA-Net90.81 8292.58 6188.74 10994.87 7597.44 6392.61 10388.22 8882.35 15378.93 11485.20 7595.61 3879.56 17996.52 3496.57 2398.23 5894.37 147
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9898.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11893.73 9596.94 7892.17 11287.91 9488.77 9976.12 12483.68 8490.80 6079.49 18096.34 4196.35 2898.21 6096.46 103
thres40089.40 10187.58 12191.53 7894.06 8497.21 6994.19 7589.83 6885.69 12581.08 10375.50 13369.76 15891.80 7594.79 7193.51 8298.20 6196.60 99
FMVSNet390.19 9290.06 9490.34 9088.69 15393.85 12294.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10693.29 10594.36 6698.20 6195.40 134
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 11087.90 9590.24 8083.63 9086.14 6790.52 6790.76 8794.82 6994.38 6598.18 6397.98 49
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10779.60 20696.19 9394.43 6486.56 11090.63 7280.75 10690.71 4477.78 13093.73 5691.36 13493.45 8798.15 6495.77 123
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10392.11 11488.85 7987.64 10883.38 9284.36 8078.41 12589.53 9694.69 7293.15 9798.15 6497.92 54
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 75
thres100view90089.36 10287.61 11991.39 8193.90 9096.86 8094.35 6889.66 7385.87 12381.15 10176.46 12670.38 15491.17 8294.09 8693.43 8898.13 6796.16 114
UniMVSNet_NR-MVSNet86.80 12285.86 13987.89 12088.17 16094.07 11990.15 13488.51 8584.20 14073.45 13372.38 14970.30 15688.95 11090.25 15392.21 11498.12 6897.62 66
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10794.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11295.75 5293.95 7598.12 6896.37 106
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11691.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
NR-MVSNet85.46 14084.54 15086.52 13488.33 15993.78 12490.45 12787.87 9784.40 13471.61 14170.59 15462.09 19382.79 16391.75 12891.75 12798.10 7197.44 73
CP-MVSNet83.11 17382.15 17384.23 15887.20 17792.70 15886.42 18083.53 14477.83 17967.67 17166.89 17160.53 20182.47 16489.23 17090.65 14698.08 7297.20 84
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 11084.49 7890.63 6487.49 12397.07 1996.96 1598.07 7397.88 58
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 96
TranMVSNet+NR-MVSNet85.57 13884.41 15186.92 12887.67 17093.34 13790.31 13088.43 8783.07 14970.11 15469.99 16065.28 17986.96 12889.73 16292.27 11298.06 7597.17 85
IB-MVS85.10 1487.98 11287.97 11387.99 11794.55 7696.86 8084.52 18888.21 8986.48 12188.54 5074.41 13877.74 13174.10 19589.65 16592.85 10498.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PS-CasMVS82.53 17881.54 18183.68 16587.08 18292.54 16486.20 18283.46 14576.46 18765.73 18365.71 17859.41 20681.61 17289.06 17290.55 14898.03 7797.07 87
PEN-MVS82.49 17981.58 18083.56 16786.93 18392.05 17586.71 17883.84 13876.94 18464.68 18767.24 16660.11 20281.17 17487.78 17990.70 14598.02 7896.21 113
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 15081.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 124
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 120
WR-MVS_H82.86 17682.66 17083.10 17387.44 17393.33 13885.71 18683.20 14877.36 18168.20 16866.37 17265.23 18076.05 19089.35 16690.13 15697.99 8196.89 92
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10989.54 7488.53 10387.47 5879.82 10990.53 6585.47 14496.31 4295.16 5697.99 8198.56 19
gg-mvs-nofinetune81.83 18383.58 15679.80 19191.57 12496.54 8593.79 8468.80 20762.71 21143.01 21655.28 20285.06 8583.65 15896.13 4594.86 6097.98 8494.46 145
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 94
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11587.63 10490.74 6981.51 9786.81 6082.48 9989.23 10494.81 7093.03 10297.90 8697.33 78
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11887.63 10490.61 7481.42 9886.76 6182.26 10389.23 10494.86 6893.03 10297.90 8697.36 76
DTE-MVSNet81.76 18481.04 18682.60 18186.63 18791.48 18685.97 18483.70 14076.45 18862.44 19267.16 16759.98 20378.98 18187.15 18389.93 16597.88 8895.12 138
UniMVSNet (Re)86.22 12885.46 14487.11 12688.34 15894.42 11289.65 14887.10 10884.39 13674.61 12770.41 15768.10 16485.10 14791.17 13891.79 12697.84 8997.94 52
Effi-MVS+89.79 9689.83 9589.74 9992.98 10396.45 8993.48 9384.24 13287.62 10976.45 12281.76 10077.56 13393.48 5994.61 7593.59 8197.82 9097.22 83
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 72
GeoE89.29 10488.68 10389.99 9892.75 11196.03 9793.07 10183.79 13986.98 11381.34 9974.72 13678.92 11991.22 8193.31 10493.21 9497.78 9297.60 69
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12691.98 12397.78 9297.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DU-MVS86.12 13084.81 14887.66 12187.77 16793.78 12490.15 13487.87 9784.40 13473.45 13370.59 15464.82 18488.95 11090.14 15492.33 11197.76 9497.62 66
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10692.55 10997.76 9497.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9895.64 5592.12 4792.46 5779.65 11191.97 3782.68 9892.92 6693.47 10092.77 10597.74 9698.12 45
Baseline_NR-MVSNet85.28 14283.42 16087.46 12587.77 16790.80 19289.90 14487.69 10183.93 14474.16 12964.72 18466.43 17487.48 12490.14 15490.83 13897.73 9797.11 86
tfpnnormal83.80 16381.26 18586.77 13189.60 14593.26 14389.72 14787.60 10672.78 19770.44 15160.53 19661.15 19885.55 14292.72 11091.44 13297.71 9896.92 91
UGNet91.52 7493.41 5289.32 10394.13 8097.15 7091.83 11989.01 7890.62 7385.86 7486.83 5991.73 5677.40 18494.68 7394.43 6497.71 9898.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 10099.08 9
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10196.15 115
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11396.61 8296.03 4888.44 8690.25 7985.92 7273.73 13984.89 8691.92 7494.17 8594.07 7397.68 10297.31 79
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10396.57 101
Fast-Effi-MVS+88.56 10987.99 11289.22 10491.56 12595.21 10292.29 10882.69 15086.82 11477.73 11776.24 12973.39 14493.36 6194.22 8493.64 7997.65 10496.43 104
pm-mvs184.55 15083.46 15785.82 13788.16 16193.39 13689.05 15785.36 12374.03 19672.43 13965.08 18171.11 15182.30 16693.48 9991.70 12897.64 10595.43 133
TransMVSNet (Re)82.67 17780.93 18884.69 15288.71 15291.50 18487.90 16787.15 10771.54 20268.24 16763.69 18864.67 18678.51 18391.65 13090.73 14497.64 10592.73 168
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10493.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10697.62 10795.50 129
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10895.00 140
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FMVSNet187.33 11886.00 13688.89 10687.13 18092.83 15693.08 10084.46 13181.35 15882.20 9566.33 17377.96 12888.96 10993.97 8994.16 6997.54 10995.38 135
FC-MVSNet-test86.15 12989.10 10082.71 17989.83 14293.18 14587.88 16884.69 12686.54 11862.18 19482.39 9783.31 9274.18 19492.52 11691.86 12597.50 11093.88 154
diffmvs91.37 7591.09 8391.70 7592.71 11296.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 11097.23 81
gm-plane-assit77.65 19578.50 19376.66 19687.96 16385.43 20664.70 21274.50 19164.15 21051.26 21161.32 19458.17 20784.11 15695.16 5993.83 7697.45 11291.41 172
MSDG90.42 8888.25 10892.94 6296.67 5694.41 11393.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9192.60 11492.08 12097.44 11391.41 172
ACMH+85.75 1287.19 12086.02 13588.56 11093.42 9894.41 11389.91 14287.66 10383.45 14772.25 14076.42 12871.99 14990.78 8689.86 16090.94 13797.32 11495.11 139
baseline288.97 10689.50 9688.36 11191.14 13095.30 10190.13 13685.17 12487.24 11080.80 10584.46 7978.44 12485.60 14193.54 9891.87 12497.31 11595.66 125
EG-PatchMatch MVS81.70 18581.31 18482.15 18488.75 15193.81 12387.14 17478.89 17971.57 20064.12 19061.20 19568.46 16276.73 18891.48 13190.77 14197.28 11691.90 169
CANet_DTU90.74 8592.93 5888.19 11494.36 7796.61 8294.34 6984.66 12790.66 7168.75 16390.41 4686.89 7489.78 9495.46 5694.87 5997.25 11795.62 126
UniMVSNet_ETH3D84.57 14981.40 18388.28 11389.34 14894.38 11590.33 12886.50 11174.74 19577.52 11859.90 19762.04 19488.78 11588.82 17592.65 10797.22 11897.24 80
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11897.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
anonymousdsp84.51 15185.85 14082.95 17686.30 19193.51 13385.77 18580.38 17378.25 17763.42 19173.51 14272.20 14784.64 15093.21 10792.16 11797.19 12098.14 43
ACMH85.51 1387.31 11986.59 12888.14 11593.96 8694.51 10989.00 15887.99 9181.58 15670.15 15378.41 11571.78 15090.60 8991.30 13591.99 12297.17 12196.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs583.37 16882.68 16984.18 16087.13 18093.18 14586.74 17782.08 16076.48 18667.28 17471.26 15162.70 19084.71 14990.77 14390.12 15997.15 12294.24 148
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10994.95 2977.35 13494.05 4994.49 8093.08 9897.15 12294.53 144
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11381.60 10282.77 9794.39 4494.28 8194.23 6797.14 12494.45 146
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12599.13 6
IterMVS-LS88.60 10788.45 10488.78 10892.02 11992.44 16792.00 11783.57 14386.52 11978.90 11578.61 11481.34 10889.12 10790.68 14793.18 9597.10 12696.35 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11995.24 5894.97 5897.09 12798.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test87.87 11386.42 13089.57 10095.56 6696.99 7692.37 10684.15 13486.64 11677.17 12057.65 19983.97 8891.08 8492.09 12492.44 11097.09 12795.16 137
WR-MVS83.14 17183.38 16282.87 17787.55 17193.29 14086.36 18184.21 13380.05 16666.41 17866.91 16966.92 17175.66 19188.96 17390.56 14797.05 12996.96 89
v14419283.48 16782.23 17284.94 14886.65 18692.84 15489.63 14982.48 15477.87 17867.36 17365.33 18063.50 18786.51 13289.72 16389.99 16497.03 13096.35 107
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13493.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10893.62 8097.02 13198.05 48
v192192083.30 16982.09 17584.70 15186.59 18992.67 16089.82 14582.23 15878.32 17565.76 18264.64 18562.35 19186.78 13190.34 15290.02 16297.02 13196.31 110
v1084.18 15683.17 16685.37 14287.34 17492.68 15990.32 12981.33 16779.93 16969.23 16166.33 17365.74 17787.03 12790.84 14290.38 15096.97 13396.29 111
v2v48284.51 15183.05 16786.20 13687.25 17693.28 14190.22 13285.40 12279.94 16869.78 15667.74 16565.15 18187.57 12189.12 17190.55 14896.97 13395.60 127
Anonymous20240521188.00 11193.16 10196.38 9193.58 9089.34 7687.92 10765.04 18283.03 9492.07 7392.67 11193.33 8996.96 13597.63 64
v124082.88 17581.66 17984.29 15786.46 19092.52 16689.06 15681.82 16377.16 18265.09 18664.17 18761.50 19686.36 13390.12 15690.13 15696.95 13696.04 119
thisisatest051585.70 13587.00 12584.19 15988.16 16193.67 12984.20 19084.14 13583.39 14872.91 13576.79 12374.75 14378.82 18292.57 11591.26 13596.94 13796.56 102
v119283.56 16682.35 17184.98 14786.84 18592.84 15490.01 13982.70 14978.54 17466.48 17764.88 18362.91 18886.91 12990.72 14590.25 15496.94 13796.32 109
v884.45 15583.30 16485.80 13887.53 17292.95 15190.31 13082.46 15580.46 16171.43 14366.99 16867.16 16986.14 13889.26 16990.22 15596.94 13796.06 118
Anonymous2023121189.82 9588.18 10991.74 7492.52 11496.09 9693.38 9489.30 7788.95 9885.90 7364.55 18684.39 8792.41 7192.24 12193.06 10096.93 14097.95 51
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 10090.94 12288.67 8389.80 8986.95 6485.90 6972.51 14592.46 6993.56 9792.18 11596.93 14092.89 165
v114484.03 16082.88 16885.37 14287.17 17893.15 14890.18 13383.31 14678.83 17367.85 16965.99 17564.99 18286.79 13090.75 14490.33 15296.90 14296.15 115
MIMVSNet82.97 17484.00 15481.77 18782.23 20292.25 17087.40 17372.73 20181.48 15769.55 15768.79 16272.42 14681.82 17092.23 12292.25 11396.89 14388.61 192
Fast-Effi-MVS+-dtu86.25 12687.70 11784.56 15490.37 14193.70 12790.54 12678.14 18183.50 14565.37 18581.59 10375.83 14286.09 14091.70 12991.70 12896.88 14495.84 122
test0.0.03 185.58 13787.69 11883.11 17291.22 12892.54 16485.60 18783.62 14185.66 12667.84 17082.79 9279.70 11673.51 19791.15 13990.79 13996.88 14491.23 175
CDS-MVSNet88.34 11088.71 10287.90 11990.70 13894.54 10892.38 10586.02 11380.37 16279.42 11279.30 11083.43 9182.04 16793.39 10294.01 7496.86 14695.93 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4284.48 15383.36 16385.79 13987.14 17993.28 14190.03 13783.98 13780.30 16371.20 14666.90 17067.17 16885.55 14289.35 16690.27 15396.82 14796.27 112
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14898.14 43
v7n82.25 18181.54 18183.07 17485.55 19592.58 16286.68 17981.10 17176.54 18565.97 18162.91 18960.56 20082.36 16591.07 14090.35 15196.77 14996.80 93
USDC86.73 12485.96 13787.63 12391.64 12293.97 12092.76 10284.58 12988.19 10470.67 15080.10 10867.86 16689.43 9791.81 12789.77 16896.69 15090.05 185
GA-MVS85.08 14485.65 14184.42 15689.77 14394.25 11689.26 15284.62 12881.19 15962.25 19375.72 13268.44 16384.14 15593.57 9691.68 13096.49 15194.71 143
COLMAP_ROBcopyleft84.39 1587.61 11586.03 13489.46 10195.54 6894.48 11091.77 12090.14 6587.16 11175.50 12573.41 14476.86 13887.33 12590.05 15989.76 16996.48 15290.46 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline91.19 7791.89 7390.38 8992.76 10995.04 10593.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10292.00 12592.62 10896.46 15396.99 88
FMVSNet584.47 15484.72 14984.18 16083.30 20188.43 19888.09 16679.42 17784.25 13874.14 13073.15 14678.74 12083.65 15891.19 13791.19 13696.46 15386.07 199
MS-PatchMatch87.63 11487.61 11987.65 12293.95 8794.09 11892.60 10481.52 16686.64 11676.41 12373.46 14385.94 8085.01 14892.23 12290.00 16396.43 15590.93 178
RPMNet84.82 14885.90 13883.56 16791.10 13192.10 17188.73 16271.11 20384.75 13068.79 16273.56 14077.62 13285.33 14590.08 15889.43 17296.32 15693.77 156
CR-MVSNet85.48 13986.29 13184.53 15591.08 13392.10 17189.18 15373.30 19884.75 13071.08 14773.12 14777.91 12986.27 13691.48 13190.75 14296.27 15793.94 152
pmmvs486.00 13384.28 15288.00 11687.80 16592.01 17689.94 14184.91 12586.79 11580.98 10473.41 14466.34 17588.12 11789.31 16888.90 17796.24 15893.20 163
PMMVS89.88 9491.19 8188.35 11289.73 14491.97 17790.62 12581.92 16190.57 7580.58 10892.16 3586.85 7591.17 8292.31 11891.35 13496.11 15993.11 164
Anonymous2023120678.09 19478.11 19578.07 19585.19 19789.17 19680.99 19781.24 17075.46 19358.25 20254.78 20559.90 20466.73 20288.94 17488.26 17896.01 16090.25 183
v14883.61 16582.10 17485.37 14287.34 17492.94 15287.48 17085.72 12078.92 17273.87 13165.71 17864.69 18581.78 17187.82 17889.35 17396.01 16095.26 136
MIMVSNet173.19 19973.70 20072.60 20265.42 21486.69 20575.56 20579.65 17567.87 20755.30 20445.24 21056.41 20863.79 20486.98 18487.66 18095.85 16285.04 201
TinyColmap84.04 15982.01 17686.42 13590.87 13491.84 17888.89 16084.07 13682.11 15569.89 15571.08 15260.81 19989.04 10890.52 15089.19 17495.76 16388.50 193
test-mter86.09 13288.38 10583.43 16987.89 16492.61 16186.89 17677.11 18684.30 13768.62 16582.57 9582.45 10084.34 15192.40 11790.11 16095.74 16494.21 150
GG-mvs-BLEND62.84 20490.21 8930.91 2130.57 22194.45 11186.99 1750.34 21988.71 1000.98 22181.55 10491.58 570.86 21892.66 11291.43 13395.73 16591.11 176
IterMVS-SCA-FT85.44 14186.71 12683.97 16390.59 13990.84 19089.73 14678.34 18084.07 14366.40 17977.27 12278.66 12183.06 16091.20 13690.10 16195.72 16694.78 141
SixPastTwentyTwo83.12 17283.44 15982.74 17887.71 16993.11 14982.30 19582.33 15679.24 17164.33 18878.77 11362.75 18984.11 15688.11 17787.89 17995.70 16794.21 150
LTVRE_ROB81.71 1682.44 18081.84 17883.13 17189.01 14992.99 15088.90 15982.32 15766.26 20854.02 20874.68 13759.62 20588.87 11390.71 14692.02 12195.68 16896.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test-LLR86.88 12188.28 10685.24 14591.22 12892.07 17387.41 17183.62 14184.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
TESTMET0.1,186.11 13188.28 10683.59 16687.80 16592.07 17387.41 17177.12 18584.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17198.65 14
test20.0376.41 19778.49 19473.98 19985.64 19487.50 20175.89 20480.71 17270.84 20351.07 21268.06 16461.40 19754.99 20888.28 17687.20 18195.58 17286.15 198
TDRefinement84.97 14683.39 16186.81 13092.97 10594.12 11792.18 11087.77 10082.78 15171.31 14568.43 16368.07 16581.10 17589.70 16489.03 17695.55 17391.62 170
PatchT83.86 16185.51 14381.94 18588.41 15791.56 18378.79 20271.57 20284.08 14271.08 14770.62 15376.13 14186.27 13691.48 13190.75 14295.52 17493.94 152
testgi81.94 18284.09 15379.43 19289.53 14790.83 19182.49 19481.75 16480.59 16059.46 20082.82 9165.75 17667.97 19990.10 15789.52 17195.39 17589.03 188
CHOSEN 1792x268888.57 10887.82 11589.44 10295.46 6996.89 7993.74 8685.87 11589.63 9177.42 11961.38 19383.31 9288.80 11493.44 10193.16 9695.37 17696.95 90
pmmvs-eth3d79.78 19177.58 19682.34 18381.57 20487.46 20282.92 19281.28 16875.33 19471.34 14461.88 19152.41 21081.59 17387.56 18086.90 18295.36 17791.48 171
test_part187.53 11684.97 14590.52 8892.11 11793.31 13993.32 9685.79 11679.56 17087.38 6062.89 19078.60 12289.25 10390.65 14892.17 11695.24 17897.62 66
TAMVS84.94 14784.95 14684.93 14988.82 15093.18 14588.44 16481.28 16877.16 18273.76 13275.43 13476.57 13982.04 16790.59 14990.79 13995.22 17990.94 177
PM-MVS80.29 18879.30 19181.45 18881.91 20388.23 19982.61 19379.01 17879.99 16767.15 17569.07 16151.39 21182.92 16287.55 18185.59 18695.08 18093.28 161
IterMVS85.25 14386.49 12983.80 16490.42 14090.77 19390.02 13878.04 18284.10 14166.27 18077.28 12178.41 12583.01 16190.88 14189.72 17095.04 18194.24 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu88.32 11190.61 8685.64 14196.79 5592.27 16992.03 11690.31 6489.05 9765.44 18489.43 4985.90 8174.22 19392.76 10992.09 11995.02 18292.76 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu87.51 11788.13 11086.77 13191.10 13194.90 10690.91 12382.67 15183.47 14671.55 14281.11 10577.04 13589.41 9892.65 11391.68 13095.00 18396.09 117
pmmvs680.90 18678.77 19283.38 17085.84 19291.61 18286.01 18382.54 15364.17 20970.43 15254.14 20667.06 17080.73 17690.50 15189.17 17594.74 18494.75 142
CVMVSNet83.83 16285.53 14281.85 18689.60 14590.92 18887.81 16983.21 14780.11 16560.16 19876.47 12578.57 12376.79 18689.76 16190.13 15693.51 18592.75 167
SCA86.25 12687.52 12284.77 15091.59 12393.90 12189.11 15573.25 20090.38 7872.84 13683.26 8683.79 9088.49 11686.07 18985.56 18793.33 18689.67 187
EPMVS85.77 13486.24 13285.23 14692.76 10993.78 12489.91 14273.60 19690.19 8274.22 12882.18 9878.06 12787.55 12285.61 19185.38 18993.32 18788.48 194
CostFormer86.78 12386.05 13387.62 12492.15 11693.20 14491.55 12175.83 18888.11 10685.29 8581.76 10076.22 14087.80 11884.45 19485.21 19093.12 18893.42 160
pmnet_mix0280.14 18980.21 19080.06 18986.61 18889.66 19580.40 19982.20 15982.29 15461.35 19571.52 15066.67 17376.75 18782.55 20080.18 20393.05 18988.62 191
new-patchmatchnet72.32 20071.09 20373.74 20081.17 20584.86 20772.21 20977.48 18468.32 20654.89 20655.10 20349.31 21463.68 20579.30 20576.46 20693.03 19084.32 204
dps85.00 14583.21 16587.08 12790.73 13692.55 16389.34 15075.29 19084.94 12987.01 6279.27 11167.69 16787.27 12684.22 19583.56 19592.83 19190.25 183
PatchmatchNetpermissive85.70 13586.65 12784.60 15391.79 12093.40 13589.27 15173.62 19590.19 8272.63 13882.74 9381.93 10687.64 12084.99 19284.29 19492.64 19289.00 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42090.77 8492.14 6989.17 10593.86 9292.81 15793.16 9780.22 17490.21 8184.67 8989.89 4891.38 5990.57 9094.94 6392.11 11892.52 19393.65 157
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15392.30 10787.69 10190.44 7785.12 8691.68 3985.84 8290.69 8887.34 18286.07 18492.46 19490.37 182
MDTV_nov1_ep13_2view80.43 18780.94 18779.84 19084.82 19890.87 18984.23 18973.80 19480.28 16464.33 18870.05 15968.77 16179.67 17784.83 19383.50 19692.17 19588.25 196
MDTV_nov1_ep1386.64 12587.50 12385.65 14090.73 13693.69 12889.96 14078.03 18389.48 9476.85 12184.92 7682.42 10186.14 13886.85 18686.15 18392.17 19588.97 190
ADS-MVSNet84.08 15884.95 14683.05 17591.53 12791.75 18088.16 16570.70 20489.96 8869.51 15878.83 11276.97 13786.29 13584.08 19684.60 19292.13 19788.48 194
EU-MVSNet78.43 19280.25 18976.30 19783.81 20087.27 20480.99 19779.52 17676.01 18954.12 20770.44 15664.87 18367.40 20186.23 18885.54 18891.95 19891.41 172
CMPMVSbinary61.19 1779.86 19077.46 19882.66 18091.54 12691.82 17983.25 19181.57 16570.51 20468.64 16459.89 19866.77 17279.63 17884.00 19784.30 19391.34 19984.89 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm83.16 17083.64 15582.60 18190.75 13591.05 18788.49 16373.99 19382.36 15267.08 17678.10 11668.79 16084.17 15485.95 19085.96 18591.09 20093.23 162
tpm cat184.13 15781.99 17786.63 13391.74 12191.50 18490.68 12475.69 18986.12 12285.44 8372.39 14870.72 15285.16 14680.89 20381.56 19991.07 20190.71 179
MVS-HIRNet78.16 19377.57 19778.83 19385.83 19387.76 20076.67 20370.22 20575.82 19267.39 17255.61 20170.52 15381.96 16986.67 18785.06 19190.93 20281.58 205
tpmrst83.72 16483.45 15884.03 16292.21 11591.66 18188.74 16173.58 19788.14 10572.67 13777.37 12072.11 14886.34 13482.94 19982.05 19890.63 20389.86 186
N_pmnet77.55 19676.68 19978.56 19485.43 19687.30 20378.84 20181.88 16278.30 17660.61 19661.46 19262.15 19274.03 19682.04 20180.69 20290.59 20484.81 203
MDA-MVSNet-bldmvs73.81 19872.56 20275.28 19872.52 21188.87 19774.95 20682.67 15171.57 20055.02 20565.96 17642.84 21776.11 18970.61 20981.47 20090.38 20586.59 197
pmmvs371.13 20271.06 20471.21 20373.54 21080.19 20971.69 21064.86 20962.04 21252.10 20954.92 20448.00 21575.03 19283.75 19883.24 19790.04 20685.27 200
new_pmnet72.29 20173.25 20171.16 20475.35 20881.38 20873.72 20869.27 20675.97 19049.84 21356.27 20056.12 20969.08 19881.73 20280.86 20189.72 20780.44 207
ambc67.96 20573.69 20979.79 21073.82 20771.61 19959.80 19946.00 20920.79 21966.15 20386.92 18580.11 20489.13 20890.50 180
FPMVS69.87 20367.10 20673.10 20184.09 19978.35 21179.40 20076.41 18771.92 19857.71 20354.06 20750.04 21256.72 20671.19 20868.70 20884.25 20975.43 209
PMMVS253.68 20855.72 21051.30 20758.84 21567.02 21354.23 21460.97 21247.50 21419.42 21834.81 21231.97 21830.88 21465.84 21169.99 20783.47 21072.92 211
PMVScopyleft56.77 1861.27 20558.64 20864.35 20575.66 20754.60 21553.62 21574.23 19253.69 21358.37 20144.27 21149.38 21344.16 21269.51 21065.35 21080.07 21173.66 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft58.52 20656.17 20961.27 20667.14 21358.06 21452.16 21668.40 20869.00 20545.02 21522.79 21320.57 22055.11 20776.27 20679.33 20579.80 21267.16 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method58.10 20764.61 20750.51 20828.26 21941.71 21861.28 21332.07 21575.92 19152.04 21047.94 20861.83 19551.80 20979.83 20463.95 21277.60 21381.05 206
DeepMVS_CXcopyleft71.82 21268.37 21148.05 21477.38 18046.88 21465.77 17747.03 21667.48 20064.27 21276.89 21476.72 208
tmp_tt50.24 20968.55 21246.86 21748.90 21718.28 21686.51 12068.32 16670.19 15865.33 17826.69 21574.37 20766.80 20970.72 215
E-PMN40.00 20935.74 21244.98 21057.69 21739.15 22028.05 21862.70 21035.52 21617.78 21920.90 21414.36 22244.47 21135.89 21447.86 21359.15 21656.47 214
EMVS39.04 21134.32 21344.54 21158.25 21639.35 21927.61 21962.55 21135.99 21516.40 22020.04 21614.77 22144.80 21033.12 21544.10 21457.61 21752.89 215
MVEpermissive39.81 1939.52 21041.58 21137.11 21233.93 21849.06 21626.45 22054.22 21329.46 21724.15 21720.77 21510.60 22334.42 21351.12 21365.27 21149.49 21864.81 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2126.54 2141.79 2140.60 2201.82 2213.06 2220.95 2177.22 2180.88 22212.38 2171.25 2243.87 2176.09 2165.58 2151.40 21911.42 217
test1233.48 2135.31 2151.34 2150.20 2221.52 2222.17 2230.58 2186.13 2190.31 2239.85 2180.31 2253.90 2162.65 2175.28 2160.87 22011.46 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def60.19 197
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
our_test_386.93 18389.77 19481.61 196
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 221
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 16889.18 15373.30 19871.08 147