This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS77.58 582.93 571.35 677.86 580.55 683.38 157.61 985.57 461.11 2186.10 682.98 764.76 378.29 1476.78 2283.40 690.20 4
xxxxxxxxxxxxxcwj74.63 1677.07 2771.79 279.32 180.76 482.96 257.49 1082.82 864.79 583.69 952.03 11862.83 1377.13 2675.21 3183.35 787.85 15
SF-MVS77.13 781.70 771.79 279.32 180.76 482.96 257.49 1082.82 864.79 583.69 984.46 462.83 1377.13 2675.21 3183.35 787.85 15
MSP-MVS77.82 483.46 471.24 875.26 1680.22 782.95 457.85 785.90 364.79 588.54 383.43 666.24 278.21 1778.56 780.34 4689.39 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS79.21 184.74 272.75 178.66 381.96 282.94 558.16 486.82 267.66 188.29 486.15 266.42 180.41 378.65 682.65 1790.92 2
DPE-MVScopyleft78.11 383.84 371.42 577.82 681.32 382.92 657.81 884.04 763.19 1388.63 286.00 364.52 478.71 1077.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft77.32 682.51 671.26 775.43 1480.19 882.22 758.26 384.83 664.36 878.19 1583.46 563.61 781.00 180.28 183.66 489.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP75.23 1279.60 1470.13 1376.81 778.92 1281.74 857.99 575.30 3059.83 2675.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS75.62 1179.91 1370.61 1075.76 1078.82 1481.66 957.12 1379.77 1763.04 1470.69 2481.15 1562.99 1080.23 479.54 383.11 989.16 7
DVP-MVS78.77 284.89 171.62 478.04 482.05 181.64 1057.96 687.53 166.64 288.77 186.31 163.16 979.99 678.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS72.80 2775.90 3069.19 2175.51 1377.68 2081.62 1154.83 2775.96 2662.06 1963.96 4376.58 3058.55 3876.66 3376.77 2382.60 1983.68 42
ACMMP_NAP76.15 881.17 870.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1179.02 1380.48 1862.24 1880.05 579.12 482.94 1288.64 8
APD-MVScopyleft75.80 1080.90 1069.86 1675.42 1578.48 1681.43 1357.44 1280.45 1559.32 2785.28 780.82 1763.96 676.89 2976.08 2781.58 3888.30 11
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.75.22 1380.06 1269.56 1774.61 1872.74 5080.59 1455.70 2480.80 1362.65 1686.25 582.92 862.07 2076.89 2975.66 3081.77 3485.19 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2380.51 1557.09 1478.25 2162.28 1865.54 3778.26 2562.18 1979.13 778.51 983.01 1187.68 17
HFP-MVS74.87 1478.86 1970.21 1273.99 2177.91 1880.36 1656.63 1678.41 2064.27 974.54 2077.75 2862.96 1178.70 1177.82 1283.02 1086.91 21
HPM-MVS++copyleft76.01 980.47 1170.81 976.60 874.96 3680.18 1758.36 281.96 1063.50 1278.80 1482.53 1064.40 578.74 978.84 581.81 3287.46 18
train_agg73.89 2278.25 2168.80 2475.25 1772.27 5279.75 1856.05 2174.87 3358.97 2881.83 1179.76 2161.05 2677.39 2576.01 2881.71 3585.61 30
zzz-MVS74.25 2077.97 2369.91 1573.43 2474.06 4479.69 1956.44 1880.74 1464.98 468.72 3079.98 2062.92 1278.24 1677.77 1481.99 3086.30 23
OPM-MVS69.33 3871.05 4667.32 2872.34 2975.70 3379.57 2056.34 2055.21 7153.81 5459.51 6168.96 5459.67 3377.61 2376.44 2582.19 2783.88 40
ACMMPR73.79 2478.41 2068.40 2572.35 2877.79 1979.32 2156.38 1977.67 2458.30 3274.16 2176.66 2961.40 2378.32 1377.80 1382.68 1686.51 22
PGM-MVS72.89 2677.13 2667.94 2672.47 2777.25 2479.27 2254.63 3073.71 3557.95 3472.38 2275.33 3560.75 2778.25 1577.36 1882.57 2085.62 29
MP-MVScopyleft74.31 1878.87 1768.99 2273.49 2378.56 1579.25 2356.51 1775.33 2860.69 2375.30 1979.12 2361.81 2177.78 2177.93 1182.18 2888.06 13
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG74.68 1579.22 1569.40 1875.69 1280.01 979.12 2452.83 4279.34 1863.99 1070.49 2582.02 1160.35 3177.48 2477.22 1984.38 187.97 14
SD-MVS74.43 1778.87 1769.26 2074.39 1973.70 4679.06 2555.24 2681.04 1262.71 1580.18 1282.61 961.70 2275.43 4173.92 4482.44 2185.22 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS73.67 2577.39 2569.33 1976.26 978.19 1778.77 2654.54 3175.33 2859.99 2567.96 3279.23 2262.43 1778.00 1875.71 2984.02 287.30 19
TSAR-MVS + ACMM72.56 2979.07 1664.96 4173.24 2573.16 4978.50 2748.80 6579.34 1855.32 4185.04 881.49 1458.57 3775.06 4473.75 4575.35 10385.61 30
ACMMPcopyleft71.57 3175.84 3166.59 3170.30 4076.85 2978.46 2853.95 3573.52 3655.56 3970.13 2671.36 4858.55 3877.00 2876.23 2682.71 1585.81 28
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS66.32 273.85 2378.10 2268.90 2367.92 5079.31 1178.16 2959.28 178.24 2261.13 2067.36 3676.10 3363.40 879.11 878.41 1083.52 588.16 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS71.47 3275.82 3266.41 3272.97 2677.15 2578.14 3054.71 2869.88 4853.07 5670.98 2374.83 3756.95 5176.22 3476.57 2482.62 1885.09 34
CP-MVS72.63 2876.95 2867.59 2770.67 3675.53 3477.95 3156.01 2275.65 2758.82 2969.16 2976.48 3160.46 3077.66 2277.20 2081.65 3686.97 20
HQP-MVS70.88 3475.02 3466.05 3571.69 3174.47 4177.51 3253.17 3972.89 3754.88 4570.03 2770.48 5057.26 4776.02 3675.01 3681.78 3386.21 24
X-MVS71.18 3375.66 3365.96 3671.71 3076.96 2677.26 3355.88 2372.75 3854.48 4964.39 4174.47 3854.19 6577.84 2077.37 1782.21 2685.85 27
LGP-MVS_train68.87 4072.03 4265.18 4069.33 4474.03 4576.67 3453.88 3668.46 4952.05 5963.21 4563.89 6756.31 5575.99 3774.43 4082.83 1484.18 36
DeepC-MVS_fast65.08 372.00 3076.11 2967.21 2968.93 4677.46 2176.54 3554.35 3274.92 3258.64 3165.18 3874.04 4362.62 1577.92 1977.02 2182.16 2986.21 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM60.30 767.58 4868.82 5766.13 3470.59 3772.01 5476.54 3554.26 3365.64 5454.78 4750.35 10361.72 7858.74 3675.79 3975.03 3481.88 3181.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS68.76 4273.01 3863.81 4865.42 6273.66 4776.39 3752.08 4472.61 3950.33 6260.73 5772.65 4659.43 3573.32 5272.12 5079.19 5985.99 26
ACMP61.42 568.72 4371.37 4465.64 3869.06 4574.45 4275.88 3853.30 3868.10 5055.74 3861.53 5662.29 7456.97 5074.70 4574.23 4282.88 1384.31 35
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepPCF-MVS66.49 174.25 2080.97 966.41 3267.75 5278.87 1375.61 3954.16 3484.86 558.22 3377.94 1681.01 1662.52 1678.34 1277.38 1680.16 4988.40 10
AdaColmapbinary67.89 4668.85 5666.77 3073.73 2274.30 4375.28 4053.58 3770.24 4657.59 3551.19 10059.19 9060.74 2875.33 4373.72 4679.69 5477.96 68
MSLP-MVS++68.17 4470.72 4965.19 3969.41 4370.64 5674.99 4145.76 7570.20 4760.17 2456.42 7373.01 4461.14 2472.80 5470.54 5879.70 5281.42 51
MVS_030469.49 3773.96 3664.28 4667.92 5076.13 3274.90 4247.60 6763.29 5854.09 5367.44 3576.35 3259.53 3475.81 3875.03 3481.62 3783.70 41
PCF-MVS59.98 867.32 4971.04 4762.97 5064.77 6474.49 4074.78 4349.54 5967.44 5154.39 5258.35 6672.81 4555.79 6171.54 5969.24 6778.57 6183.41 43
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS68.04 4570.74 4864.90 4271.68 3276.33 3174.63 4450.48 5663.81 5655.52 4054.88 8169.90 5257.39 4575.42 4274.79 3879.71 5180.03 56
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVS70.49 3876.96 2674.36 4554.48 4974.47 3882.24 24
X-MVStestdata70.49 3876.96 2674.36 4554.48 4974.47 3882.24 24
PHI-MVS69.27 3974.84 3562.76 5166.83 5474.83 3773.88 4749.32 6170.61 4550.93 6069.62 2874.84 3657.25 4875.53 4074.32 4178.35 6684.17 37
CANet68.77 4173.01 3863.83 4768.30 4775.19 3573.73 4847.90 6663.86 5554.84 4667.51 3474.36 4157.62 4274.22 4773.57 4880.56 4482.36 46
3Dnovator+62.63 469.51 3672.62 4065.88 3768.21 4976.47 3073.50 4952.74 4370.85 4458.65 3055.97 7569.95 5161.11 2576.80 3175.09 3381.09 4283.23 45
abl_664.36 4570.08 4177.45 2272.88 5050.15 5771.31 4354.77 4862.79 4877.99 2756.80 5281.50 3983.91 39
TSAR-MVS + GP.69.71 3573.92 3764.80 4368.27 4870.56 5771.90 5150.75 5271.38 4257.46 3668.68 3175.42 3460.10 3273.47 5173.99 4380.32 4783.97 38
test_part163.06 6265.27 7160.47 5566.24 6070.17 5971.86 5245.36 8153.75 7649.61 6544.85 14565.53 6548.93 9971.39 6070.65 5680.82 4380.59 53
CLD-MVS67.02 5071.57 4361.71 5271.01 3574.81 3871.62 5338.91 15571.86 4160.70 2264.97 3967.88 6151.88 8976.77 3274.98 3776.11 9369.75 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator60.86 666.99 5170.32 5163.11 4966.63 5574.52 3971.56 5445.76 7567.37 5255.00 4454.31 8668.19 5858.49 4073.97 4873.63 4781.22 4180.23 55
MVS_111021_HR67.62 4770.39 5064.39 4469.77 4270.45 5871.44 5551.72 4860.77 6455.06 4362.14 5366.40 6358.13 4176.13 3574.79 3880.19 4882.04 49
DELS-MVS65.87 5270.30 5260.71 5464.05 7372.68 5170.90 5645.43 7957.49 6749.05 6964.43 4068.66 5555.11 6374.31 4673.02 4979.70 5281.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OMC-MVS65.16 5571.35 4557.94 7252.95 14468.82 6369.00 5738.28 16279.89 1655.20 4262.76 4968.31 5756.14 5871.30 6268.70 7376.06 9579.67 57
GeoE62.43 6764.79 7659.68 6164.15 7267.17 8268.80 5844.42 9355.65 7047.38 7151.54 9762.51 7254.04 6869.99 7468.07 7979.28 5778.57 63
Effi-MVS+63.28 6065.96 6660.17 5764.26 6868.06 6968.78 5945.71 7754.08 7446.64 7655.92 7663.13 7155.94 5970.38 7171.43 5279.68 5578.70 62
casdiffmvs64.09 5768.13 5859.37 6361.81 7968.32 6768.48 6044.45 9261.95 6149.12 6863.04 4669.67 5353.83 6970.46 6866.06 11178.55 6277.43 71
CS-MVS63.45 5965.72 6860.80 5364.20 6967.86 7168.46 6143.50 11553.86 7549.90 6456.44 7260.45 8557.27 4673.56 5070.13 6381.45 4077.73 70
MSDG58.46 9058.97 11857.85 7666.27 5966.23 9267.72 6242.33 12953.43 7843.68 9043.39 15645.35 16049.75 9668.66 8567.77 8477.38 7467.96 136
ETV-MVS63.23 6166.08 6559.91 5963.13 7768.13 6867.62 6344.62 8953.39 7946.23 7858.74 6358.19 9357.45 4473.60 4971.38 5480.39 4579.13 59
EPNet65.14 5669.54 5460.00 5866.61 5667.67 7567.53 6455.32 2562.67 6046.22 7967.74 3365.93 6448.07 10872.17 5672.12 5076.28 8978.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMH+53.71 1259.26 8060.28 9858.06 6964.17 7168.46 6567.51 6550.93 5152.46 8835.83 13040.83 17045.12 16452.32 8569.88 7569.00 7177.59 7276.21 86
LS3D60.20 7761.70 8658.45 6764.18 7067.77 7267.19 6648.84 6461.67 6241.27 10445.89 13551.81 11954.18 6668.78 8266.50 10675.03 10569.48 127
v2v48258.69 8660.12 10557.03 8057.16 11866.05 9367.17 6743.52 11346.33 13245.19 8449.46 10751.02 12252.51 8367.30 11266.03 11276.61 8374.62 96
v114458.88 8360.16 10257.39 7858.03 10067.26 8067.14 6844.46 9145.17 14044.33 8847.81 11749.92 12953.20 8067.77 10466.62 10377.15 7876.58 80
diffmvs61.64 7066.55 6155.90 8756.63 12063.71 11167.13 6941.27 13959.49 6646.70 7563.93 4468.01 6050.46 9367.30 11265.51 11973.24 12777.87 69
v1059.17 8260.60 9457.50 7757.95 10166.73 8667.09 7044.11 9546.85 12845.42 8248.18 11651.07 12153.63 7067.84 10266.59 10476.79 8176.92 76
CostFormer56.57 10959.13 11653.60 10057.52 10661.12 12666.94 7135.95 17353.44 7744.68 8655.87 7754.44 10948.21 10560.37 16158.33 16868.27 16070.33 119
ACMH52.42 1358.24 9559.56 11256.70 8466.34 5869.59 6066.71 7249.12 6246.08 13528.90 15842.67 16541.20 18252.60 8271.39 6070.28 6076.51 8575.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v858.88 8360.57 9656.92 8157.35 11165.69 9666.69 7342.64 12747.89 12345.77 8049.04 10852.98 11452.77 8167.51 10965.57 11876.26 9075.30 94
MVS_Test62.40 6866.23 6457.94 7259.77 9364.77 10566.50 7441.76 13457.26 6849.33 6662.68 5067.47 6253.50 7468.57 8766.25 10876.77 8276.58 80
PVSNet_Blended_VisFu63.65 5866.92 5959.83 6060.03 9073.44 4866.33 7548.95 6352.20 8950.81 6156.07 7460.25 8653.56 7173.23 5370.01 6479.30 5683.24 44
V4256.97 10560.14 10353.28 10348.16 17362.78 11666.30 7637.93 16447.44 12542.68 9548.19 11552.59 11651.90 8867.46 11065.94 11472.72 13276.55 82
v119258.51 8759.66 10857.17 7957.82 10267.72 7366.21 7744.83 8644.15 14843.49 9146.68 12247.94 13353.55 7267.39 11166.51 10577.13 7977.20 74
DI_MVS_plusplus_trai61.88 6965.17 7358.06 6960.05 8965.26 9966.03 7844.22 9455.75 6946.73 7454.64 8468.12 5954.13 6769.13 8066.66 10077.18 7776.61 79
Effi-MVS+-dtu60.34 7662.32 8558.03 7164.31 6667.44 7965.99 7942.26 13049.55 10042.00 10048.92 11059.79 8856.27 5668.07 9867.03 9277.35 7575.45 92
CNLPA62.78 6566.31 6358.65 6658.47 9868.41 6665.98 8041.22 14078.02 2356.04 3746.65 12359.50 8957.50 4369.67 7665.27 12372.70 13476.67 78
MVS_111021_LR63.05 6366.43 6259.10 6461.33 8363.77 11065.87 8143.58 11160.20 6553.70 5562.09 5462.38 7355.84 6070.24 7268.08 7874.30 11078.28 67
ET-MVSNet_ETH3D58.38 9261.57 8754.67 9442.15 19465.26 9965.70 8243.82 10348.84 11042.34 9759.76 6047.76 13656.68 5367.02 11968.60 7677.33 7673.73 104
v14419258.23 9659.40 11456.87 8257.56 10366.89 8465.70 8245.01 8444.06 14942.88 9346.61 12448.09 13253.49 7566.94 12065.90 11576.61 8377.29 72
QAPM65.27 5469.49 5560.35 5665.43 6172.20 5365.69 8447.23 6863.46 5749.14 6753.56 8771.04 4957.01 4972.60 5571.41 5377.62 7082.14 48
Fast-Effi-MVS+-dtu56.30 11159.29 11552.82 11058.64 9764.89 10365.56 8532.89 19145.80 13735.04 13245.89 13554.14 11049.41 9767.16 11566.45 10775.37 10270.69 116
TSAR-MVS + COLMAP62.65 6669.90 5354.19 9646.31 18166.73 8665.49 8641.36 13876.57 2546.31 7776.80 1756.68 9953.27 7969.50 7766.65 10172.40 13976.36 85
EIA-MVS61.53 7363.79 8158.89 6563.82 7567.61 7665.35 8742.15 13349.98 9745.66 8157.47 7056.62 10056.59 5470.91 6669.15 6879.78 5074.80 95
TAPA-MVS54.74 1060.85 7466.61 6054.12 9847.38 17765.33 9765.35 8736.51 17175.16 3148.82 7054.70 8363.51 6953.31 7868.36 8964.97 12973.37 12274.27 98
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+60.36 7563.35 8256.87 8258.70 9565.86 9465.08 8937.11 16853.00 8445.36 8352.12 9456.07 10556.27 5671.28 6369.42 6678.71 6075.69 90
MS-PatchMatch58.19 9760.20 10155.85 8865.17 6364.16 10864.82 9041.48 13750.95 9242.17 9945.38 14056.42 10148.08 10768.30 9066.70 9973.39 12169.46 129
HyFIR lowres test56.87 10758.60 12254.84 9256.62 12169.27 6264.77 9142.21 13145.66 13837.50 12533.08 18857.47 9853.33 7765.46 13967.94 8074.60 10771.35 111
v192192057.89 9959.02 11756.58 8557.55 10466.66 9064.72 9244.70 8843.55 15242.73 9446.17 13246.93 14653.51 7366.78 12165.75 11776.29 8877.28 73
canonicalmvs65.62 5372.06 4158.11 6863.94 7471.05 5564.49 9343.18 12374.08 3447.35 7264.17 4271.97 4751.17 9271.87 5770.74 5578.51 6480.56 54
PLCcopyleft52.09 1459.21 8162.47 8455.41 9153.24 14264.84 10464.47 9440.41 14965.92 5344.53 8746.19 13155.69 10655.33 6268.24 9365.30 12274.50 10871.09 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVScopyleft57.13 962.81 6465.75 6759.39 6266.47 5769.52 6164.26 9543.07 12561.34 6350.19 6347.29 12064.41 6654.60 6470.18 7368.62 7577.73 6878.89 61
CANet_DTU58.88 8364.68 7752.12 11455.77 12466.75 8563.92 9637.04 16953.32 8037.45 12659.81 5961.81 7744.43 12568.25 9167.47 9074.12 11275.33 93
v124057.55 10158.63 12156.29 8657.30 11466.48 9163.77 9744.56 9042.77 16242.48 9645.64 13846.28 15353.46 7666.32 12765.80 11676.16 9277.13 75
tpm cat153.30 13253.41 15453.17 10658.16 9959.15 14463.73 9838.27 16350.73 9446.98 7345.57 13944.00 17649.20 9855.90 18854.02 18762.65 17964.50 161
PVSNet_BlendedMVS61.63 7164.82 7457.91 7457.21 11667.55 7763.47 9946.08 7354.72 7252.46 5758.59 6460.73 8151.82 9070.46 6865.20 12576.44 8676.50 83
PVSNet_Blended61.63 7164.82 7457.91 7457.21 11667.55 7763.47 9946.08 7354.72 7252.46 5758.59 6460.73 8151.82 9070.46 6865.20 12576.44 8676.50 83
CHOSEN 1792x268855.85 11458.01 12653.33 10257.26 11562.82 11563.29 10141.55 13646.65 13038.34 11934.55 18653.50 11152.43 8467.10 11767.56 8967.13 16473.92 103
IB-MVS54.11 1158.36 9360.70 9355.62 8958.67 9668.02 7061.56 10243.15 12446.09 13444.06 8944.24 14850.99 12448.71 10266.70 12270.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER57.19 10261.11 9052.62 11150.82 16458.79 14661.55 10337.86 16548.81 11241.31 10357.43 7152.10 11748.60 10368.19 9566.75 9875.56 9975.68 91
EG-PatchMatch MVS56.98 10458.24 12555.50 9064.66 6568.62 6461.48 10443.63 11038.44 18741.44 10138.05 17746.18 15543.95 12671.71 5870.61 5777.87 6774.08 101
DCV-MVSNet59.49 7864.00 8054.23 9561.81 7964.33 10761.42 10543.77 10452.85 8538.94 11855.62 7862.15 7643.24 13369.39 7867.66 8776.22 9175.97 87
v14855.58 11757.61 13253.20 10454.59 13461.86 11861.18 10638.70 16044.30 14742.25 9847.53 11850.24 12848.73 10165.15 14162.61 15173.79 11571.61 110
GA-MVS55.67 11558.33 12352.58 11255.23 12963.09 11261.08 10740.15 15142.95 15737.02 12852.61 9147.68 13747.51 11065.92 13365.35 12074.49 10970.68 117
v7n55.67 11557.46 13353.59 10156.06 12265.29 9861.06 10843.26 12240.17 17837.99 12240.79 17145.27 16347.09 11267.67 10666.21 10976.08 9476.82 77
Anonymous20240521160.60 9463.44 7666.71 8961.00 10947.23 6850.62 9536.85 18060.63 8443.03 13469.17 7967.72 8675.41 10072.54 106
Anonymous2023121157.71 10060.79 9254.13 9761.68 8165.81 9560.81 11043.70 10851.97 9039.67 11334.82 18563.59 6843.31 13168.55 8866.63 10275.59 9874.13 100
COLMAP_ROBcopyleft46.52 1551.99 14254.86 14648.63 13849.13 17161.73 12060.53 11136.57 17053.14 8132.95 13837.10 17838.68 19340.49 14365.72 13563.08 14472.11 14364.60 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs454.66 12656.07 13753.00 10754.63 13157.08 16160.43 11244.10 9651.69 9140.55 10846.55 12744.79 16945.95 11862.54 15063.66 13972.36 14066.20 147
Vis-MVSNetpermissive58.48 8965.70 6950.06 12353.40 14167.20 8160.24 11343.32 12048.83 11130.23 15162.38 5261.61 7940.35 14471.03 6569.77 6572.82 13079.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline255.89 11257.82 12853.64 9957.36 11061.09 12759.75 11440.45 14747.38 12641.26 10551.23 9946.90 14748.11 10665.63 13764.38 13474.90 10668.16 135
IterMVS-LS58.30 9461.39 8854.71 9359.92 9258.40 15059.42 11543.64 10948.71 11440.25 11157.53 6958.55 9252.15 8765.42 14065.34 12172.85 12875.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest053056.68 10859.68 10753.19 10552.97 14360.96 12959.41 11640.51 14548.26 12041.06 10652.67 9046.30 15249.78 9467.66 10767.83 8275.39 10174.07 102
TDRefinement49.31 15652.44 16245.67 15930.44 20759.42 14059.24 11739.78 15348.76 11331.20 14635.73 18229.90 20742.81 13564.24 14562.59 15270.55 15266.43 143
tttt051756.53 11059.59 10952.95 10852.66 14660.99 12859.21 11840.51 14547.89 12340.40 10952.50 9346.04 15649.78 9467.75 10567.83 8275.15 10474.17 99
IterMVS53.45 13157.12 13449.17 12949.23 17060.93 13059.05 11934.63 17944.53 14333.22 13551.09 10251.01 12348.38 10462.43 15260.79 15970.54 15369.05 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline55.19 12260.88 9148.55 13949.87 16858.10 15558.70 12034.75 17752.82 8639.48 11760.18 5860.86 8045.41 12061.05 15760.74 16063.10 17772.41 107
EPP-MVSNet59.39 7965.45 7052.32 11360.96 8567.70 7458.42 12144.75 8749.71 9927.23 16659.03 6262.20 7543.34 13070.71 6769.13 6979.25 5879.63 58
MDTV_nov1_ep1350.32 15252.43 16347.86 14949.87 16854.70 16558.10 12234.29 18145.59 13937.71 12347.44 11947.42 14141.86 13858.07 17455.21 18065.34 17158.56 183
TranMVSNet+NR-MVSNet55.87 11360.14 10350.88 11759.46 9463.82 10957.93 12352.98 4048.94 10920.52 18352.87 8947.33 14236.81 16269.12 8169.03 7077.56 7369.89 120
NR-MVSNet55.35 11959.46 11350.56 11961.33 8362.97 11357.91 12451.80 4648.62 11720.59 18251.99 9544.73 17034.10 17268.58 8668.64 7477.66 6970.67 118
UniMVSNet_NR-MVSNet56.94 10661.14 8952.05 11560.02 9165.21 10257.44 12552.93 4149.37 10324.31 17654.62 8550.54 12539.04 14868.69 8368.84 7278.53 6370.72 114
DU-MVS55.41 11859.59 10950.54 12054.60 13262.97 11357.44 12551.80 4648.62 11724.31 17651.99 9547.00 14539.04 14868.11 9667.75 8576.03 9670.72 114
IS_MVSNet57.95 9864.26 7950.60 11861.62 8265.25 10157.18 12745.42 8050.79 9326.49 16957.81 6860.05 8734.51 16971.24 6470.20 6278.36 6574.44 97
GBi-Net55.20 12060.25 9949.31 12652.42 14761.44 12157.03 12844.04 9849.18 10630.47 14748.28 11258.19 9338.22 15168.05 9966.96 9373.69 11769.65 122
test155.20 12060.25 9949.31 12652.42 14761.44 12157.03 12844.04 9849.18 10630.47 14748.28 11258.19 9338.22 15168.05 9966.96 9373.69 11769.65 122
FMVSNet255.04 12459.95 10649.31 12652.42 14761.44 12157.03 12844.08 9749.55 10030.40 15046.89 12158.84 9138.22 15167.07 11866.21 10973.69 11769.65 122
UniMVSNet_ETH3D52.62 13455.98 13848.70 13751.04 16160.71 13156.87 13146.74 7042.52 16426.96 16742.50 16645.95 15737.87 15566.22 12965.15 12872.74 13168.78 134
FMVSNet154.08 12858.68 12048.71 13650.90 16361.35 12456.73 13243.94 10245.91 13629.32 15742.72 16456.26 10437.70 15668.05 9966.96 9373.69 11769.50 126
FMVSNet354.78 12559.58 11149.17 12952.37 15061.31 12556.72 13344.04 9849.18 10630.47 14748.28 11258.19 9338.09 15465.48 13865.20 12573.31 12469.45 130
UGNet57.03 10365.25 7247.44 15146.54 18066.73 8656.30 13443.28 12150.06 9632.99 13762.57 5163.26 7033.31 17468.25 9167.58 8872.20 14278.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Baseline_NR-MVSNet53.50 13057.89 12748.37 14254.60 13259.25 14356.10 13551.84 4549.32 10417.92 19045.38 14047.68 13736.93 16168.11 9665.95 11372.84 12969.57 125
tpm48.82 16251.27 17045.96 15654.10 13747.35 18956.05 13630.23 19546.70 12943.21 9252.54 9247.55 14037.28 15954.11 19350.50 19654.90 19660.12 179
pmmvs-eth3d51.33 14552.25 16450.26 12250.82 16454.65 16656.03 13743.45 11943.51 15337.20 12739.20 17439.04 19242.28 13661.85 15562.78 14871.78 14564.72 159
thisisatest051553.85 12956.84 13650.37 12150.25 16758.17 15455.99 13839.90 15241.88 16738.16 12145.91 13445.30 16144.58 12466.15 13166.89 9673.36 12373.57 105
FC-MVSNet-train58.40 9163.15 8352.85 10964.29 6761.84 11955.98 13946.47 7153.06 8234.96 13361.95 5556.37 10339.49 14668.67 8468.36 7775.92 9771.81 109
UniMVSNet (Re)55.15 12360.39 9749.03 13255.31 12664.59 10655.77 14050.63 5348.66 11620.95 18151.47 9850.40 12634.41 17167.81 10367.89 8177.11 8071.88 108
baseline154.48 12758.69 11949.57 12460.63 8858.29 15355.70 14144.95 8549.20 10529.62 15454.77 8254.75 10835.29 16667.15 11664.08 13571.21 14962.58 170
thres20052.39 13755.37 14348.90 13357.39 10960.18 13455.60 14243.73 10642.93 15827.41 16443.35 15745.09 16536.61 16366.36 12563.92 13872.66 13565.78 152
CDS-MVSNet52.42 13657.06 13547.02 15353.92 13958.30 15255.50 14346.47 7142.52 16429.38 15649.50 10652.85 11528.49 18466.70 12266.89 9668.34 15962.63 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres40052.38 13855.51 14048.74 13557.49 10760.10 13655.45 14443.54 11242.90 15926.72 16843.34 15845.03 16836.61 16366.20 13064.53 13272.66 13566.43 143
tfpn200view952.53 13555.51 14049.06 13157.31 11260.24 13355.42 14543.77 10442.85 16027.81 16243.00 16245.06 16637.32 15866.38 12464.54 13172.71 13366.54 142
thres100view90052.04 14154.81 14748.80 13457.31 11259.33 14155.30 14642.92 12642.85 16027.81 16243.00 16245.06 16636.99 16064.74 14363.51 14072.47 13865.21 156
our_test_351.15 15957.31 16055.12 147
IterMVS-SCA-FT52.18 13957.75 13045.68 15851.01 16262.06 11755.10 14834.75 17744.85 14132.86 13951.13 10151.22 12048.74 10062.47 15161.51 15551.61 20371.02 113
MDTV_nov1_ep13_2view47.62 17149.72 18045.18 16148.05 17453.70 16954.90 14933.80 18539.90 18029.79 15338.85 17541.89 18039.17 14758.99 16555.55 17765.34 17159.17 181
thres600view751.91 14455.14 14448.14 14457.43 10860.18 13454.60 15043.73 10642.61 16325.20 17243.10 16144.47 17335.19 16766.36 12563.28 14372.66 13566.01 150
tfpnnormal50.16 15352.19 16547.78 15056.86 11958.37 15154.15 15144.01 10138.35 18925.94 17036.10 18137.89 19534.50 17065.93 13263.42 14171.26 14865.28 155
TransMVSNet (Re)51.92 14355.38 14247.88 14860.95 8659.90 13753.95 15245.14 8339.47 18124.85 17343.87 15146.51 15129.15 18167.55 10865.23 12473.26 12665.16 157
dps50.42 15051.20 17149.51 12555.88 12356.07 16353.73 15338.89 15643.66 15040.36 11045.66 13737.63 19745.23 12159.05 16456.18 17262.94 17860.16 178
anonymousdsp52.84 13357.78 12947.06 15240.24 19758.95 14553.70 15433.54 18736.51 19432.69 14043.88 15045.40 15947.97 10967.17 11470.28 6074.22 11182.29 47
UA-Net58.50 8864.68 7751.30 11666.97 5367.13 8353.68 15545.65 7849.51 10231.58 14562.91 4768.47 5635.85 16568.20 9467.28 9174.03 11369.24 131
tpmrst48.08 16749.88 17945.98 15552.71 14548.11 18753.62 15633.70 18648.70 11539.74 11248.96 10946.23 15440.29 14550.14 20249.28 19855.80 19357.71 185
gg-mvs-nofinetune49.07 16152.56 16145.00 16261.99 7859.78 13853.55 15741.63 13531.62 20312.08 19829.56 19753.28 11329.57 18066.27 12864.49 13371.19 15062.92 166
PatchmatchNetpermissive49.92 15551.29 16948.32 14351.83 15451.86 17653.38 15837.63 16747.90 12240.83 10748.54 11145.30 16145.19 12256.86 17853.99 18961.08 18454.57 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC51.11 14653.71 15148.08 14644.76 18655.99 16453.01 15940.90 14152.49 8736.14 12944.67 14633.66 20343.27 13263.23 14661.10 15770.39 15464.82 158
EPNet_dtu52.05 14058.26 12444.81 16354.10 13750.09 18252.01 16040.82 14353.03 8327.41 16454.90 8057.96 9726.72 18662.97 14762.70 15067.78 16266.19 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap47.08 17347.56 18746.52 15442.35 19353.44 17051.77 16140.70 14443.44 15431.92 14329.78 19623.72 21345.04 12361.99 15459.54 16567.35 16361.03 174
pm-mvs151.02 14755.55 13945.73 15754.16 13658.52 14850.92 16242.56 12840.32 17625.67 17143.66 15350.34 12730.06 17965.85 13463.97 13770.99 15166.21 146
MIMVSNet43.79 18548.53 18338.27 18741.46 19548.97 18550.81 16332.88 19244.55 14222.07 17932.05 18947.15 14324.76 18958.73 16856.09 17457.63 19252.14 191
SCA50.99 14853.22 15848.40 14151.07 16056.78 16250.25 16439.05 15448.31 11941.38 10249.54 10546.70 15046.00 11758.31 17156.28 17162.65 17956.60 187
PatchMatch-RL50.11 15451.56 16848.43 14046.23 18251.94 17550.21 16538.62 16146.62 13137.51 12442.43 16739.38 19052.24 8660.98 15859.56 16465.76 16860.01 180
test-LLR49.28 15750.29 17548.10 14555.26 12747.16 19049.52 16643.48 11739.22 18231.98 14143.65 15447.93 13441.29 14156.80 17955.36 17867.08 16561.94 171
TESTMET0.1,146.09 17950.29 17541.18 17936.91 20047.16 19049.52 16620.32 20939.22 18231.98 14143.65 15447.93 13441.29 14156.80 17955.36 17867.08 16561.94 171
pmmvs648.35 16551.64 16744.51 16551.92 15357.94 15749.44 16842.17 13234.45 19624.62 17528.87 19946.90 14729.07 18364.60 14463.08 14469.83 15565.68 153
PMMVS49.20 16054.28 15043.28 17134.13 20245.70 19748.98 16926.09 20446.31 13334.92 13455.22 7953.47 11247.48 11159.43 16359.04 16668.05 16160.77 175
GG-mvs-BLEND36.62 19953.39 15517.06 2080.01 22058.61 14748.63 1700.01 21747.13 1270.02 22143.98 14960.64 830.03 21654.92 19251.47 19553.64 19956.99 186
CR-MVSNet50.47 14952.61 16047.98 14749.03 17252.94 17148.27 17138.86 15744.41 14439.59 11444.34 14744.65 17246.63 11458.97 16660.31 16165.48 16962.66 167
Patchmtry47.61 18848.27 17138.86 15739.59 114
pmmvs547.07 17451.02 17342.46 17345.18 18551.47 17748.23 17333.09 19038.17 19028.62 16046.60 12543.48 17730.74 17758.28 17258.63 16768.92 15760.48 176
SixPastTwentyTwo47.55 17250.25 17744.41 16647.30 17854.31 16847.81 17440.36 15033.76 19719.93 18543.75 15232.77 20542.07 13759.82 16260.94 15868.98 15666.37 145
test-mter45.30 18050.37 17439.38 18433.65 20446.99 19247.59 17518.59 21038.75 18528.00 16143.28 15946.82 14941.50 14057.28 17755.78 17566.93 16763.70 164
EPMVS44.66 18247.86 18640.92 18047.97 17544.70 19947.58 17633.27 18848.11 12129.58 15549.65 10444.38 17434.65 16851.71 19747.90 20052.49 20148.57 202
CMPMVSbinary37.70 1749.24 15852.71 15945.19 16045.97 18351.23 17847.44 17729.31 19643.04 15644.69 8534.45 18748.35 13143.64 12762.59 14959.82 16360.08 18569.48 127
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet540.96 19045.81 19135.29 19634.30 20144.55 20047.28 17828.84 19840.76 17321.62 18029.85 19542.44 17824.77 18857.53 17655.00 18154.93 19550.56 196
PEN-MVS49.21 15954.32 14943.24 17254.33 13559.26 14247.04 17951.37 5041.67 1689.97 20446.22 13041.80 18122.97 19460.52 15964.03 13673.73 11666.75 141
CP-MVSNet48.37 16453.53 15342.34 17451.35 15758.01 15646.56 18050.54 5441.62 16910.61 20046.53 12840.68 18623.18 19258.71 16961.83 15371.81 14467.36 140
PS-CasMVS48.18 16653.25 15742.27 17551.26 15857.94 15746.51 18150.52 5541.30 17010.56 20145.35 14240.34 18823.04 19358.66 17061.79 15471.74 14667.38 139
CVMVSNet46.38 17852.01 16639.81 18342.40 19250.26 18046.15 18237.68 16640.03 17915.09 19346.56 12647.56 13933.72 17356.50 18355.65 17663.80 17567.53 137
PM-MVS44.55 18348.13 18540.37 18232.85 20646.82 19446.11 18329.28 19740.48 17529.99 15239.98 17334.39 20241.80 13956.08 18653.88 19162.19 18265.31 154
RPMNet46.41 17648.72 18243.72 16747.77 17652.94 17146.02 18433.92 18344.41 14431.82 14436.89 17937.42 19837.41 15753.88 19454.02 18765.37 17061.47 173
Vis-MVSNet (Re-imp)50.37 15157.73 13141.80 17757.53 10554.35 16745.70 18545.24 8249.80 9813.43 19658.23 6756.42 10120.11 19762.96 14863.36 14268.76 15858.96 182
FPMVS38.36 19840.41 20235.97 19338.92 19939.85 20545.50 18625.79 20541.13 17118.70 18730.10 19424.56 21131.86 17649.42 20446.80 20355.04 19451.03 194
RPSCF46.41 17654.42 14837.06 19125.70 21445.14 19845.39 18720.81 20862.79 5935.10 13144.92 14455.60 10743.56 12856.12 18552.45 19351.80 20263.91 163
TAMVS44.02 18449.18 18137.99 18947.03 17945.97 19645.04 18828.47 19939.11 18420.23 18443.22 16048.52 13028.49 18458.15 17357.95 17058.71 18751.36 193
CHOSEN 280x42040.80 19145.05 19435.84 19532.95 20529.57 21044.98 18923.71 20737.54 19218.42 18831.36 19247.07 14446.41 11656.71 18154.65 18548.55 20658.47 184
MDA-MVSNet-bldmvs41.36 18943.15 19939.27 18528.74 20952.68 17344.95 19040.84 14232.89 19918.13 18931.61 19122.09 21438.97 15050.45 20156.11 17364.01 17456.23 188
WR-MVS_H47.65 17053.67 15240.63 18151.45 15559.74 13944.71 19149.37 6040.69 1747.61 21146.04 13344.34 17517.32 19957.79 17561.18 15673.30 12565.86 151
DTE-MVSNet48.03 16953.28 15641.91 17654.64 13057.50 15944.63 19251.66 4941.02 1727.97 21046.26 12940.90 18320.24 19660.45 16062.89 14772.33 14163.97 162
WR-MVS48.78 16355.06 14541.45 17855.50 12560.40 13243.77 19349.99 5841.92 1668.10 20945.24 14345.56 15817.47 19861.57 15664.60 13073.85 11466.14 149
Anonymous2023120642.28 18745.89 19038.07 18851.96 15248.98 18443.66 19438.81 15938.74 18614.32 19526.74 20140.90 18320.94 19556.64 18254.67 18458.71 18754.59 189
LTVRE_ROB44.17 1647.06 17550.15 17843.44 16951.39 15658.42 14942.90 19543.51 11422.27 21114.85 19441.94 16934.57 20145.43 11962.28 15362.77 14962.56 18168.83 133
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 143.15 18646.95 18838.72 18655.26 12750.56 17942.48 19643.48 11738.16 19115.11 19235.07 18444.69 17116.47 20055.95 18754.34 18659.54 18649.87 200
pmnet_mix0240.48 19443.80 19636.61 19245.79 18440.45 20442.12 19733.18 18940.30 17724.11 17838.76 17637.11 19924.30 19052.97 19546.66 20450.17 20450.33 197
ADS-MVSNet40.67 19243.38 19837.50 19044.36 18839.79 20642.09 19832.67 19344.34 14628.87 15940.76 17240.37 18730.22 17848.34 20645.87 20546.81 20744.21 206
ambc45.54 19350.66 16652.63 17440.99 19938.36 18824.67 17422.62 20613.94 21629.14 18265.71 13658.06 16958.60 18967.43 138
PatchT48.08 16751.03 17244.64 16442.96 19150.12 18140.36 20035.09 17543.17 15539.59 11442.00 16839.96 18946.63 11458.97 16660.31 16163.21 17662.66 167
EU-MVSNet40.63 19345.65 19234.78 19739.11 19846.94 19340.02 20134.03 18233.50 19810.37 20235.57 18337.80 19623.65 19151.90 19650.21 19761.49 18363.62 165
test20.0340.38 19544.20 19535.92 19453.73 14049.05 18338.54 20243.49 11632.55 2009.54 20527.88 20039.12 19112.24 20556.28 18454.69 18357.96 19149.83 201
MIMVSNet135.51 20041.41 20028.63 20227.53 21143.36 20138.09 20333.82 18432.01 2016.77 21221.63 20735.43 20011.97 20755.05 19153.99 18953.59 20048.36 203
gm-plane-assit44.74 18145.95 18943.33 17060.88 8746.79 19536.97 20432.24 19424.15 20911.79 19929.26 19832.97 20446.64 11365.09 14262.95 14671.45 14760.42 177
N_pmnet32.67 20436.85 20527.79 20440.55 19632.13 20935.80 20526.79 20237.24 1939.10 20632.02 19030.94 20616.30 20147.22 20741.21 20638.21 21037.21 207
MVS-HIRNet42.24 18841.15 20143.51 16844.06 19040.74 20235.77 20635.35 17435.38 19538.34 11925.63 20338.55 19443.48 12950.77 19947.03 20264.07 17349.98 198
testgi38.71 19743.64 19732.95 19852.30 15148.63 18635.59 20735.05 17631.58 2049.03 20830.29 19340.75 18511.19 21155.30 18953.47 19254.53 19845.48 204
pmmvs335.10 20138.47 20331.17 20026.37 21340.47 20334.51 20818.09 21124.75 20816.88 19123.05 20526.69 20932.69 17550.73 20051.60 19458.46 19051.98 192
PMVScopyleft27.84 1833.81 20235.28 20632.09 19934.13 20224.81 21232.51 20926.48 20326.41 20719.37 18623.76 20424.02 21225.18 18750.78 19847.24 20154.89 19749.95 199
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FC-MVSNet-test39.65 19648.35 18429.49 20144.43 18739.28 20730.23 21040.44 14843.59 1513.12 21753.00 8842.03 17910.02 21355.09 19054.77 18248.66 20550.71 195
new-patchmatchnet33.24 20337.20 20428.62 20344.32 18938.26 20829.68 21136.05 17231.97 2026.33 21326.59 20227.33 20811.12 21250.08 20341.05 20744.23 20845.15 205
Gipumacopyleft25.87 20526.91 20824.66 20528.98 20820.17 21320.46 21234.62 18029.55 2059.10 2064.91 2165.31 22015.76 20249.37 20549.10 19939.03 20929.95 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet23.19 20628.17 20717.37 20617.03 21524.92 21119.66 21316.16 21327.05 2064.42 21420.77 20819.20 21512.19 20637.71 20836.38 20834.77 21131.17 208
PMMVS215.84 20719.68 20911.35 21015.74 21616.95 21413.31 21417.64 21216.08 2130.36 22013.12 21011.47 2171.69 21528.82 20927.24 21019.38 21524.09 211
test_method12.44 21114.66 2119.85 2121.30 2193.32 21913.00 2153.21 21422.42 21010.22 20314.13 20925.64 21011.43 21019.75 21111.61 21419.96 2145.79 215
EMVS14.49 20912.45 21316.87 20927.02 21212.56 2178.13 21627.19 20115.05 2143.14 2166.69 2142.67 22215.08 20414.60 21418.05 21220.67 21317.56 214
E-PMN15.09 20813.19 21217.30 20727.80 21012.62 2167.81 21727.54 20014.62 2153.19 2156.89 2132.52 22315.09 20315.93 21220.22 21122.38 21219.53 212
MVEpermissive12.28 1913.53 21015.72 21010.96 2117.39 21715.71 2156.05 21823.73 20610.29 2173.01 2185.77 2153.41 22111.91 20820.11 21029.79 20913.67 21624.98 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft6.95 2185.98 2192.25 21511.73 2162.07 21911.85 2115.43 21911.75 20911.40 2158.10 21818.38 213
tmp_tt5.40 2133.97 2182.35 2203.26 2200.44 21617.56 21212.09 19711.48 2127.14 2181.98 21415.68 21315.49 21310.69 217
Patchmatch-RL test1.04 221
testmvs0.01 2120.02 2140.00 2140.00 2210.00 2210.01 2220.00 2180.01 2180.00 2220.03 2180.00 2240.01 2170.01 2160.01 2150.00 2190.06 217
uanet_test0.00 2140.00 2160.00 2140.00 2210.00 2210.00 2230.00 2180.00 2200.00 2220.00 2190.00 2240.00 2190.00 2170.00 2170.00 2190.00 218
sosnet-low-res0.00 2140.00 2160.00 2140.00 2210.00 2210.00 2230.00 2180.00 2200.00 2220.00 2190.00 2240.00 2190.00 2170.00 2170.00 2190.00 218
sosnet0.00 2140.00 2160.00 2140.00 2210.00 2210.00 2230.00 2180.00 2200.00 2220.00 2190.00 2240.00 2190.00 2170.00 2170.00 2190.00 218
test1230.01 2120.02 2140.00 2140.00 2210.00 2210.00 2230.00 2180.01 2180.00 2220.04 2170.00 2240.01 2170.00 2170.01 2150.00 2190.07 216
RE-MVS-def33.01 136
9.1481.81 12
SR-MVS71.46 3454.67 2981.54 13
MTAPA65.14 380.20 19
MTMP62.63 1778.04 26
mPP-MVS71.67 3374.36 41
NP-MVS72.00 40