This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.49 199.64 199.32 299.74 499.74 999.75 198.34 499.56 1198.72 799.57 799.97 899.53 1799.65 299.25 1599.84 1199.77 56
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2899.88 399.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2099.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2699.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
PGM-MVS98.86 3299.35 2798.29 3699.77 199.63 2999.67 595.63 4798.66 11995.27 5399.11 2999.82 4399.67 499.33 2499.19 2199.73 5799.74 72
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1399.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3599.56 1098.96 3799.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft99.07 2499.36 2498.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3899.94 2699.54 1699.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++99.41 499.64 199.14 899.69 899.75 799.64 898.33 699.67 498.10 1499.66 499.99 199.33 3299.62 598.86 4599.74 4999.90 6
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 799.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3799.34 2399.05 3099.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6499.35 1599.97 899.55 1499.63 398.66 5799.70 8399.74 72
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8099.64 898.05 3399.53 1496.58 3798.93 4199.92 2999.49 2099.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 499.63 1298.37 299.63 799.03 398.95 4099.98 299.60 799.60 799.05 3099.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2199.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
SED-MVS99.44 399.58 499.28 399.69 899.76 499.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3999.61 698.83 5099.70 8399.77 56
X-MVS98.93 3099.37 2398.42 3399.67 1499.62 3399.60 1698.15 2599.08 7293.81 8398.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
HPM-MVS++copyleft99.10 2299.30 3098.86 2599.69 899.48 6399.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 3099.25 2898.37 7599.64 11699.66 106
APD-MVScopyleft99.25 1399.38 2299.09 1299.69 899.58 4999.56 1898.32 898.85 9697.87 2198.91 4399.92 2999.30 3799.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4599.78 3399.74 72
LS3D97.79 6298.25 7397.26 6198.40 6099.63 2999.53 1998.63 199.25 4588.13 12996.93 10194.14 12299.19 4299.14 3799.23 1899.69 8699.42 147
MCST-MVS99.11 2199.27 3298.93 2399.67 1499.33 8999.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3298.35 7699.82 1599.71 90
CDPH-MVS98.41 4499.10 4197.61 5299.32 4499.36 8199.49 2296.15 4698.82 10391.82 11298.41 6499.66 5299.10 5198.93 5198.97 3699.75 4499.58 122
CSCG98.90 3198.93 5498.85 2699.75 399.72 1099.49 2296.58 4499.38 2498.05 1798.97 3897.87 7799.49 2097.78 12798.92 4099.78 3399.90 6
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8499.48 2497.96 3598.83 10193.86 8298.70 5599.86 3899.44 2699.08 4198.38 7399.61 12399.58 122
CNVR-MVS99.23 1599.28 3199.17 599.65 1999.34 8699.46 2598.21 2199.28 3898.47 998.89 4599.94 2699.50 1899.42 1898.61 6099.73 5799.52 135
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5799.95 1899.60 799.28 2698.20 8799.64 11699.69 96
DeepC-MVS97.63 498.33 4798.57 6398.04 4398.62 5899.65 2199.45 2698.15 2599.51 1792.80 10095.74 12996.44 9299.46 2499.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6599.44 2898.13 2899.65 592.30 10798.91 4399.95 1899.05 5499.42 1898.95 3899.58 14199.82 28
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7799.43 2998.21 2199.36 2997.66 2597.79 8199.90 3399.45 2599.17 3398.43 7099.77 3899.51 139
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3399.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9299.38 3198.16 2399.02 8198.55 898.71 5499.57 5799.58 1399.09 3997.84 10599.64 11699.36 153
CANet98.46 4399.16 3897.64 5198.48 5999.64 2699.35 3294.71 5999.53 1495.17 5597.63 8799.59 5598.38 8898.88 5798.99 3599.74 4999.86 19
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3399.06 2999.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft96.15 1297.78 6398.17 7997.32 5798.84 5299.45 6799.28 3495.43 5099.48 1991.80 11394.83 13998.36 7298.90 6498.09 10597.85 10499.68 9599.15 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030498.14 5399.03 4997.10 6498.05 6699.63 2999.27 3594.33 6999.63 793.06 9597.32 9099.05 6398.09 9598.82 6098.87 4499.81 2199.89 10
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9899.22 3696.70 4399.40 2397.77 2397.89 8099.80 4499.21 4099.02 4598.65 5899.57 14599.07 170
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2699.20 3797.75 3998.82 10395.24 5498.85 4699.87 3799.17 4698.74 6897.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSDG98.27 4998.29 7298.24 3899.20 4699.22 9999.20 3797.82 3799.37 2694.43 7095.90 12597.31 8399.12 4998.76 6598.35 7699.67 10399.14 167
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6399.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3298.79 6299.29 1399.75 4499.64 113
TAPA-MVS97.53 598.41 4498.84 5897.91 4699.08 4999.33 8999.15 4097.13 4299.34 3193.20 9297.75 8399.19 6199.20 4198.66 7198.13 9099.66 10899.48 143
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS98.31 4898.53 6598.05 4298.76 5698.77 12199.13 4198.07 3199.10 6994.27 7596.70 10699.84 4298.70 7497.90 12198.11 9299.40 17299.28 156
DELS-MVS98.19 5198.77 6097.52 5398.29 6299.71 1399.12 4294.58 6498.80 10695.38 5296.24 11998.24 7497.92 10299.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3498.89 5699.39 799.79 3099.58 122
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6799.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2898.87 5899.49 399.85 999.66 106
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6299.09 4598.07 3199.37 2698.47 997.79 8199.89 3599.50 1898.93 5199.45 499.61 12399.76 61
TSAR-MVS + COLMAP96.79 9596.55 13597.06 6697.70 7198.46 14599.07 4696.23 4599.38 2491.32 11698.80 4785.61 17498.69 7697.64 13796.92 13599.37 17499.06 171
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9799.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 3098.71 6998.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8699.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2698.78 6399.30 1199.81 2199.67 102
TSAR-MVS + GP.98.66 4099.36 2497.85 4797.16 8299.46 6599.03 4994.59 6399.09 7097.19 3199.73 399.95 1899.39 2998.95 4998.69 5699.75 4499.65 109
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 9999.03 4997.98 3499.34 3199.00 498.25 7099.71 5099.31 3598.80 6198.82 5299.48 16099.17 163
CS-MVS-test98.09 5599.32 2896.67 7995.48 13199.61 3899.01 5192.22 10099.32 3393.89 8199.30 1798.77 6699.49 2099.16 3599.16 2499.92 199.91 5
DROMVSNet98.22 5099.44 1796.79 7695.62 12099.56 5299.01 5192.22 10099.17 5494.51 6799.41 1399.62 5399.49 2099.16 3599.26 1499.91 299.94 1
OPM-MVS96.22 11395.85 15496.65 8197.75 6998.54 14099.00 5395.53 4896.88 18389.88 12395.95 12486.46 16798.07 9697.65 13696.63 14299.67 10398.83 180
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS97.50 698.18 5298.35 7197.99 4498.65 5799.36 8198.94 5498.14 2798.59 12193.62 8796.61 11099.76 4999.03 5697.77 12897.45 12399.57 14598.89 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5699.52 3399.42 7298.91 5594.61 6198.87 9392.24 10994.61 14099.05 6399.10 5198.64 7399.05 3099.74 4999.51 139
xxxxxxxxxxxxxcwj98.14 5397.38 10899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 2986.38 16898.92 6199.22 2998.84 4899.76 4099.56 128
SF-MVS99.18 1799.32 2899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
CANet_DTU96.64 10499.08 4293.81 13097.10 8399.42 7298.85 5890.01 14099.31 3479.98 18199.78 299.10 6297.42 11798.35 9298.05 9599.47 16299.53 132
RPSCF97.61 6998.16 8096.96 7598.10 6399.00 10798.84 5993.76 7999.45 2094.78 6299.39 1499.31 5998.53 8596.61 16395.43 17397.74 20297.93 196
LGP-MVS_train96.23 11296.89 12695.46 10997.32 7698.77 12198.81 6093.60 8498.58 12285.52 14799.08 3486.67 16497.83 10997.87 12397.51 11799.69 8699.73 76
abl_698.09 4199.33 4399.22 9998.79 6194.96 5598.52 12897.00 3497.30 9199.86 3898.76 7299.69 8699.41 148
CLD-MVS96.74 9896.51 13897.01 7296.71 9098.62 13498.73 6294.38 6898.94 8894.46 6997.33 8987.03 15898.07 9697.20 15396.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DI_MVS_plusplus_trai96.90 9397.49 10196.21 9395.61 12199.40 7698.72 6392.11 10299.14 6292.98 9993.08 16095.14 10898.13 9498.05 11297.91 10199.74 4999.73 76
gg-mvs-nofinetune90.85 19794.14 17687.02 20394.89 14399.25 9598.64 6476.29 21788.24 21857.50 22279.93 21395.45 10595.18 17698.77 6498.07 9499.62 12199.24 160
MVSTER97.16 8397.71 9596.52 8695.97 10898.48 14398.63 6592.10 10398.68 11895.96 4499.23 2191.79 13796.87 12898.76 6597.37 12899.57 14599.68 101
XVS97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
X-MVStestdata97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
MVS_111021_LR98.67 3899.41 2197.81 4899.37 3899.53 5698.51 6895.52 4999.27 4094.85 6099.56 899.69 5199.04 5599.36 2198.88 4399.60 13199.58 122
test250697.16 8396.68 13297.73 4996.95 8699.79 298.48 6994.42 6699.17 5497.74 2499.15 2580.93 20198.89 6799.03 4399.09 2699.88 399.62 117
ECVR-MVScopyleft97.27 8097.09 11997.48 5496.95 8699.79 298.48 6994.42 6699.17 5496.28 4093.54 15089.39 15098.89 6799.03 4399.09 2699.88 399.61 120
EPNet98.05 5698.86 5697.10 6499.02 5099.43 7198.47 7194.73 5899.05 7895.62 4798.93 4197.62 8195.48 16798.59 8198.55 6399.29 17999.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS97.98 5999.26 3396.48 8995.60 12399.67 1698.46 7293.16 9599.37 2692.22 11098.49 6098.95 6599.55 1499.27 2799.17 2399.88 399.92 2
HQP-MVS96.37 10996.58 13396.13 9597.31 7898.44 14798.45 7395.22 5198.86 9488.58 12798.33 6887.00 15997.67 11197.23 15196.56 14599.56 14899.62 117
test111197.09 8796.83 12997.39 5596.92 8899.81 198.44 7494.45 6599.17 5495.85 4592.10 16388.97 15198.78 7199.02 4599.11 2599.88 399.63 115
tfpn200view996.75 9796.51 13897.03 6896.31 9699.67 1698.41 7593.99 7597.35 17094.52 6595.90 12586.93 16099.14 4898.26 9597.80 10799.82 1599.70 92
thres600view796.69 10196.43 14597.00 7396.28 9999.67 1698.41 7593.99 7597.85 15994.29 7495.96 12385.91 17299.19 4298.26 9597.63 11299.82 1599.73 76
thres40096.71 10096.45 14397.02 7096.28 9999.63 2998.41 7594.00 7497.82 16094.42 7195.74 12986.26 16999.18 4498.20 9997.79 10899.81 2199.70 92
DCV-MVSNet97.56 7198.36 7096.62 8496.44 9398.36 15498.37 7891.73 11099.11 6894.80 6198.36 6796.28 9598.60 8198.12 10298.44 6899.76 4099.87 16
thres20096.76 9696.53 13697.03 6896.31 9699.67 1698.37 7893.99 7597.68 16594.49 6895.83 12886.77 16299.18 4498.26 9597.82 10699.82 1599.66 106
CHOSEN 280x42097.99 5899.24 3596.53 8598.34 6199.61 3898.36 8089.80 14699.27 4095.08 5799.81 198.58 6898.64 7899.02 4598.92 4098.93 18999.48 143
IS_MVSNet97.86 6198.86 5696.68 7896.02 10499.72 1098.35 8193.37 8998.75 11694.01 7696.88 10398.40 7198.48 8699.09 3999.42 599.83 1499.80 35
FMVSNet397.02 8998.12 8295.73 10693.59 16197.98 16498.34 8291.32 12098.80 10693.92 7897.21 9395.94 10297.63 11298.61 7698.62 5999.61 12399.65 109
baseline97.45 7598.70 6295.99 10095.89 10999.36 8198.29 8391.37 11999.21 4992.99 9898.40 6596.87 8997.96 10098.60 7998.60 6199.42 16999.86 19
ET-MVSNet_ETH3D96.17 11496.99 12495.21 11188.53 21198.54 14098.28 8492.61 9898.85 9693.60 8899.06 3690.39 14298.63 7995.98 18596.68 14099.61 12399.41 148
thres100view90096.72 9996.47 14197.00 7396.31 9699.52 5998.28 8494.01 7397.35 17094.52 6595.90 12586.93 16099.09 5398.07 10897.87 10399.81 2199.63 115
ETV-MVS98.05 5699.25 3496.65 8195.61 12199.61 3898.26 8693.52 8598.90 9293.74 8699.32 1699.20 6098.90 6499.21 3198.72 5599.87 899.79 42
canonicalmvs97.31 7897.81 9496.72 7796.20 10299.45 6798.21 8791.60 11399.22 4795.39 5198.48 6190.95 14099.16 4797.66 13499.05 3099.76 4099.90 6
MVS_Test97.30 7998.54 6495.87 10195.74 11499.28 9398.19 8891.40 11899.18 5391.59 11498.17 7296.18 9798.63 7998.61 7698.55 6399.66 10899.78 48
Anonymous2023121197.10 8697.06 12297.14 6396.32 9599.52 5998.16 8993.76 7998.84 10095.98 4390.92 16994.58 11798.90 6497.72 13298.10 9399.71 7499.75 68
EIA-MVS97.70 6798.78 5996.44 9095.72 11599.65 2198.14 9093.72 8298.30 13792.31 10698.63 5697.90 7698.97 5998.92 5398.30 8299.78 3399.80 35
MVS_111021_HR98.59 4299.36 2497.68 5099.42 3699.61 3898.14 9094.81 5699.31 3495.00 5899.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
GBi-Net96.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
test196.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
FMVSNet296.64 10497.50 10095.63 10893.81 15597.98 16498.09 9290.87 12698.99 8493.48 8993.17 15795.25 10797.89 10398.63 7498.80 5399.68 9599.67 102
Anonymous20240521197.40 10796.45 9299.54 5598.08 9593.79 7898.24 14193.55 14994.41 11898.88 6998.04 11398.24 8599.75 4499.76 61
diffmvs96.83 9497.33 11196.25 9295.76 11399.34 8698.06 9693.22 9299.43 2292.30 10796.90 10289.83 14898.55 8398.00 11698.14 8999.64 11699.70 92
GeoE95.98 12097.24 11794.51 11995.02 14099.38 7798.02 9787.86 16998.37 13487.86 13392.99 16293.54 12798.56 8298.61 7697.92 9999.73 5799.85 22
Effi-MVS+-dtu95.74 12398.04 8593.06 14893.92 15199.16 10297.90 9888.16 16699.07 7782.02 16998.02 7794.32 12096.74 13298.53 8497.56 11599.61 12399.62 117
USDC94.26 15394.83 16593.59 13696.02 10498.44 14797.84 9988.65 15998.86 9482.73 16694.02 14580.56 20296.76 13197.28 15096.15 15899.55 15098.50 184
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10799.62 3397.82 10093.22 9298.82 10391.40 11596.94 10098.56 6995.70 15999.14 3799.41 699.79 3099.75 68
PMMVS97.52 7298.39 6996.51 8795.82 11298.73 12897.80 10193.05 9798.76 11394.39 7399.07 3597.03 8898.55 8398.31 9497.61 11399.43 16799.21 162
ACMP96.25 1096.62 10696.72 13096.50 8896.96 8598.75 12597.80 10194.30 7098.85 9693.12 9498.78 4986.61 16597.23 12197.73 13196.61 14399.62 12199.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.04 17393.57 19092.41 15396.58 9198.77 12197.78 10391.96 10798.12 14580.84 17489.13 18379.87 20987.78 20996.44 16894.50 19599.54 15498.15 191
casdiffmvs96.93 9297.43 10696.34 9195.70 11699.50 6197.75 10493.22 9298.98 8592.64 10194.97 13691.71 13898.93 6098.62 7598.52 6699.82 1599.72 87
baseline197.58 7098.05 8497.02 7096.21 10199.45 6797.71 10593.71 8398.47 13095.75 4698.78 4993.20 13298.91 6398.52 8598.44 6899.81 2199.53 132
CHOSEN 1792x268896.41 10896.99 12495.74 10598.01 6799.72 1097.70 10690.78 13099.13 6790.03 12287.35 19795.36 10698.33 8998.59 8198.91 4299.59 13799.87 16
MAR-MVS97.71 6698.04 8597.32 5799.35 4298.91 11497.65 10791.68 11198.00 14997.01 3397.72 8594.83 11298.85 7098.44 9098.86 4599.41 17099.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_part195.56 12695.38 15895.78 10296.07 10398.16 16197.57 10890.78 13097.43 16993.04 9689.12 18489.41 14997.93 10196.38 17197.38 12799.29 17999.78 48
UA-Net97.13 8599.14 3994.78 11597.21 8099.38 7797.56 10992.04 10498.48 12988.03 13098.39 6699.91 3294.03 19099.33 2499.23 1899.81 2199.25 159
EPP-MVSNet97.75 6598.71 6196.63 8395.68 11899.56 5297.51 11093.10 9699.22 4794.99 5997.18 9697.30 8498.65 7798.83 5998.93 3999.84 1199.92 2
TinyColmap94.00 15794.35 17493.60 13595.89 10998.26 15697.49 11188.82 15698.56 12483.21 16091.28 16880.48 20496.68 13497.34 14796.26 15499.53 15698.24 190
CDS-MVSNet96.59 10798.02 8794.92 11494.45 14898.96 11297.46 11291.75 10997.86 15890.07 12196.02 12297.25 8596.21 14698.04 11398.38 7399.60 13199.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS94.81 14297.71 9591.42 17394.83 14597.63 18297.38 11385.08 18698.93 8975.67 19894.02 14597.64 7996.66 13698.45 8897.60 11498.90 19099.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu96.30 11198.53 6593.70 13498.97 5198.24 15897.36 11494.23 7198.85 9679.18 18599.19 2298.47 7094.09 18997.89 12298.21 8698.39 19598.85 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu95.38 13198.20 7892.09 15993.91 15298.87 11597.35 11585.01 18899.08 7281.09 17398.10 7396.36 9395.62 16298.43 9197.03 13299.55 15099.50 141
PVSNet_BlendedMVS97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
MS-PatchMatch95.99 11897.26 11694.51 11997.46 7398.76 12497.27 11886.97 17499.09 7089.83 12493.51 15297.78 7896.18 14897.53 14195.71 17099.35 17598.41 186
Vis-MVSNetpermissive96.16 11598.22 7793.75 13195.33 13599.70 1597.27 11890.85 12798.30 13785.51 14895.72 13196.45 9093.69 19698.70 7099.00 3499.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS-SCA-FT94.89 14097.87 9291.42 17394.86 14497.70 17597.24 12084.88 18998.93 8975.74 19794.26 14498.25 7396.69 13398.52 8597.68 11199.10 18799.73 76
Effi-MVS+95.81 12197.31 11594.06 12695.09 13899.35 8497.24 12088.22 16498.54 12585.38 14998.52 5888.68 15298.70 7498.32 9397.93 9899.74 4999.84 23
Fast-Effi-MVS+95.38 13196.52 13794.05 12794.15 15099.14 10497.24 12086.79 17598.53 12687.62 13594.51 14187.06 15798.76 7298.60 7998.04 9699.72 6499.77 56
MDTV_nov1_ep1395.57 12597.48 10293.35 14595.43 13298.97 11197.19 12383.72 19598.92 9187.91 13297.75 8396.12 9997.88 10696.84 16295.64 17197.96 20098.10 192
CR-MVSNet94.57 15097.34 11091.33 17694.90 14298.59 13797.15 12479.14 20797.98 15080.42 17796.59 11393.50 12996.85 12998.10 10397.49 11999.50 15999.15 164
Patchmtry98.59 13797.15 12479.14 20780.42 177
IterMVS-LS96.12 11697.48 10294.53 11895.19 13797.56 18997.15 12489.19 15399.08 7288.23 12894.97 13694.73 11497.84 10897.86 12498.26 8499.60 13199.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet195.77 12296.41 14695.03 11293.42 16297.86 17197.11 12789.89 14398.53 12692.00 11189.17 18193.23 13198.15 9398.07 10898.34 7899.61 12399.69 96
UGNet97.66 6899.07 4496.01 9997.19 8199.65 2197.09 12893.39 8799.35 3094.40 7298.79 4899.59 5594.24 18798.04 11398.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LTVRE_ROB93.20 1692.84 17594.92 16290.43 18992.83 16498.63 13397.08 12987.87 16897.91 15568.42 21593.54 15079.46 21196.62 13797.55 14097.40 12699.74 4999.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchMatch-RL97.77 6498.25 7397.21 6299.11 4899.25 9597.06 13094.09 7298.72 11795.14 5698.47 6296.29 9498.43 8798.65 7297.44 12499.45 16498.94 173
RPMNet94.66 14497.16 11891.75 16994.98 14198.59 13797.00 13178.37 21397.98 15083.78 15496.27 11894.09 12596.91 12797.36 14696.73 13899.48 16099.09 169
thisisatest053097.23 8198.25 7396.05 9695.60 12399.59 4696.96 13293.23 9099.17 5492.60 10398.75 5296.19 9698.17 9098.19 10096.10 15999.72 6499.77 56
tttt051797.23 8198.24 7696.04 9795.60 12399.60 4496.94 13393.23 9099.15 5992.56 10498.74 5396.12 9998.17 9098.21 9896.10 15999.73 5799.78 48
ACMH+95.51 1395.40 13096.00 14894.70 11696.33 9498.79 11896.79 13491.32 12098.77 11287.18 13795.60 13385.46 17596.97 12597.15 15496.59 14499.59 13799.65 109
EPMVS95.05 13696.86 12892.94 15095.84 11198.96 11296.68 13579.87 20299.05 7890.15 12097.12 9795.99 10197.49 11595.17 19494.75 19297.59 20696.96 206
TAMVS95.53 12796.50 14094.39 12293.86 15499.03 10696.67 13689.55 15097.33 17290.64 11993.02 16191.58 13996.21 14697.72 13297.43 12599.43 16799.36 153
tpm cat194.06 15594.90 16393.06 14895.42 13498.52 14296.64 13780.67 19897.82 16092.63 10293.39 15495.00 11096.06 15291.36 21291.58 21196.98 21296.66 209
FC-MVSNet-test96.07 11797.94 9093.89 12893.60 16098.67 13196.62 13890.30 13998.76 11388.62 12695.57 13497.63 8094.48 18397.97 11797.48 12199.71 7499.52 135
dps94.63 14695.31 16193.84 12995.53 12798.71 12996.54 13980.12 20197.81 16297.21 3096.98 9892.37 13396.34 14592.46 20991.77 20997.26 21097.08 204
HyFIR lowres test95.99 11896.56 13495.32 11097.99 6899.65 2196.54 13988.86 15598.44 13189.77 12584.14 20797.05 8799.03 5698.55 8398.19 8899.73 5799.86 19
FC-MVSNet-train97.04 8897.91 9196.03 9896.00 10698.41 15096.53 14193.42 8699.04 8093.02 9798.03 7694.32 12097.47 11697.93 11997.77 10999.75 4499.88 14
ACMM96.26 996.67 10396.69 13196.66 8097.29 7998.46 14596.48 14295.09 5299.21 4993.19 9398.78 4986.73 16398.17 9097.84 12596.32 15199.74 4999.49 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.36 11097.82 9394.65 11794.60 14799.09 10596.45 14389.63 14898.36 13591.29 11797.60 8894.13 12396.37 14398.45 8897.70 11099.54 15499.41 148
test-LLR95.50 12897.32 11293.37 14395.49 12998.74 12696.44 14490.82 12898.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
TESTMET0.1,194.95 13897.32 11292.20 15792.62 16698.74 12696.44 14486.67 17798.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
DeepPCF-MVS97.74 398.34 4699.46 1397.04 6798.82 5399.33 8996.28 14697.47 4099.58 994.70 6398.99 3799.85 4197.24 12099.55 1199.34 997.73 20499.56 128
SCA94.95 13897.44 10592.04 16095.55 12699.16 10296.26 14779.30 20699.02 8185.73 14698.18 7197.13 8697.69 11096.03 18394.91 18797.69 20597.65 198
CostFormer94.25 15494.88 16493.51 14095.43 13298.34 15596.21 14880.64 19997.94 15494.01 7698.30 6986.20 17197.52 11392.71 20792.69 20397.23 21198.02 194
test-mter94.86 14197.32 11292.00 16292.41 17198.82 11796.18 14986.35 18198.05 14782.28 16796.48 11594.39 11995.46 16998.17 10196.20 15599.32 17799.13 168
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7299.76 496.02 15093.75 8199.26 4393.38 9193.73 14899.35 5896.47 14298.96 4898.46 6799.77 3899.90 6
ADS-MVSNet94.65 14597.04 12391.88 16895.68 11898.99 10995.89 15179.03 20999.15 5985.81 14596.96 9998.21 7597.10 12294.48 20294.24 19697.74 20297.21 202
test0.0.03 196.69 10198.12 8295.01 11395.49 12998.99 10995.86 15290.82 12898.38 13392.54 10596.66 10897.33 8295.75 15797.75 13098.34 7899.60 13199.40 151
PatchmatchNetpermissive94.70 14397.08 12191.92 16595.53 12798.85 11695.77 15379.54 20498.95 8685.98 14398.52 5896.45 9097.39 11895.32 19194.09 19797.32 20897.38 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 15694.51 17193.44 14192.56 16897.77 17295.67 15491.57 11497.17 17685.84 14493.13 15880.53 20395.29 17397.01 15896.17 15699.69 8699.75 68
FMVSNet595.42 12996.47 14194.20 12392.26 17495.99 21095.66 15587.15 17397.87 15793.46 9096.68 10793.79 12697.52 11397.10 15797.21 13099.11 18696.62 210
tpmrst93.86 16295.88 15291.50 17295.69 11798.62 13495.64 15679.41 20598.80 10683.76 15695.63 13296.13 9897.25 11992.92 20692.31 20597.27 20996.74 207
TranMVSNet+NR-MVSNet93.67 16494.14 17693.13 14791.28 20297.58 18795.60 15791.97 10697.06 17984.05 15090.64 17482.22 19596.17 14994.94 19996.78 13799.69 8699.78 48
Baseline_NR-MVSNet93.87 16193.98 18393.75 13191.66 18897.02 20295.53 15891.52 11797.16 17887.77 13487.93 19583.69 18496.35 14495.10 19697.23 12999.68 9599.73 76
CVMVSNet95.33 13397.09 11993.27 14695.23 13698.39 15295.49 15992.58 9997.71 16483.00 16394.44 14393.28 13093.92 19397.79 12698.54 6599.41 17099.45 145
tfpnnormal93.85 16394.12 17893.54 13993.22 16398.24 15895.45 16091.96 10794.61 20983.91 15290.74 17181.75 19897.04 12397.49 14296.16 15799.68 9599.84 23
pmmvs495.09 13595.90 15194.14 12492.29 17397.70 17595.45 16090.31 13798.60 12090.70 11893.25 15589.90 14696.67 13597.13 15595.42 17499.44 16699.28 156
GA-MVS93.93 16096.31 14791.16 18093.61 15998.79 11895.39 16290.69 13498.25 14073.28 20696.15 12088.42 15394.39 18597.76 12995.35 17599.58 14199.45 145
testgi95.67 12497.48 10293.56 13795.07 13999.00 10795.33 16388.47 16198.80 10686.90 13997.30 9192.33 13495.97 15497.66 13497.91 10199.60 13199.38 152
anonymousdsp93.12 17195.86 15389.93 19491.09 20398.25 15795.12 16485.08 18697.44 16873.30 20590.89 17090.78 14195.25 17597.91 12095.96 16599.71 7499.82 28
UniMVSNet_NR-MVSNet94.59 14895.47 15793.55 13891.85 18397.89 17095.03 16592.00 10597.33 17286.12 14193.19 15687.29 15696.60 13896.12 18096.70 13999.72 6499.80 35
DU-MVS93.98 15894.44 17393.44 14191.66 18897.77 17295.03 16591.57 11497.17 17686.12 14193.13 15881.13 20096.60 13895.10 19697.01 13499.67 10399.80 35
UniMVSNet (Re)94.58 14995.34 15993.71 13392.25 17598.08 16394.97 16791.29 12497.03 18187.94 13193.97 14786.25 17096.07 15196.27 17795.97 16499.72 6499.79 42
TransMVSNet (Re)93.45 16694.08 17992.72 15292.83 16497.62 18594.94 16891.54 11695.65 20683.06 16288.93 18583.53 18694.25 18697.41 14497.03 13299.67 10398.40 189
V4293.05 17293.90 18692.04 16091.91 18097.66 17994.91 16989.91 14296.85 18580.58 17689.66 17883.43 18895.37 17195.03 19894.90 18899.59 13799.78 48
GG-mvs-BLEND69.11 21498.13 8135.26 2193.49 22898.20 16094.89 1702.38 22598.42 1325.82 22996.37 11798.60 675.97 22498.75 6797.98 9799.01 18898.61 181
EG-PatchMatch MVS92.45 18493.92 18590.72 18692.56 16898.43 14994.88 17184.54 19197.18 17579.55 18386.12 20483.23 18993.15 20097.22 15296.00 16199.67 10399.27 158
pm-mvs194.27 15295.57 15692.75 15192.58 16798.13 16294.87 17290.71 13396.70 18983.78 15489.94 17789.85 14794.96 18097.58 13997.07 13199.61 12399.72 87
v1092.79 17894.06 18091.31 17791.78 18597.29 20194.87 17286.10 18296.97 18279.82 18288.16 19184.56 18295.63 16196.33 17595.31 17699.65 11299.80 35
UniMVSNet_ETH3D93.15 17092.33 20394.11 12593.91 15298.61 13694.81 17490.98 12597.06 17987.51 13682.27 21176.33 21797.87 10794.79 20097.47 12299.56 14899.81 33
v892.87 17493.87 18791.72 17192.05 17797.50 19294.79 17588.20 16596.85 18580.11 18090.01 17682.86 19295.48 16795.15 19594.90 18899.66 10899.80 35
v114492.81 17694.03 18191.40 17591.68 18797.60 18694.73 17688.40 16296.71 18878.48 18888.14 19284.46 18395.45 17096.31 17695.22 17999.65 11299.76 61
ACMH95.42 1495.27 13495.96 15094.45 12196.83 8998.78 12094.72 17791.67 11298.95 8686.82 14096.42 11683.67 18597.00 12497.48 14396.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192092.36 19193.57 19090.94 18391.39 19897.39 19794.70 17887.63 17196.60 19176.63 19486.98 20082.89 19195.75 15796.26 17895.14 18299.55 15099.73 76
MIMVSNet94.49 15197.59 9990.87 18591.74 18698.70 13094.68 17978.73 21197.98 15083.71 15797.71 8694.81 11396.96 12697.97 11797.92 9999.40 17298.04 193
PEN-MVS92.72 18093.20 19692.15 15891.29 20097.31 19994.67 18089.81 14496.19 19681.83 17088.58 18879.06 21295.61 16395.21 19396.27 15299.72 6499.82 28
WR-MVS93.43 16894.48 17292.21 15691.52 19597.69 17794.66 18189.98 14196.86 18483.43 15890.12 17585.03 17993.94 19296.02 18495.82 16799.71 7499.82 28
v119292.43 18793.61 18991.05 18191.53 19497.43 19594.61 18287.99 16796.60 19176.72 19387.11 19982.74 19395.85 15696.35 17495.30 17799.60 13199.74 72
WR-MVS_H93.54 16594.67 16992.22 15591.95 17997.91 16994.58 18388.75 15796.64 19083.88 15390.66 17385.13 17894.40 18496.54 16795.91 16699.73 5799.89 10
v2v48292.77 17993.52 19391.90 16791.59 19397.63 18294.57 18490.31 13796.80 18779.22 18488.74 18781.55 19996.04 15395.26 19294.97 18699.66 10899.69 96
DTE-MVSNet92.42 18892.85 19991.91 16690.87 20596.97 20394.53 18589.81 14495.86 20581.59 17188.83 18677.88 21595.01 17994.34 20396.35 15099.64 11699.73 76
CP-MVSNet93.25 16994.00 18292.38 15491.65 19097.56 18994.38 18689.20 15296.05 20083.16 16189.51 17981.97 19696.16 15096.43 16996.56 14599.71 7499.89 10
v14419292.38 18993.55 19291.00 18291.44 19697.47 19494.27 18787.41 17296.52 19378.03 18987.50 19682.65 19495.32 17295.82 18895.15 18199.55 15099.78 48
v124091.99 19493.33 19590.44 18891.29 20097.30 20094.25 18886.79 17596.43 19475.49 20086.34 20381.85 19795.29 17396.42 17095.22 17999.52 15799.73 76
tpm92.38 18994.79 16689.56 19694.30 14997.50 19294.24 18978.97 21097.72 16374.93 20297.97 7882.91 19096.60 13893.65 20594.81 19198.33 19698.98 172
PS-CasMVS92.72 18093.36 19491.98 16391.62 19297.52 19194.13 19088.98 15495.94 20381.51 17287.35 19779.95 20895.91 15596.37 17296.49 14799.70 8399.89 10
v7n91.61 19692.95 19790.04 19190.56 20697.69 17793.74 19185.59 18495.89 20476.95 19286.60 20278.60 21493.76 19597.01 15894.99 18599.65 11299.87 16
pmmvs691.90 19592.53 20291.17 17991.81 18497.63 18293.23 19288.37 16393.43 21480.61 17577.32 21587.47 15594.12 18896.58 16595.72 16998.88 19199.53 132
pmmvs592.71 18294.27 17590.90 18491.42 19797.74 17493.23 19286.66 17895.99 20278.96 18791.45 16683.44 18795.55 16497.30 14995.05 18499.58 14198.93 174
CMPMVSbinary70.31 1890.74 19891.06 20690.36 19097.32 7697.43 19592.97 19487.82 17093.50 21375.34 20183.27 20984.90 18092.19 20492.64 20891.21 21296.50 21594.46 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SixPastTwentyTwo93.44 16795.32 16091.24 17892.11 17698.40 15192.77 19588.64 16098.09 14677.83 19093.51 15285.74 17396.52 14196.91 16094.89 19099.59 13799.73 76
v14892.36 19192.88 19891.75 16991.63 19197.66 17992.64 19690.55 13596.09 19883.34 15988.19 19080.00 20692.74 20193.98 20494.58 19499.58 14199.69 96
EU-MVSNet92.80 17794.76 16790.51 18791.88 18196.74 20792.48 19788.69 15896.21 19579.00 18691.51 16587.82 15491.83 20595.87 18796.27 15299.21 18298.92 177
MDTV_nov1_ep13_2view92.44 18595.66 15588.68 19891.05 20497.92 16892.17 19879.64 20398.83 10176.20 19591.45 16693.51 12895.04 17895.68 18993.70 20097.96 20098.53 183
thisisatest051594.61 14796.89 12691.95 16492.00 17898.47 14492.01 19990.73 13298.18 14283.96 15194.51 14195.13 10993.38 19797.38 14594.74 19399.61 12399.79 42
pmmvs-eth3d89.81 20289.65 20990.00 19286.94 21395.38 21291.08 20086.39 18094.57 21082.27 16883.03 21064.94 22093.96 19196.57 16693.82 19999.35 17599.24 160
ambc80.99 21480.04 22090.84 21790.91 20196.09 19874.18 20362.81 21830.59 22982.44 21496.25 17991.77 20995.91 21798.56 182
PM-MVS89.55 20390.30 20888.67 19987.06 21295.60 21190.88 20284.51 19296.14 19775.75 19686.89 20163.47 22394.64 18296.85 16193.89 19899.17 18599.29 155
FPMVS83.82 21084.61 21282.90 21090.39 20890.71 21890.85 20384.10 19495.47 20865.15 21783.44 20874.46 21875.48 21581.63 21679.42 21891.42 22087.14 218
IB-MVS93.96 1595.02 13796.44 14493.36 14497.05 8499.28 9390.43 20493.39 8798.02 14896.02 4294.92 13892.07 13683.52 21395.38 19095.82 16799.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS-HIRNet92.51 18395.97 14988.48 20093.73 15898.37 15390.33 20575.36 21998.32 13677.78 19189.15 18294.87 11195.14 17797.62 13896.39 14998.51 19297.11 203
Anonymous2023120690.70 19993.93 18486.92 20490.21 20996.79 20590.30 20686.61 17996.05 20069.25 21388.46 18984.86 18185.86 21197.11 15696.47 14899.30 17897.80 197
PatchT93.96 15997.36 10990.00 19294.76 14698.65 13290.11 20778.57 21297.96 15380.42 17796.07 12194.10 12496.85 12998.10 10397.49 11999.26 18199.15 164
our_test_392.30 17297.58 18790.09 208
pmnet_mix0292.44 18594.68 16889.83 19592.46 17097.65 18189.92 20990.49 13698.76 11373.05 20891.78 16490.08 14594.86 18194.53 20191.94 20898.21 19898.01 195
test20.0390.65 20093.71 18887.09 20290.44 20796.24 20889.74 21085.46 18595.59 20772.99 20990.68 17285.33 17684.41 21295.94 18695.10 18399.52 15797.06 205
N_pmnet92.21 19394.60 17089.42 19791.88 18197.38 19889.15 21189.74 14797.89 15673.75 20487.94 19492.23 13593.85 19496.10 18193.20 20298.15 19997.43 200
new_pmnet90.45 20192.84 20087.66 20188.96 21096.16 20988.71 21284.66 19097.56 16671.91 21285.60 20586.58 16693.28 19896.07 18293.54 20198.46 19394.39 214
MIMVSNet188.61 20590.68 20786.19 20681.56 21895.30 21487.78 21385.98 18394.19 21272.30 21178.84 21478.90 21390.06 20696.59 16495.47 17299.46 16395.49 212
DeepMVS_CXcopyleft96.85 20487.43 21489.27 15198.30 13775.55 19995.05 13579.47 21092.62 20389.48 21395.18 21895.96 211
test_method87.27 20891.58 20482.25 21175.65 22287.52 22186.81 21572.60 22097.51 16773.20 20785.07 20679.97 20788.69 20897.31 14895.24 17896.53 21498.41 186
pmmvs388.19 20691.27 20584.60 20985.60 21593.66 21685.68 21681.13 19792.36 21663.66 22189.51 17977.10 21693.22 19996.37 17292.40 20498.30 19797.46 199
MDA-MVSNet-bldmvs87.84 20789.22 21086.23 20581.74 21796.77 20683.74 21789.57 14994.50 21172.83 21096.64 10964.47 22292.71 20281.43 21792.28 20696.81 21398.47 185
new-patchmatchnet86.12 20987.30 21184.74 20886.92 21495.19 21583.57 21884.42 19392.67 21565.66 21680.32 21264.72 22189.41 20792.33 21189.21 21398.43 19496.69 208
tmp_tt82.25 21197.73 7088.71 21980.18 21968.65 22299.15 5986.98 13899.47 1085.31 17768.35 22087.51 21483.81 21691.64 219
Gipumacopyleft81.40 21181.78 21380.96 21383.21 21685.61 22279.73 22076.25 21897.33 17264.21 22055.32 21955.55 22486.04 21092.43 21092.20 20796.32 21693.99 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gm-plane-assit89.44 20492.82 20185.49 20791.37 19995.34 21379.55 22182.12 19691.68 21764.79 21987.98 19380.26 20595.66 16098.51 8797.56 11599.45 16498.41 186
PMMVS277.26 21279.47 21574.70 21576.00 22188.37 22074.22 22276.34 21678.31 22054.13 22369.96 21752.50 22570.14 21984.83 21588.71 21497.35 20793.58 216
PMVScopyleft72.60 1776.39 21377.66 21674.92 21481.04 21969.37 22668.47 22380.54 20085.39 21965.07 21873.52 21672.91 21965.67 22180.35 21876.81 21988.71 22185.25 221
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Patchmatch-RL test66.86 224
E-PMN68.30 21568.43 21768.15 21674.70 22471.56 22555.64 22577.24 21477.48 22239.46 22551.95 22241.68 22773.28 21770.65 22079.51 21788.61 22286.20 220
EMVS68.12 21668.11 21868.14 21775.51 22371.76 22455.38 22677.20 21577.78 22137.79 22653.59 22043.61 22674.72 21667.05 22176.70 22088.27 22386.24 219
MVEpermissive67.97 1965.53 21767.43 21963.31 21859.33 22574.20 22353.09 22770.43 22166.27 22343.13 22445.98 22330.62 22870.65 21879.34 21986.30 21583.25 22489.33 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21840.15 22020.86 22012.61 22617.99 22725.16 22813.30 22348.42 22424.82 22753.07 22130.13 23028.47 22242.73 22237.65 22120.79 22551.04 222
test12326.75 21934.25 22118.01 2217.93 22717.18 22824.85 22912.36 22444.83 22516.52 22841.80 22418.10 23128.29 22333.08 22334.79 22218.10 22649.95 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def69.05 214
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
MTAPA98.09 1699.97 8
MTMP98.46 1199.96 13
mPP-MVS99.53 3199.89 35
NP-MVS98.57 123