This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft97.93 398.23 397.58 399.05 799.31 198.64 696.62 597.56 295.08 696.61 1499.64 197.32 197.91 497.31 698.77 1699.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++98.07 198.46 197.62 199.08 499.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
SED-MVS97.98 298.36 297.54 498.94 1899.29 298.81 496.64 397.14 395.16 597.96 299.61 296.92 1298.00 197.24 898.75 1899.25 3
DPE-MVScopyleft97.83 498.13 497.48 598.83 2499.19 498.99 196.70 196.05 2094.39 1198.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.70 698.09 597.24 799.00 1299.17 598.76 596.41 1096.91 593.88 1697.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 797.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
CSCG95.68 3195.46 3695.93 2998.71 2699.07 797.13 3793.55 3995.48 2693.35 2190.61 4793.82 4795.16 3994.60 8395.57 5497.70 10699.08 10
SMA-MVScopyleft97.53 797.93 797.07 1299.21 199.02 898.08 2096.25 1296.36 1293.57 1796.56 1599.27 596.78 1797.91 497.43 398.51 2798.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP96.93 1797.27 1596.53 2599.06 698.95 998.24 1496.06 1695.66 2390.96 3595.63 2597.71 1696.53 2197.66 1096.68 2098.30 5598.61 20
SteuartSystems-ACMMP97.10 1597.49 1096.65 2098.97 1498.95 998.43 995.96 1995.12 3091.46 3096.85 1097.60 1896.37 2597.76 697.16 1098.68 1998.97 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR96.92 1896.96 1996.87 1798.99 1398.78 1198.38 1195.52 2696.57 1092.81 2696.06 2195.90 3797.07 596.60 3996.34 3498.46 3498.42 35
HFP-MVS97.11 1497.19 1697.00 1498.97 1498.73 1298.37 1295.69 2396.60 993.28 2296.87 996.64 2997.27 296.64 3796.33 3598.44 3898.56 22
zzz-MVS96.98 1696.68 2497.33 699.09 398.71 1398.43 996.01 1796.11 1995.19 492.89 3497.32 2396.84 1397.20 1996.09 4798.44 3898.46 34
CS-MVS-test94.63 4595.28 3793.88 5296.56 5898.67 1493.41 9989.31 8194.27 4389.64 4490.84 4591.64 5895.58 3597.04 2496.17 3998.77 1698.32 38
XVS95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVStestdata95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVS96.07 2796.33 2995.77 3198.94 1898.66 1597.94 2495.41 3295.12 3088.03 5693.00 3396.06 3395.85 3196.65 3696.35 3198.47 3298.48 31
SD-MVS97.35 897.73 896.90 1697.35 4698.66 1597.85 2696.25 1296.86 694.54 1096.75 1299.13 696.99 796.94 2796.58 2398.39 4599.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS95.86 2996.93 2294.61 4397.60 4398.65 1996.49 4293.13 4294.07 4587.91 6097.12 897.17 2593.90 5696.46 4296.93 1798.64 2198.10 51
PGM-MVS96.16 2596.33 2995.95 2899.04 898.63 2098.32 1392.76 4493.42 5090.49 4096.30 1795.31 4296.71 1996.46 4296.02 4898.38 4698.19 44
APD-MVScopyleft97.12 1397.05 1897.19 899.04 898.63 2098.45 896.54 694.81 3893.50 1896.10 2097.40 2296.81 1497.05 2396.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS97.30 1097.41 1197.18 999.02 1198.60 2298.15 1796.24 1496.12 1894.10 1395.54 2697.99 1296.99 797.97 397.17 998.57 2598.50 30
CP-MVS96.68 2196.59 2796.77 1998.85 2398.58 2398.18 1695.51 2895.34 2792.94 2595.21 2996.25 3296.79 1696.44 4495.77 5198.35 4798.56 22
TSAR-MVS + MP.97.31 997.64 996.92 1597.28 4898.56 2498.61 795.48 3096.72 894.03 1596.73 1398.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft97.22 1197.40 1297.01 1399.08 498.55 2598.19 1596.48 796.02 2193.28 2296.26 1898.71 896.76 1897.30 1696.25 3798.30 5598.68 15
DeepC-MVS92.10 395.22 3694.77 4295.75 3297.77 3998.54 2697.63 2995.96 1995.07 3388.85 5085.35 7691.85 5595.82 3296.88 2997.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS94.53 4694.73 4394.31 4596.30 6298.53 2794.98 6289.24 8393.37 5190.24 4288.96 5689.76 7296.09 3097.48 1396.42 2698.99 298.59 21
ACMMPcopyleft95.54 3395.49 3595.61 3498.27 3298.53 2797.16 3694.86 3494.88 3689.34 4595.36 2891.74 5695.50 3795.51 6194.16 7598.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet94.85 4094.92 4094.78 3997.25 4998.52 2997.20 3491.81 5093.25 5291.06 3486.29 6894.46 4592.99 6797.02 2596.68 2098.34 4998.20 43
xxxxxxxxxxxxxcwj95.62 3294.35 4997.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 676.98 14096.23 2796.78 3096.15 4198.79 1498.55 27
SF-MVS97.20 1297.29 1497.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 697.57 1996.23 2796.78 3096.15 4198.79 1498.55 27
MVS_030494.30 4994.68 4493.86 5396.33 6198.48 3297.41 3291.20 5692.75 5686.96 6886.03 7193.81 4892.64 7196.89 2896.54 2598.61 2398.24 41
MP-MVScopyleft96.56 2296.72 2396.37 2698.93 2098.48 3298.04 2195.55 2594.32 4290.95 3795.88 2397.02 2696.29 2696.77 3296.01 4998.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1997.06 1796.57 2198.88 2298.47 3498.02 2296.16 1595.58 2590.96 3595.78 2497.84 1496.46 2397.00 2696.17 3998.94 798.55 27
MVS_111021_HR94.84 4195.91 3193.60 5597.35 4698.46 3595.08 6191.19 5794.18 4485.97 7595.38 2792.56 5393.61 6096.61 3896.25 3798.40 4397.92 58
NCCC96.75 2096.67 2596.85 1899.03 1098.44 3698.15 1796.28 1196.32 1392.39 2792.16 3697.55 2096.68 2097.32 1496.65 2298.55 2698.26 40
TSAR-MVS + ACMM96.19 2497.39 1394.78 3997.70 4198.41 3797.72 2895.49 2996.47 1186.66 7196.35 1697.85 1393.99 5397.19 2196.37 3097.12 13299.13 7
DELS-MVS93.71 5493.47 5494.00 4796.82 5598.39 3896.80 4091.07 5989.51 10089.94 4383.80 8689.29 7390.95 8997.32 1497.65 298.42 4198.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM94.13 5194.33 5193.90 5097.82 3898.37 3996.47 4390.89 6192.73 5885.63 8385.35 7693.87 4694.17 5195.71 5995.90 5098.40 4398.42 35
DeepC-MVS_fast93.32 196.48 2396.42 2896.56 2298.70 2798.31 4097.97 2395.76 2296.31 1492.01 2991.43 4195.42 4196.46 2397.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test250690.93 8589.20 10492.95 6694.97 7798.30 4194.53 6790.25 6789.91 9388.39 5583.23 9064.17 19390.69 9296.75 3496.10 4598.87 895.97 125
test111190.47 9489.10 10692.07 7794.92 7998.30 4194.17 8090.30 6689.56 9983.92 9673.25 15273.66 14990.26 9896.77 3296.14 4398.87 896.04 123
ECVR-MVScopyleft90.77 8989.27 10292.52 7094.97 7798.30 4194.53 6790.25 6789.91 9385.80 8073.64 14574.31 14890.69 9296.75 3496.10 4598.87 895.91 128
DeepPCF-MVS92.65 295.50 3596.96 1993.79 5496.44 5998.21 4493.51 9794.08 3896.94 489.29 4693.08 3296.77 2893.82 5797.68 997.40 495.59 17898.65 16
3Dnovator90.28 794.70 4494.34 5095.11 3798.06 3498.21 4496.89 3991.03 6094.72 3991.45 3182.87 9493.10 5194.61 4396.24 5097.08 1398.63 2298.16 45
MSLP-MVS++96.05 2895.63 3296.55 2398.33 3198.17 4696.94 3894.61 3694.70 4094.37 1289.20 5495.96 3696.81 1495.57 6097.33 598.24 6398.47 32
3Dnovator+90.56 595.06 3894.56 4695.65 3398.11 3398.15 4797.19 3591.59 5495.11 3293.23 2481.99 10394.71 4495.43 3896.48 4196.88 1898.35 4798.63 17
TSAR-MVS + GP.95.86 2996.95 2194.60 4494.07 8898.11 4896.30 4591.76 5295.67 2291.07 3396.82 1197.69 1795.71 3495.96 5495.75 5298.68 1998.63 17
CDPH-MVS94.80 4395.50 3493.98 4998.34 3098.06 4997.41 3293.23 4192.81 5582.98 10092.51 3594.82 4393.53 6196.08 5296.30 3698.42 4197.94 56
train_agg96.15 2696.64 2695.58 3598.44 2998.03 5098.14 1995.40 3393.90 4787.72 6196.26 1898.10 1095.75 3396.25 4995.45 5698.01 8598.47 32
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5697.74 4098.02 5195.66 5590.46 6489.14 10386.50 7275.80 13690.38 7092.69 7094.99 6895.30 5898.27 5997.63 67
abl_694.78 3997.46 4497.99 5295.76 5391.80 5193.72 4891.25 3291.33 4296.47 3094.28 5098.14 7297.39 78
CPTT-MVS95.54 3395.07 3896.10 2797.88 3797.98 5397.92 2594.86 3494.56 4192.16 2891.01 4395.71 3896.97 1094.56 8493.50 9196.81 15598.14 47
PCF-MVS90.19 892.98 5892.07 7394.04 4696.39 6097.87 5496.03 4995.47 3187.16 11885.09 9384.81 8093.21 5093.46 6391.98 13391.98 13097.78 9897.51 74
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs93.08 5793.09 5793.07 6594.24 8497.86 5595.45 5887.86 10494.00 4687.47 6388.32 5882.37 10695.13 4093.96 9996.41 2998.27 5998.73 13
PVSNet_Blended_VisFu91.92 7092.39 6991.36 9095.45 7497.85 5692.25 11689.54 7888.53 11087.47 6379.82 11390.53 6785.47 15196.31 4895.16 6297.99 8798.56 22
PVSNet_BlendedMVS92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PVSNet_Blended92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 9089.78 9686.68 7086.69 6587.57 7493.74 5896.07 5395.32 5798.58 2497.53 73
AdaColmapbinary95.02 3993.71 5296.54 2498.51 2897.76 5996.69 4195.94 2193.72 4893.50 1889.01 5590.53 6796.49 2294.51 8693.76 8498.07 7996.69 99
IS_MVSNet91.87 7193.35 5690.14 10494.09 8797.73 6193.09 10588.12 9688.71 10779.98 11784.49 8190.63 6687.49 13097.07 2296.96 1698.07 7997.88 62
OMC-MVS94.49 4794.36 4894.64 4297.17 5097.73 6195.49 5792.25 4696.18 1590.34 4188.51 5792.88 5294.90 4294.92 7194.17 7497.69 10896.15 119
MVS_111021_LR94.84 4195.57 3394.00 4797.11 5197.72 6394.88 6591.16 5895.24 2988.74 5196.03 2291.52 6094.33 4995.96 5495.01 6397.79 9797.49 75
DROMVSNet94.19 5095.05 3993.18 6193.56 10497.65 6495.34 5986.37 11792.05 6288.71 5289.91 5093.32 4996.14 2997.29 1796.42 2698.98 398.70 14
TAPA-MVS90.35 693.69 5593.52 5393.90 5096.89 5497.62 6596.15 4691.67 5394.94 3485.97 7587.72 6091.96 5494.40 4693.76 10093.06 10798.30 5595.58 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Vis-MVSNetpermissive89.36 10991.49 8286.88 13692.10 12597.60 6692.16 12085.89 12084.21 14675.20 13382.58 9887.13 7677.40 19195.90 5695.63 5398.51 2797.36 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS93.80 5394.57 4592.91 6893.98 9097.50 6793.62 9488.70 8891.95 6387.57 6290.21 4990.79 6394.56 4497.20 1996.35 3199.02 197.98 53
DPM-MVS95.07 3794.84 4195.34 3697.44 4597.49 6897.76 2795.52 2694.88 3688.92 4987.25 6196.44 3194.41 4595.78 5796.11 4497.99 8795.95 126
UA-Net90.81 8692.58 6488.74 11694.87 8197.44 6992.61 11088.22 9482.35 16078.93 12185.20 7895.61 3979.56 18696.52 4096.57 2498.23 6494.37 154
CNLPA93.69 5592.50 6595.06 3897.11 5197.36 7093.88 8793.30 4095.64 2493.44 2080.32 11190.73 6594.99 4193.58 10293.33 9697.67 11096.57 104
EPP-MVSNet92.13 6793.06 5891.05 9293.66 10397.30 7192.18 11787.90 10090.24 8483.63 9786.14 7090.52 6990.76 9194.82 7694.38 7198.18 6997.98 53
tfpn200view989.55 10687.86 12191.53 8493.90 9597.26 7294.31 7589.74 7385.87 13081.15 10876.46 13170.38 16091.76 8094.92 7193.51 8898.28 5896.61 101
thres600view789.28 11287.47 13191.39 8794.12 8697.25 7393.94 8589.74 7385.62 13580.63 11475.24 14069.33 16591.66 8294.92 7193.23 9998.27 5996.72 98
thres20089.49 10787.72 12391.55 8393.95 9297.25 7394.34 7389.74 7385.66 13381.18 10776.12 13570.19 16391.80 7894.92 7193.51 8898.27 5996.40 109
FA-MVS(training)90.79 8891.33 8390.17 10293.76 10097.22 7592.74 10977.79 19090.60 7888.03 5678.80 11787.41 7591.00 8895.40 6393.43 9497.70 10696.46 106
thres40089.40 10887.58 12891.53 8494.06 8997.21 7694.19 7989.83 7285.69 13281.08 11075.50 13869.76 16491.80 7894.79 7893.51 8898.20 6796.60 102
casdiffmvs91.72 7591.16 8692.38 7493.16 10897.15 7793.95 8389.49 7991.58 6986.03 7480.75 11080.95 11493.16 6595.25 6495.22 6198.50 2997.23 84
UGNet91.52 7793.41 5589.32 11094.13 8597.15 7791.83 12689.01 8490.62 7685.86 7986.83 6291.73 5777.40 19194.68 8094.43 7097.71 10498.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS92.71 6292.63 6392.79 6997.70 4197.15 7793.75 9087.98 9890.71 7385.76 8186.28 6986.38 8094.35 4894.95 6995.49 5597.22 12597.44 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D91.97 6990.98 8893.12 6397.03 5397.09 8095.33 6095.59 2492.47 5979.26 12081.60 10682.77 10194.39 4794.28 8894.23 7397.14 13194.45 153
tttt051791.01 8491.71 7890.19 10192.98 11097.07 8191.96 12587.63 10990.61 7781.42 10586.76 6482.26 10789.23 11194.86 7593.03 10997.90 9297.36 79
thisisatest053091.04 8391.74 7790.21 9992.93 11497.00 8292.06 12287.63 10990.74 7281.51 10486.81 6382.48 10389.23 11194.81 7793.03 10997.90 9297.33 81
HyFIR lowres test87.87 12086.42 13789.57 10795.56 6996.99 8392.37 11384.15 14086.64 12377.17 12757.65 20683.97 9291.08 8792.09 13192.44 11797.09 13495.16 144
MVS_Test91.81 7392.19 7191.37 8993.24 10696.95 8494.43 6986.25 11891.45 7083.45 9886.31 6785.15 8892.93 6893.99 9594.71 6897.92 9196.77 97
Vis-MVSNet (Re-imp)90.54 9392.76 6287.94 12593.73 10196.94 8592.17 11987.91 9988.77 10676.12 13183.68 8790.80 6279.49 18796.34 4796.35 3198.21 6696.46 106
CHOSEN 1792x268888.57 11587.82 12289.44 10995.46 7296.89 8693.74 9185.87 12189.63 9777.42 12661.38 20083.31 9688.80 12193.44 10893.16 10395.37 18396.95 93
thres100view90089.36 10987.61 12691.39 8793.90 9596.86 8794.35 7289.66 7785.87 13081.15 10876.46 13170.38 16091.17 8594.09 9393.43 9498.13 7396.16 118
IB-MVS85.10 1487.98 11987.97 12087.99 12494.55 8296.86 8784.52 19588.21 9586.48 12888.54 5474.41 14377.74 13574.10 20289.65 17292.85 11198.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU90.74 9192.93 6188.19 12194.36 8396.61 8994.34 7384.66 13390.66 7468.75 17090.41 4886.89 7889.78 10195.46 6294.87 6597.25 12495.62 133
DI_MVS_plusplus_trai91.05 8290.15 9592.11 7692.67 12096.61 8996.03 4988.44 9290.25 8385.92 7773.73 14484.89 9091.92 7794.17 9294.07 7997.68 10997.31 82
EPNet93.92 5294.40 4793.36 5797.89 3696.55 9196.08 4892.14 4791.65 6789.16 4794.07 3190.17 7187.78 12695.24 6594.97 6497.09 13498.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune81.83 19083.58 16379.80 19891.57 13196.54 9293.79 8968.80 21462.71 21843.01 22355.28 20985.06 8983.65 16596.13 5194.86 6697.98 9094.46 152
PLCcopyleft90.69 494.32 4892.99 5995.87 3097.91 3596.49 9395.95 5294.12 3794.94 3494.09 1485.90 7290.77 6495.58 3594.52 8593.32 9897.55 11595.00 147
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvs91.37 7891.09 8791.70 8192.71 11996.47 9494.03 8188.78 8692.74 5785.43 9083.63 8880.37 11691.76 8093.39 10993.78 8397.50 11797.23 84
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7696.46 9596.13 4792.04 4995.33 2880.11 11694.95 3077.35 13894.05 5294.49 8793.08 10597.15 12994.53 151
Effi-MVS+89.79 10389.83 9989.74 10692.98 11096.45 9693.48 9884.24 13887.62 11676.45 12981.76 10477.56 13793.48 6294.61 8293.59 8797.82 9697.22 86
ACMP89.13 992.03 6891.70 7992.41 7394.92 7996.44 9793.95 8389.96 7091.81 6685.48 8890.97 4479.12 12292.42 7393.28 11392.55 11697.76 10097.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521188.00 11893.16 10896.38 9893.58 9589.34 8087.92 11465.04 18983.03 9892.07 7692.67 11893.33 9696.96 14297.63 67
CLD-MVS92.50 6491.96 7593.13 6293.93 9496.24 9995.69 5488.77 8792.92 5389.01 4888.19 5981.74 11193.13 6693.63 10193.08 10598.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D89.93 10090.84 8988.87 11479.60 21396.19 10094.43 6986.56 11590.63 7580.75 11390.71 4677.78 13493.73 5991.36 14193.45 9398.15 7095.77 130
LGP-MVS_train91.83 7292.04 7491.58 8295.46 7296.18 10195.97 5189.85 7190.45 8077.76 12391.92 3980.07 11992.34 7594.27 8993.47 9298.11 7697.90 61
OPM-MVS91.08 8189.34 10193.11 6496.18 6396.13 10296.39 4492.39 4582.97 15781.74 10382.55 10080.20 11893.97 5594.62 8193.23 9998.00 8695.73 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121189.82 10288.18 11691.74 8092.52 12196.09 10393.38 10089.30 8288.95 10585.90 7864.55 19384.39 9192.41 7492.24 12893.06 10796.93 14797.95 55
GeoE89.29 11188.68 11089.99 10592.75 11896.03 10493.07 10783.79 14586.98 12081.34 10674.72 14178.92 12391.22 8493.31 11193.21 10197.78 9897.60 72
HQP-MVS92.39 6592.49 6692.29 7595.65 6895.94 10595.64 5692.12 4892.46 6079.65 11891.97 3882.68 10292.92 6993.47 10792.77 11297.74 10298.12 49
baseline190.81 8690.29 9291.42 8693.67 10295.86 10693.94 8589.69 7689.29 10282.85 10182.91 9380.30 11789.60 10295.05 6794.79 6798.80 1293.82 162
PatchMatch-RL90.30 9688.93 10891.89 7895.41 7595.68 10790.94 12988.67 8989.80 9586.95 6985.90 7272.51 15192.46 7293.56 10492.18 12296.93 14792.89 172
baseline288.97 11389.50 10088.36 11891.14 13795.30 10890.13 14385.17 13087.24 11780.80 11284.46 8278.44 12885.60 14893.54 10591.87 13197.31 12295.66 132
Fast-Effi-MVS+88.56 11687.99 11989.22 11191.56 13295.21 10992.29 11582.69 15686.82 12177.73 12476.24 13473.39 15093.36 6494.22 9193.64 8597.65 11196.43 108
FC-MVSNet-train90.55 9290.19 9490.97 9393.78 9995.16 11092.11 12188.85 8587.64 11583.38 9984.36 8378.41 12989.53 10394.69 7993.15 10498.15 7097.92 58
ACMM88.76 1091.70 7690.43 9193.19 6095.56 6995.14 11193.35 10191.48 5592.26 6187.12 6684.02 8479.34 12193.99 5394.07 9492.68 11397.62 11495.50 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline91.19 8091.89 7690.38 9592.76 11695.04 11293.55 9684.54 13692.92 5385.71 8286.68 6686.96 7789.28 10992.00 13292.62 11596.46 16096.99 91
Effi-MVS+-dtu87.51 12488.13 11786.77 13891.10 13894.90 11390.91 13082.67 15783.47 15371.55 14981.11 10977.04 13989.41 10592.65 12091.68 13795.00 19096.09 121
MVSTER91.73 7491.61 8091.86 7993.18 10794.56 11494.37 7187.90 10090.16 8888.69 5389.23 5381.28 11388.92 11995.75 5893.95 8198.12 7496.37 110
CDS-MVSNet88.34 11788.71 10987.90 12690.70 14594.54 11592.38 11286.02 11980.37 16979.42 11979.30 11483.43 9582.04 17493.39 10994.01 8096.86 15395.93 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH85.51 1387.31 12686.59 13588.14 12293.96 9194.51 11689.00 16587.99 9781.58 16370.15 16078.41 12071.78 15690.60 9591.30 14291.99 12997.17 12896.58 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft84.39 1587.61 12286.03 14189.46 10895.54 7194.48 11791.77 12790.14 6987.16 11875.50 13273.41 15076.86 14287.33 13290.05 16689.76 17696.48 15990.46 188
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GG-mvs-BLEND62.84 21190.21 9330.91 2200.57 22894.45 11886.99 1820.34 22688.71 1070.98 22881.55 10891.58 590.86 22592.66 11991.43 14095.73 17291.11 183
UniMVSNet (Re)86.22 13585.46 15187.11 13388.34 16594.42 11989.65 15587.10 11384.39 14374.61 13470.41 16468.10 17085.10 15491.17 14591.79 13397.84 9597.94 56
ACMH+85.75 1287.19 12786.02 14288.56 11793.42 10594.41 12089.91 14987.66 10883.45 15472.25 14776.42 13371.99 15590.78 9089.86 16790.94 14497.32 12195.11 146
MSDG90.42 9588.25 11592.94 6796.67 5794.41 12093.96 8292.91 4389.59 9886.26 7376.74 12980.92 11590.43 9792.60 12192.08 12797.44 12091.41 179
UniMVSNet_ETH3D84.57 15681.40 19088.28 12089.34 15594.38 12290.33 13586.50 11674.74 20277.52 12559.90 20462.04 20188.78 12288.82 18292.65 11497.22 12597.24 83
GA-MVS85.08 15185.65 14884.42 16389.77 15094.25 12389.26 15984.62 13481.19 16662.25 20075.72 13768.44 16984.14 16293.57 10391.68 13796.49 15894.71 150
TDRefinement84.97 15383.39 16886.81 13792.97 11294.12 12492.18 11787.77 10582.78 15871.31 15268.43 17068.07 17181.10 18289.70 17189.03 18395.55 18091.62 177
MS-PatchMatch87.63 12187.61 12687.65 12993.95 9294.09 12592.60 11181.52 17286.64 12376.41 13073.46 14985.94 8485.01 15592.23 12990.00 17096.43 16290.93 185
UniMVSNet_NR-MVSNet86.80 12985.86 14687.89 12788.17 16794.07 12690.15 14188.51 9184.20 14773.45 14072.38 15670.30 16288.95 11790.25 16092.21 12198.12 7497.62 69
USDC86.73 13185.96 14487.63 13091.64 12993.97 12792.76 10884.58 13588.19 11170.67 15780.10 11267.86 17289.43 10491.81 13489.77 17596.69 15790.05 192
SCA86.25 13387.52 12984.77 15791.59 13093.90 12889.11 16273.25 20790.38 8272.84 14383.26 8983.79 9488.49 12386.07 19685.56 19493.33 19389.67 194
FMVSNet390.19 9990.06 9890.34 9688.69 16093.85 12994.58 6685.78 12390.03 8985.56 8577.38 12286.13 8189.22 11393.29 11294.36 7298.20 6795.40 141
EG-PatchMatch MVS81.70 19281.31 19182.15 19188.75 15893.81 13087.14 18178.89 18571.57 20764.12 19761.20 20268.46 16876.73 19591.48 13890.77 14897.28 12391.90 176
DU-MVS86.12 13784.81 15587.66 12887.77 17493.78 13190.15 14187.87 10284.40 14173.45 14070.59 16164.82 19088.95 11790.14 16192.33 11897.76 10097.62 69
NR-MVSNet85.46 14784.54 15786.52 14188.33 16693.78 13190.45 13487.87 10284.40 14171.61 14870.59 16162.09 20082.79 17091.75 13591.75 13498.10 7797.44 76
EPMVS85.77 14186.24 13985.23 15392.76 11693.78 13189.91 14973.60 20390.19 8674.22 13582.18 10278.06 13187.55 12985.61 19885.38 19693.32 19488.48 201
Fast-Effi-MVS+-dtu86.25 13387.70 12484.56 16190.37 14893.70 13490.54 13378.14 18783.50 15265.37 19281.59 10775.83 14686.09 14791.70 13691.70 13596.88 15195.84 129
MDTV_nov1_ep1386.64 13287.50 13085.65 14790.73 14393.69 13589.96 14778.03 18989.48 10176.85 12884.92 7982.42 10586.14 14586.85 19386.15 19092.17 20288.97 197
thisisatest051585.70 14287.00 13284.19 16688.16 16893.67 13684.20 19784.14 14183.39 15572.91 14276.79 12874.75 14778.82 18992.57 12291.26 14296.94 14496.56 105
GBi-Net90.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
test190.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
FMVSNet289.61 10589.14 10590.16 10388.66 16193.65 13794.25 7685.44 12788.57 10984.96 9473.53 14783.82 9389.38 10694.23 9094.68 6998.31 5295.47 137
anonymousdsp84.51 15885.85 14782.95 18386.30 19893.51 14085.77 19280.38 17978.25 18463.42 19873.51 14872.20 15384.64 15793.21 11492.16 12497.19 12798.14 47
DCV-MVSNet91.24 7991.26 8491.22 9192.84 11593.44 14193.82 8886.75 11491.33 7185.61 8484.00 8585.46 8791.27 8392.91 11593.62 8697.02 13898.05 52
PatchmatchNetpermissive85.70 14286.65 13484.60 16091.79 12793.40 14289.27 15873.62 20290.19 8672.63 14582.74 9781.93 11087.64 12784.99 19984.29 20192.64 19989.00 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pm-mvs184.55 15783.46 16485.82 14488.16 16893.39 14389.05 16485.36 12974.03 20372.43 14665.08 18871.11 15782.30 17393.48 10691.70 13597.64 11295.43 140
TranMVSNet+NR-MVSNet85.57 14584.41 15886.92 13587.67 17793.34 14490.31 13788.43 9383.07 15670.11 16169.99 16765.28 18586.96 13589.73 16992.27 11998.06 8197.17 88
WR-MVS_H82.86 18382.66 17783.10 18087.44 18093.33 14585.71 19383.20 15477.36 18868.20 17566.37 17965.23 18676.05 19789.35 17390.13 16397.99 8796.89 95
test_part187.53 12384.97 15290.52 9492.11 12493.31 14693.32 10285.79 12279.56 17787.38 6562.89 19778.60 12689.25 11090.65 15592.17 12395.24 18597.62 69
WR-MVS83.14 17883.38 16982.87 18487.55 17893.29 14786.36 18884.21 13980.05 17366.41 18566.91 17666.92 17775.66 19888.96 18090.56 15497.05 13696.96 92
v2v48284.51 15883.05 17486.20 14387.25 18393.28 14890.22 13985.40 12879.94 17569.78 16367.74 17265.15 18787.57 12889.12 17890.55 15596.97 14095.60 134
V4284.48 16083.36 17085.79 14687.14 18693.28 14890.03 14483.98 14380.30 17071.20 15366.90 17767.17 17485.55 14989.35 17390.27 16096.82 15496.27 116
tfpnnormal83.80 17081.26 19286.77 13889.60 15293.26 15089.72 15487.60 11172.78 20470.44 15860.53 20361.15 20585.55 14992.72 11791.44 13997.71 10496.92 94
CostFormer86.78 13086.05 14087.62 13192.15 12393.20 15191.55 12875.83 19588.11 11385.29 9181.76 10476.22 14487.80 12584.45 20185.21 19793.12 19593.42 167
pmmvs583.37 17582.68 17684.18 16787.13 18793.18 15286.74 18482.08 16676.48 19367.28 18171.26 15862.70 19784.71 15690.77 15090.12 16697.15 12994.24 155
FC-MVSNet-test86.15 13689.10 10682.71 18689.83 14993.18 15287.88 17584.69 13286.54 12562.18 20182.39 10183.31 9674.18 20192.52 12391.86 13297.50 11793.88 161
TAMVS84.94 15484.95 15384.93 15688.82 15793.18 15288.44 17181.28 17477.16 18973.76 13975.43 13976.57 14382.04 17490.59 15690.79 14695.22 18690.94 184
v114484.03 16782.88 17585.37 14987.17 18593.15 15590.18 14083.31 15278.83 18067.85 17665.99 18264.99 18886.79 13790.75 15190.33 15996.90 14996.15 119
SixPastTwentyTwo83.12 17983.44 16682.74 18587.71 17693.11 15682.30 20282.33 16279.24 17864.33 19578.77 11862.75 19684.11 16388.11 18487.89 18695.70 17494.21 157
LTVRE_ROB81.71 1682.44 18781.84 18583.13 17889.01 15692.99 15788.90 16682.32 16366.26 21554.02 21574.68 14259.62 21288.87 12090.71 15392.02 12895.68 17596.62 100
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v884.45 16283.30 17185.80 14587.53 17992.95 15890.31 13782.46 16180.46 16871.43 15066.99 17567.16 17586.14 14589.26 17690.22 16296.94 14496.06 122
v14883.61 17282.10 18185.37 14987.34 18192.94 15987.48 17785.72 12678.92 17973.87 13865.71 18564.69 19181.78 17887.82 18589.35 18096.01 16795.26 143
RPSCF89.68 10489.24 10390.20 10092.97 11292.93 16092.30 11487.69 10690.44 8185.12 9291.68 4085.84 8690.69 9287.34 18986.07 19192.46 20190.37 189
v14419283.48 17482.23 17984.94 15586.65 19392.84 16189.63 15682.48 16077.87 18567.36 18065.33 18763.50 19486.51 13989.72 17089.99 17197.03 13796.35 111
v119283.56 17382.35 17884.98 15486.84 19292.84 16190.01 14682.70 15578.54 18166.48 18464.88 19062.91 19586.91 13690.72 15290.25 16196.94 14496.32 113
FMVSNet187.33 12586.00 14388.89 11387.13 18792.83 16393.08 10684.46 13781.35 16582.20 10266.33 18077.96 13288.96 11693.97 9694.16 7597.54 11695.38 142
CHOSEN 280x42090.77 8992.14 7289.17 11293.86 9792.81 16493.16 10380.22 18090.21 8584.67 9589.89 5191.38 6190.57 9694.94 7092.11 12592.52 20093.65 164
CP-MVSNet83.11 18082.15 18084.23 16587.20 18492.70 16586.42 18783.53 15077.83 18667.67 17866.89 17860.53 20882.47 17189.23 17790.65 15398.08 7897.20 87
v1084.18 16383.17 17385.37 14987.34 18192.68 16690.32 13681.33 17379.93 17669.23 16866.33 18065.74 18387.03 13490.84 14990.38 15796.97 14096.29 115
v192192083.30 17682.09 18284.70 15886.59 19692.67 16789.82 15282.23 16478.32 18265.76 18964.64 19262.35 19886.78 13890.34 15990.02 16997.02 13896.31 114
test-mter86.09 13988.38 11283.43 17687.89 17192.61 16886.89 18377.11 19384.30 14468.62 17282.57 9982.45 10484.34 15892.40 12490.11 16795.74 17194.21 157
v7n82.25 18881.54 18883.07 18185.55 20292.58 16986.68 18681.10 17776.54 19265.97 18862.91 19660.56 20782.36 17291.07 14790.35 15896.77 15696.80 96
dps85.00 15283.21 17287.08 13490.73 14392.55 17089.34 15775.29 19784.94 13687.01 6779.27 11567.69 17387.27 13384.22 20283.56 20292.83 19890.25 190
test0.0.03 185.58 14487.69 12583.11 17991.22 13592.54 17185.60 19483.62 14785.66 13367.84 17782.79 9679.70 12073.51 20491.15 14690.79 14696.88 15191.23 182
PS-CasMVS82.53 18581.54 18883.68 17287.08 18992.54 17186.20 18983.46 15176.46 19465.73 19065.71 18559.41 21381.61 17989.06 17990.55 15598.03 8397.07 90
v124082.88 18281.66 18684.29 16486.46 19792.52 17389.06 16381.82 16977.16 18965.09 19364.17 19461.50 20386.36 14090.12 16390.13 16396.95 14396.04 123
IterMVS-LS88.60 11488.45 11188.78 11592.02 12692.44 17492.00 12483.57 14986.52 12678.90 12278.61 11981.34 11289.12 11490.68 15493.18 10297.10 13396.35 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry92.39 17589.18 16073.30 20571.08 154
EPNet_dtu88.32 11890.61 9085.64 14896.79 5692.27 17692.03 12390.31 6589.05 10465.44 19189.43 5285.90 8574.22 20092.76 11692.09 12695.02 18992.76 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet82.97 18184.00 16181.77 19482.23 20992.25 17787.40 18072.73 20881.48 16469.55 16468.79 16972.42 15281.82 17792.23 12992.25 12096.89 15088.61 199
CR-MVSNet85.48 14686.29 13884.53 16291.08 14092.10 17889.18 16073.30 20584.75 13771.08 15473.12 15477.91 13386.27 14391.48 13890.75 14996.27 16493.94 159
RPMNet84.82 15585.90 14583.56 17491.10 13892.10 17888.73 16971.11 21084.75 13768.79 16973.56 14677.62 13685.33 15290.08 16589.43 17996.32 16393.77 163
test-LLR86.88 12888.28 11385.24 15291.22 13592.07 18087.41 17883.62 14784.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
TESTMET0.1,186.11 13888.28 11383.59 17387.80 17292.07 18087.41 17877.12 19284.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
PEN-MVS82.49 18681.58 18783.56 17486.93 19092.05 18286.71 18583.84 14476.94 19164.68 19467.24 17360.11 20981.17 18187.78 18690.70 15298.02 8496.21 117
pmmvs486.00 14084.28 15988.00 12387.80 17292.01 18389.94 14884.91 13186.79 12280.98 11173.41 15066.34 18188.12 12489.31 17588.90 18496.24 16593.20 170
PMMVS89.88 10191.19 8588.35 11989.73 15191.97 18490.62 13281.92 16790.57 7980.58 11592.16 3686.85 7991.17 8592.31 12591.35 14196.11 16693.11 171
TinyColmap84.04 16682.01 18386.42 14290.87 14191.84 18588.89 16784.07 14282.11 16269.89 16271.08 15960.81 20689.04 11590.52 15789.19 18195.76 17088.50 200
CMPMVSbinary61.19 1779.86 19777.46 20582.66 18791.54 13391.82 18683.25 19881.57 17170.51 21168.64 17159.89 20566.77 17879.63 18584.00 20484.30 20091.34 20684.89 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet84.08 16584.95 15383.05 18291.53 13491.75 18788.16 17270.70 21189.96 9269.51 16578.83 11676.97 14186.29 14284.08 20384.60 19992.13 20488.48 201
tpmrst83.72 17183.45 16584.03 16992.21 12291.66 18888.74 16873.58 20488.14 11272.67 14477.37 12572.11 15486.34 14182.94 20682.05 20590.63 21089.86 193
pmmvs680.90 19378.77 19983.38 17785.84 19991.61 18986.01 19082.54 15964.17 21670.43 15954.14 21367.06 17680.73 18390.50 15889.17 18294.74 19194.75 149
PatchT83.86 16885.51 15081.94 19288.41 16491.56 19078.79 20971.57 20984.08 14971.08 15470.62 16076.13 14586.27 14391.48 13890.75 14995.52 18193.94 159
TransMVSNet (Re)82.67 18480.93 19584.69 15988.71 15991.50 19187.90 17487.15 11271.54 20968.24 17463.69 19564.67 19278.51 19091.65 13790.73 15197.64 11292.73 175
tpm cat184.13 16481.99 18486.63 14091.74 12891.50 19190.68 13175.69 19686.12 12985.44 8972.39 15570.72 15885.16 15380.89 21081.56 20691.07 20890.71 186
DTE-MVSNet81.76 19181.04 19382.60 18886.63 19491.48 19385.97 19183.70 14676.45 19562.44 19967.16 17459.98 21078.98 18887.15 19089.93 17297.88 9495.12 145
tpm83.16 17783.64 16282.60 18890.75 14291.05 19488.49 17073.99 20082.36 15967.08 18378.10 12168.79 16684.17 16185.95 19785.96 19291.09 20793.23 169
CVMVSNet83.83 16985.53 14981.85 19389.60 15290.92 19587.81 17683.21 15380.11 17260.16 20576.47 13078.57 12776.79 19389.76 16890.13 16393.51 19292.75 174
MDTV_nov1_ep13_2view80.43 19480.94 19479.84 19784.82 20590.87 19684.23 19673.80 20180.28 17164.33 19570.05 16668.77 16779.67 18484.83 20083.50 20392.17 20288.25 203
IterMVS-SCA-FT85.44 14886.71 13383.97 17090.59 14690.84 19789.73 15378.34 18684.07 15066.40 18677.27 12778.66 12583.06 16791.20 14390.10 16895.72 17394.78 148
testgi81.94 18984.09 16079.43 19989.53 15490.83 19882.49 20181.75 17080.59 16759.46 20782.82 9565.75 18267.97 20690.10 16489.52 17895.39 18289.03 195
Baseline_NR-MVSNet85.28 14983.42 16787.46 13287.77 17490.80 19989.90 15187.69 10683.93 15174.16 13664.72 19166.43 18087.48 13190.14 16190.83 14597.73 10397.11 89
IterMVS85.25 15086.49 13683.80 17190.42 14790.77 20090.02 14578.04 18884.10 14866.27 18777.28 12678.41 12983.01 16890.88 14889.72 17795.04 18894.24 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_386.93 19089.77 20181.61 203
pmnet_mix0280.14 19680.21 19780.06 19686.61 19589.66 20280.40 20682.20 16582.29 16161.35 20271.52 15766.67 17976.75 19482.55 20780.18 21093.05 19688.62 198
Anonymous2023120678.09 20178.11 20278.07 20285.19 20489.17 20380.99 20481.24 17675.46 20058.25 20954.78 21259.90 21166.73 20988.94 18188.26 18596.01 16790.25 190
MDA-MVSNet-bldmvs73.81 20572.56 20975.28 20572.52 21888.87 20474.95 21382.67 15771.57 20755.02 21265.96 18342.84 22476.11 19670.61 21681.47 20790.38 21286.59 204
FMVSNet584.47 16184.72 15684.18 16783.30 20888.43 20588.09 17379.42 18384.25 14574.14 13773.15 15378.74 12483.65 16591.19 14491.19 14396.46 16086.07 206
PM-MVS80.29 19579.30 19881.45 19581.91 21088.23 20682.61 20079.01 18479.99 17467.15 18269.07 16851.39 21882.92 16987.55 18885.59 19395.08 18793.28 168
MVS-HIRNet78.16 20077.57 20478.83 20085.83 20087.76 20776.67 21070.22 21275.82 19967.39 17955.61 20870.52 15981.96 17686.67 19485.06 19890.93 20981.58 212
test20.0376.41 20478.49 20173.98 20685.64 20187.50 20875.89 21180.71 17870.84 21051.07 21968.06 17161.40 20454.99 21588.28 18387.20 18895.58 17986.15 205
pmmvs-eth3d79.78 19877.58 20382.34 19081.57 21187.46 20982.92 19981.28 17475.33 20171.34 15161.88 19852.41 21781.59 18087.56 18786.90 18995.36 18491.48 178
N_pmnet77.55 20376.68 20678.56 20185.43 20387.30 21078.84 20881.88 16878.30 18360.61 20361.46 19962.15 19974.03 20382.04 20880.69 20990.59 21184.81 210
EU-MVSNet78.43 19980.25 19676.30 20483.81 20787.27 21180.99 20479.52 18276.01 19654.12 21470.44 16364.87 18967.40 20886.23 19585.54 19591.95 20591.41 179
MIMVSNet173.19 20673.70 20772.60 20965.42 22186.69 21275.56 21279.65 18167.87 21455.30 21145.24 21756.41 21563.79 21186.98 19187.66 18795.85 16985.04 208
gm-plane-assit77.65 20278.50 20076.66 20387.96 17085.43 21364.70 21974.50 19864.15 21751.26 21861.32 20158.17 21484.11 16395.16 6693.83 8297.45 11991.41 179
new-patchmatchnet72.32 20771.09 21073.74 20781.17 21284.86 21472.21 21677.48 19168.32 21354.89 21355.10 21049.31 22163.68 21279.30 21276.46 21393.03 19784.32 211
new_pmnet72.29 20873.25 20871.16 21175.35 21581.38 21573.72 21569.27 21375.97 19749.84 22056.27 20756.12 21669.08 20581.73 20980.86 20889.72 21480.44 214
pmmvs371.13 20971.06 21171.21 21073.54 21780.19 21671.69 21764.86 21662.04 21952.10 21654.92 21148.00 22275.03 19983.75 20583.24 20490.04 21385.27 207
ambc67.96 21273.69 21679.79 21773.82 21471.61 20659.80 20646.00 21620.79 22666.15 21086.92 19280.11 21189.13 21590.50 187
FPMVS69.87 21067.10 21373.10 20884.09 20678.35 21879.40 20776.41 19471.92 20557.71 21054.06 21450.04 21956.72 21371.19 21568.70 21584.25 21675.43 216
DeepMVS_CXcopyleft71.82 21968.37 21848.05 22177.38 18746.88 22165.77 18447.03 22367.48 20764.27 21976.89 22176.72 215
PMMVS253.68 21555.72 21751.30 21458.84 22267.02 22054.23 22160.97 21947.50 22119.42 22534.81 21931.97 22530.88 22165.84 21869.99 21483.47 21772.92 218
Gipumacopyleft58.52 21356.17 21661.27 21367.14 22058.06 22152.16 22368.40 21569.00 21245.02 22222.79 22020.57 22755.11 21476.27 21379.33 21279.80 21967.16 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft56.77 1861.27 21258.64 21564.35 21275.66 21454.60 22253.62 22274.23 19953.69 22058.37 20844.27 21849.38 22044.16 21969.51 21765.35 21780.07 21873.66 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.81 1939.52 21741.58 21837.11 21933.93 22549.06 22326.45 22754.22 22029.46 22424.15 22420.77 22210.60 23034.42 22051.12 22065.27 21849.49 22564.81 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt50.24 21668.55 21946.86 22448.90 22418.28 22386.51 12768.32 17370.19 16565.33 18426.69 22274.37 21466.80 21670.72 222
test_method58.10 21464.61 21450.51 21528.26 22641.71 22561.28 22032.07 22275.92 19852.04 21747.94 21561.83 20251.80 21679.83 21163.95 21977.60 22081.05 213
EMVS39.04 21834.32 22044.54 21858.25 22339.35 22627.61 22662.55 21835.99 22216.40 22720.04 22314.77 22844.80 21733.12 22244.10 22157.61 22452.89 222
E-PMN40.00 21635.74 21944.98 21757.69 22439.15 22728.05 22562.70 21735.52 22317.78 22620.90 22114.36 22944.47 21835.89 22147.86 22059.15 22356.47 221
testmvs4.35 2196.54 2211.79 2210.60 2271.82 2283.06 2290.95 2247.22 2250.88 22912.38 2241.25 2313.87 2246.09 2235.58 2221.40 22611.42 224
test1233.48 2205.31 2221.34 2220.20 2291.52 2292.17 2300.58 2256.13 2260.31 2309.85 2250.31 2323.90 2232.65 2245.28 2230.87 22711.46 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def60.19 204
9.1497.28 24
SR-MVS98.93 2096.00 1897.75 15
MTAPA95.36 297.46 21
MTMP95.70 196.90 27
Patchmatch-RL test18.47 228
mPP-MVS98.76 2595.49 40
NP-MVS91.63 68