This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14898.14 43
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 120
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12599.13 6
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13696.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 10099.08 9
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8597.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 96
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 15081.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 124
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 10098.30 4995.58 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10994.95 2977.35 13494.05 4994.49 8093.08 9897.15 12294.53 144
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11995.24 5894.97 5897.09 12798.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11396.61 8296.03 4888.44 8690.25 7985.92 7273.73 13984.89 8691.92 7494.17 8594.07 7397.68 10297.31 79
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12691.98 12397.78 9297.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11691.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10895.00 140
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 75
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9898.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9895.64 5592.12 4792.46 5779.65 11191.97 3782.68 9892.92 6693.47 10092.77 10597.74 9698.12 45
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10196.15 115
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11381.60 10282.77 9794.39 4494.28 8194.23 6797.14 12494.45 146
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 72
FMVSNet390.19 9290.06 9490.34 9088.69 15393.85 12294.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10693.29 10594.36 6698.20 6195.40 134
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10779.60 20696.19 9394.43 6486.56 11090.63 7280.75 10690.71 4477.78 13093.73 5691.36 13493.45 8798.15 6495.77 123
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 94
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10794.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11295.75 5293.95 7598.12 6896.37 106
thres100view90089.36 10287.61 11991.39 8193.90 9096.86 8094.35 6889.66 7385.87 12381.15 10176.46 12670.38 15491.17 8294.09 8693.43 8898.13 6796.16 114
CANet_DTU90.74 8592.93 5888.19 11494.36 7796.61 8294.34 6984.66 12790.66 7168.75 16390.41 4686.89 7489.78 9495.46 5694.87 5997.25 11795.62 126
thres20089.49 10087.72 11691.55 7793.95 8797.25 6794.34 6989.74 6985.66 12681.18 10076.12 13070.19 15791.80 7594.92 6493.51 8298.27 5396.40 105
tfpn200view989.55 9987.86 11491.53 7893.90 9097.26 6694.31 7189.74 6985.87 12381.15 10176.46 12670.38 15491.76 7794.92 6493.51 8298.28 5296.61 98
GBi-Net90.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
test190.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
FMVSNet289.61 9889.14 9990.16 9688.66 15493.65 13094.25 7285.44 12188.57 10284.96 8873.53 14183.82 8989.38 9994.23 8394.68 6398.31 4695.47 130
thres40089.40 10187.58 12191.53 7894.06 8497.21 6994.19 7589.83 6885.69 12581.08 10375.50 13369.76 15891.80 7594.79 7193.51 8298.20 6196.60 99
diffmvs91.37 7591.09 8391.70 7592.71 11296.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 11097.23 81
MSDG90.42 8888.25 10892.94 6296.67 5694.41 11393.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9192.60 11492.08 12097.44 11391.41 172
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 81
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10692.55 10997.76 9497.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view789.28 10587.47 12491.39 8194.12 8197.25 6793.94 8089.74 6985.62 12880.63 10775.24 13569.33 15991.66 7994.92 6493.23 9298.27 5396.72 95
baseline190.81 8290.29 8891.42 8093.67 9695.86 9993.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9595.05 6094.79 6198.80 793.82 155
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10396.57 101
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13493.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10893.62 8097.02 13198.05 48
gg-mvs-nofinetune81.83 18383.58 15679.80 19191.57 12496.54 8593.79 8468.80 20762.71 21143.01 21655.28 20285.06 8583.65 15896.13 4594.86 6097.98 8494.46 145
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11897.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268888.57 10887.82 11589.44 10295.46 6996.89 7993.74 8685.87 11589.63 9177.42 11961.38 19383.31 9288.80 11493.44 10193.16 9695.37 17696.95 90
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
Anonymous20240521188.00 11193.16 10196.38 9193.58 9089.34 7687.92 10765.04 18283.03 9492.07 7392.67 11193.33 8996.96 13597.63 64
baseline91.19 7791.89 7390.38 8992.76 10995.04 10593.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10292.00 12592.62 10896.46 15396.99 88
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17198.65 14
Effi-MVS+89.79 9689.83 9589.74 9992.98 10396.45 8993.48 9384.24 13287.62 10976.45 12281.76 10077.56 13393.48 5994.61 7593.59 8197.82 9097.22 83
Anonymous2023121189.82 9588.18 10991.74 7492.52 11496.09 9693.38 9489.30 7788.95 9885.90 7364.55 18684.39 8792.41 7192.24 12193.06 10096.93 14097.95 51
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10493.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10697.62 10795.50 129
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part187.53 11684.97 14590.52 8892.11 11793.31 13993.32 9685.79 11679.56 17087.38 6062.89 19078.60 12289.25 10390.65 14892.17 11695.24 17897.62 66
CHOSEN 280x42090.77 8492.14 6989.17 10593.86 9292.81 15793.16 9780.22 17490.21 8184.67 8989.89 4891.38 5990.57 9094.94 6392.11 11892.52 19393.65 157
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 70
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 11084.49 7890.63 6487.49 12397.07 1996.96 1598.07 7397.88 58
FMVSNet187.33 11886.00 13688.89 10687.13 18092.83 15693.08 10084.46 13181.35 15882.20 9566.33 17377.96 12888.96 10993.97 8994.16 6997.54 10995.38 135
GeoE89.29 10488.68 10389.99 9892.75 11196.03 9793.07 10183.79 13986.98 11381.34 9974.72 13678.92 11991.22 8193.31 10493.21 9497.78 9297.60 69
USDC86.73 12485.96 13787.63 12391.64 12293.97 12092.76 10284.58 12988.19 10470.67 15080.10 10867.86 16689.43 9791.81 12789.77 16896.69 15090.05 185
UA-Net90.81 8292.58 6188.74 10994.87 7597.44 6392.61 10388.22 8882.35 15378.93 11485.20 7595.61 3879.56 17996.52 3496.57 2398.23 5894.37 147
MS-PatchMatch87.63 11487.61 11987.65 12293.95 8794.09 11892.60 10481.52 16686.64 11676.41 12373.46 14385.94 8085.01 14892.23 12290.00 16396.43 15590.93 178
CDS-MVSNet88.34 11088.71 10287.90 11990.70 13894.54 10892.38 10586.02 11380.37 16279.42 11279.30 11083.43 9182.04 16793.39 10294.01 7496.86 14695.93 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test87.87 11386.42 13089.57 10095.56 6696.99 7692.37 10684.15 13486.64 11677.17 12057.65 19983.97 8891.08 8492.09 12492.44 11097.09 12795.16 137
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15392.30 10787.69 10190.44 7785.12 8691.68 3985.84 8290.69 8887.34 18286.07 18492.46 19490.37 182
Fast-Effi-MVS+88.56 10987.99 11289.22 10491.56 12595.21 10292.29 10882.69 15086.82 11477.73 11776.24 12973.39 14493.36 6194.22 8493.64 7997.65 10496.43 104
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10989.54 7488.53 10387.47 5879.82 10990.53 6585.47 14496.31 4295.16 5697.99 8198.56 19
TDRefinement84.97 14683.39 16186.81 13092.97 10594.12 11792.18 11087.77 10082.78 15171.31 14568.43 16368.07 16581.10 17589.70 16489.03 17695.55 17391.62 170
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 11087.90 9590.24 8083.63 9086.14 6790.52 6790.76 8794.82 6994.38 6598.18 6397.98 49
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11893.73 9596.94 7892.17 11287.91 9488.77 9976.12 12483.68 8490.80 6079.49 18096.34 4196.35 2898.21 6096.46 103
Vis-MVSNetpermissive89.36 10291.49 7986.88 12992.10 11897.60 6092.16 11385.89 11484.21 13975.20 12682.58 9487.13 7277.40 18495.90 5095.63 4798.51 2197.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10392.11 11488.85 7987.64 10883.38 9284.36 8078.41 12589.53 9694.69 7293.15 9798.15 6497.92 54
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11587.63 10490.74 6981.51 9786.81 6082.48 9989.23 10494.81 7093.03 10297.90 8697.33 78
EPNet_dtu88.32 11190.61 8685.64 14196.79 5592.27 16992.03 11690.31 6489.05 9765.44 18489.43 4985.90 8174.22 19392.76 10992.09 11995.02 18292.76 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS88.60 10788.45 10488.78 10892.02 11992.44 16792.00 11783.57 14386.52 11978.90 11578.61 11481.34 10889.12 10790.68 14793.18 9597.10 12696.35 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11887.63 10490.61 7481.42 9886.76 6182.26 10389.23 10494.86 6893.03 10297.90 8697.36 76
UGNet91.52 7493.41 5289.32 10394.13 8097.15 7091.83 11989.01 7890.62 7385.86 7486.83 5991.73 5677.40 18494.68 7394.43 6497.71 9898.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
COLMAP_ROBcopyleft84.39 1587.61 11586.03 13489.46 10195.54 6894.48 11091.77 12090.14 6587.16 11175.50 12573.41 14476.86 13887.33 12590.05 15989.76 16996.48 15290.46 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CostFormer86.78 12386.05 13387.62 12492.15 11693.20 14491.55 12175.83 18888.11 10685.29 8581.76 10076.22 14087.80 11884.45 19485.21 19093.12 18893.42 160
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 10090.94 12288.67 8389.80 8986.95 6485.90 6972.51 14592.46 6993.56 9792.18 11596.93 14092.89 165
Effi-MVS+-dtu87.51 11788.13 11086.77 13191.10 13194.90 10690.91 12382.67 15183.47 14671.55 14281.11 10577.04 13589.41 9892.65 11391.68 13095.00 18396.09 117
tpm cat184.13 15781.99 17786.63 13391.74 12191.50 18490.68 12475.69 18986.12 12285.44 8372.39 14870.72 15285.16 14680.89 20381.56 19991.07 20190.71 179
PMMVS89.88 9491.19 8188.35 11289.73 14491.97 17790.62 12581.92 16190.57 7580.58 10892.16 3586.85 7591.17 8292.31 11891.35 13496.11 15993.11 164
Fast-Effi-MVS+-dtu86.25 12687.70 11784.56 15490.37 14193.70 12790.54 12678.14 18183.50 14565.37 18581.59 10375.83 14286.09 14091.70 12991.70 12896.88 14495.84 122
NR-MVSNet85.46 14084.54 15086.52 13488.33 15993.78 12490.45 12787.87 9784.40 13471.61 14170.59 15462.09 19382.79 16391.75 12891.75 12798.10 7197.44 73
UniMVSNet_ETH3D84.57 14981.40 18388.28 11389.34 14894.38 11590.33 12886.50 11174.74 19577.52 11859.90 19762.04 19488.78 11588.82 17592.65 10797.22 11897.24 80
v1084.18 15683.17 16685.37 14287.34 17492.68 15990.32 12981.33 16779.93 16969.23 16166.33 17365.74 17787.03 12790.84 14290.38 15096.97 13396.29 111
v884.45 15583.30 16485.80 13887.53 17292.95 15190.31 13082.46 15580.46 16171.43 14366.99 16867.16 16986.14 13889.26 16990.22 15596.94 13796.06 118
TranMVSNet+NR-MVSNet85.57 13884.41 15186.92 12887.67 17093.34 13790.31 13088.43 8783.07 14970.11 15469.99 16065.28 17986.96 12889.73 16292.27 11298.06 7597.17 85
v2v48284.51 15183.05 16786.20 13687.25 17693.28 14190.22 13285.40 12279.94 16869.78 15667.74 16565.15 18187.57 12189.12 17190.55 14896.97 13395.60 127
v114484.03 16082.88 16885.37 14287.17 17893.15 14890.18 13383.31 14678.83 17367.85 16965.99 17564.99 18286.79 13090.75 14490.33 15296.90 14296.15 115
UniMVSNet_NR-MVSNet86.80 12285.86 13987.89 12088.17 16094.07 11990.15 13488.51 8584.20 14073.45 13372.38 14970.30 15688.95 11090.25 15392.21 11498.12 6897.62 66
DU-MVS86.12 13084.81 14887.66 12187.77 16793.78 12490.15 13487.87 9784.40 13473.45 13370.59 15464.82 18488.95 11090.14 15492.33 11197.76 9497.62 66
baseline288.97 10689.50 9688.36 11191.14 13095.30 10190.13 13685.17 12487.24 11080.80 10584.46 7978.44 12485.60 14193.54 9891.87 12497.31 11595.66 125
V4284.48 15383.36 16385.79 13987.14 17993.28 14190.03 13783.98 13780.30 16371.20 14666.90 17067.17 16885.55 14289.35 16690.27 15396.82 14796.27 112
IterMVS85.25 14386.49 12983.80 16490.42 14090.77 19390.02 13878.04 18284.10 14166.27 18077.28 12178.41 12583.01 16190.88 14189.72 17095.04 18194.24 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119283.56 16682.35 17184.98 14786.84 18592.84 15490.01 13982.70 14978.54 17466.48 17764.88 18362.91 18886.91 12990.72 14590.25 15496.94 13796.32 109
MDTV_nov1_ep1386.64 12587.50 12385.65 14090.73 13693.69 12889.96 14078.03 18389.48 9476.85 12184.92 7682.42 10186.14 13886.85 18686.15 18392.17 19588.97 190
pmmvs486.00 13384.28 15288.00 11687.80 16592.01 17689.94 14184.91 12586.79 11580.98 10473.41 14466.34 17588.12 11789.31 16888.90 17796.24 15893.20 163
EPMVS85.77 13486.24 13285.23 14692.76 10993.78 12489.91 14273.60 19690.19 8274.22 12882.18 9878.06 12787.55 12285.61 19185.38 18993.32 18788.48 194
ACMH+85.75 1287.19 12086.02 13588.56 11093.42 9894.41 11389.91 14287.66 10383.45 14772.25 14076.42 12871.99 14990.78 8689.86 16090.94 13797.32 11495.11 139
Baseline_NR-MVSNet85.28 14283.42 16087.46 12587.77 16790.80 19289.90 14487.69 10183.93 14474.16 12964.72 18466.43 17487.48 12490.14 15490.83 13897.73 9797.11 86
v192192083.30 16982.09 17584.70 15186.59 18992.67 16089.82 14582.23 15878.32 17565.76 18264.64 18562.35 19186.78 13190.34 15290.02 16297.02 13196.31 110
IterMVS-SCA-FT85.44 14186.71 12683.97 16390.59 13990.84 19089.73 14678.34 18084.07 14366.40 17977.27 12278.66 12183.06 16091.20 13690.10 16195.72 16694.78 141
tfpnnormal83.80 16381.26 18586.77 13189.60 14593.26 14389.72 14787.60 10672.78 19770.44 15160.53 19661.15 19885.55 14292.72 11091.44 13297.71 9896.92 91
UniMVSNet (Re)86.22 12885.46 14487.11 12688.34 15894.42 11289.65 14887.10 10884.39 13674.61 12770.41 15768.10 16485.10 14791.17 13891.79 12697.84 8997.94 52
v14419283.48 16782.23 17284.94 14886.65 18692.84 15489.63 14982.48 15477.87 17867.36 17365.33 18063.50 18786.51 13289.72 16389.99 16497.03 13096.35 107
dps85.00 14583.21 16587.08 12790.73 13692.55 16389.34 15075.29 19084.94 12987.01 6279.27 11167.69 16787.27 12684.22 19583.56 19592.83 19190.25 183
PatchmatchNetpermissive85.70 13586.65 12784.60 15391.79 12093.40 13589.27 15173.62 19590.19 8272.63 13882.74 9381.93 10687.64 12084.99 19284.29 19492.64 19289.00 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GA-MVS85.08 14485.65 14184.42 15689.77 14394.25 11689.26 15284.62 12881.19 15962.25 19375.72 13268.44 16384.14 15593.57 9691.68 13096.49 15194.71 143
CR-MVSNet85.48 13986.29 13184.53 15591.08 13392.10 17189.18 15373.30 19884.75 13071.08 14773.12 14777.91 12986.27 13691.48 13190.75 14296.27 15793.94 152
Patchmtry92.39 16889.18 15373.30 19871.08 147
SCA86.25 12687.52 12284.77 15091.59 12393.90 12189.11 15573.25 20090.38 7872.84 13683.26 8683.79 9088.49 11686.07 18985.56 18793.33 18689.67 187
v124082.88 17581.66 17984.29 15786.46 19092.52 16689.06 15681.82 16377.16 18265.09 18664.17 18761.50 19686.36 13390.12 15690.13 15696.95 13696.04 119
pm-mvs184.55 15083.46 15785.82 13788.16 16193.39 13689.05 15785.36 12374.03 19672.43 13965.08 18171.11 15182.30 16693.48 9991.70 12897.64 10595.43 133
ACMH85.51 1387.31 11986.59 12888.14 11593.96 8694.51 10989.00 15887.99 9181.58 15670.15 15378.41 11571.78 15090.60 8991.30 13591.99 12297.17 12196.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1682.44 18081.84 17883.13 17189.01 14992.99 15088.90 15982.32 15766.26 20854.02 20874.68 13759.62 20588.87 11390.71 14692.02 12195.68 16896.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap84.04 15982.01 17686.42 13590.87 13491.84 17888.89 16084.07 13682.11 15569.89 15571.08 15260.81 19989.04 10890.52 15089.19 17495.76 16388.50 193
tpmrst83.72 16483.45 15884.03 16292.21 11591.66 18188.74 16173.58 19788.14 10572.67 13777.37 12072.11 14886.34 13482.94 19982.05 19890.63 20389.86 186
RPMNet84.82 14885.90 13883.56 16791.10 13192.10 17188.73 16271.11 20384.75 13068.79 16273.56 14077.62 13285.33 14590.08 15889.43 17296.32 15693.77 156
tpm83.16 17083.64 15582.60 18190.75 13591.05 18788.49 16373.99 19382.36 15267.08 17678.10 11668.79 16084.17 15485.95 19085.96 18591.09 20093.23 162
TAMVS84.94 14784.95 14684.93 14988.82 15093.18 14588.44 16481.28 16877.16 18273.76 13275.43 13476.57 13982.04 16790.59 14990.79 13995.22 17990.94 177
ADS-MVSNet84.08 15884.95 14683.05 17591.53 12791.75 18088.16 16570.70 20489.96 8869.51 15878.83 11276.97 13786.29 13584.08 19684.60 19292.13 19788.48 194
FMVSNet584.47 15484.72 14984.18 16083.30 20188.43 19888.09 16679.42 17784.25 13874.14 13073.15 14678.74 12083.65 15891.19 13791.19 13696.46 15386.07 199
TransMVSNet (Re)82.67 17780.93 18884.69 15288.71 15291.50 18487.90 16787.15 10771.54 20268.24 16763.69 18864.67 18678.51 18391.65 13090.73 14497.64 10592.73 168
FC-MVSNet-test86.15 12989.10 10082.71 17989.83 14293.18 14587.88 16884.69 12686.54 11862.18 19482.39 9783.31 9274.18 19492.52 11691.86 12597.50 11093.88 154
CVMVSNet83.83 16285.53 14281.85 18689.60 14590.92 18887.81 16983.21 14780.11 16560.16 19876.47 12578.57 12376.79 18689.76 16190.13 15693.51 18592.75 167
v14883.61 16582.10 17485.37 14287.34 17492.94 15287.48 17085.72 12078.92 17273.87 13165.71 17864.69 18581.78 17187.82 17889.35 17396.01 16095.26 136
test-LLR86.88 12188.28 10685.24 14591.22 12892.07 17387.41 17183.62 14184.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
TESTMET0.1,186.11 13188.28 10683.59 16687.80 16592.07 17387.41 17177.12 18584.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
MIMVSNet82.97 17484.00 15481.77 18782.23 20292.25 17087.40 17372.73 20181.48 15769.55 15768.79 16272.42 14681.82 17092.23 12292.25 11396.89 14388.61 192
EG-PatchMatch MVS81.70 18581.31 18482.15 18488.75 15193.81 12387.14 17478.89 17971.57 20064.12 19061.20 19568.46 16276.73 18891.48 13190.77 14197.28 11691.90 169
GG-mvs-BLEND62.84 20490.21 8930.91 2130.57 22194.45 11186.99 1750.34 21988.71 1000.98 22181.55 10491.58 570.86 21892.66 11291.43 13395.73 16591.11 176
test-mter86.09 13288.38 10583.43 16987.89 16492.61 16186.89 17677.11 18684.30 13768.62 16582.57 9582.45 10084.34 15192.40 11790.11 16095.74 16494.21 150
pmmvs583.37 16882.68 16984.18 16087.13 18093.18 14586.74 17782.08 16076.48 18667.28 17471.26 15162.70 19084.71 14990.77 14390.12 15997.15 12294.24 148
PEN-MVS82.49 17981.58 18083.56 16786.93 18392.05 17586.71 17883.84 13876.94 18464.68 18767.24 16660.11 20281.17 17487.78 17990.70 14598.02 7896.21 113
v7n82.25 18181.54 18183.07 17485.55 19592.58 16286.68 17981.10 17176.54 18565.97 18162.91 18960.56 20082.36 16591.07 14090.35 15196.77 14996.80 93
CP-MVSNet83.11 17382.15 17384.23 15887.20 17792.70 15886.42 18083.53 14477.83 17967.67 17166.89 17160.53 20182.47 16489.23 17090.65 14698.08 7297.20 84
WR-MVS83.14 17183.38 16282.87 17787.55 17193.29 14086.36 18184.21 13380.05 16666.41 17866.91 16966.92 17175.66 19188.96 17390.56 14797.05 12996.96 89
PS-CasMVS82.53 17881.54 18183.68 16587.08 18292.54 16486.20 18283.46 14576.46 18765.73 18365.71 17859.41 20681.61 17289.06 17290.55 14898.03 7797.07 87
pmmvs680.90 18678.77 19283.38 17085.84 19291.61 18286.01 18382.54 15364.17 20970.43 15254.14 20667.06 17080.73 17690.50 15189.17 17594.74 18494.75 142
DTE-MVSNet81.76 18481.04 18682.60 18186.63 18791.48 18685.97 18483.70 14076.45 18862.44 19267.16 16759.98 20378.98 18187.15 18389.93 16597.88 8895.12 138
anonymousdsp84.51 15185.85 14082.95 17686.30 19193.51 13385.77 18580.38 17378.25 17763.42 19173.51 14272.20 14784.64 15093.21 10792.16 11797.19 12098.14 43
WR-MVS_H82.86 17682.66 17083.10 17387.44 17393.33 13885.71 18683.20 14877.36 18168.20 16866.37 17265.23 18076.05 19089.35 16690.13 15697.99 8196.89 92
test0.0.03 185.58 13787.69 11883.11 17291.22 12892.54 16485.60 18783.62 14185.66 12667.84 17082.79 9279.70 11673.51 19791.15 13990.79 13996.88 14491.23 175
IB-MVS85.10 1487.98 11287.97 11387.99 11794.55 7696.86 8084.52 18888.21 8986.48 12188.54 5074.41 13877.74 13174.10 19589.65 16592.85 10498.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep13_2view80.43 18780.94 18779.84 19084.82 19890.87 18984.23 18973.80 19480.28 16464.33 18870.05 15968.77 16179.67 17784.83 19383.50 19692.17 19588.25 196
thisisatest051585.70 13587.00 12584.19 15988.16 16193.67 12984.20 19084.14 13583.39 14872.91 13576.79 12374.75 14378.82 18292.57 11591.26 13596.94 13796.56 102
CMPMVSbinary61.19 1779.86 19077.46 19882.66 18091.54 12691.82 17983.25 19181.57 16570.51 20468.64 16459.89 19866.77 17279.63 17884.00 19784.30 19391.34 19984.89 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d79.78 19177.58 19682.34 18381.57 20487.46 20282.92 19281.28 16875.33 19471.34 14461.88 19152.41 21081.59 17387.56 18086.90 18295.36 17791.48 171
PM-MVS80.29 18879.30 19181.45 18881.91 20388.23 19982.61 19379.01 17879.99 16767.15 17569.07 16151.39 21182.92 16287.55 18185.59 18695.08 18093.28 161
testgi81.94 18284.09 15379.43 19289.53 14790.83 19182.49 19481.75 16480.59 16059.46 20082.82 9165.75 17667.97 19990.10 15789.52 17195.39 17589.03 188
SixPastTwentyTwo83.12 17283.44 15982.74 17887.71 16993.11 14982.30 19582.33 15679.24 17164.33 18878.77 11362.75 18984.11 15688.11 17787.89 17995.70 16794.21 150
our_test_386.93 18389.77 19481.61 196
Anonymous2023120678.09 19478.11 19578.07 19585.19 19789.17 19680.99 19781.24 17075.46 19358.25 20254.78 20559.90 20466.73 20288.94 17488.26 17896.01 16090.25 183
EU-MVSNet78.43 19280.25 18976.30 19783.81 20087.27 20480.99 19779.52 17676.01 18954.12 20770.44 15664.87 18367.40 20186.23 18885.54 18891.95 19891.41 172
pmnet_mix0280.14 18980.21 19080.06 18986.61 18889.66 19580.40 19982.20 15982.29 15461.35 19571.52 15066.67 17376.75 18782.55 20080.18 20393.05 18988.62 191
FPMVS69.87 20367.10 20673.10 20184.09 19978.35 21179.40 20076.41 18771.92 19857.71 20354.06 20750.04 21256.72 20671.19 20868.70 20884.25 20975.43 209
N_pmnet77.55 19676.68 19978.56 19485.43 19687.30 20378.84 20181.88 16278.30 17660.61 19661.46 19262.15 19274.03 19682.04 20180.69 20290.59 20484.81 203
PatchT83.86 16185.51 14381.94 18588.41 15791.56 18378.79 20271.57 20284.08 14271.08 14770.62 15376.13 14186.27 13691.48 13190.75 14295.52 17493.94 152
MVS-HIRNet78.16 19377.57 19778.83 19385.83 19387.76 20076.67 20370.22 20575.82 19267.39 17255.61 20170.52 15381.96 16986.67 18785.06 19190.93 20281.58 205
test20.0376.41 19778.49 19473.98 19985.64 19487.50 20175.89 20480.71 17270.84 20351.07 21268.06 16461.40 19754.99 20888.28 17687.20 18195.58 17286.15 198
MIMVSNet173.19 19973.70 20072.60 20265.42 21486.69 20575.56 20579.65 17567.87 20755.30 20445.24 21056.41 20863.79 20486.98 18487.66 18095.85 16285.04 201
MDA-MVSNet-bldmvs73.81 19872.56 20275.28 19872.52 21188.87 19774.95 20682.67 15171.57 20055.02 20565.96 17642.84 21776.11 18970.61 20981.47 20090.38 20586.59 197
ambc67.96 20573.69 20979.79 21073.82 20771.61 19959.80 19946.00 20920.79 21966.15 20386.92 18580.11 20489.13 20890.50 180
new_pmnet72.29 20173.25 20171.16 20475.35 20881.38 20873.72 20869.27 20675.97 19049.84 21356.27 20056.12 20969.08 19881.73 20280.86 20189.72 20780.44 207
new-patchmatchnet72.32 20071.09 20373.74 20081.17 20584.86 20772.21 20977.48 18468.32 20654.89 20655.10 20349.31 21463.68 20579.30 20576.46 20693.03 19084.32 204
pmmvs371.13 20271.06 20471.21 20373.54 21080.19 20971.69 21064.86 20962.04 21252.10 20954.92 20448.00 21575.03 19283.75 19883.24 19790.04 20685.27 200
DeepMVS_CXcopyleft71.82 21268.37 21148.05 21477.38 18046.88 21465.77 17747.03 21667.48 20064.27 21276.89 21476.72 208
gm-plane-assit77.65 19578.50 19376.66 19687.96 16385.43 20664.70 21274.50 19164.15 21051.26 21161.32 19458.17 20784.11 15695.16 5993.83 7697.45 11291.41 172
test_method58.10 20764.61 20750.51 20828.26 21941.71 21861.28 21332.07 21575.92 19152.04 21047.94 20861.83 19551.80 20979.83 20463.95 21277.60 21381.05 206
PMMVS253.68 20855.72 21051.30 20758.84 21567.02 21354.23 21460.97 21247.50 21419.42 21834.81 21231.97 21830.88 21465.84 21169.99 20783.47 21072.92 211
PMVScopyleft56.77 1861.27 20558.64 20864.35 20575.66 20754.60 21553.62 21574.23 19253.69 21358.37 20144.27 21149.38 21344.16 21269.51 21065.35 21080.07 21173.66 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft58.52 20656.17 20961.27 20667.14 21358.06 21452.16 21668.40 20869.00 20545.02 21522.79 21320.57 22055.11 20776.27 20679.33 20579.80 21267.16 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt50.24 20968.55 21246.86 21748.90 21718.28 21686.51 12068.32 16670.19 15865.33 17826.69 21574.37 20766.80 20970.72 215
E-PMN40.00 20935.74 21244.98 21057.69 21739.15 22028.05 21862.70 21035.52 21617.78 21920.90 21414.36 22244.47 21135.89 21447.86 21359.15 21656.47 214
EMVS39.04 21134.32 21344.54 21158.25 21639.35 21927.61 21962.55 21135.99 21516.40 22020.04 21614.77 22144.80 21033.12 21544.10 21457.61 21752.89 215
MVEpermissive39.81 1939.52 21041.58 21137.11 21233.93 21849.06 21626.45 22054.22 21329.46 21724.15 21720.77 21510.60 22334.42 21351.12 21365.27 21149.49 21864.81 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Patchmatch-RL test18.47 221
testmvs4.35 2126.54 2141.79 2140.60 2201.82 2213.06 2220.95 2177.22 2180.88 22212.38 2171.25 2243.87 2176.09 2165.58 2151.40 21911.42 217
test1233.48 2135.31 2151.34 2150.20 2221.52 2222.17 2230.58 2186.13 2190.31 2239.85 2180.31 2253.90 2162.65 2175.28 2160.87 22011.46 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def60.19 197
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65