DPE-MVS |  | | 97.83 3 | 98.13 3 | 97.48 4 | 98.83 23 | 99.19 3 | 98.99 1 | 96.70 1 | 96.05 19 | 94.39 10 | 98.30 1 | 99.47 3 | 97.02 6 | 97.75 6 | 97.02 13 | 98.98 2 | 99.10 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 97.79 4 | 97.96 5 | 97.60 1 | 99.20 2 | 99.10 5 | 98.88 2 | 96.68 2 | 96.81 6 | 94.64 6 | 97.84 3 | 98.02 10 | 97.24 3 | 97.74 7 | 97.02 13 | 98.97 3 | 99.16 5 |
|
SED-MVS | | | 97.98 1 | 98.36 1 | 97.54 3 | 98.94 17 | 99.29 2 | 98.81 3 | 96.64 3 | 97.14 2 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 11 | 98.00 1 | 97.24 8 | 98.75 12 | 99.25 2 |
|
MSP-MVS | | | 97.70 5 | 98.09 4 | 97.24 6 | 99.00 11 | 99.17 4 | 98.76 4 | 96.41 9 | 96.91 4 | 93.88 15 | 97.72 4 | 99.04 6 | 96.93 10 | 97.29 15 | 97.31 6 | 98.45 31 | 99.23 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS | | | 97.93 2 | 98.23 2 | 97.58 2 | 99.05 6 | 99.31 1 | 98.64 5 | 96.62 4 | 97.56 1 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 3 | 97.31 6 | 98.77 11 | 99.26 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 97.31 8 | 97.64 8 | 96.92 14 | 97.28 47 | 98.56 22 | 98.61 6 | 95.48 29 | 96.72 7 | 94.03 14 | 96.73 12 | 98.29 8 | 97.15 4 | 97.61 11 | 96.42 25 | 98.96 4 | 99.13 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 97.12 12 | 97.05 17 | 97.19 7 | 99.04 7 | 98.63 18 | 98.45 7 | 96.54 5 | 94.81 37 | 93.50 17 | 96.10 19 | 97.40 21 | 96.81 13 | 97.05 20 | 96.82 18 | 98.80 7 | 98.56 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
zzz-MVS | | | 96.98 15 | 96.68 23 | 97.33 5 | 99.09 3 | 98.71 12 | 98.43 8 | 96.01 16 | 96.11 18 | 95.19 3 | 92.89 33 | 97.32 22 | 96.84 12 | 97.20 16 | 96.09 40 | 98.44 32 | 98.46 31 |
|
SteuartSystems-ACMMP | | | 97.10 14 | 97.49 9 | 96.65 19 | 98.97 13 | 98.95 8 | 98.43 8 | 95.96 18 | 95.12 29 | 91.46 29 | 96.85 9 | 97.60 17 | 96.37 24 | 97.76 5 | 97.16 10 | 98.68 13 | 98.97 10 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 96.92 17 | 96.96 18 | 96.87 16 | 98.99 12 | 98.78 10 | 98.38 10 | 95.52 25 | 96.57 9 | 92.81 25 | 96.06 20 | 95.90 36 | 97.07 5 | 96.60 33 | 96.34 31 | 98.46 28 | 98.42 32 |
|
HFP-MVS | | | 97.11 13 | 97.19 15 | 97.00 13 | 98.97 13 | 98.73 11 | 98.37 11 | 95.69 22 | 96.60 8 | 93.28 21 | 96.87 8 | 96.64 28 | 97.27 2 | 96.64 31 | 96.33 32 | 98.44 32 | 98.56 19 |
|
PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 27 | 99.04 7 | 98.63 18 | 98.32 12 | 92.76 43 | 93.42 48 | 90.49 39 | 96.30 16 | 95.31 41 | 96.71 18 | 96.46 36 | 96.02 41 | 98.38 40 | 98.19 40 |
|
ACMMP_NAP | | | 96.93 16 | 97.27 14 | 96.53 24 | 99.06 5 | 98.95 8 | 98.24 13 | 96.06 15 | 95.66 22 | 90.96 34 | 95.63 24 | 97.71 15 | 96.53 20 | 97.66 9 | 96.68 19 | 98.30 49 | 98.61 18 |
|
HPM-MVS++ |  | | 97.22 10 | 97.40 11 | 97.01 12 | 99.08 4 | 98.55 23 | 98.19 14 | 96.48 6 | 96.02 20 | 93.28 21 | 96.26 17 | 98.71 7 | 96.76 17 | 97.30 14 | 96.25 34 | 98.30 49 | 98.68 13 |
|
CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 18 | 98.85 22 | 98.58 21 | 98.18 15 | 95.51 27 | 95.34 26 | 92.94 24 | 95.21 28 | 96.25 31 | 96.79 15 | 96.44 38 | 95.77 45 | 98.35 41 | 98.56 19 |
|
CNVR-MVS | | | 97.30 9 | 97.41 10 | 97.18 8 | 99.02 10 | 98.60 20 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 12 | 95.54 25 | 97.99 11 | 96.99 7 | 97.97 2 | 97.17 9 | 98.57 19 | 98.50 27 |
|
NCCC | | | 96.75 19 | 96.67 24 | 96.85 17 | 99.03 9 | 98.44 33 | 98.15 16 | 96.28 10 | 96.32 12 | 92.39 26 | 92.16 35 | 97.55 19 | 96.68 19 | 97.32 12 | 96.65 21 | 98.55 20 | 98.26 36 |
|
train_agg | | | 96.15 25 | 96.64 25 | 95.58 34 | 98.44 28 | 98.03 45 | 98.14 18 | 95.40 32 | 93.90 45 | 87.72 55 | 96.26 17 | 98.10 9 | 95.75 30 | 96.25 43 | 95.45 50 | 98.01 79 | 98.47 29 |
|
SMA-MVS |  | | 97.53 6 | 97.93 6 | 97.07 11 | 99.21 1 | 99.02 7 | 98.08 19 | 96.25 11 | 96.36 11 | 93.57 16 | 96.56 14 | 99.27 4 | 96.78 16 | 97.91 3 | 97.43 3 | 98.51 21 | 98.94 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MP-MVS |  | | 96.56 21 | 96.72 22 | 96.37 25 | 98.93 19 | 98.48 29 | 98.04 20 | 95.55 24 | 94.32 41 | 90.95 36 | 95.88 22 | 97.02 25 | 96.29 25 | 96.77 28 | 96.01 42 | 98.47 26 | 98.56 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 96.83 18 | 97.06 16 | 96.57 20 | 98.88 21 | 98.47 31 | 98.02 21 | 96.16 14 | 95.58 24 | 90.96 34 | 95.78 23 | 97.84 13 | 96.46 22 | 97.00 22 | 96.17 36 | 98.94 5 | 98.55 24 |
|
DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 21 | 98.70 26 | 98.31 37 | 97.97 22 | 95.76 21 | 96.31 13 | 92.01 28 | 91.43 40 | 95.42 40 | 96.46 22 | 97.65 10 | 97.69 1 | 98.49 25 | 98.12 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
X-MVS | | | 96.07 26 | 96.33 28 | 95.77 30 | 98.94 17 | 98.66 13 | 97.94 23 | 95.41 31 | 95.12 29 | 88.03 51 | 93.00 32 | 96.06 32 | 95.85 28 | 96.65 30 | 96.35 28 | 98.47 26 | 98.48 28 |
|
CPTT-MVS | | | 95.54 32 | 95.07 36 | 96.10 26 | 97.88 36 | 97.98 48 | 97.92 24 | 94.86 33 | 94.56 40 | 92.16 27 | 91.01 42 | 95.71 37 | 96.97 9 | 94.56 77 | 93.50 85 | 96.81 148 | 98.14 43 |
|
SD-MVS | | | 97.35 7 | 97.73 7 | 96.90 15 | 97.35 45 | 98.66 13 | 97.85 25 | 96.25 11 | 96.86 5 | 94.54 9 | 96.75 11 | 99.13 5 | 96.99 7 | 96.94 23 | 96.58 22 | 98.39 39 | 99.20 4 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPM-MVS | | | 95.07 36 | 94.84 38 | 95.34 35 | 97.44 44 | 97.49 62 | 97.76 26 | 95.52 25 | 94.88 35 | 88.92 46 | 87.25 58 | 96.44 30 | 94.41 42 | 95.78 51 | 96.11 39 | 97.99 81 | 95.95 120 |
|
TSAR-MVS + ACMM | | | 96.19 23 | 97.39 12 | 94.78 38 | 97.70 40 | 98.41 34 | 97.72 27 | 95.49 28 | 96.47 10 | 86.66 66 | 96.35 15 | 97.85 12 | 93.99 50 | 97.19 18 | 96.37 27 | 97.12 125 | 99.13 6 |
|
DeepC-MVS | | 92.10 3 | 95.22 35 | 94.77 39 | 95.75 31 | 97.77 38 | 98.54 24 | 97.63 28 | 95.96 18 | 95.07 32 | 88.85 47 | 85.35 73 | 91.85 54 | 95.82 29 | 96.88 25 | 97.10 11 | 98.44 32 | 98.63 15 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xxxxxxxxxxxxxcwj | | | 95.62 31 | 94.35 45 | 97.10 9 | 98.95 15 | 98.51 27 | 97.51 29 | 96.48 6 | 96.17 15 | 94.64 6 | 97.32 5 | 76.98 136 | 96.23 26 | 96.78 26 | 96.15 37 | 98.79 9 | 98.55 24 |
|
SF-MVS | | | 97.20 11 | 97.29 13 | 97.10 9 | 98.95 15 | 98.51 27 | 97.51 29 | 96.48 6 | 96.17 15 | 94.64 6 | 97.32 5 | 97.57 18 | 96.23 26 | 96.78 26 | 96.15 37 | 98.79 9 | 98.55 24 |
|
MVS_0304 | | | 94.30 46 | 94.68 40 | 93.86 50 | 96.33 59 | 98.48 29 | 97.41 31 | 91.20 55 | 92.75 53 | 86.96 63 | 86.03 68 | 93.81 47 | 92.64 68 | 96.89 24 | 96.54 24 | 98.61 17 | 98.24 37 |
|
CDPH-MVS | | | 94.80 42 | 95.50 33 | 93.98 47 | 98.34 29 | 98.06 43 | 97.41 31 | 93.23 40 | 92.81 52 | 82.98 93 | 92.51 34 | 94.82 42 | 93.53 58 | 96.08 46 | 96.30 33 | 98.42 35 | 97.94 52 |
|
CANet | | | 94.85 39 | 94.92 37 | 94.78 38 | 97.25 48 | 98.52 26 | 97.20 33 | 91.81 49 | 93.25 49 | 91.06 33 | 86.29 65 | 94.46 44 | 92.99 64 | 97.02 21 | 96.68 19 | 98.34 43 | 98.20 39 |
|
3Dnovator+ | | 90.56 5 | 95.06 37 | 94.56 42 | 95.65 32 | 98.11 32 | 98.15 41 | 97.19 34 | 91.59 53 | 95.11 31 | 93.23 23 | 81.99 99 | 94.71 43 | 95.43 34 | 96.48 35 | 96.88 17 | 98.35 41 | 98.63 15 |
|
ACMMP |  | | 95.54 32 | 95.49 34 | 95.61 33 | 98.27 31 | 98.53 25 | 97.16 35 | 94.86 33 | 94.88 35 | 89.34 42 | 95.36 27 | 91.74 55 | 95.50 33 | 95.51 55 | 94.16 69 | 98.50 23 | 98.22 38 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 95.68 30 | 95.46 35 | 95.93 28 | 98.71 25 | 99.07 6 | 97.13 36 | 93.55 38 | 95.48 25 | 93.35 20 | 90.61 45 | 93.82 46 | 95.16 35 | 94.60 76 | 95.57 48 | 97.70 100 | 99.08 9 |
|
MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 22 | 98.33 30 | 98.17 40 | 96.94 37 | 94.61 35 | 94.70 39 | 94.37 11 | 89.20 51 | 95.96 35 | 96.81 13 | 95.57 54 | 97.33 5 | 98.24 57 | 98.47 29 |
|
3Dnovator | | 90.28 7 | 94.70 43 | 94.34 46 | 95.11 36 | 98.06 33 | 98.21 38 | 96.89 38 | 91.03 59 | 94.72 38 | 91.45 30 | 82.87 90 | 93.10 49 | 94.61 39 | 96.24 44 | 97.08 12 | 98.63 16 | 98.16 41 |
|
DELS-MVS | | | 93.71 50 | 93.47 51 | 94.00 45 | 96.82 54 | 98.39 35 | 96.80 39 | 91.07 58 | 89.51 93 | 89.94 41 | 83.80 83 | 89.29 70 | 90.95 85 | 97.32 12 | 97.65 2 | 98.42 35 | 98.32 35 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
AdaColmap |  | | 95.02 38 | 93.71 49 | 96.54 23 | 98.51 27 | 97.76 54 | 96.69 40 | 95.94 20 | 93.72 46 | 93.50 17 | 89.01 52 | 90.53 65 | 96.49 21 | 94.51 79 | 93.76 78 | 98.07 73 | 96.69 96 |
|
PHI-MVS | | | 95.86 28 | 96.93 21 | 94.61 42 | 97.60 42 | 98.65 17 | 96.49 41 | 93.13 41 | 94.07 43 | 87.91 54 | 97.12 7 | 97.17 24 | 93.90 53 | 96.46 36 | 96.93 16 | 98.64 15 | 98.10 47 |
|
QAPM | | | 94.13 47 | 94.33 47 | 93.90 48 | 97.82 37 | 98.37 36 | 96.47 42 | 90.89 60 | 92.73 55 | 85.63 77 | 85.35 73 | 93.87 45 | 94.17 48 | 95.71 53 | 95.90 43 | 98.40 37 | 98.42 32 |
|
OPM-MVS | | | 91.08 78 | 89.34 97 | 93.11 60 | 96.18 60 | 96.13 95 | 96.39 43 | 92.39 44 | 82.97 150 | 81.74 96 | 82.55 96 | 80.20 114 | 93.97 52 | 94.62 74 | 93.23 92 | 98.00 80 | 95.73 124 |
|
TSAR-MVS + GP. | | | 95.86 28 | 96.95 20 | 94.60 43 | 94.07 83 | 98.11 42 | 96.30 44 | 91.76 51 | 95.67 21 | 91.07 32 | 96.82 10 | 97.69 16 | 95.71 31 | 95.96 48 | 95.75 46 | 98.68 13 | 98.63 15 |
|
TAPA-MVS | | 90.35 6 | 93.69 51 | 93.52 50 | 93.90 48 | 96.89 53 | 97.62 59 | 96.15 45 | 91.67 52 | 94.94 33 | 85.97 70 | 87.72 57 | 91.96 53 | 94.40 43 | 93.76 93 | 93.06 100 | 98.30 49 | 95.58 128 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TSAR-MVS + COLMAP | | | 92.39 62 | 92.31 67 | 92.47 66 | 95.35 73 | 96.46 88 | 96.13 46 | 92.04 48 | 95.33 27 | 80.11 109 | 94.95 29 | 77.35 134 | 94.05 49 | 94.49 80 | 93.08 98 | 97.15 122 | 94.53 144 |
|
EPNet | | | 93.92 48 | 94.40 43 | 93.36 54 | 97.89 35 | 96.55 84 | 96.08 47 | 92.14 46 | 91.65 63 | 89.16 44 | 94.07 30 | 90.17 69 | 87.78 119 | 95.24 58 | 94.97 58 | 97.09 127 | 98.15 42 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DI_MVS_plusplus_trai | | | 91.05 79 | 90.15 91 | 92.11 71 | 92.67 113 | 96.61 82 | 96.03 48 | 88.44 86 | 90.25 79 | 85.92 72 | 73.73 139 | 84.89 86 | 91.92 74 | 94.17 85 | 94.07 73 | 97.68 102 | 97.31 79 |
|
PCF-MVS | | 90.19 8 | 92.98 55 | 92.07 70 | 94.04 44 | 96.39 58 | 97.87 49 | 96.03 48 | 95.47 30 | 87.16 111 | 85.09 87 | 84.81 77 | 93.21 48 | 93.46 60 | 91.98 126 | 91.98 123 | 97.78 92 | 97.51 71 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
LGP-MVS_train | | | 91.83 69 | 92.04 71 | 91.58 76 | 95.46 69 | 96.18 94 | 95.97 50 | 89.85 67 | 90.45 76 | 77.76 116 | 91.92 38 | 80.07 115 | 92.34 72 | 94.27 82 | 93.47 86 | 98.11 70 | 97.90 57 |
|
PLC |  | 90.69 4 | 94.32 45 | 92.99 56 | 95.87 29 | 97.91 34 | 96.49 86 | 95.95 51 | 94.12 36 | 94.94 33 | 94.09 13 | 85.90 69 | 90.77 62 | 95.58 32 | 94.52 78 | 93.32 91 | 97.55 108 | 95.00 140 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
abl_6 | | | | | 94.78 38 | 97.46 43 | 97.99 47 | 95.76 52 | 91.80 50 | 93.72 46 | 91.25 31 | 91.33 41 | 96.47 29 | 94.28 47 | | | 98.14 66 | 97.39 75 |
|
CLD-MVS | | | 92.50 61 | 91.96 72 | 93.13 58 | 93.93 89 | 96.24 92 | 95.69 53 | 88.77 81 | 92.92 50 | 89.01 45 | 88.19 56 | 81.74 107 | 93.13 63 | 93.63 94 | 93.08 98 | 98.23 58 | 97.91 56 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 88.18 11 | 92.51 60 | 91.61 77 | 93.55 53 | 97.74 39 | 98.02 46 | 95.66 54 | 90.46 63 | 89.14 96 | 86.50 67 | 75.80 131 | 90.38 68 | 92.69 67 | 94.99 61 | 95.30 52 | 98.27 53 | 97.63 64 |
|
HQP-MVS | | | 92.39 62 | 92.49 63 | 92.29 70 | 95.65 65 | 95.94 98 | 95.64 55 | 92.12 47 | 92.46 57 | 79.65 111 | 91.97 37 | 82.68 98 | 92.92 66 | 93.47 100 | 92.77 105 | 97.74 96 | 98.12 45 |
|
OMC-MVS | | | 94.49 44 | 94.36 44 | 94.64 41 | 97.17 49 | 97.73 56 | 95.49 56 | 92.25 45 | 96.18 14 | 90.34 40 | 88.51 53 | 92.88 50 | 94.90 38 | 94.92 64 | 94.17 68 | 97.69 101 | 96.15 115 |
|
canonicalmvs | | | 93.08 54 | 93.09 54 | 93.07 61 | 94.24 78 | 97.86 50 | 95.45 57 | 87.86 99 | 94.00 44 | 87.47 58 | 88.32 54 | 82.37 102 | 95.13 36 | 93.96 92 | 96.41 26 | 98.27 53 | 98.73 12 |
|
LS3D | | | 91.97 66 | 90.98 84 | 93.12 59 | 97.03 52 | 97.09 73 | 95.33 58 | 95.59 23 | 92.47 56 | 79.26 113 | 81.60 102 | 82.77 97 | 94.39 44 | 94.28 81 | 94.23 67 | 97.14 124 | 94.45 146 |
|
MVS_111021_HR | | | 94.84 40 | 95.91 30 | 93.60 52 | 97.35 45 | 98.46 32 | 95.08 59 | 91.19 56 | 94.18 42 | 85.97 70 | 95.38 26 | 92.56 51 | 93.61 57 | 96.61 32 | 96.25 34 | 98.40 37 | 97.92 54 |
|
XVS | | | | | | 95.68 63 | 98.66 13 | 94.96 60 | | | 88.03 51 | | 96.06 32 | | | | 98.46 28 | |
|
X-MVStestdata | | | | | | 95.68 63 | 98.66 13 | 94.96 60 | | | 88.03 51 | | 96.06 32 | | | | 98.46 28 | |
|
MVS_111021_LR | | | 94.84 40 | 95.57 32 | 94.00 45 | 97.11 50 | 97.72 58 | 94.88 62 | 91.16 57 | 95.24 28 | 88.74 48 | 96.03 21 | 91.52 58 | 94.33 46 | 95.96 48 | 95.01 57 | 97.79 91 | 97.49 72 |
|
FMVSNet3 | | | 90.19 92 | 90.06 94 | 90.34 90 | 88.69 153 | 93.85 122 | 94.58 63 | 85.78 117 | 90.03 85 | 85.56 79 | 77.38 117 | 86.13 77 | 89.22 106 | 93.29 105 | 94.36 66 | 98.20 61 | 95.40 134 |
|
ET-MVSNet_ETH3D | | | 89.93 93 | 90.84 85 | 88.87 107 | 79.60 206 | 96.19 93 | 94.43 64 | 86.56 110 | 90.63 72 | 80.75 106 | 90.71 44 | 77.78 130 | 93.73 56 | 91.36 134 | 93.45 87 | 98.15 64 | 95.77 123 |
|
CS-MVS | | | 93.68 53 | 94.33 47 | 92.93 63 | 94.15 79 | 98.04 44 | 94.43 64 | 87.99 91 | 91.64 64 | 87.54 57 | 88.22 55 | 92.09 52 | 94.56 40 | 96.77 28 | 95.85 44 | 98.88 6 | 97.71 63 |
|
MVS_Test | | | 91.81 70 | 92.19 68 | 91.37 83 | 93.24 99 | 96.95 77 | 94.43 64 | 86.25 112 | 91.45 67 | 83.45 91 | 86.31 64 | 85.15 84 | 92.93 65 | 93.99 88 | 94.71 62 | 97.92 85 | 96.77 94 |
|
MVSTER | | | 91.73 71 | 91.61 77 | 91.86 73 | 93.18 100 | 94.56 107 | 94.37 67 | 87.90 95 | 90.16 84 | 88.69 49 | 89.23 50 | 81.28 109 | 88.92 112 | 95.75 52 | 93.95 75 | 98.12 68 | 96.37 106 |
|
thres100view900 | | | 89.36 102 | 87.61 119 | 91.39 81 | 93.90 90 | 96.86 80 | 94.35 68 | 89.66 73 | 85.87 123 | 81.15 101 | 76.46 126 | 70.38 154 | 91.17 82 | 94.09 86 | 93.43 88 | 98.13 67 | 96.16 114 |
|
CANet_DTU | | | 90.74 85 | 92.93 58 | 88.19 114 | 94.36 77 | 96.61 82 | 94.34 69 | 84.66 127 | 90.66 71 | 68.75 163 | 90.41 46 | 86.89 74 | 89.78 94 | 95.46 56 | 94.87 59 | 97.25 117 | 95.62 126 |
|
thres200 | | | 89.49 100 | 87.72 116 | 91.55 77 | 93.95 87 | 97.25 67 | 94.34 69 | 89.74 69 | 85.66 126 | 81.18 100 | 76.12 130 | 70.19 157 | 91.80 75 | 94.92 64 | 93.51 82 | 98.27 53 | 96.40 105 |
|
tfpn200view9 | | | 89.55 99 | 87.86 114 | 91.53 78 | 93.90 90 | 97.26 66 | 94.31 71 | 89.74 69 | 85.87 123 | 81.15 101 | 76.46 126 | 70.38 154 | 91.76 77 | 94.92 64 | 93.51 82 | 98.28 52 | 96.61 98 |
|
GBi-Net | | | 90.21 90 | 90.11 92 | 90.32 91 | 88.66 154 | 93.65 130 | 94.25 72 | 85.78 117 | 90.03 85 | 85.56 79 | 77.38 117 | 86.13 77 | 89.38 99 | 93.97 89 | 94.16 69 | 98.31 46 | 95.47 130 |
|
test1 | | | 90.21 90 | 90.11 92 | 90.32 91 | 88.66 154 | 93.65 130 | 94.25 72 | 85.78 117 | 90.03 85 | 85.56 79 | 77.38 117 | 86.13 77 | 89.38 99 | 93.97 89 | 94.16 69 | 98.31 46 | 95.47 130 |
|
FMVSNet2 | | | 89.61 98 | 89.14 99 | 90.16 96 | 88.66 154 | 93.65 130 | 94.25 72 | 85.44 121 | 88.57 102 | 84.96 88 | 73.53 141 | 83.82 89 | 89.38 99 | 94.23 83 | 94.68 63 | 98.31 46 | 95.47 130 |
|
thres400 | | | 89.40 101 | 87.58 121 | 91.53 78 | 94.06 84 | 97.21 69 | 94.19 75 | 89.83 68 | 85.69 125 | 81.08 103 | 75.50 133 | 69.76 158 | 91.80 75 | 94.79 71 | 93.51 82 | 98.20 61 | 96.60 99 |
|
diffmvs | | | 91.37 75 | 91.09 83 | 91.70 75 | 92.71 112 | 96.47 87 | 94.03 76 | 88.78 80 | 92.74 54 | 85.43 84 | 83.63 85 | 80.37 112 | 91.76 77 | 93.39 102 | 93.78 77 | 97.50 110 | 97.23 81 |
|
MSDG | | | 90.42 88 | 88.25 108 | 92.94 62 | 96.67 56 | 94.41 113 | 93.96 77 | 92.91 42 | 89.59 92 | 86.26 68 | 76.74 124 | 80.92 111 | 90.43 91 | 92.60 114 | 92.08 120 | 97.44 113 | 91.41 172 |
|
casdiffmvs | | | 91.72 72 | 91.16 82 | 92.38 69 | 93.16 101 | 97.15 70 | 93.95 78 | 89.49 75 | 91.58 66 | 86.03 69 | 80.75 106 | 80.95 110 | 93.16 62 | 95.25 57 | 95.22 55 | 98.50 23 | 97.23 81 |
|
ACMP | | 89.13 9 | 92.03 65 | 91.70 76 | 92.41 68 | 94.92 74 | 96.44 90 | 93.95 78 | 89.96 66 | 91.81 62 | 85.48 82 | 90.97 43 | 79.12 118 | 92.42 70 | 93.28 106 | 92.55 109 | 97.76 94 | 97.74 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres600view7 | | | 89.28 105 | 87.47 124 | 91.39 81 | 94.12 81 | 97.25 67 | 93.94 80 | 89.74 69 | 85.62 128 | 80.63 107 | 75.24 135 | 69.33 159 | 91.66 79 | 94.92 64 | 93.23 92 | 98.27 53 | 96.72 95 |
|
baseline1 | | | 90.81 82 | 90.29 88 | 91.42 80 | 93.67 96 | 95.86 99 | 93.94 80 | 89.69 72 | 89.29 95 | 82.85 94 | 82.91 89 | 80.30 113 | 89.60 95 | 95.05 60 | 94.79 61 | 98.80 7 | 93.82 155 |
|
CNLPA | | | 93.69 51 | 92.50 62 | 95.06 37 | 97.11 50 | 97.36 64 | 93.88 82 | 93.30 39 | 95.64 23 | 93.44 19 | 80.32 107 | 90.73 63 | 94.99 37 | 93.58 95 | 93.33 89 | 97.67 103 | 96.57 101 |
|
DCV-MVSNet | | | 91.24 76 | 91.26 80 | 91.22 85 | 92.84 108 | 93.44 134 | 93.82 83 | 86.75 109 | 91.33 68 | 85.61 78 | 84.00 82 | 85.46 83 | 91.27 80 | 92.91 108 | 93.62 80 | 97.02 131 | 98.05 48 |
|
gg-mvs-nofinetune | | | 81.83 183 | 83.58 156 | 79.80 191 | 91.57 124 | 96.54 85 | 93.79 84 | 68.80 207 | 62.71 211 | 43.01 216 | 55.28 202 | 85.06 85 | 83.65 158 | 96.13 45 | 94.86 60 | 97.98 84 | 94.46 145 |
|
MAR-MVS | | | 92.71 59 | 92.63 60 | 92.79 65 | 97.70 40 | 97.15 70 | 93.75 85 | 87.98 93 | 90.71 70 | 85.76 75 | 86.28 66 | 86.38 76 | 94.35 45 | 94.95 62 | 95.49 49 | 97.22 118 | 97.44 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CHOSEN 1792x2688 | | | 88.57 108 | 87.82 115 | 89.44 102 | 95.46 69 | 96.89 79 | 93.74 86 | 85.87 115 | 89.63 91 | 77.42 119 | 61.38 193 | 83.31 92 | 88.80 114 | 93.44 101 | 93.16 96 | 95.37 176 | 96.95 90 |
|
PVSNet_BlendedMVS | | | 92.80 56 | 92.44 64 | 93.23 55 | 96.02 61 | 97.83 52 | 93.74 86 | 90.58 61 | 91.86 60 | 90.69 37 | 85.87 71 | 82.04 104 | 90.01 92 | 96.39 39 | 95.26 53 | 98.34 43 | 97.81 59 |
|
PVSNet_Blended | | | 92.80 56 | 92.44 64 | 93.23 55 | 96.02 61 | 97.83 52 | 93.74 86 | 90.58 61 | 91.86 60 | 90.69 37 | 85.87 71 | 82.04 104 | 90.01 92 | 96.39 39 | 95.26 53 | 98.34 43 | 97.81 59 |
|
ETV-MVS | | | 93.80 49 | 94.57 41 | 92.91 64 | 93.98 85 | 97.50 61 | 93.62 89 | 88.70 82 | 91.95 59 | 87.57 56 | 90.21 47 | 90.79 61 | 94.56 40 | 97.20 16 | 96.35 28 | 99.02 1 | 97.98 49 |
|
Anonymous202405211 | | | | 88.00 111 | | 93.16 101 | 96.38 91 | 93.58 90 | 89.34 76 | 87.92 107 | | 65.04 182 | 83.03 94 | 92.07 73 | 92.67 111 | 93.33 89 | 96.96 135 | 97.63 64 |
|
baseline | | | 91.19 77 | 91.89 73 | 90.38 89 | 92.76 109 | 95.04 105 | 93.55 91 | 84.54 130 | 92.92 50 | 85.71 76 | 86.68 63 | 86.96 73 | 89.28 102 | 92.00 125 | 92.62 108 | 96.46 153 | 96.99 88 |
|
DeepPCF-MVS | | 92.65 2 | 95.50 34 | 96.96 18 | 93.79 51 | 96.44 57 | 98.21 38 | 93.51 92 | 94.08 37 | 96.94 3 | 89.29 43 | 93.08 31 | 96.77 27 | 93.82 54 | 97.68 8 | 97.40 4 | 95.59 171 | 98.65 14 |
|
Effi-MVS+ | | | 89.79 96 | 89.83 95 | 89.74 99 | 92.98 103 | 96.45 89 | 93.48 93 | 84.24 132 | 87.62 109 | 76.45 122 | 81.76 100 | 77.56 133 | 93.48 59 | 94.61 75 | 93.59 81 | 97.82 90 | 97.22 83 |
|
Anonymous20231211 | | | 89.82 95 | 88.18 109 | 91.74 74 | 92.52 114 | 96.09 96 | 93.38 94 | 89.30 77 | 88.95 98 | 85.90 73 | 64.55 186 | 84.39 87 | 92.41 71 | 92.24 121 | 93.06 100 | 96.93 140 | 97.95 51 |
|
ACMM | | 88.76 10 | 91.70 73 | 90.43 87 | 93.19 57 | 95.56 66 | 95.14 104 | 93.35 95 | 91.48 54 | 92.26 58 | 87.12 61 | 84.02 81 | 79.34 117 | 93.99 50 | 94.07 87 | 92.68 106 | 97.62 107 | 95.50 129 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 87.53 116 | 84.97 145 | 90.52 88 | 92.11 117 | 93.31 139 | 93.32 96 | 85.79 116 | 79.56 170 | 87.38 60 | 62.89 190 | 78.60 122 | 89.25 103 | 90.65 148 | 92.17 116 | 95.24 178 | 97.62 66 |
|
CHOSEN 280x420 | | | 90.77 84 | 92.14 69 | 89.17 105 | 93.86 92 | 92.81 157 | 93.16 97 | 80.22 174 | 90.21 81 | 84.67 89 | 89.89 48 | 91.38 59 | 90.57 90 | 94.94 63 | 92.11 118 | 92.52 193 | 93.65 157 |
|
EIA-MVS | | | 92.72 58 | 92.96 57 | 92.44 67 | 93.86 92 | 97.76 54 | 93.13 98 | 88.65 84 | 89.78 90 | 86.68 65 | 86.69 62 | 87.57 71 | 93.74 55 | 96.07 47 | 95.32 51 | 98.58 18 | 97.53 70 |
|
IS_MVSNet | | | 91.87 68 | 93.35 53 | 90.14 97 | 94.09 82 | 97.73 56 | 93.09 99 | 88.12 90 | 88.71 100 | 79.98 110 | 84.49 78 | 90.63 64 | 87.49 123 | 97.07 19 | 96.96 15 | 98.07 73 | 97.88 58 |
|
FMVSNet1 | | | 87.33 118 | 86.00 136 | 88.89 106 | 87.13 180 | 92.83 156 | 93.08 100 | 84.46 131 | 81.35 158 | 82.20 95 | 66.33 173 | 77.96 128 | 88.96 109 | 93.97 89 | 94.16 69 | 97.54 109 | 95.38 135 |
|
GeoE | | | 89.29 104 | 88.68 103 | 89.99 98 | 92.75 111 | 96.03 97 | 93.07 101 | 83.79 139 | 86.98 113 | 81.34 99 | 74.72 136 | 78.92 119 | 91.22 81 | 93.31 104 | 93.21 94 | 97.78 92 | 97.60 69 |
|
USDC | | | 86.73 124 | 85.96 137 | 87.63 123 | 91.64 122 | 93.97 120 | 92.76 102 | 84.58 129 | 88.19 104 | 70.67 150 | 80.10 108 | 67.86 166 | 89.43 97 | 91.81 127 | 89.77 168 | 96.69 150 | 90.05 185 |
|
UA-Net | | | 90.81 82 | 92.58 61 | 88.74 109 | 94.87 75 | 97.44 63 | 92.61 103 | 88.22 88 | 82.35 153 | 78.93 114 | 85.20 75 | 95.61 38 | 79.56 179 | 96.52 34 | 96.57 23 | 98.23 58 | 94.37 147 |
|
MS-PatchMatch | | | 87.63 114 | 87.61 119 | 87.65 122 | 93.95 87 | 94.09 118 | 92.60 104 | 81.52 166 | 86.64 116 | 76.41 123 | 73.46 143 | 85.94 80 | 85.01 148 | 92.23 122 | 90.00 163 | 96.43 155 | 90.93 178 |
|
CDS-MVSNet | | | 88.34 110 | 88.71 102 | 87.90 119 | 90.70 138 | 94.54 108 | 92.38 105 | 86.02 113 | 80.37 162 | 79.42 112 | 79.30 110 | 83.43 91 | 82.04 167 | 93.39 102 | 94.01 74 | 96.86 146 | 95.93 121 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HyFIR lowres test | | | 87.87 113 | 86.42 130 | 89.57 100 | 95.56 66 | 96.99 76 | 92.37 106 | 84.15 134 | 86.64 116 | 77.17 120 | 57.65 199 | 83.97 88 | 91.08 84 | 92.09 124 | 92.44 110 | 97.09 127 | 95.16 137 |
|
RPSCF | | | 89.68 97 | 89.24 98 | 90.20 94 | 92.97 105 | 92.93 153 | 92.30 107 | 87.69 101 | 90.44 77 | 85.12 86 | 91.68 39 | 85.84 82 | 90.69 88 | 87.34 182 | 86.07 184 | 92.46 194 | 90.37 182 |
|
Fast-Effi-MVS+ | | | 88.56 109 | 87.99 112 | 89.22 104 | 91.56 125 | 95.21 102 | 92.29 108 | 82.69 150 | 86.82 114 | 77.73 117 | 76.24 129 | 73.39 144 | 93.36 61 | 94.22 84 | 93.64 79 | 97.65 104 | 96.43 104 |
|
PVSNet_Blended_VisFu | | | 91.92 67 | 92.39 66 | 91.36 84 | 95.45 71 | 97.85 51 | 92.25 109 | 89.54 74 | 88.53 103 | 87.47 58 | 79.82 109 | 90.53 65 | 85.47 144 | 96.31 42 | 95.16 56 | 97.99 81 | 98.56 19 |
|
TDRefinement | | | 84.97 146 | 83.39 161 | 86.81 130 | 92.97 105 | 94.12 117 | 92.18 110 | 87.77 100 | 82.78 151 | 71.31 145 | 68.43 163 | 68.07 165 | 81.10 175 | 89.70 164 | 89.03 176 | 95.55 173 | 91.62 170 |
|
EPP-MVSNet | | | 92.13 64 | 93.06 55 | 91.05 86 | 93.66 97 | 97.30 65 | 92.18 110 | 87.90 95 | 90.24 80 | 83.63 90 | 86.14 67 | 90.52 67 | 90.76 87 | 94.82 69 | 94.38 65 | 98.18 63 | 97.98 49 |
|
Vis-MVSNet (Re-imp) | | | 90.54 87 | 92.76 59 | 87.94 118 | 93.73 95 | 96.94 78 | 92.17 112 | 87.91 94 | 88.77 99 | 76.12 124 | 83.68 84 | 90.80 60 | 79.49 180 | 96.34 41 | 96.35 28 | 98.21 60 | 96.46 103 |
|
Vis-MVSNet |  | | 89.36 102 | 91.49 79 | 86.88 129 | 92.10 118 | 97.60 60 | 92.16 113 | 85.89 114 | 84.21 139 | 75.20 126 | 82.58 94 | 87.13 72 | 77.40 184 | 95.90 50 | 95.63 47 | 98.51 21 | 97.36 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-train | | | 90.55 86 | 90.19 90 | 90.97 87 | 93.78 94 | 95.16 103 | 92.11 114 | 88.85 79 | 87.64 108 | 83.38 92 | 84.36 80 | 78.41 125 | 89.53 96 | 94.69 72 | 93.15 97 | 98.15 64 | 97.92 54 |
|
thisisatest0530 | | | 91.04 80 | 91.74 74 | 90.21 93 | 92.93 107 | 97.00 75 | 92.06 115 | 87.63 104 | 90.74 69 | 81.51 97 | 86.81 60 | 82.48 99 | 89.23 104 | 94.81 70 | 93.03 102 | 97.90 86 | 97.33 78 |
|
EPNet_dtu | | | 88.32 111 | 90.61 86 | 85.64 141 | 96.79 55 | 92.27 169 | 92.03 116 | 90.31 64 | 89.05 97 | 65.44 184 | 89.43 49 | 85.90 81 | 74.22 193 | 92.76 109 | 92.09 119 | 95.02 182 | 92.76 166 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-LS | | | 88.60 107 | 88.45 104 | 88.78 108 | 92.02 119 | 92.44 167 | 92.00 117 | 83.57 143 | 86.52 119 | 78.90 115 | 78.61 114 | 81.34 108 | 89.12 107 | 90.68 147 | 93.18 95 | 97.10 126 | 96.35 107 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tttt0517 | | | 91.01 81 | 91.71 75 | 90.19 95 | 92.98 103 | 97.07 74 | 91.96 118 | 87.63 104 | 90.61 74 | 81.42 98 | 86.76 61 | 82.26 103 | 89.23 104 | 94.86 68 | 93.03 102 | 97.90 86 | 97.36 76 |
|
UGNet | | | 91.52 74 | 93.41 52 | 89.32 103 | 94.13 80 | 97.15 70 | 91.83 119 | 89.01 78 | 90.62 73 | 85.86 74 | 86.83 59 | 91.73 56 | 77.40 184 | 94.68 73 | 94.43 64 | 97.71 98 | 98.40 34 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
COLMAP_ROB |  | 84.39 15 | 87.61 115 | 86.03 134 | 89.46 101 | 95.54 68 | 94.48 110 | 91.77 120 | 90.14 65 | 87.16 111 | 75.50 125 | 73.41 144 | 76.86 138 | 87.33 125 | 90.05 159 | 89.76 169 | 96.48 152 | 90.46 181 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CostFormer | | | 86.78 123 | 86.05 133 | 87.62 124 | 92.15 116 | 93.20 144 | 91.55 121 | 75.83 188 | 88.11 106 | 85.29 85 | 81.76 100 | 76.22 140 | 87.80 118 | 84.45 194 | 85.21 190 | 93.12 188 | 93.42 160 |
|
PatchMatch-RL | | | 90.30 89 | 88.93 101 | 91.89 72 | 95.41 72 | 95.68 100 | 90.94 122 | 88.67 83 | 89.80 89 | 86.95 64 | 85.90 69 | 72.51 145 | 92.46 69 | 93.56 97 | 92.18 115 | 96.93 140 | 92.89 165 |
|
Effi-MVS+-dtu | | | 87.51 117 | 88.13 110 | 86.77 131 | 91.10 131 | 94.90 106 | 90.91 123 | 82.67 151 | 83.47 146 | 71.55 142 | 81.11 105 | 77.04 135 | 89.41 98 | 92.65 113 | 91.68 130 | 95.00 183 | 96.09 117 |
|
tpm cat1 | | | 84.13 157 | 81.99 177 | 86.63 133 | 91.74 121 | 91.50 184 | 90.68 124 | 75.69 189 | 86.12 122 | 85.44 83 | 72.39 148 | 70.72 152 | 85.16 146 | 80.89 203 | 81.56 199 | 91.07 201 | 90.71 179 |
|
PMMVS | | | 89.88 94 | 91.19 81 | 88.35 112 | 89.73 144 | 91.97 177 | 90.62 125 | 81.92 161 | 90.57 75 | 80.58 108 | 92.16 35 | 86.85 75 | 91.17 82 | 92.31 118 | 91.35 134 | 96.11 159 | 93.11 164 |
|
Fast-Effi-MVS+-dtu | | | 86.25 126 | 87.70 117 | 84.56 154 | 90.37 141 | 93.70 127 | 90.54 126 | 78.14 181 | 83.50 145 | 65.37 185 | 81.59 103 | 75.83 142 | 86.09 140 | 91.70 129 | 91.70 128 | 96.88 144 | 95.84 122 |
|
NR-MVSNet | | | 85.46 140 | 84.54 150 | 86.52 134 | 88.33 159 | 93.78 124 | 90.45 127 | 87.87 97 | 84.40 134 | 71.61 141 | 70.59 154 | 62.09 193 | 82.79 163 | 91.75 128 | 91.75 127 | 98.10 71 | 97.44 73 |
|
UniMVSNet_ETH3D | | | 84.57 149 | 81.40 183 | 88.28 113 | 89.34 148 | 94.38 115 | 90.33 128 | 86.50 111 | 74.74 195 | 77.52 118 | 59.90 197 | 62.04 194 | 88.78 115 | 88.82 175 | 92.65 107 | 97.22 118 | 97.24 80 |
|
v10 | | | 84.18 156 | 83.17 166 | 85.37 142 | 87.34 174 | 92.68 159 | 90.32 129 | 81.33 167 | 79.93 169 | 69.23 161 | 66.33 173 | 65.74 177 | 87.03 127 | 90.84 142 | 90.38 150 | 96.97 133 | 96.29 111 |
|
v8 | | | 84.45 155 | 83.30 164 | 85.80 138 | 87.53 172 | 92.95 151 | 90.31 130 | 82.46 155 | 80.46 161 | 71.43 143 | 66.99 168 | 67.16 169 | 86.14 138 | 89.26 169 | 90.22 155 | 96.94 137 | 96.06 118 |
|
TranMVSNet+NR-MVSNet | | | 85.57 138 | 84.41 151 | 86.92 128 | 87.67 170 | 93.34 137 | 90.31 130 | 88.43 87 | 83.07 149 | 70.11 154 | 69.99 160 | 65.28 179 | 86.96 128 | 89.73 162 | 92.27 112 | 98.06 75 | 97.17 85 |
|
v2v482 | | | 84.51 151 | 83.05 167 | 86.20 136 | 87.25 176 | 93.28 141 | 90.22 132 | 85.40 122 | 79.94 168 | 69.78 156 | 67.74 165 | 65.15 181 | 87.57 121 | 89.12 171 | 90.55 148 | 96.97 133 | 95.60 127 |
|
v1144 | | | 84.03 160 | 82.88 168 | 85.37 142 | 87.17 178 | 93.15 148 | 90.18 133 | 83.31 146 | 78.83 173 | 67.85 169 | 65.99 175 | 64.99 182 | 86.79 130 | 90.75 144 | 90.33 152 | 96.90 142 | 96.15 115 |
|
UniMVSNet_NR-MVSNet | | | 86.80 122 | 85.86 139 | 87.89 120 | 88.17 160 | 94.07 119 | 90.15 134 | 88.51 85 | 84.20 140 | 73.45 133 | 72.38 149 | 70.30 156 | 88.95 110 | 90.25 153 | 92.21 114 | 98.12 68 | 97.62 66 |
|
DU-MVS | | | 86.12 130 | 84.81 148 | 87.66 121 | 87.77 167 | 93.78 124 | 90.15 134 | 87.87 97 | 84.40 134 | 73.45 133 | 70.59 154 | 64.82 184 | 88.95 110 | 90.14 154 | 92.33 111 | 97.76 94 | 97.62 66 |
|
baseline2 | | | 88.97 106 | 89.50 96 | 88.36 111 | 91.14 130 | 95.30 101 | 90.13 136 | 85.17 124 | 87.24 110 | 80.80 105 | 84.46 79 | 78.44 124 | 85.60 141 | 93.54 98 | 91.87 124 | 97.31 115 | 95.66 125 |
|
V42 | | | 84.48 153 | 83.36 163 | 85.79 139 | 87.14 179 | 93.28 141 | 90.03 137 | 83.98 137 | 80.30 163 | 71.20 146 | 66.90 170 | 67.17 168 | 85.55 142 | 89.35 166 | 90.27 153 | 96.82 147 | 96.27 112 |
|
IterMVS | | | 85.25 143 | 86.49 129 | 83.80 164 | 90.42 140 | 90.77 193 | 90.02 138 | 78.04 182 | 84.10 141 | 66.27 180 | 77.28 121 | 78.41 125 | 83.01 161 | 90.88 141 | 89.72 170 | 95.04 181 | 94.24 148 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1192 | | | 83.56 166 | 82.35 171 | 84.98 147 | 86.84 185 | 92.84 154 | 90.01 139 | 82.70 149 | 78.54 174 | 66.48 177 | 64.88 183 | 62.91 188 | 86.91 129 | 90.72 145 | 90.25 154 | 96.94 137 | 96.32 109 |
|
MDTV_nov1_ep13 | | | 86.64 125 | 87.50 123 | 85.65 140 | 90.73 136 | 93.69 128 | 89.96 140 | 78.03 183 | 89.48 94 | 76.85 121 | 84.92 76 | 82.42 101 | 86.14 138 | 86.85 186 | 86.15 183 | 92.17 195 | 88.97 190 |
|
pmmvs4 | | | 86.00 133 | 84.28 152 | 88.00 116 | 87.80 165 | 92.01 176 | 89.94 141 | 84.91 125 | 86.79 115 | 80.98 104 | 73.41 144 | 66.34 175 | 88.12 117 | 89.31 168 | 88.90 177 | 96.24 158 | 93.20 163 |
|
EPMVS | | | 85.77 134 | 86.24 132 | 85.23 146 | 92.76 109 | 93.78 124 | 89.91 142 | 73.60 196 | 90.19 82 | 74.22 128 | 82.18 98 | 78.06 127 | 87.55 122 | 85.61 191 | 85.38 189 | 93.32 187 | 88.48 194 |
|
ACMH+ | | 85.75 12 | 87.19 120 | 86.02 135 | 88.56 110 | 93.42 98 | 94.41 113 | 89.91 142 | 87.66 103 | 83.45 147 | 72.25 140 | 76.42 128 | 71.99 149 | 90.78 86 | 89.86 160 | 90.94 137 | 97.32 114 | 95.11 139 |
|
Baseline_NR-MVSNet | | | 85.28 142 | 83.42 160 | 87.46 125 | 87.77 167 | 90.80 192 | 89.90 144 | 87.69 101 | 83.93 144 | 74.16 129 | 64.72 184 | 66.43 174 | 87.48 124 | 90.14 154 | 90.83 138 | 97.73 97 | 97.11 86 |
|
v1921920 | | | 83.30 169 | 82.09 175 | 84.70 151 | 86.59 189 | 92.67 160 | 89.82 145 | 82.23 158 | 78.32 175 | 65.76 182 | 64.64 185 | 62.35 191 | 86.78 131 | 90.34 152 | 90.02 162 | 97.02 131 | 96.31 110 |
|
IterMVS-SCA-FT | | | 85.44 141 | 86.71 126 | 83.97 163 | 90.59 139 | 90.84 190 | 89.73 146 | 78.34 180 | 84.07 143 | 66.40 179 | 77.27 122 | 78.66 121 | 83.06 160 | 91.20 136 | 90.10 161 | 95.72 166 | 94.78 141 |
|
tfpnnormal | | | 83.80 163 | 81.26 185 | 86.77 131 | 89.60 145 | 93.26 143 | 89.72 147 | 87.60 106 | 72.78 197 | 70.44 151 | 60.53 196 | 61.15 198 | 85.55 142 | 92.72 110 | 91.44 132 | 97.71 98 | 96.92 91 |
|
UniMVSNet (Re) | | | 86.22 128 | 85.46 144 | 87.11 126 | 88.34 158 | 94.42 112 | 89.65 148 | 87.10 108 | 84.39 136 | 74.61 127 | 70.41 157 | 68.10 164 | 85.10 147 | 91.17 138 | 91.79 126 | 97.84 89 | 97.94 52 |
|
v144192 | | | 83.48 167 | 82.23 172 | 84.94 148 | 86.65 186 | 92.84 154 | 89.63 149 | 82.48 154 | 77.87 178 | 67.36 173 | 65.33 180 | 63.50 187 | 86.51 132 | 89.72 163 | 89.99 164 | 97.03 130 | 96.35 107 |
|
dps | | | 85.00 145 | 83.21 165 | 87.08 127 | 90.73 136 | 92.55 163 | 89.34 150 | 75.29 190 | 84.94 129 | 87.01 62 | 79.27 111 | 67.69 167 | 87.27 126 | 84.22 195 | 83.56 195 | 92.83 191 | 90.25 183 |
|
PatchmatchNet |  | | 85.70 135 | 86.65 127 | 84.60 153 | 91.79 120 | 93.40 135 | 89.27 151 | 73.62 195 | 90.19 82 | 72.63 138 | 82.74 93 | 81.93 106 | 87.64 120 | 84.99 192 | 84.29 194 | 92.64 192 | 89.00 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
GA-MVS | | | 85.08 144 | 85.65 141 | 84.42 156 | 89.77 143 | 94.25 116 | 89.26 152 | 84.62 128 | 81.19 159 | 62.25 193 | 75.72 132 | 68.44 163 | 84.14 155 | 93.57 96 | 91.68 130 | 96.49 151 | 94.71 143 |
|
CR-MVSNet | | | 85.48 139 | 86.29 131 | 84.53 155 | 91.08 133 | 92.10 171 | 89.18 153 | 73.30 198 | 84.75 130 | 71.08 147 | 73.12 147 | 77.91 129 | 86.27 136 | 91.48 131 | 90.75 142 | 96.27 157 | 93.94 152 |
|
Patchmtry | | | | | | | 92.39 168 | 89.18 153 | 73.30 198 | | 71.08 147 | | | | | | | |
|
SCA | | | 86.25 126 | 87.52 122 | 84.77 150 | 91.59 123 | 93.90 121 | 89.11 155 | 73.25 200 | 90.38 78 | 72.84 136 | 83.26 86 | 83.79 90 | 88.49 116 | 86.07 189 | 85.56 187 | 93.33 186 | 89.67 187 |
|
v1240 | | | 82.88 175 | 81.66 179 | 84.29 157 | 86.46 190 | 92.52 166 | 89.06 156 | 81.82 163 | 77.16 182 | 65.09 186 | 64.17 187 | 61.50 196 | 86.36 133 | 90.12 156 | 90.13 156 | 96.95 136 | 96.04 119 |
|
pm-mvs1 | | | 84.55 150 | 83.46 157 | 85.82 137 | 88.16 161 | 93.39 136 | 89.05 157 | 85.36 123 | 74.03 196 | 72.43 139 | 65.08 181 | 71.11 151 | 82.30 166 | 93.48 99 | 91.70 128 | 97.64 105 | 95.43 133 |
|
ACMH | | 85.51 13 | 87.31 119 | 86.59 128 | 88.14 115 | 93.96 86 | 94.51 109 | 89.00 158 | 87.99 91 | 81.58 156 | 70.15 153 | 78.41 115 | 71.78 150 | 90.60 89 | 91.30 135 | 91.99 122 | 97.17 121 | 96.58 100 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 81.71 16 | 82.44 180 | 81.84 178 | 83.13 171 | 89.01 149 | 92.99 150 | 88.90 159 | 82.32 157 | 66.26 208 | 54.02 208 | 74.68 137 | 59.62 205 | 88.87 113 | 90.71 146 | 92.02 121 | 95.68 168 | 96.62 97 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TinyColmap | | | 84.04 159 | 82.01 176 | 86.42 135 | 90.87 134 | 91.84 178 | 88.89 160 | 84.07 136 | 82.11 155 | 69.89 155 | 71.08 152 | 60.81 199 | 89.04 108 | 90.52 150 | 89.19 174 | 95.76 163 | 88.50 193 |
|
tpmrst | | | 83.72 164 | 83.45 158 | 84.03 162 | 92.21 115 | 91.66 181 | 88.74 161 | 73.58 197 | 88.14 105 | 72.67 137 | 77.37 120 | 72.11 148 | 86.34 134 | 82.94 199 | 82.05 198 | 90.63 203 | 89.86 186 |
|
RPMNet | | | 84.82 148 | 85.90 138 | 83.56 167 | 91.10 131 | 92.10 171 | 88.73 162 | 71.11 203 | 84.75 130 | 68.79 162 | 73.56 140 | 77.62 132 | 85.33 145 | 90.08 158 | 89.43 172 | 96.32 156 | 93.77 156 |
|
tpm | | | 83.16 170 | 83.64 155 | 82.60 181 | 90.75 135 | 91.05 187 | 88.49 163 | 73.99 193 | 82.36 152 | 67.08 176 | 78.10 116 | 68.79 160 | 84.17 154 | 85.95 190 | 85.96 185 | 91.09 200 | 93.23 162 |
|
TAMVS | | | 84.94 147 | 84.95 146 | 84.93 149 | 88.82 150 | 93.18 145 | 88.44 164 | 81.28 168 | 77.16 182 | 73.76 132 | 75.43 134 | 76.57 139 | 82.04 167 | 90.59 149 | 90.79 139 | 95.22 179 | 90.94 177 |
|
ADS-MVSNet | | | 84.08 158 | 84.95 146 | 83.05 175 | 91.53 127 | 91.75 180 | 88.16 165 | 70.70 204 | 89.96 88 | 69.51 158 | 78.83 112 | 76.97 137 | 86.29 135 | 84.08 196 | 84.60 192 | 92.13 197 | 88.48 194 |
|
FMVSNet5 | | | 84.47 154 | 84.72 149 | 84.18 160 | 83.30 201 | 88.43 198 | 88.09 166 | 79.42 177 | 84.25 138 | 74.14 130 | 73.15 146 | 78.74 120 | 83.65 158 | 91.19 137 | 91.19 136 | 96.46 153 | 86.07 199 |
|
TransMVSNet (Re) | | | 82.67 177 | 80.93 188 | 84.69 152 | 88.71 152 | 91.50 184 | 87.90 167 | 87.15 107 | 71.54 202 | 68.24 167 | 63.69 188 | 64.67 186 | 78.51 183 | 91.65 130 | 90.73 144 | 97.64 105 | 92.73 168 |
|
FC-MVSNet-test | | | 86.15 129 | 89.10 100 | 82.71 179 | 89.83 142 | 93.18 145 | 87.88 168 | 84.69 126 | 86.54 118 | 62.18 194 | 82.39 97 | 83.31 92 | 74.18 194 | 92.52 116 | 91.86 125 | 97.50 110 | 93.88 154 |
|
CVMVSNet | | | 83.83 162 | 85.53 142 | 81.85 186 | 89.60 145 | 90.92 188 | 87.81 169 | 83.21 147 | 80.11 165 | 60.16 198 | 76.47 125 | 78.57 123 | 76.79 186 | 89.76 161 | 90.13 156 | 93.51 185 | 92.75 167 |
|
v148 | | | 83.61 165 | 82.10 174 | 85.37 142 | 87.34 174 | 92.94 152 | 87.48 170 | 85.72 120 | 78.92 172 | 73.87 131 | 65.71 178 | 64.69 185 | 81.78 171 | 87.82 178 | 89.35 173 | 96.01 160 | 95.26 136 |
|
test-LLR | | | 86.88 121 | 88.28 106 | 85.24 145 | 91.22 128 | 92.07 173 | 87.41 171 | 83.62 141 | 84.58 132 | 69.33 159 | 83.00 87 | 82.79 95 | 84.24 152 | 92.26 119 | 89.81 166 | 95.64 169 | 93.44 158 |
|
TESTMET0.1,1 | | | 86.11 131 | 88.28 106 | 83.59 166 | 87.80 165 | 92.07 173 | 87.41 171 | 77.12 185 | 84.58 132 | 69.33 159 | 83.00 87 | 82.79 95 | 84.24 152 | 92.26 119 | 89.81 166 | 95.64 169 | 93.44 158 |
|
MIMVSNet | | | 82.97 174 | 84.00 154 | 81.77 187 | 82.23 202 | 92.25 170 | 87.40 173 | 72.73 201 | 81.48 157 | 69.55 157 | 68.79 162 | 72.42 146 | 81.82 170 | 92.23 122 | 92.25 113 | 96.89 143 | 88.61 192 |
|
EG-PatchMatch MVS | | | 81.70 185 | 81.31 184 | 82.15 184 | 88.75 151 | 93.81 123 | 87.14 174 | 78.89 179 | 71.57 200 | 64.12 190 | 61.20 195 | 68.46 162 | 76.73 188 | 91.48 131 | 90.77 141 | 97.28 116 | 91.90 169 |
|
GG-mvs-BLEND | | | 62.84 204 | 90.21 89 | 30.91 213 | 0.57 221 | 94.45 111 | 86.99 175 | 0.34 219 | 88.71 100 | 0.98 221 | 81.55 104 | 91.58 57 | 0.86 218 | 92.66 112 | 91.43 133 | 95.73 165 | 91.11 176 |
|
test-mter | | | 86.09 132 | 88.38 105 | 83.43 169 | 87.89 164 | 92.61 161 | 86.89 176 | 77.11 186 | 84.30 137 | 68.62 165 | 82.57 95 | 82.45 100 | 84.34 151 | 92.40 117 | 90.11 160 | 95.74 164 | 94.21 150 |
|
pmmvs5 | | | 83.37 168 | 82.68 169 | 84.18 160 | 87.13 180 | 93.18 145 | 86.74 177 | 82.08 160 | 76.48 186 | 67.28 174 | 71.26 151 | 62.70 190 | 84.71 149 | 90.77 143 | 90.12 159 | 97.15 122 | 94.24 148 |
|
PEN-MVS | | | 82.49 179 | 81.58 180 | 83.56 167 | 86.93 183 | 92.05 175 | 86.71 178 | 83.84 138 | 76.94 184 | 64.68 187 | 67.24 166 | 60.11 202 | 81.17 174 | 87.78 179 | 90.70 145 | 98.02 78 | 96.21 113 |
|
v7n | | | 82.25 181 | 81.54 181 | 83.07 174 | 85.55 195 | 92.58 162 | 86.68 179 | 81.10 171 | 76.54 185 | 65.97 181 | 62.91 189 | 60.56 200 | 82.36 165 | 91.07 140 | 90.35 151 | 96.77 149 | 96.80 93 |
|
CP-MVSNet | | | 83.11 173 | 82.15 173 | 84.23 158 | 87.20 177 | 92.70 158 | 86.42 180 | 83.53 144 | 77.83 179 | 67.67 171 | 66.89 171 | 60.53 201 | 82.47 164 | 89.23 170 | 90.65 146 | 98.08 72 | 97.20 84 |
|
WR-MVS | | | 83.14 171 | 83.38 162 | 82.87 177 | 87.55 171 | 93.29 140 | 86.36 181 | 84.21 133 | 80.05 166 | 66.41 178 | 66.91 169 | 66.92 171 | 75.66 191 | 88.96 173 | 90.56 147 | 97.05 129 | 96.96 89 |
|
PS-CasMVS | | | 82.53 178 | 81.54 181 | 83.68 165 | 87.08 182 | 92.54 164 | 86.20 182 | 83.46 145 | 76.46 187 | 65.73 183 | 65.71 178 | 59.41 206 | 81.61 172 | 89.06 172 | 90.55 148 | 98.03 77 | 97.07 87 |
|
pmmvs6 | | | 80.90 186 | 78.77 192 | 83.38 170 | 85.84 192 | 91.61 182 | 86.01 183 | 82.54 153 | 64.17 209 | 70.43 152 | 54.14 206 | 67.06 170 | 80.73 176 | 90.50 151 | 89.17 175 | 94.74 184 | 94.75 142 |
|
DTE-MVSNet | | | 81.76 184 | 81.04 186 | 82.60 181 | 86.63 187 | 91.48 186 | 85.97 184 | 83.70 140 | 76.45 188 | 62.44 192 | 67.16 167 | 59.98 203 | 78.98 181 | 87.15 183 | 89.93 165 | 97.88 88 | 95.12 138 |
|
anonymousdsp | | | 84.51 151 | 85.85 140 | 82.95 176 | 86.30 191 | 93.51 133 | 85.77 185 | 80.38 173 | 78.25 177 | 63.42 191 | 73.51 142 | 72.20 147 | 84.64 150 | 93.21 107 | 92.16 117 | 97.19 120 | 98.14 43 |
|
WR-MVS_H | | | 82.86 176 | 82.66 170 | 83.10 173 | 87.44 173 | 93.33 138 | 85.71 186 | 83.20 148 | 77.36 181 | 68.20 168 | 66.37 172 | 65.23 180 | 76.05 190 | 89.35 166 | 90.13 156 | 97.99 81 | 96.89 92 |
|
test0.0.03 1 | | | 85.58 137 | 87.69 118 | 83.11 172 | 91.22 128 | 92.54 164 | 85.60 187 | 83.62 141 | 85.66 126 | 67.84 170 | 82.79 92 | 79.70 116 | 73.51 197 | 91.15 139 | 90.79 139 | 96.88 144 | 91.23 175 |
|
IB-MVS | | 85.10 14 | 87.98 112 | 87.97 113 | 87.99 117 | 94.55 76 | 96.86 80 | 84.52 188 | 88.21 89 | 86.48 121 | 88.54 50 | 74.41 138 | 77.74 131 | 74.10 195 | 89.65 165 | 92.85 104 | 98.06 75 | 97.80 61 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 80.43 187 | 80.94 187 | 79.84 190 | 84.82 198 | 90.87 189 | 84.23 189 | 73.80 194 | 80.28 164 | 64.33 188 | 70.05 159 | 68.77 161 | 79.67 177 | 84.83 193 | 83.50 196 | 92.17 195 | 88.25 196 |
|
thisisatest0515 | | | 85.70 135 | 87.00 125 | 84.19 159 | 88.16 161 | 93.67 129 | 84.20 190 | 84.14 135 | 83.39 148 | 72.91 135 | 76.79 123 | 74.75 143 | 78.82 182 | 92.57 115 | 91.26 135 | 96.94 137 | 96.56 102 |
|
CMPMVS |  | 61.19 17 | 79.86 190 | 77.46 198 | 82.66 180 | 91.54 126 | 91.82 179 | 83.25 191 | 81.57 165 | 70.51 204 | 68.64 164 | 59.89 198 | 66.77 172 | 79.63 178 | 84.00 197 | 84.30 193 | 91.34 199 | 84.89 202 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs-eth3d | | | 79.78 191 | 77.58 196 | 82.34 183 | 81.57 204 | 87.46 202 | 82.92 192 | 81.28 168 | 75.33 194 | 71.34 144 | 61.88 191 | 52.41 210 | 81.59 173 | 87.56 180 | 86.90 182 | 95.36 177 | 91.48 171 |
|
PM-MVS | | | 80.29 188 | 79.30 191 | 81.45 188 | 81.91 203 | 88.23 199 | 82.61 193 | 79.01 178 | 79.99 167 | 67.15 175 | 69.07 161 | 51.39 211 | 82.92 162 | 87.55 181 | 85.59 186 | 95.08 180 | 93.28 161 |
|
testgi | | | 81.94 182 | 84.09 153 | 79.43 192 | 89.53 147 | 90.83 191 | 82.49 194 | 81.75 164 | 80.59 160 | 59.46 200 | 82.82 91 | 65.75 176 | 67.97 199 | 90.10 157 | 89.52 171 | 95.39 175 | 89.03 188 |
|
SixPastTwentyTwo | | | 83.12 172 | 83.44 159 | 82.74 178 | 87.71 169 | 93.11 149 | 82.30 195 | 82.33 156 | 79.24 171 | 64.33 188 | 78.77 113 | 62.75 189 | 84.11 156 | 88.11 177 | 87.89 179 | 95.70 167 | 94.21 150 |
|
our_test_3 | | | | | | 86.93 183 | 89.77 194 | 81.61 196 | | | | | | | | | | |
|
Anonymous20231206 | | | 78.09 194 | 78.11 195 | 78.07 195 | 85.19 197 | 89.17 196 | 80.99 197 | 81.24 170 | 75.46 193 | 58.25 202 | 54.78 205 | 59.90 204 | 66.73 202 | 88.94 174 | 88.26 178 | 96.01 160 | 90.25 183 |
|
EU-MVSNet | | | 78.43 192 | 80.25 189 | 76.30 197 | 83.81 200 | 87.27 204 | 80.99 197 | 79.52 176 | 76.01 189 | 54.12 207 | 70.44 156 | 64.87 183 | 67.40 201 | 86.23 188 | 85.54 188 | 91.95 198 | 91.41 172 |
|
pmnet_mix02 | | | 80.14 189 | 80.21 190 | 80.06 189 | 86.61 188 | 89.66 195 | 80.40 199 | 82.20 159 | 82.29 154 | 61.35 195 | 71.52 150 | 66.67 173 | 76.75 187 | 82.55 200 | 80.18 203 | 93.05 189 | 88.62 191 |
|
FPMVS | | | 69.87 203 | 67.10 206 | 73.10 201 | 84.09 199 | 78.35 211 | 79.40 200 | 76.41 187 | 71.92 198 | 57.71 203 | 54.06 207 | 50.04 212 | 56.72 206 | 71.19 208 | 68.70 208 | 84.25 209 | 75.43 209 |
|
N_pmnet | | | 77.55 196 | 76.68 199 | 78.56 194 | 85.43 196 | 87.30 203 | 78.84 201 | 81.88 162 | 78.30 176 | 60.61 196 | 61.46 192 | 62.15 192 | 74.03 196 | 82.04 201 | 80.69 202 | 90.59 204 | 84.81 203 |
|
PatchT | | | 83.86 161 | 85.51 143 | 81.94 185 | 88.41 157 | 91.56 183 | 78.79 202 | 71.57 202 | 84.08 142 | 71.08 147 | 70.62 153 | 76.13 141 | 86.27 136 | 91.48 131 | 90.75 142 | 95.52 174 | 93.94 152 |
|
MVS-HIRNet | | | 78.16 193 | 77.57 197 | 78.83 193 | 85.83 193 | 87.76 200 | 76.67 203 | 70.22 205 | 75.82 192 | 67.39 172 | 55.61 201 | 70.52 153 | 81.96 169 | 86.67 187 | 85.06 191 | 90.93 202 | 81.58 205 |
|
test20.03 | | | 76.41 197 | 78.49 194 | 73.98 199 | 85.64 194 | 87.50 201 | 75.89 204 | 80.71 172 | 70.84 203 | 51.07 212 | 68.06 164 | 61.40 197 | 54.99 208 | 88.28 176 | 87.20 181 | 95.58 172 | 86.15 198 |
|
MIMVSNet1 | | | 73.19 199 | 73.70 200 | 72.60 202 | 65.42 214 | 86.69 205 | 75.56 205 | 79.65 175 | 67.87 207 | 55.30 204 | 45.24 210 | 56.41 208 | 63.79 204 | 86.98 184 | 87.66 180 | 95.85 162 | 85.04 201 |
|
MDA-MVSNet-bldmvs | | | 73.81 198 | 72.56 202 | 75.28 198 | 72.52 211 | 88.87 197 | 74.95 206 | 82.67 151 | 71.57 200 | 55.02 205 | 65.96 176 | 42.84 217 | 76.11 189 | 70.61 209 | 81.47 200 | 90.38 205 | 86.59 197 |
|
ambc | | | | 67.96 205 | | 73.69 209 | 79.79 210 | 73.82 207 | | 71.61 199 | 59.80 199 | 46.00 209 | 20.79 219 | 66.15 203 | 86.92 185 | 80.11 204 | 89.13 208 | 90.50 180 |
|
new_pmnet | | | 72.29 201 | 73.25 201 | 71.16 204 | 75.35 208 | 81.38 208 | 73.72 208 | 69.27 206 | 75.97 190 | 49.84 213 | 56.27 200 | 56.12 209 | 69.08 198 | 81.73 202 | 80.86 201 | 89.72 207 | 80.44 207 |
|
new-patchmatchnet | | | 72.32 200 | 71.09 203 | 73.74 200 | 81.17 205 | 84.86 207 | 72.21 209 | 77.48 184 | 68.32 206 | 54.89 206 | 55.10 203 | 49.31 214 | 63.68 205 | 79.30 205 | 76.46 206 | 93.03 190 | 84.32 204 |
|
pmmvs3 | | | 71.13 202 | 71.06 204 | 71.21 203 | 73.54 210 | 80.19 209 | 71.69 210 | 64.86 209 | 62.04 212 | 52.10 209 | 54.92 204 | 48.00 215 | 75.03 192 | 83.75 198 | 83.24 197 | 90.04 206 | 85.27 200 |
|
DeepMVS_CX |  | | | | | | 71.82 212 | 68.37 211 | 48.05 214 | 77.38 180 | 46.88 214 | 65.77 177 | 47.03 216 | 67.48 200 | 64.27 212 | | 76.89 214 | 76.72 208 |
|
gm-plane-assit | | | 77.65 195 | 78.50 193 | 76.66 196 | 87.96 163 | 85.43 206 | 64.70 212 | 74.50 191 | 64.15 210 | 51.26 211 | 61.32 194 | 58.17 207 | 84.11 156 | 95.16 59 | 93.83 76 | 97.45 112 | 91.41 172 |
|
test_method | | | 58.10 207 | 64.61 207 | 50.51 208 | 28.26 219 | 41.71 218 | 61.28 213 | 32.07 215 | 75.92 191 | 52.04 210 | 47.94 208 | 61.83 195 | 51.80 209 | 79.83 204 | 63.95 212 | 77.60 213 | 81.05 206 |
|
PMMVS2 | | | 53.68 208 | 55.72 210 | 51.30 207 | 58.84 215 | 67.02 213 | 54.23 214 | 60.97 212 | 47.50 214 | 19.42 218 | 34.81 212 | 31.97 218 | 30.88 214 | 65.84 211 | 69.99 207 | 83.47 210 | 72.92 211 |
|
PMVS |  | 56.77 18 | 61.27 205 | 58.64 208 | 64.35 205 | 75.66 207 | 54.60 215 | 53.62 215 | 74.23 192 | 53.69 213 | 58.37 201 | 44.27 211 | 49.38 213 | 44.16 212 | 69.51 210 | 65.35 210 | 80.07 211 | 73.66 210 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 58.52 206 | 56.17 209 | 61.27 206 | 67.14 213 | 58.06 214 | 52.16 216 | 68.40 208 | 69.00 205 | 45.02 215 | 22.79 213 | 20.57 220 | 55.11 207 | 76.27 206 | 79.33 205 | 79.80 212 | 67.16 212 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | | | 50.24 209 | 68.55 212 | 46.86 217 | 48.90 217 | 18.28 216 | 86.51 120 | 68.32 166 | 70.19 158 | 65.33 178 | 26.69 215 | 74.37 207 | 66.80 209 | 70.72 215 | |
|
E-PMN | | | 40.00 209 | 35.74 212 | 44.98 210 | 57.69 217 | 39.15 220 | 28.05 218 | 62.70 210 | 35.52 216 | 17.78 219 | 20.90 214 | 14.36 222 | 44.47 211 | 35.89 214 | 47.86 213 | 59.15 216 | 56.47 214 |
|
EMVS | | | 39.04 211 | 34.32 213 | 44.54 211 | 58.25 216 | 39.35 219 | 27.61 219 | 62.55 211 | 35.99 215 | 16.40 220 | 20.04 216 | 14.77 221 | 44.80 210 | 33.12 215 | 44.10 214 | 57.61 217 | 52.89 215 |
|
MVE |  | 39.81 19 | 39.52 210 | 41.58 211 | 37.11 212 | 33.93 218 | 49.06 216 | 26.45 220 | 54.22 213 | 29.46 217 | 24.15 217 | 20.77 215 | 10.60 223 | 34.42 213 | 51.12 213 | 65.27 211 | 49.49 218 | 64.81 213 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Patchmatch-RL test | | | | | | | | 18.47 221 | | | | | | | | | | |
|
testmvs | | | 4.35 212 | 6.54 214 | 1.79 214 | 0.60 220 | 1.82 221 | 3.06 222 | 0.95 217 | 7.22 218 | 0.88 222 | 12.38 217 | 1.25 224 | 3.87 217 | 6.09 216 | 5.58 215 | 1.40 219 | 11.42 217 |
|
test123 | | | 3.48 213 | 5.31 215 | 1.34 215 | 0.20 222 | 1.52 222 | 2.17 223 | 0.58 218 | 6.13 219 | 0.31 223 | 9.85 218 | 0.31 225 | 3.90 216 | 2.65 217 | 5.28 216 | 0.87 220 | 11.46 216 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 60.19 197 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
SR-MVS | | | | | | 98.93 19 | | | 96.00 17 | | | | 97.75 14 | | | | | |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 20 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 26 | | | | | |
|
mPP-MVS | | | | | | 98.76 24 | | | | | | | 95.49 39 | | | | | |
|
NP-MVS | | | | | | | | | | 91.63 65 | | | | | | | | |
|