This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MTMP95.70 196.90 27
MTAPA95.36 297.46 21
DVP-MVS++98.07 198.46 197.62 199.08 499.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
zzz-MVS96.98 1696.68 2497.33 699.09 398.71 1398.43 996.01 1796.11 1995.19 492.89 3497.32 2396.84 1397.20 1996.09 4798.44 3898.46 34
SED-MVS97.98 298.36 297.54 498.94 1899.29 298.81 496.64 397.14 395.16 597.96 299.61 296.92 1298.00 197.24 898.75 1899.25 3
DVP-MVScopyleft97.93 398.23 397.58 399.05 799.31 198.64 696.62 597.56 295.08 696.61 1499.64 197.32 197.91 497.31 698.77 1699.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj95.62 3294.35 4997.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 676.98 14096.23 2796.78 3096.15 4198.79 1498.55 27
SF-MVS97.20 1297.29 1497.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 697.57 1996.23 2796.78 3096.15 4198.79 1498.55 27
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 797.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
SD-MVS97.35 897.73 896.90 1697.35 4698.66 1597.85 2696.25 1296.86 694.54 1096.75 1299.13 696.99 796.94 2796.58 2398.39 4599.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft97.83 498.13 497.48 598.83 2499.19 498.99 196.70 196.05 2094.39 1198.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++96.05 2895.63 3296.55 2398.33 3198.17 4696.94 3894.61 3694.70 4094.37 1289.20 5495.96 3696.81 1495.57 6097.33 598.24 6398.47 32
CNVR-MVS97.30 1097.41 1197.18 999.02 1198.60 2298.15 1796.24 1496.12 1894.10 1395.54 2697.99 1296.99 797.97 397.17 998.57 2598.50 30
PLCcopyleft90.69 494.32 4892.99 5995.87 3097.91 3596.49 9395.95 5294.12 3794.94 3494.09 1485.90 7290.77 6495.58 3594.52 8593.32 9897.55 11595.00 147
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + MP.97.31 997.64 996.92 1597.28 4898.56 2498.61 795.48 3096.72 894.03 1596.73 1398.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.70 698.09 597.24 799.00 1299.17 598.76 596.41 1096.91 593.88 1697.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1299.21 199.02 898.08 2096.25 1296.36 1293.57 1796.56 1599.27 596.78 1797.91 497.43 398.51 2798.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft97.12 1397.05 1897.19 899.04 898.63 2098.45 896.54 694.81 3893.50 1896.10 2097.40 2296.81 1497.05 2396.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary95.02 3993.71 5296.54 2498.51 2897.76 5996.69 4195.94 2193.72 4893.50 1889.01 5590.53 6796.49 2294.51 8693.76 8498.07 7996.69 99
CNLPA93.69 5592.50 6595.06 3897.11 5197.36 7093.88 8793.30 4095.64 2493.44 2080.32 11190.73 6594.99 4193.58 10293.33 9697.67 11096.57 104
CSCG95.68 3195.46 3695.93 2998.71 2699.07 797.13 3793.55 3995.48 2693.35 2190.61 4793.82 4795.16 3994.60 8395.57 5497.70 10699.08 10
HFP-MVS97.11 1497.19 1697.00 1498.97 1498.73 1298.37 1295.69 2396.60 993.28 2296.87 996.64 2997.27 296.64 3796.33 3598.44 3898.56 22
HPM-MVS++copyleft97.22 1197.40 1297.01 1399.08 498.55 2598.19 1596.48 796.02 2193.28 2296.26 1898.71 896.76 1897.30 1696.25 3798.30 5598.68 15
3Dnovator+90.56 595.06 3894.56 4695.65 3398.11 3398.15 4797.19 3591.59 5495.11 3293.23 2481.99 10394.71 4495.43 3896.48 4196.88 1898.35 4798.63 17
CP-MVS96.68 2196.59 2796.77 1998.85 2398.58 2398.18 1695.51 2895.34 2792.94 2595.21 2996.25 3296.79 1696.44 4495.77 5198.35 4798.56 22
ACMMPR96.92 1896.96 1996.87 1798.99 1398.78 1198.38 1195.52 2696.57 1092.81 2696.06 2195.90 3797.07 596.60 3996.34 3498.46 3498.42 35
NCCC96.75 2096.67 2596.85 1899.03 1098.44 3698.15 1796.28 1196.32 1392.39 2792.16 3697.55 2096.68 2097.32 1496.65 2298.55 2698.26 40
CPTT-MVS95.54 3395.07 3896.10 2797.88 3797.98 5397.92 2594.86 3494.56 4192.16 2891.01 4395.71 3896.97 1094.56 8493.50 9196.81 15598.14 47
DeepC-MVS_fast93.32 196.48 2396.42 2896.56 2298.70 2798.31 4097.97 2395.76 2296.31 1492.01 2991.43 4195.42 4196.46 2397.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP97.10 1597.49 1096.65 2098.97 1498.95 998.43 995.96 1995.12 3091.46 3096.85 1097.60 1896.37 2597.76 697.16 1098.68 1998.97 11
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator90.28 794.70 4494.34 5095.11 3798.06 3498.21 4496.89 3991.03 6094.72 3991.45 3182.87 9493.10 5194.61 4396.24 5097.08 1398.63 2298.16 45
abl_694.78 3997.46 4497.99 5295.76 5391.80 5193.72 4891.25 3291.33 4296.47 3094.28 5098.14 7297.39 78
TSAR-MVS + GP.95.86 2996.95 2194.60 4494.07 8898.11 4896.30 4591.76 5295.67 2291.07 3396.82 1197.69 1795.71 3495.96 5495.75 5298.68 1998.63 17
CANet94.85 4094.92 4094.78 3997.25 4998.52 2997.20 3491.81 5093.25 5291.06 3486.29 6894.46 4592.99 6797.02 2596.68 2098.34 4998.20 43
ACMMP_NAP96.93 1797.27 1596.53 2599.06 698.95 998.24 1496.06 1695.66 2390.96 3595.63 2597.71 1696.53 2197.66 1096.68 2098.30 5598.61 20
MCST-MVS96.83 1997.06 1796.57 2198.88 2298.47 3498.02 2296.16 1595.58 2590.96 3595.78 2497.84 1496.46 2397.00 2696.17 3998.94 798.55 27
MP-MVScopyleft96.56 2296.72 2396.37 2698.93 2098.48 3298.04 2195.55 2594.32 4290.95 3795.88 2397.02 2696.29 2696.77 3296.01 4998.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_BlendedMVS92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PVSNet_Blended92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PGM-MVS96.16 2596.33 2995.95 2899.04 898.63 2098.32 1392.76 4493.42 5090.49 4096.30 1795.31 4296.71 1996.46 4296.02 4898.38 4698.19 44
OMC-MVS94.49 4794.36 4894.64 4297.17 5097.73 6195.49 5792.25 4696.18 1590.34 4188.51 5792.88 5294.90 4294.92 7194.17 7497.69 10896.15 119
CS-MVS94.53 4694.73 4394.31 4596.30 6298.53 2794.98 6289.24 8393.37 5190.24 4288.96 5689.76 7296.09 3097.48 1396.42 2698.99 298.59 21
DELS-MVS93.71 5493.47 5494.00 4796.82 5598.39 3896.80 4091.07 5989.51 10089.94 4383.80 8689.29 7390.95 8997.32 1497.65 298.42 4198.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test94.63 4595.28 3793.88 5296.56 5898.67 1493.41 9989.31 8194.27 4389.64 4490.84 4591.64 5895.58 3597.04 2496.17 3998.77 1698.32 38
ACMMPcopyleft95.54 3395.49 3595.61 3498.27 3298.53 2797.16 3694.86 3494.88 3689.34 4595.36 2891.74 5695.50 3795.51 6194.16 7598.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS92.65 295.50 3596.96 1993.79 5496.44 5998.21 4493.51 9794.08 3896.94 489.29 4693.08 3296.77 2893.82 5797.68 997.40 495.59 17898.65 16
EPNet93.92 5294.40 4793.36 5797.89 3696.55 9196.08 4892.14 4791.65 6789.16 4794.07 3190.17 7187.78 12695.24 6594.97 6497.09 13498.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS92.50 6491.96 7593.13 6293.93 9496.24 9995.69 5488.77 8792.92 5389.01 4888.19 5981.74 11193.13 6693.63 10193.08 10598.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS95.07 3794.84 4195.34 3697.44 4597.49 6897.76 2795.52 2694.88 3688.92 4987.25 6196.44 3194.41 4595.78 5796.11 4497.99 8795.95 126
DeepC-MVS92.10 395.22 3694.77 4295.75 3297.77 3998.54 2697.63 2995.96 1995.07 3388.85 5085.35 7691.85 5595.82 3296.88 2997.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR94.84 4195.57 3394.00 4797.11 5197.72 6394.88 6591.16 5895.24 2988.74 5196.03 2291.52 6094.33 4995.96 5495.01 6397.79 9797.49 75
DROMVSNet94.19 5095.05 3993.18 6193.56 10497.65 6495.34 5986.37 11792.05 6288.71 5289.91 5093.32 4996.14 2997.29 1796.42 2698.98 398.70 14
MVSTER91.73 7491.61 8091.86 7993.18 10794.56 11494.37 7187.90 10090.16 8888.69 5389.23 5381.28 11388.92 11995.75 5893.95 8198.12 7496.37 110
IB-MVS85.10 1487.98 11987.97 12087.99 12494.55 8296.86 8784.52 19588.21 9586.48 12888.54 5474.41 14377.74 13574.10 20289.65 17292.85 11198.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250690.93 8589.20 10492.95 6694.97 7798.30 4194.53 6790.25 6789.91 9388.39 5583.23 9064.17 19390.69 9296.75 3496.10 4598.87 895.97 125
FA-MVS(training)90.79 8891.33 8390.17 10293.76 10097.22 7592.74 10977.79 19090.60 7888.03 5678.80 11787.41 7591.00 8895.40 6393.43 9497.70 10696.46 106
XVS95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVStestdata95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVS96.07 2796.33 2995.77 3198.94 1898.66 1597.94 2495.41 3295.12 3088.03 5693.00 3396.06 3395.85 3196.65 3696.35 3198.47 3298.48 31
PHI-MVS95.86 2996.93 2294.61 4397.60 4398.65 1996.49 4293.13 4294.07 4587.91 6097.12 897.17 2593.90 5696.46 4296.93 1798.64 2198.10 51
train_agg96.15 2696.64 2695.58 3598.44 2998.03 5098.14 1995.40 3393.90 4787.72 6196.26 1898.10 1095.75 3396.25 4995.45 5698.01 8598.47 32
ETV-MVS93.80 5394.57 4592.91 6893.98 9097.50 6793.62 9488.70 8891.95 6387.57 6290.21 4990.79 6394.56 4497.20 1996.35 3199.02 197.98 53
canonicalmvs93.08 5793.09 5793.07 6594.24 8497.86 5595.45 5887.86 10494.00 4687.47 6388.32 5882.37 10695.13 4093.96 9996.41 2998.27 5998.73 13
PVSNet_Blended_VisFu91.92 7092.39 6991.36 9095.45 7497.85 5692.25 11689.54 7888.53 11087.47 6379.82 11390.53 6785.47 15196.31 4895.16 6297.99 8798.56 22
test_part187.53 12384.97 15290.52 9492.11 12493.31 14693.32 10285.79 12279.56 17787.38 6562.89 19778.60 12689.25 11090.65 15592.17 12395.24 18597.62 69
ACMM88.76 1091.70 7690.43 9193.19 6095.56 6995.14 11193.35 10191.48 5592.26 6187.12 6684.02 8479.34 12193.99 5394.07 9492.68 11397.62 11495.50 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dps85.00 15283.21 17287.08 13490.73 14392.55 17089.34 15775.29 19784.94 13687.01 6779.27 11567.69 17387.27 13384.22 20283.56 20292.83 19890.25 190
MVS_030494.30 4994.68 4493.86 5396.33 6198.48 3297.41 3291.20 5692.75 5686.96 6886.03 7193.81 4892.64 7196.89 2896.54 2598.61 2398.24 41
PatchMatch-RL90.30 9688.93 10891.89 7895.41 7595.68 10790.94 12988.67 8989.80 9586.95 6985.90 7272.51 15192.46 7293.56 10492.18 12296.93 14792.89 172
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 9089.78 9686.68 7086.69 6587.57 7493.74 5896.07 5395.32 5798.58 2497.53 73
TSAR-MVS + ACMM96.19 2497.39 1394.78 3997.70 4198.41 3797.72 2895.49 2996.47 1186.66 7196.35 1697.85 1393.99 5397.19 2196.37 3097.12 13299.13 7
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5697.74 4098.02 5195.66 5590.46 6489.14 10386.50 7275.80 13690.38 7092.69 7094.99 6895.30 5898.27 5997.63 67
MSDG90.42 9588.25 11592.94 6796.67 5794.41 12093.96 8292.91 4389.59 9886.26 7376.74 12980.92 11590.43 9792.60 12192.08 12797.44 12091.41 179
casdiffmvs91.72 7591.16 8692.38 7493.16 10897.15 7793.95 8389.49 7991.58 6986.03 7480.75 11080.95 11493.16 6595.25 6495.22 6198.50 2997.23 84
MVS_111021_HR94.84 4195.91 3193.60 5597.35 4698.46 3595.08 6191.19 5794.18 4485.97 7595.38 2792.56 5393.61 6096.61 3896.25 3798.40 4397.92 58
TAPA-MVS90.35 693.69 5593.52 5393.90 5096.89 5497.62 6596.15 4691.67 5394.94 3485.97 7587.72 6091.96 5494.40 4693.76 10093.06 10798.30 5595.58 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DI_MVS_plusplus_trai91.05 8290.15 9592.11 7692.67 12096.61 8996.03 4988.44 9290.25 8385.92 7773.73 14484.89 9091.92 7794.17 9294.07 7997.68 10997.31 82
Anonymous2023121189.82 10288.18 11691.74 8092.52 12196.09 10393.38 10089.30 8288.95 10585.90 7864.55 19384.39 9192.41 7492.24 12893.06 10796.93 14797.95 55
UGNet91.52 7793.41 5589.32 11094.13 8597.15 7791.83 12689.01 8490.62 7685.86 7986.83 6291.73 5777.40 19194.68 8094.43 7097.71 10498.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ECVR-MVScopyleft90.77 8989.27 10292.52 7094.97 7798.30 4194.53 6790.25 6789.91 9385.80 8073.64 14574.31 14890.69 9296.75 3496.10 4598.87 895.91 128
MAR-MVS92.71 6292.63 6392.79 6997.70 4197.15 7793.75 9087.98 9890.71 7385.76 8186.28 6986.38 8094.35 4894.95 6995.49 5597.22 12597.44 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline91.19 8091.89 7690.38 9592.76 11695.04 11293.55 9684.54 13692.92 5385.71 8286.68 6686.96 7789.28 10992.00 13292.62 11596.46 16096.99 91
QAPM94.13 5194.33 5193.90 5097.82 3898.37 3996.47 4390.89 6192.73 5885.63 8385.35 7693.87 4694.17 5195.71 5995.90 5098.40 4398.42 35
DCV-MVSNet91.24 7991.26 8491.22 9192.84 11593.44 14193.82 8886.75 11491.33 7185.61 8484.00 8585.46 8791.27 8392.91 11593.62 8697.02 13898.05 52
GBi-Net90.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
test190.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
FMVSNet390.19 9990.06 9890.34 9688.69 16093.85 12994.58 6685.78 12390.03 8985.56 8577.38 12286.13 8189.22 11393.29 11294.36 7298.20 6795.40 141
ACMP89.13 992.03 6891.70 7992.41 7394.92 7996.44 9793.95 8389.96 7091.81 6685.48 8890.97 4479.12 12292.42 7393.28 11392.55 11697.76 10097.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm cat184.13 16481.99 18486.63 14091.74 12891.50 19190.68 13175.69 19686.12 12985.44 8972.39 15570.72 15885.16 15380.89 21081.56 20691.07 20890.71 186
diffmvs91.37 7891.09 8791.70 8192.71 11996.47 9494.03 8188.78 8692.74 5785.43 9083.63 8880.37 11691.76 8093.39 10993.78 8397.50 11797.23 84
CostFormer86.78 13086.05 14087.62 13192.15 12393.20 15191.55 12875.83 19588.11 11385.29 9181.76 10476.22 14487.80 12584.45 20185.21 19793.12 19593.42 167
RPSCF89.68 10489.24 10390.20 10092.97 11292.93 16092.30 11487.69 10690.44 8185.12 9291.68 4085.84 8690.69 9287.34 18986.07 19192.46 20190.37 189
PCF-MVS90.19 892.98 5892.07 7394.04 4696.39 6097.87 5496.03 4995.47 3187.16 11885.09 9384.81 8093.21 5093.46 6391.98 13391.98 13097.78 9897.51 74
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet289.61 10589.14 10590.16 10388.66 16193.65 13794.25 7685.44 12788.57 10984.96 9473.53 14783.82 9389.38 10694.23 9094.68 6998.31 5295.47 137
CHOSEN 280x42090.77 8992.14 7289.17 11293.86 9792.81 16493.16 10380.22 18090.21 8584.67 9589.89 5191.38 6190.57 9694.94 7092.11 12592.52 20093.65 164
test111190.47 9489.10 10692.07 7794.92 7998.30 4194.17 8090.30 6689.56 9983.92 9673.25 15273.66 14990.26 9896.77 3296.14 4398.87 896.04 123
EPP-MVSNet92.13 6793.06 5891.05 9293.66 10397.30 7192.18 11787.90 10090.24 8483.63 9786.14 7090.52 6990.76 9194.82 7694.38 7198.18 6997.98 53
MVS_Test91.81 7392.19 7191.37 8993.24 10696.95 8494.43 6986.25 11891.45 7083.45 9886.31 6785.15 8892.93 6893.99 9594.71 6897.92 9196.77 97
FC-MVSNet-train90.55 9290.19 9490.97 9393.78 9995.16 11092.11 12188.85 8587.64 11583.38 9984.36 8378.41 12989.53 10394.69 7993.15 10498.15 7097.92 58
CDPH-MVS94.80 4395.50 3493.98 4998.34 3098.06 4997.41 3293.23 4192.81 5582.98 10092.51 3594.82 4393.53 6196.08 5296.30 3698.42 4197.94 56
baseline190.81 8690.29 9291.42 8693.67 10295.86 10693.94 8589.69 7689.29 10282.85 10182.91 9380.30 11789.60 10295.05 6794.79 6798.80 1293.82 162
FMVSNet187.33 12586.00 14388.89 11387.13 18792.83 16393.08 10684.46 13781.35 16582.20 10266.33 18077.96 13288.96 11693.97 9694.16 7597.54 11695.38 142
OPM-MVS91.08 8189.34 10193.11 6496.18 6396.13 10296.39 4492.39 4582.97 15781.74 10382.55 10080.20 11893.97 5594.62 8193.23 9998.00 8695.73 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thisisatest053091.04 8391.74 7790.21 9992.93 11497.00 8292.06 12287.63 10990.74 7281.51 10486.81 6382.48 10389.23 11194.81 7793.03 10997.90 9297.33 81
tttt051791.01 8491.71 7890.19 10192.98 11097.07 8191.96 12587.63 10990.61 7781.42 10586.76 6482.26 10789.23 11194.86 7593.03 10997.90 9297.36 79
GeoE89.29 11188.68 11089.99 10592.75 11896.03 10493.07 10783.79 14586.98 12081.34 10674.72 14178.92 12391.22 8493.31 11193.21 10197.78 9897.60 72
thres20089.49 10787.72 12391.55 8393.95 9297.25 7394.34 7389.74 7385.66 13381.18 10776.12 13570.19 16391.80 7894.92 7193.51 8898.27 5996.40 109
thres100view90089.36 10987.61 12691.39 8793.90 9596.86 8794.35 7289.66 7785.87 13081.15 10876.46 13170.38 16091.17 8594.09 9393.43 9498.13 7396.16 118
tfpn200view989.55 10687.86 12191.53 8493.90 9597.26 7294.31 7589.74 7385.87 13081.15 10876.46 13170.38 16091.76 8094.92 7193.51 8898.28 5896.61 101
thres40089.40 10887.58 12891.53 8494.06 8997.21 7694.19 7989.83 7285.69 13281.08 11075.50 13869.76 16491.80 7894.79 7893.51 8898.20 6796.60 102
pmmvs486.00 14084.28 15988.00 12387.80 17292.01 18389.94 14884.91 13186.79 12280.98 11173.41 15066.34 18188.12 12489.31 17588.90 18496.24 16593.20 170
baseline288.97 11389.50 10088.36 11891.14 13795.30 10890.13 14385.17 13087.24 11780.80 11284.46 8278.44 12885.60 14893.54 10591.87 13197.31 12295.66 132
ET-MVSNet_ETH3D89.93 10090.84 8988.87 11479.60 21396.19 10094.43 6986.56 11590.63 7580.75 11390.71 4677.78 13493.73 5991.36 14193.45 9398.15 7095.77 130
thres600view789.28 11287.47 13191.39 8794.12 8697.25 7393.94 8589.74 7385.62 13580.63 11475.24 14069.33 16591.66 8294.92 7193.23 9998.27 5996.72 98
PMMVS89.88 10191.19 8588.35 11989.73 15191.97 18490.62 13281.92 16790.57 7980.58 11592.16 3686.85 7991.17 8592.31 12591.35 14196.11 16693.11 171
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7696.46 9596.13 4792.04 4995.33 2880.11 11694.95 3077.35 13894.05 5294.49 8793.08 10597.15 12994.53 151
IS_MVSNet91.87 7193.35 5690.14 10494.09 8797.73 6193.09 10588.12 9688.71 10779.98 11784.49 8190.63 6687.49 13097.07 2296.96 1698.07 7997.88 62
HQP-MVS92.39 6592.49 6692.29 7595.65 6895.94 10595.64 5692.12 4892.46 6079.65 11891.97 3882.68 10292.92 6993.47 10792.77 11297.74 10298.12 49
CDS-MVSNet88.34 11788.71 10987.90 12690.70 14594.54 11592.38 11286.02 11980.37 16979.42 11979.30 11483.43 9582.04 17493.39 10994.01 8096.86 15395.93 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LS3D91.97 6990.98 8893.12 6397.03 5397.09 8095.33 6095.59 2492.47 5979.26 12081.60 10682.77 10194.39 4794.28 8894.23 7397.14 13194.45 153
UA-Net90.81 8692.58 6488.74 11694.87 8197.44 6992.61 11088.22 9482.35 16078.93 12185.20 7895.61 3979.56 18696.52 4096.57 2498.23 6494.37 154
IterMVS-LS88.60 11488.45 11188.78 11592.02 12692.44 17492.00 12483.57 14986.52 12678.90 12278.61 11981.34 11289.12 11490.68 15493.18 10297.10 13396.35 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train91.83 7292.04 7491.58 8295.46 7296.18 10195.97 5189.85 7190.45 8077.76 12391.92 3980.07 11992.34 7594.27 8993.47 9298.11 7697.90 61
Fast-Effi-MVS+88.56 11687.99 11989.22 11191.56 13295.21 10992.29 11582.69 15686.82 12177.73 12476.24 13473.39 15093.36 6494.22 9193.64 8597.65 11196.43 108
UniMVSNet_ETH3D84.57 15681.40 19088.28 12089.34 15594.38 12290.33 13586.50 11674.74 20277.52 12559.90 20462.04 20188.78 12288.82 18292.65 11497.22 12597.24 83
CHOSEN 1792x268888.57 11587.82 12289.44 10995.46 7296.89 8693.74 9185.87 12189.63 9777.42 12661.38 20083.31 9688.80 12193.44 10893.16 10395.37 18396.95 93
HyFIR lowres test87.87 12086.42 13789.57 10795.56 6996.99 8392.37 11384.15 14086.64 12377.17 12757.65 20683.97 9291.08 8792.09 13192.44 11797.09 13495.16 144
MDTV_nov1_ep1386.64 13287.50 13085.65 14790.73 14393.69 13589.96 14778.03 18989.48 10176.85 12884.92 7982.42 10586.14 14586.85 19386.15 19092.17 20288.97 197
Effi-MVS+89.79 10389.83 9989.74 10692.98 11096.45 9693.48 9884.24 13887.62 11676.45 12981.76 10477.56 13793.48 6294.61 8293.59 8797.82 9697.22 86
MS-PatchMatch87.63 12187.61 12687.65 12993.95 9294.09 12592.60 11181.52 17286.64 12376.41 13073.46 14985.94 8485.01 15592.23 12990.00 17096.43 16290.93 185
Vis-MVSNet (Re-imp)90.54 9392.76 6287.94 12593.73 10196.94 8592.17 11987.91 9988.77 10676.12 13183.68 8790.80 6279.49 18796.34 4796.35 3198.21 6696.46 106
COLMAP_ROBcopyleft84.39 1587.61 12286.03 14189.46 10895.54 7194.48 11791.77 12790.14 6987.16 11875.50 13273.41 15076.86 14287.33 13290.05 16689.76 17696.48 15990.46 188
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Vis-MVSNetpermissive89.36 10991.49 8286.88 13692.10 12597.60 6692.16 12085.89 12084.21 14675.20 13382.58 9887.13 7677.40 19195.90 5695.63 5398.51 2797.36 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet (Re)86.22 13585.46 15187.11 13388.34 16594.42 11989.65 15587.10 11384.39 14374.61 13470.41 16468.10 17085.10 15491.17 14591.79 13397.84 9597.94 56
EPMVS85.77 14186.24 13985.23 15392.76 11693.78 13189.91 14973.60 20390.19 8674.22 13582.18 10278.06 13187.55 12985.61 19885.38 19693.32 19488.48 201
Baseline_NR-MVSNet85.28 14983.42 16787.46 13287.77 17490.80 19989.90 15187.69 10683.93 15174.16 13664.72 19166.43 18087.48 13190.14 16190.83 14597.73 10397.11 89
FMVSNet584.47 16184.72 15684.18 16783.30 20888.43 20588.09 17379.42 18384.25 14574.14 13773.15 15378.74 12483.65 16591.19 14491.19 14396.46 16086.07 206
v14883.61 17282.10 18185.37 14987.34 18192.94 15987.48 17785.72 12678.92 17973.87 13865.71 18564.69 19181.78 17887.82 18589.35 18096.01 16795.26 143
TAMVS84.94 15484.95 15384.93 15688.82 15793.18 15288.44 17181.28 17477.16 18973.76 13975.43 13976.57 14382.04 17490.59 15690.79 14695.22 18690.94 184
UniMVSNet_NR-MVSNet86.80 12985.86 14687.89 12788.17 16794.07 12690.15 14188.51 9184.20 14773.45 14072.38 15670.30 16288.95 11790.25 16092.21 12198.12 7497.62 69
DU-MVS86.12 13784.81 15587.66 12887.77 17493.78 13190.15 14187.87 10284.40 14173.45 14070.59 16164.82 19088.95 11790.14 16192.33 11897.76 10097.62 69
thisisatest051585.70 14287.00 13284.19 16688.16 16893.67 13684.20 19784.14 14183.39 15572.91 14276.79 12874.75 14778.82 18992.57 12291.26 14296.94 14496.56 105
SCA86.25 13387.52 12984.77 15791.59 13093.90 12889.11 16273.25 20790.38 8272.84 14383.26 8983.79 9488.49 12386.07 19685.56 19493.33 19389.67 194
tpmrst83.72 17183.45 16584.03 16992.21 12291.66 18888.74 16873.58 20488.14 11272.67 14477.37 12572.11 15486.34 14182.94 20682.05 20590.63 21089.86 193
PatchmatchNetpermissive85.70 14286.65 13484.60 16091.79 12793.40 14289.27 15873.62 20290.19 8672.63 14582.74 9781.93 11087.64 12784.99 19984.29 20192.64 19989.00 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pm-mvs184.55 15783.46 16485.82 14488.16 16893.39 14389.05 16485.36 12974.03 20372.43 14665.08 18871.11 15782.30 17393.48 10691.70 13597.64 11295.43 140
ACMH+85.75 1287.19 12786.02 14288.56 11793.42 10594.41 12089.91 14987.66 10883.45 15472.25 14776.42 13371.99 15590.78 9089.86 16790.94 14497.32 12195.11 146
NR-MVSNet85.46 14784.54 15786.52 14188.33 16693.78 13190.45 13487.87 10284.40 14171.61 14870.59 16162.09 20082.79 17091.75 13591.75 13498.10 7797.44 76
Effi-MVS+-dtu87.51 12488.13 11786.77 13891.10 13894.90 11390.91 13082.67 15783.47 15371.55 14981.11 10977.04 13989.41 10592.65 12091.68 13795.00 19096.09 121
v884.45 16283.30 17185.80 14587.53 17992.95 15890.31 13782.46 16180.46 16871.43 15066.99 17567.16 17586.14 14589.26 17690.22 16296.94 14496.06 122
pmmvs-eth3d79.78 19877.58 20382.34 19081.57 21187.46 20982.92 19981.28 17475.33 20171.34 15161.88 19852.41 21781.59 18087.56 18786.90 18995.36 18491.48 178
TDRefinement84.97 15383.39 16886.81 13792.97 11294.12 12492.18 11787.77 10582.78 15871.31 15268.43 17068.07 17181.10 18289.70 17189.03 18395.55 18091.62 177
V4284.48 16083.36 17085.79 14687.14 18693.28 14890.03 14483.98 14380.30 17071.20 15366.90 17767.17 17485.55 14989.35 17390.27 16096.82 15496.27 116
CR-MVSNet85.48 14686.29 13884.53 16291.08 14092.10 17889.18 16073.30 20584.75 13771.08 15473.12 15477.91 13386.27 14391.48 13890.75 14996.27 16493.94 159
Patchmtry92.39 17589.18 16073.30 20571.08 154
PatchT83.86 16885.51 15081.94 19288.41 16491.56 19078.79 20971.57 20984.08 14971.08 15470.62 16076.13 14586.27 14391.48 13890.75 14995.52 18193.94 159
USDC86.73 13185.96 14487.63 13091.64 12993.97 12792.76 10884.58 13588.19 11170.67 15780.10 11267.86 17289.43 10491.81 13489.77 17596.69 15790.05 192
tfpnnormal83.80 17081.26 19286.77 13889.60 15293.26 15089.72 15487.60 11172.78 20470.44 15860.53 20361.15 20585.55 14992.72 11791.44 13997.71 10496.92 94
pmmvs680.90 19378.77 19983.38 17785.84 19991.61 18986.01 19082.54 15964.17 21670.43 15954.14 21367.06 17680.73 18390.50 15889.17 18294.74 19194.75 149
ACMH85.51 1387.31 12686.59 13588.14 12293.96 9194.51 11689.00 16587.99 9781.58 16370.15 16078.41 12071.78 15690.60 9591.30 14291.99 12997.17 12896.58 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet85.57 14584.41 15886.92 13587.67 17793.34 14490.31 13788.43 9383.07 15670.11 16169.99 16765.28 18586.96 13589.73 16992.27 11998.06 8197.17 88
TinyColmap84.04 16682.01 18386.42 14290.87 14191.84 18588.89 16784.07 14282.11 16269.89 16271.08 15960.81 20689.04 11590.52 15789.19 18195.76 17088.50 200
v2v48284.51 15883.05 17486.20 14387.25 18393.28 14890.22 13985.40 12879.94 17569.78 16367.74 17265.15 18787.57 12889.12 17890.55 15596.97 14095.60 134
MIMVSNet82.97 18184.00 16181.77 19482.23 20992.25 17787.40 18072.73 20881.48 16469.55 16468.79 16972.42 15281.82 17792.23 12992.25 12096.89 15088.61 199
ADS-MVSNet84.08 16584.95 15383.05 18291.53 13491.75 18788.16 17270.70 21189.96 9269.51 16578.83 11676.97 14186.29 14284.08 20384.60 19992.13 20488.48 201
test-LLR86.88 12888.28 11385.24 15291.22 13592.07 18087.41 17883.62 14784.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
TESTMET0.1,186.11 13888.28 11383.59 17387.80 17292.07 18087.41 17877.12 19284.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
v1084.18 16383.17 17385.37 14987.34 18192.68 16690.32 13681.33 17379.93 17669.23 16866.33 18065.74 18387.03 13490.84 14990.38 15796.97 14096.29 115
RPMNet84.82 15585.90 14583.56 17491.10 13892.10 17888.73 16971.11 21084.75 13768.79 16973.56 14677.62 13685.33 15290.08 16589.43 17996.32 16393.77 163
CANet_DTU90.74 9192.93 6188.19 12194.36 8396.61 8994.34 7384.66 13390.66 7468.75 17090.41 4886.89 7889.78 10195.46 6294.87 6597.25 12495.62 133
CMPMVSbinary61.19 1779.86 19777.46 20582.66 18791.54 13391.82 18683.25 19881.57 17170.51 21168.64 17159.89 20566.77 17879.63 18584.00 20484.30 20091.34 20684.89 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-mter86.09 13988.38 11283.43 17687.89 17192.61 16886.89 18377.11 19384.30 14468.62 17282.57 9982.45 10484.34 15892.40 12490.11 16795.74 17194.21 157
tmp_tt50.24 21668.55 21946.86 22448.90 22418.28 22386.51 12768.32 17370.19 16565.33 18426.69 22274.37 21466.80 21670.72 222
TransMVSNet (Re)82.67 18480.93 19584.69 15988.71 15991.50 19187.90 17487.15 11271.54 20968.24 17463.69 19564.67 19278.51 19091.65 13790.73 15197.64 11292.73 175
WR-MVS_H82.86 18382.66 17783.10 18087.44 18093.33 14585.71 19383.20 15477.36 18868.20 17566.37 17965.23 18676.05 19789.35 17390.13 16397.99 8796.89 95
v114484.03 16782.88 17585.37 14987.17 18593.15 15590.18 14083.31 15278.83 18067.85 17665.99 18264.99 18886.79 13790.75 15190.33 15996.90 14996.15 119
test0.0.03 185.58 14487.69 12583.11 17991.22 13592.54 17185.60 19483.62 14785.66 13367.84 17782.79 9679.70 12073.51 20491.15 14690.79 14696.88 15191.23 182
CP-MVSNet83.11 18082.15 18084.23 16587.20 18492.70 16586.42 18783.53 15077.83 18667.67 17866.89 17860.53 20882.47 17189.23 17790.65 15398.08 7897.20 87
MVS-HIRNet78.16 20077.57 20478.83 20085.83 20087.76 20776.67 21070.22 21275.82 19967.39 17955.61 20870.52 15981.96 17686.67 19485.06 19890.93 20981.58 212
v14419283.48 17482.23 17984.94 15586.65 19392.84 16189.63 15682.48 16077.87 18567.36 18065.33 18763.50 19486.51 13989.72 17089.99 17197.03 13796.35 111
pmmvs583.37 17582.68 17684.18 16787.13 18793.18 15286.74 18482.08 16676.48 19367.28 18171.26 15862.70 19784.71 15690.77 15090.12 16697.15 12994.24 155
PM-MVS80.29 19579.30 19881.45 19581.91 21088.23 20682.61 20079.01 18479.99 17467.15 18269.07 16851.39 21882.92 16987.55 18885.59 19395.08 18793.28 168
tpm83.16 17783.64 16282.60 18890.75 14291.05 19488.49 17073.99 20082.36 15967.08 18378.10 12168.79 16684.17 16185.95 19785.96 19291.09 20793.23 169
v119283.56 17382.35 17884.98 15486.84 19292.84 16190.01 14682.70 15578.54 18166.48 18464.88 19062.91 19586.91 13690.72 15290.25 16196.94 14496.32 113
WR-MVS83.14 17883.38 16982.87 18487.55 17893.29 14786.36 18884.21 13980.05 17366.41 18566.91 17666.92 17775.66 19888.96 18090.56 15497.05 13696.96 92
IterMVS-SCA-FT85.44 14886.71 13383.97 17090.59 14690.84 19789.73 15378.34 18684.07 15066.40 18677.27 12778.66 12583.06 16791.20 14390.10 16895.72 17394.78 148
IterMVS85.25 15086.49 13683.80 17190.42 14790.77 20090.02 14578.04 18884.10 14866.27 18777.28 12678.41 12983.01 16890.88 14889.72 17795.04 18894.24 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v7n82.25 18881.54 18883.07 18185.55 20292.58 16986.68 18681.10 17776.54 19265.97 18862.91 19660.56 20782.36 17291.07 14790.35 15896.77 15696.80 96
v192192083.30 17682.09 18284.70 15886.59 19692.67 16789.82 15282.23 16478.32 18265.76 18964.64 19262.35 19886.78 13890.34 15990.02 16997.02 13896.31 114
PS-CasMVS82.53 18581.54 18883.68 17287.08 18992.54 17186.20 18983.46 15176.46 19465.73 19065.71 18559.41 21381.61 17989.06 17990.55 15598.03 8397.07 90
EPNet_dtu88.32 11890.61 9085.64 14896.79 5692.27 17692.03 12390.31 6589.05 10465.44 19189.43 5285.90 8574.22 20092.76 11692.09 12695.02 18992.76 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu86.25 13387.70 12484.56 16190.37 14893.70 13490.54 13378.14 18783.50 15265.37 19281.59 10775.83 14686.09 14791.70 13691.70 13596.88 15195.84 129
v124082.88 18281.66 18684.29 16486.46 19792.52 17389.06 16381.82 16977.16 18965.09 19364.17 19461.50 20386.36 14090.12 16390.13 16396.95 14396.04 123
PEN-MVS82.49 18681.58 18783.56 17486.93 19092.05 18286.71 18583.84 14476.94 19164.68 19467.24 17360.11 20981.17 18187.78 18690.70 15298.02 8496.21 117
SixPastTwentyTwo83.12 17983.44 16682.74 18587.71 17693.11 15682.30 20282.33 16279.24 17864.33 19578.77 11862.75 19684.11 16388.11 18487.89 18695.70 17494.21 157
MDTV_nov1_ep13_2view80.43 19480.94 19479.84 19784.82 20590.87 19684.23 19673.80 20180.28 17164.33 19570.05 16668.77 16779.67 18484.83 20083.50 20392.17 20288.25 203
EG-PatchMatch MVS81.70 19281.31 19182.15 19188.75 15893.81 13087.14 18178.89 18571.57 20764.12 19761.20 20268.46 16876.73 19591.48 13890.77 14897.28 12391.90 176
anonymousdsp84.51 15885.85 14782.95 18386.30 19893.51 14085.77 19280.38 17978.25 18463.42 19873.51 14872.20 15384.64 15793.21 11492.16 12497.19 12798.14 47
DTE-MVSNet81.76 19181.04 19382.60 18886.63 19491.48 19385.97 19183.70 14676.45 19562.44 19967.16 17459.98 21078.98 18887.15 19089.93 17297.88 9495.12 145
GA-MVS85.08 15185.65 14884.42 16389.77 15094.25 12389.26 15984.62 13481.19 16662.25 20075.72 13768.44 16984.14 16293.57 10391.68 13796.49 15894.71 150
FC-MVSNet-test86.15 13689.10 10682.71 18689.83 14993.18 15287.88 17584.69 13286.54 12562.18 20182.39 10183.31 9674.18 20192.52 12391.86 13297.50 11793.88 161
pmnet_mix0280.14 19680.21 19780.06 19686.61 19589.66 20280.40 20682.20 16582.29 16161.35 20271.52 15766.67 17976.75 19482.55 20780.18 21093.05 19688.62 198
N_pmnet77.55 20376.68 20678.56 20185.43 20387.30 21078.84 20881.88 16878.30 18360.61 20361.46 19962.15 19974.03 20382.04 20880.69 20990.59 21184.81 210
RE-MVS-def60.19 204
CVMVSNet83.83 16985.53 14981.85 19389.60 15290.92 19587.81 17683.21 15380.11 17260.16 20576.47 13078.57 12776.79 19389.76 16890.13 16393.51 19292.75 174
ambc67.96 21273.69 21679.79 21773.82 21471.61 20659.80 20646.00 21620.79 22666.15 21086.92 19280.11 21189.13 21590.50 187
testgi81.94 18984.09 16079.43 19989.53 15490.83 19882.49 20181.75 17080.59 16759.46 20782.82 9565.75 18267.97 20690.10 16489.52 17895.39 18289.03 195
PMVScopyleft56.77 1861.27 21258.64 21564.35 21275.66 21454.60 22253.62 22274.23 19953.69 22058.37 20844.27 21849.38 22044.16 21969.51 21765.35 21780.07 21873.66 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120678.09 20178.11 20278.07 20285.19 20489.17 20380.99 20481.24 17675.46 20058.25 20954.78 21259.90 21166.73 20988.94 18188.26 18596.01 16790.25 190
FPMVS69.87 21067.10 21373.10 20884.09 20678.35 21879.40 20776.41 19471.92 20557.71 21054.06 21450.04 21956.72 21371.19 21568.70 21584.25 21675.43 216
MIMVSNet173.19 20673.70 20772.60 20965.42 22186.69 21275.56 21279.65 18167.87 21455.30 21145.24 21756.41 21563.79 21186.98 19187.66 18795.85 16985.04 208
MDA-MVSNet-bldmvs73.81 20572.56 20975.28 20572.52 21888.87 20474.95 21382.67 15771.57 20755.02 21265.96 18342.84 22476.11 19670.61 21681.47 20790.38 21286.59 204
new-patchmatchnet72.32 20771.09 21073.74 20781.17 21284.86 21472.21 21677.48 19168.32 21354.89 21355.10 21049.31 22163.68 21279.30 21276.46 21393.03 19784.32 211
EU-MVSNet78.43 19980.25 19676.30 20483.81 20787.27 21180.99 20479.52 18276.01 19654.12 21470.44 16364.87 18967.40 20886.23 19585.54 19591.95 20591.41 179
LTVRE_ROB81.71 1682.44 18781.84 18583.13 17889.01 15692.99 15788.90 16682.32 16366.26 21554.02 21574.68 14259.62 21288.87 12090.71 15392.02 12895.68 17596.62 100
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs371.13 20971.06 21171.21 21073.54 21780.19 21671.69 21764.86 21662.04 21952.10 21654.92 21148.00 22275.03 19983.75 20583.24 20490.04 21385.27 207
test_method58.10 21464.61 21450.51 21528.26 22641.71 22561.28 22032.07 22275.92 19852.04 21747.94 21561.83 20251.80 21679.83 21163.95 21977.60 22081.05 213
gm-plane-assit77.65 20278.50 20076.66 20387.96 17085.43 21364.70 21974.50 19864.15 21751.26 21861.32 20158.17 21484.11 16395.16 6693.83 8297.45 11991.41 179
test20.0376.41 20478.49 20173.98 20685.64 20187.50 20875.89 21180.71 17870.84 21051.07 21968.06 17161.40 20454.99 21588.28 18387.20 18895.58 17986.15 205
new_pmnet72.29 20873.25 20871.16 21175.35 21581.38 21573.72 21569.27 21375.97 19749.84 22056.27 20756.12 21669.08 20581.73 20980.86 20889.72 21480.44 214
DeepMVS_CXcopyleft71.82 21968.37 21848.05 22177.38 18746.88 22165.77 18447.03 22367.48 20764.27 21976.89 22176.72 215
Gipumacopyleft58.52 21356.17 21661.27 21367.14 22058.06 22152.16 22368.40 21569.00 21245.02 22222.79 22020.57 22755.11 21476.27 21379.33 21279.80 21967.16 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gg-mvs-nofinetune81.83 19083.58 16379.80 19891.57 13196.54 9293.79 8968.80 21462.71 21843.01 22355.28 20985.06 8983.65 16596.13 5194.86 6697.98 9094.46 152
MVEpermissive39.81 1939.52 21741.58 21837.11 21933.93 22549.06 22326.45 22754.22 22029.46 22424.15 22420.77 22210.60 23034.42 22051.12 22065.27 21849.49 22564.81 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS253.68 21555.72 21751.30 21458.84 22267.02 22054.23 22160.97 21947.50 22119.42 22534.81 21931.97 22530.88 22165.84 21869.99 21483.47 21772.92 218
E-PMN40.00 21635.74 21944.98 21757.69 22439.15 22728.05 22562.70 21735.52 22317.78 22620.90 22114.36 22944.47 21835.89 22147.86 22059.15 22356.47 221
EMVS39.04 21834.32 22044.54 21858.25 22339.35 22627.61 22662.55 21835.99 22216.40 22720.04 22314.77 22844.80 21733.12 22244.10 22157.61 22452.89 222
GG-mvs-BLEND62.84 21190.21 9330.91 2200.57 22894.45 11886.99 1820.34 22688.71 1070.98 22881.55 10891.58 590.86 22592.66 11991.43 14095.73 17291.11 183
testmvs4.35 2196.54 2211.79 2210.60 2271.82 2283.06 2290.95 2247.22 2250.88 22912.38 2241.25 2313.87 2246.09 2235.58 2221.40 22611.42 224
test1233.48 2205.31 2221.34 2220.20 2291.52 2292.17 2300.58 2256.13 2260.31 2309.85 2250.31 2323.90 2232.65 2245.28 2230.87 22711.46 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
9.1497.28 24
SR-MVS98.93 2096.00 1897.75 15
Anonymous20240521188.00 11893.16 10896.38 9893.58 9589.34 8087.92 11465.04 18983.03 9892.07 7692.67 11893.33 9696.96 14297.63 67
our_test_386.93 19089.77 20181.61 203
Patchmatch-RL test18.47 228
mPP-MVS98.76 2595.49 40
NP-MVS91.63 68