This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9899.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 2998.71 7098.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SED-MVS99.44 399.58 499.28 399.69 899.76 699.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3899.61 698.83 5099.70 8399.77 56
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 699.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 2999.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 10099.03 4997.98 3499.34 3299.00 498.25 7099.71 5099.31 3498.80 6298.82 5299.48 16199.17 164
xxxxxxxxxxxxxcwj98.14 5597.38 10999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2986.38 16998.92 6199.22 2998.84 4899.76 4099.56 128
SF-MVS99.18 1799.32 2999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 799.57 799.97 899.53 1699.65 299.25 1599.84 1199.77 56
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9399.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 154
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6399.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1798.93 5199.45 499.61 12499.76 61
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8799.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1799.42 1898.61 6099.73 5799.52 135
MTMP98.46 1199.96 13
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1599.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3499.56 1098.96 3699.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2798.20 8799.64 11699.69 96
DVP-MVS++99.41 499.64 199.14 899.69 899.75 999.64 898.33 699.67 498.10 1499.66 499.99 199.33 3199.62 598.86 4499.74 4999.90 6
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 999.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3699.34 2499.05 2999.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.09 1699.97 8
CSCG98.90 3198.93 5498.85 2699.75 399.72 1299.49 2296.58 4499.38 2598.05 1798.97 3997.87 7899.49 1997.78 12898.92 3999.78 3399.90 6
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3499.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2299.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3499.06 2899.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1399.38 2399.09 1299.69 899.58 4999.56 1898.32 898.85 9797.87 2198.91 4499.92 2999.30 3699.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4499.78 3399.74 72
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9999.22 3696.70 4399.40 2497.77 2397.89 8099.80 4499.21 3999.02 4598.65 5899.57 14699.07 171
test250697.16 8396.68 13397.73 4996.95 8899.79 498.48 7094.42 6899.17 5497.74 2499.15 2580.93 20298.89 6799.03 4399.09 2499.88 499.62 117
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7899.43 2998.21 2199.36 3097.66 2597.79 8199.90 3399.45 2399.17 3498.43 7099.77 3899.51 140
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8799.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2498.78 6499.30 1199.81 2199.67 102
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2399.24 1799.71 7499.76 61
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3398.89 5699.39 799.79 3099.58 122
dps94.63 14795.31 16293.84 13095.53 12998.71 13096.54 14080.12 20297.81 16397.21 3096.98 9892.37 13496.34 14692.46 21091.77 21097.26 21197.08 205
TSAR-MVS + GP.98.66 4099.36 2597.85 4797.16 8499.46 6699.03 4994.59 6499.09 7097.19 3199.73 399.95 1899.39 2798.95 4998.69 5699.75 4499.65 109
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2799.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
MAR-MVS97.71 6698.04 8697.32 5999.35 4298.91 11597.65 10891.68 11198.00 15097.01 3397.72 8594.83 11398.85 7098.44 9198.86 4499.41 17199.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_698.09 4199.33 4399.22 10098.79 6094.96 5598.52 12997.00 3497.30 9199.86 3898.76 7299.69 8699.41 149
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6899.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2698.87 5999.49 399.85 999.66 106
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2199.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8199.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 1999.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 9099.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3398.35 7699.82 1599.71 90
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6499.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 2999.25 2898.37 7599.64 11699.66 106
ECVR-MVScopyleft97.27 8097.09 12097.48 5696.95 8899.79 498.48 7094.42 6899.17 5496.28 4093.54 15189.39 15198.89 6799.03 4399.09 2499.88 499.61 120
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6499.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3198.79 6399.29 1399.75 4499.64 113
IB-MVS93.96 1595.02 13896.44 14593.36 14597.05 8699.28 9490.43 20593.39 8998.02 14996.02 4294.92 13992.07 13783.52 21495.38 19195.82 16899.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2023121197.10 8697.06 12397.14 6596.32 9799.52 5998.16 8993.76 8198.84 10195.98 4390.92 17094.58 11898.90 6497.72 13398.10 9399.71 7499.75 68
MVSTER97.16 8397.71 9696.52 8795.97 11098.48 14498.63 6592.10 10398.68 11995.96 4499.23 2191.79 13896.87 12998.76 6697.37 12899.57 14699.68 101
test111197.09 8796.83 13097.39 5796.92 9099.81 398.44 7494.45 6799.17 5495.85 4592.10 16488.97 15298.78 7199.02 4599.11 2399.88 499.63 115
baseline197.58 7098.05 8597.02 7296.21 10399.45 6897.71 10593.71 8598.47 13195.75 4698.78 5093.20 13398.91 6398.52 8698.44 6899.81 2199.53 132
MP-MVScopyleft99.07 2499.36 2598.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1599.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet98.05 5798.86 5697.10 6699.02 5099.43 7298.47 7294.73 5899.05 7895.62 4798.93 4297.62 8295.48 16898.59 8298.55 6399.29 18099.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
CS-MVS98.56 4499.32 2997.68 5098.28 6499.89 298.71 6394.53 6699.41 2395.43 5199.05 3798.66 6799.19 4199.21 3199.07 2699.93 199.94 1
canonicalmvs97.31 7897.81 9596.72 7996.20 10499.45 6898.21 8791.60 11399.22 4795.39 5298.48 6190.95 14199.16 4797.66 13599.05 2999.76 4099.90 6
DELS-MVS98.19 5398.77 6097.52 5598.29 6399.71 1599.12 4294.58 6598.80 10795.38 5396.24 11998.24 7597.92 10399.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PGM-MVS98.86 3299.35 2898.29 3699.77 199.63 3099.67 595.63 4798.66 12095.27 5499.11 2999.82 4399.67 499.33 2599.19 2199.73 5799.74 72
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2799.20 3797.75 3998.82 10495.24 5598.85 4799.87 3799.17 4698.74 6997.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.46 4599.16 3897.64 5298.48 6099.64 2799.35 3294.71 5999.53 1495.17 5697.63 8799.59 5598.38 8898.88 5898.99 3499.74 4999.86 19
PatchMatch-RL97.77 6498.25 7497.21 6499.11 4899.25 9697.06 13194.09 7498.72 11895.14 5798.47 6296.29 9598.43 8798.65 7397.44 12499.45 16598.94 174
CHOSEN 280x42097.99 5999.24 3596.53 8698.34 6299.61 3998.36 8089.80 14699.27 4095.08 5899.81 198.58 6998.64 7899.02 4598.92 3998.93 19099.48 144
MVS_111021_HR98.59 4299.36 2597.68 5099.42 3699.61 3998.14 9094.81 5699.31 3495.00 5999.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
EPP-MVSNet97.75 6598.71 6196.63 8495.68 12199.56 5297.51 11193.10 9799.22 4794.99 6097.18 9697.30 8598.65 7798.83 6098.93 3899.84 1199.92 3
MVS_111021_LR98.67 3899.41 2297.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6199.56 899.69 5199.04 5599.36 2198.88 4299.60 13299.58 122
DCV-MVSNet97.56 7198.36 7096.62 8596.44 9598.36 15598.37 7891.73 11099.11 6894.80 6298.36 6796.28 9698.60 8198.12 10398.44 6899.76 4099.87 16
RPSCF97.61 6998.16 8196.96 7798.10 6599.00 10898.84 5893.76 8199.45 2094.78 6399.39 1599.31 5998.53 8596.61 16495.43 17497.74 20397.93 197
DeepPCF-MVS97.74 398.34 4899.46 1397.04 6998.82 5399.33 9096.28 14797.47 4099.58 994.70 6498.99 3899.85 4197.24 12199.55 1199.34 997.73 20599.56 128
CS-MVS-test98.58 4399.42 2197.60 5498.52 5999.91 198.60 6694.60 6399.37 2794.62 6599.40 1499.16 6299.39 2799.36 2198.85 4799.90 399.92 3
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6699.35 1699.97 899.55 1499.63 398.66 5799.70 8399.74 72
thres100view90096.72 9996.47 14297.00 7596.31 9899.52 5998.28 8494.01 7597.35 17194.52 6795.90 12586.93 16199.09 5398.07 10997.87 10399.81 2199.63 115
tfpn200view996.75 9796.51 13997.03 7096.31 9899.67 1898.41 7593.99 7797.35 17194.52 6795.90 12586.93 16199.14 4898.26 9697.80 10799.82 1599.70 92
DROMVSNet98.22 5299.44 1796.79 7895.62 12399.56 5299.01 5192.22 10199.17 5494.51 6999.41 1399.62 5399.49 1999.16 3699.26 1499.91 299.94 1
thres20096.76 9696.53 13797.03 7096.31 9899.67 1898.37 7893.99 7797.68 16694.49 7095.83 12886.77 16399.18 4498.26 9697.82 10699.82 1599.66 106
CLD-MVS96.74 9896.51 13997.01 7496.71 9298.62 13598.73 6194.38 7098.94 8894.46 7197.33 8987.03 15998.07 9797.20 15496.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSDG98.27 5198.29 7298.24 3899.20 4699.22 10099.20 3797.82 3799.37 2794.43 7295.90 12597.31 8499.12 4998.76 6698.35 7699.67 10399.14 168
thres40096.71 10096.45 14497.02 7296.28 10199.63 3098.41 7594.00 7697.82 16194.42 7395.74 12986.26 17099.18 4498.20 10097.79 10899.81 2199.70 92
UGNet97.66 6899.07 4496.01 9997.19 8399.65 2297.09 12993.39 8999.35 3194.40 7498.79 4999.59 5594.24 18898.04 11498.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS97.52 7298.39 6996.51 8895.82 11598.73 12997.80 10193.05 9898.76 11494.39 7599.07 3597.03 8998.55 8398.31 9597.61 11399.43 16899.21 163
thres600view796.69 10196.43 14697.00 7596.28 10199.67 1898.41 7593.99 7797.85 16094.29 7695.96 12385.91 17399.19 4198.26 9697.63 11299.82 1599.73 76
DPM-MVS98.31 5098.53 6598.05 4298.76 5698.77 12299.13 4198.07 3199.10 6994.27 7796.70 10699.84 4298.70 7497.90 12298.11 9299.40 17399.28 157
CostFormer94.25 15594.88 16593.51 14195.43 13398.34 15696.21 14980.64 20097.94 15594.01 7898.30 6986.20 17297.52 11492.71 20892.69 20497.23 21298.02 195
IS_MVSNet97.86 6198.86 5696.68 8096.02 10699.72 1298.35 8193.37 9198.75 11794.01 7896.88 10398.40 7298.48 8699.09 3999.42 599.83 1499.80 35
GBi-Net96.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
test196.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
FMVSNet397.02 8998.12 8395.73 10693.59 16297.98 16598.34 8291.32 12098.80 10793.92 8097.21 9395.94 10397.63 11398.61 7798.62 5999.61 12499.65 109
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8599.48 2497.96 3598.83 10293.86 8398.70 5699.86 3899.44 2499.08 4198.38 7399.61 12499.58 122
XVS97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVStestdata97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVS98.93 3099.37 2498.42 3399.67 1499.62 3499.60 1698.15 2599.08 7293.81 8498.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
FA-MVS(training)96.52 10898.29 7294.45 12195.88 11399.52 5997.66 10781.47 19798.94 8893.79 8795.54 13599.11 6398.29 9098.89 5696.49 14799.63 12199.52 135
ETV-MVS98.05 5799.25 3496.65 8295.61 12499.61 3998.26 8693.52 8798.90 9393.74 8899.32 1799.20 6098.90 6499.21 3198.72 5599.87 899.79 42
PCF-MVS97.50 698.18 5498.35 7197.99 4498.65 5799.36 8298.94 5398.14 2798.59 12293.62 8996.61 11099.76 4999.03 5697.77 12997.45 12399.57 14698.89 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.17 11596.99 12595.21 11188.53 21298.54 14198.28 8492.61 9998.85 9793.60 9099.06 3690.39 14398.63 7995.98 18696.68 14099.61 12499.41 149
FMVSNet296.64 10497.50 10195.63 10893.81 15697.98 16598.09 9290.87 12698.99 8493.48 9193.17 15895.25 10897.89 10498.63 7598.80 5399.68 9599.67 102
FMVSNet595.42 13096.47 14294.20 12492.26 17595.99 21195.66 15687.15 17397.87 15893.46 9296.68 10793.79 12797.52 11497.10 15897.21 13099.11 18796.62 211
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7499.76 696.02 15193.75 8399.26 4393.38 9393.73 14999.35 5896.47 14398.96 4898.46 6799.77 3899.90 6
TAPA-MVS97.53 598.41 4698.84 5897.91 4699.08 4999.33 9099.15 4097.13 4299.34 3293.20 9497.75 8399.19 6199.20 4098.66 7298.13 9099.66 10899.48 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.26 996.67 10396.69 13296.66 8197.29 8198.46 14696.48 14395.09 5299.21 4993.19 9598.78 5086.73 16498.17 9197.84 12696.32 15299.74 4999.49 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP96.25 1096.62 10696.72 13196.50 8996.96 8798.75 12697.80 10194.30 7298.85 9793.12 9698.78 5086.61 16697.23 12297.73 13296.61 14399.62 12299.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030498.14 5599.03 4997.10 6698.05 6899.63 3099.27 3594.33 7199.63 793.06 9797.32 9099.05 6598.09 9698.82 6198.87 4399.81 2199.89 10
test_part195.56 12795.38 15995.78 10296.07 10598.16 16297.57 10990.78 13097.43 17093.04 9889.12 18589.41 15097.93 10296.38 17297.38 12799.29 18099.78 48
FC-MVSNet-train97.04 8897.91 9296.03 9896.00 10898.41 15196.53 14293.42 8899.04 8093.02 9998.03 7694.32 12197.47 11797.93 12097.77 10999.75 4499.88 14
baseline97.45 7598.70 6295.99 10095.89 11199.36 8298.29 8391.37 11999.21 4992.99 10098.40 6596.87 9097.96 10198.60 8098.60 6199.42 17099.86 19
DI_MVS_plusplus_trai96.90 9397.49 10296.21 9395.61 12499.40 7798.72 6292.11 10299.14 6292.98 10193.08 16195.14 10998.13 9598.05 11397.91 10199.74 4999.73 76
DeepC-MVS97.63 498.33 4998.57 6398.04 4398.62 5899.65 2299.45 2698.15 2599.51 1792.80 10295.74 12996.44 9399.46 2299.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs96.93 9297.43 10796.34 9195.70 11999.50 6297.75 10493.22 9498.98 8592.64 10394.97 13791.71 13998.93 6098.62 7698.52 6699.82 1599.72 87
tpm cat194.06 15694.90 16493.06 14995.42 13598.52 14396.64 13880.67 19997.82 16192.63 10493.39 15595.00 11196.06 15391.36 21391.58 21296.98 21396.66 210
thisisatest053097.23 8198.25 7496.05 9695.60 12699.59 4696.96 13393.23 9299.17 5492.60 10598.75 5396.19 9798.17 9198.19 10196.10 16099.72 6499.77 56
tttt051797.23 8198.24 7796.04 9795.60 12699.60 4496.94 13493.23 9299.15 5992.56 10698.74 5496.12 10098.17 9198.21 9996.10 16099.73 5799.78 48
test0.0.03 196.69 10198.12 8395.01 11395.49 13198.99 11095.86 15390.82 12898.38 13492.54 10796.66 10897.33 8395.75 15897.75 13198.34 7899.60 13299.40 152
EIA-MVS97.70 6798.78 5996.44 9095.72 11899.65 2298.14 9093.72 8498.30 13892.31 10898.63 5797.90 7798.97 5998.92 5398.30 8299.78 3399.80 35
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6699.44 2898.13 2899.65 592.30 10998.91 4499.95 1899.05 5499.42 1898.95 3799.58 14299.82 28
diffmvs96.83 9497.33 11296.25 9295.76 11699.34 8798.06 9693.22 9499.43 2292.30 10996.90 10289.83 14998.55 8398.00 11798.14 8999.64 11699.70 92
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5899.52 3399.42 7398.91 5494.61 6198.87 9492.24 11194.61 14199.05 6599.10 5198.64 7499.05 2999.74 4999.51 140
FMVSNet195.77 12396.41 14795.03 11293.42 16397.86 17297.11 12889.89 14398.53 12792.00 11289.17 18293.23 13298.15 9498.07 10998.34 7899.61 12499.69 96
CDPH-MVS98.41 4699.10 4197.61 5399.32 4499.36 8299.49 2296.15 4698.82 10491.82 11398.41 6499.66 5299.10 5198.93 5198.97 3599.75 4499.58 122
COLMAP_ROBcopyleft96.15 1297.78 6398.17 8097.32 5998.84 5299.45 6899.28 3495.43 5099.48 1991.80 11494.83 14098.36 7398.90 6498.09 10697.85 10499.68 9599.15 165
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_Test97.30 7998.54 6495.87 10195.74 11799.28 9498.19 8891.40 11899.18 5391.59 11598.17 7296.18 9898.63 7998.61 7798.55 6399.66 10899.78 48
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10999.62 3497.82 10093.22 9498.82 10491.40 11696.94 10098.56 7095.70 16099.14 3799.41 699.79 3099.75 68
TSAR-MVS + COLMAP96.79 9596.55 13697.06 6897.70 7398.46 14699.07 4696.23 4599.38 2591.32 11798.80 4885.61 17598.69 7697.64 13896.92 13599.37 17599.06 172
baseline296.36 11197.82 9494.65 11794.60 14899.09 10696.45 14489.63 14898.36 13691.29 11897.60 8894.13 12496.37 14498.45 8997.70 11099.54 15599.41 149
pmmvs495.09 13695.90 15294.14 12592.29 17497.70 17695.45 16190.31 13798.60 12190.70 11993.25 15689.90 14796.67 13697.13 15695.42 17599.44 16799.28 157
TAMVS95.53 12896.50 14194.39 12393.86 15599.03 10796.67 13789.55 15097.33 17390.64 12093.02 16291.58 14096.21 14797.72 13397.43 12599.43 16899.36 154
EPMVS95.05 13796.86 12992.94 15195.84 11498.96 11396.68 13679.87 20399.05 7890.15 12197.12 9795.99 10297.49 11695.17 19594.75 19397.59 20796.96 207
CDS-MVSNet96.59 10798.02 8894.92 11494.45 14998.96 11397.46 11391.75 10997.86 15990.07 12296.02 12297.25 8696.21 14798.04 11498.38 7399.60 13299.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10996.99 12595.74 10598.01 6999.72 1297.70 10690.78 13099.13 6790.03 12387.35 19895.36 10798.33 8998.59 8298.91 4199.59 13899.87 16
OPM-MVS96.22 11495.85 15596.65 8297.75 7198.54 14199.00 5295.53 4896.88 18489.88 12495.95 12486.46 16898.07 9797.65 13796.63 14299.67 10398.83 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch95.99 11997.26 11794.51 11997.46 7598.76 12597.27 11986.97 17499.09 7089.83 12593.51 15397.78 7996.18 14997.53 14295.71 17199.35 17698.41 187
HyFIR lowres test95.99 11996.56 13595.32 11097.99 7099.65 2296.54 14088.86 15598.44 13289.77 12684.14 20897.05 8899.03 5698.55 8498.19 8899.73 5799.86 19
FC-MVSNet-test96.07 11897.94 9193.89 12993.60 16198.67 13296.62 13990.30 13998.76 11488.62 12795.57 13497.63 8194.48 18497.97 11897.48 12199.71 7499.52 135
HQP-MVS96.37 11096.58 13496.13 9597.31 8098.44 14898.45 7395.22 5198.86 9588.58 12898.33 6887.00 16097.67 11297.23 15296.56 14599.56 14999.62 117
IterMVS-LS96.12 11797.48 10394.53 11895.19 13897.56 19097.15 12589.19 15399.08 7288.23 12994.97 13794.73 11597.84 10997.86 12598.26 8499.60 13299.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D97.79 6298.25 7497.26 6398.40 6199.63 3099.53 1998.63 199.25 4588.13 13096.93 10194.14 12399.19 4199.14 3799.23 1899.69 8699.42 148
UA-Net97.13 8599.14 3994.78 11597.21 8299.38 7897.56 11092.04 10498.48 13088.03 13198.39 6699.91 3294.03 19199.33 2599.23 1899.81 2199.25 160
UniMVSNet (Re)94.58 15095.34 16093.71 13492.25 17698.08 16494.97 16891.29 12497.03 18287.94 13293.97 14886.25 17196.07 15296.27 17895.97 16599.72 6499.79 42
MDTV_nov1_ep1395.57 12697.48 10393.35 14695.43 13398.97 11297.19 12483.72 19598.92 9287.91 13397.75 8396.12 10097.88 10796.84 16395.64 17297.96 20198.10 193
GeoE95.98 12197.24 11894.51 11995.02 14199.38 7898.02 9787.86 16998.37 13587.86 13492.99 16393.54 12898.56 8298.61 7797.92 9999.73 5799.85 22
Baseline_NR-MVSNet93.87 16293.98 18493.75 13291.66 18997.02 20395.53 15991.52 11797.16 17987.77 13587.93 19683.69 18596.35 14595.10 19797.23 12999.68 9599.73 76
Fast-Effi-MVS+95.38 13296.52 13894.05 12894.15 15199.14 10597.24 12186.79 17598.53 12787.62 13694.51 14287.06 15898.76 7298.60 8098.04 9699.72 6499.77 56
UniMVSNet_ETH3D93.15 17192.33 20494.11 12693.91 15398.61 13794.81 17590.98 12597.06 18087.51 13782.27 21276.33 21897.87 10894.79 20197.47 12299.56 14999.81 33
ACMH+95.51 1395.40 13196.00 14994.70 11696.33 9698.79 11996.79 13591.32 12098.77 11387.18 13895.60 13385.46 17696.97 12697.15 15596.59 14499.59 13899.65 109
tmp_tt82.25 21297.73 7288.71 22080.18 22068.65 22399.15 5986.98 13999.47 1085.31 17868.35 22187.51 21583.81 21791.64 220
testgi95.67 12597.48 10393.56 13895.07 14099.00 10895.33 16488.47 16198.80 10786.90 14097.30 9192.33 13595.97 15597.66 13597.91 10199.60 13299.38 153
ACMH95.42 1495.27 13595.96 15194.45 12196.83 9198.78 12194.72 17891.67 11298.95 8686.82 14196.42 11683.67 18697.00 12597.48 14496.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet94.59 14995.47 15893.55 13991.85 18497.89 17195.03 16692.00 10597.33 17386.12 14293.19 15787.29 15796.60 13996.12 18196.70 13999.72 6499.80 35
DU-MVS93.98 15994.44 17493.44 14291.66 18997.77 17395.03 16691.57 11497.17 17786.12 14293.13 15981.13 20196.60 13995.10 19797.01 13499.67 10399.80 35
PatchmatchNetpermissive94.70 14497.08 12291.92 16695.53 12998.85 11795.77 15479.54 20598.95 8685.98 14498.52 5996.45 9197.39 11995.32 19294.09 19897.32 20997.38 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 15794.51 17293.44 14292.56 16997.77 17395.67 15591.57 11497.17 17785.84 14593.13 15980.53 20495.29 17497.01 15996.17 15799.69 8699.75 68
ADS-MVSNet94.65 14697.04 12491.88 16995.68 12198.99 11095.89 15279.03 21099.15 5985.81 14696.96 9998.21 7697.10 12394.48 20394.24 19797.74 20397.21 203
SCA94.95 13997.44 10692.04 16195.55 12899.16 10396.26 14879.30 20799.02 8185.73 14798.18 7197.13 8797.69 11196.03 18494.91 18897.69 20697.65 199
LGP-MVS_train96.23 11396.89 12795.46 10997.32 7898.77 12298.81 5993.60 8698.58 12385.52 14899.08 3486.67 16597.83 11097.87 12497.51 11799.69 8699.73 76
Vis-MVSNetpermissive96.16 11698.22 7893.75 13295.33 13699.70 1797.27 11990.85 12798.30 13885.51 14995.72 13196.45 9193.69 19798.70 7199.00 3399.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+95.81 12297.31 11694.06 12795.09 13999.35 8597.24 12188.22 16498.54 12685.38 15098.52 5988.68 15398.70 7498.32 9497.93 9899.74 4999.84 23
TranMVSNet+NR-MVSNet93.67 16594.14 17793.13 14891.28 20397.58 18895.60 15891.97 10697.06 18084.05 15190.64 17582.22 19696.17 15094.94 20096.78 13799.69 8699.78 48
thisisatest051594.61 14896.89 12791.95 16592.00 17998.47 14592.01 20090.73 13298.18 14383.96 15294.51 14295.13 11093.38 19897.38 14694.74 19499.61 12499.79 42
tfpnnormal93.85 16494.12 17993.54 14093.22 16498.24 15995.45 16191.96 10794.61 21083.91 15390.74 17281.75 19997.04 12497.49 14396.16 15899.68 9599.84 23
WR-MVS_H93.54 16694.67 17092.22 15691.95 18097.91 17094.58 18488.75 15796.64 19183.88 15490.66 17485.13 17994.40 18596.54 16895.91 16799.73 5799.89 10
pm-mvs194.27 15395.57 15792.75 15292.58 16898.13 16394.87 17390.71 13396.70 19083.78 15589.94 17889.85 14894.96 18197.58 14097.07 13199.61 12499.72 87
RPMNet94.66 14597.16 11991.75 17094.98 14298.59 13897.00 13278.37 21497.98 15183.78 15596.27 11894.09 12696.91 12897.36 14796.73 13899.48 16199.09 170
tpmrst93.86 16395.88 15391.50 17395.69 12098.62 13595.64 15779.41 20698.80 10783.76 15795.63 13296.13 9997.25 12092.92 20792.31 20697.27 21096.74 208
MIMVSNet94.49 15297.59 10090.87 18691.74 18798.70 13194.68 18078.73 21297.98 15183.71 15897.71 8694.81 11496.96 12797.97 11897.92 9999.40 17398.04 194
WR-MVS93.43 16994.48 17392.21 15791.52 19697.69 17894.66 18289.98 14196.86 18583.43 15990.12 17685.03 18093.94 19396.02 18595.82 16899.71 7499.82 28
v14892.36 19292.88 19991.75 17091.63 19297.66 18092.64 19790.55 13596.09 19983.34 16088.19 19180.00 20792.74 20293.98 20594.58 19599.58 14299.69 96
TinyColmap94.00 15894.35 17593.60 13695.89 11198.26 15797.49 11288.82 15698.56 12583.21 16191.28 16980.48 20596.68 13597.34 14896.26 15599.53 15798.24 191
CP-MVSNet93.25 17094.00 18392.38 15591.65 19197.56 19094.38 18789.20 15296.05 20183.16 16289.51 18081.97 19796.16 15196.43 17096.56 14599.71 7499.89 10
TransMVSNet (Re)93.45 16794.08 18092.72 15392.83 16597.62 18694.94 16991.54 11695.65 20783.06 16388.93 18683.53 18794.25 18797.41 14597.03 13299.67 10398.40 190
CVMVSNet95.33 13497.09 12093.27 14795.23 13798.39 15395.49 16092.58 10097.71 16583.00 16494.44 14493.28 13193.92 19497.79 12798.54 6599.41 17199.45 146
test-LLR95.50 12997.32 11393.37 14495.49 13198.74 12796.44 14590.82 12898.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
TESTMET0.1,194.95 13997.32 11392.20 15892.62 16798.74 12796.44 14586.67 17798.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
USDC94.26 15494.83 16693.59 13796.02 10698.44 14897.84 9988.65 15998.86 9582.73 16794.02 14680.56 20396.76 13297.28 15196.15 15999.55 15198.50 185
test-mter94.86 14297.32 11392.00 16392.41 17298.82 11896.18 15086.35 18198.05 14882.28 16896.48 11594.39 12095.46 17098.17 10296.20 15699.32 17899.13 169
pmmvs-eth3d89.81 20389.65 21090.00 19386.94 21495.38 21391.08 20186.39 18094.57 21182.27 16983.03 21164.94 22193.96 19296.57 16793.82 20099.35 17699.24 161
Effi-MVS+-dtu95.74 12498.04 8693.06 14993.92 15299.16 10397.90 9888.16 16699.07 7782.02 17098.02 7794.32 12196.74 13398.53 8597.56 11599.61 12499.62 117
PEN-MVS92.72 18193.20 19792.15 15991.29 20197.31 20094.67 18189.81 14496.19 19781.83 17188.58 18979.06 21395.61 16495.21 19496.27 15399.72 6499.82 28
DTE-MVSNet92.42 18992.85 20091.91 16790.87 20696.97 20494.53 18689.81 14495.86 20681.59 17288.83 18777.88 21695.01 18094.34 20496.35 15199.64 11699.73 76
PS-CasMVS92.72 18193.36 19591.98 16491.62 19397.52 19294.13 19188.98 15495.94 20481.51 17387.35 19879.95 20995.91 15696.37 17396.49 14799.70 8399.89 10
Fast-Effi-MVS+-dtu95.38 13298.20 7992.09 16093.91 15398.87 11697.35 11685.01 18899.08 7281.09 17498.10 7396.36 9495.62 16398.43 9297.03 13299.55 15199.50 142
TDRefinement93.04 17493.57 19192.41 15496.58 9398.77 12297.78 10391.96 10798.12 14680.84 17589.13 18479.87 21087.78 21096.44 16994.50 19699.54 15598.15 192
pmmvs691.90 19692.53 20391.17 18091.81 18597.63 18393.23 19388.37 16393.43 21580.61 17677.32 21687.47 15694.12 18996.58 16695.72 17098.88 19299.53 132
V4293.05 17393.90 18792.04 16191.91 18197.66 18094.91 17089.91 14296.85 18680.58 17789.66 17983.43 18995.37 17295.03 19994.90 18999.59 13899.78 48
CR-MVSNet94.57 15197.34 11191.33 17794.90 14398.59 13897.15 12579.14 20897.98 15180.42 17896.59 11393.50 13096.85 13098.10 10497.49 11999.50 16099.15 165
Patchmtry98.59 13897.15 12579.14 20880.42 178
PatchT93.96 16097.36 11090.00 19394.76 14798.65 13390.11 20878.57 21397.96 15480.42 17896.07 12194.10 12596.85 13098.10 10497.49 11999.26 18299.15 165
v892.87 17593.87 18891.72 17292.05 17897.50 19394.79 17688.20 16596.85 18680.11 18190.01 17782.86 19395.48 16895.15 19694.90 18999.66 10899.80 35
CANet_DTU96.64 10499.08 4293.81 13197.10 8599.42 7398.85 5790.01 14099.31 3479.98 18299.78 299.10 6497.42 11898.35 9398.05 9599.47 16399.53 132
v1092.79 17994.06 18191.31 17891.78 18697.29 20294.87 17386.10 18296.97 18379.82 18388.16 19284.56 18395.63 16296.33 17695.31 17799.65 11299.80 35
EG-PatchMatch MVS92.45 18593.92 18690.72 18792.56 16998.43 15094.88 17284.54 19197.18 17679.55 18486.12 20583.23 19093.15 20197.22 15396.00 16299.67 10399.27 159
v2v48292.77 18093.52 19491.90 16891.59 19497.63 18394.57 18590.31 13796.80 18879.22 18588.74 18881.55 20096.04 15495.26 19394.97 18799.66 10899.69 96
EPNet_dtu96.30 11298.53 6593.70 13598.97 5198.24 15997.36 11594.23 7398.85 9779.18 18699.19 2298.47 7194.09 19097.89 12398.21 8698.39 19698.85 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet92.80 17894.76 16890.51 18891.88 18296.74 20892.48 19888.69 15896.21 19679.00 18791.51 16687.82 15591.83 20695.87 18896.27 15399.21 18398.92 178
pmmvs592.71 18394.27 17690.90 18591.42 19897.74 17593.23 19386.66 17895.99 20378.96 18891.45 16783.44 18895.55 16597.30 15095.05 18599.58 14298.93 175
v114492.81 17794.03 18291.40 17691.68 18897.60 18794.73 17788.40 16296.71 18978.48 18988.14 19384.46 18495.45 17196.31 17795.22 18099.65 11299.76 61
v14419292.38 19093.55 19391.00 18391.44 19797.47 19594.27 18887.41 17296.52 19478.03 19087.50 19782.65 19595.32 17395.82 18995.15 18299.55 15199.78 48
SixPastTwentyTwo93.44 16895.32 16191.24 17992.11 17798.40 15292.77 19688.64 16098.09 14777.83 19193.51 15385.74 17496.52 14296.91 16194.89 19199.59 13899.73 76
MVS-HIRNet92.51 18495.97 15088.48 20193.73 15998.37 15490.33 20675.36 22098.32 13777.78 19289.15 18394.87 11295.14 17897.62 13996.39 15098.51 19397.11 204
v7n91.61 19792.95 19890.04 19290.56 20797.69 17893.74 19285.59 18495.89 20576.95 19386.60 20378.60 21593.76 19697.01 15994.99 18699.65 11299.87 16
v119292.43 18893.61 19091.05 18291.53 19597.43 19694.61 18387.99 16796.60 19276.72 19487.11 20082.74 19495.85 15796.35 17595.30 17899.60 13299.74 72
v192192092.36 19293.57 19190.94 18491.39 19997.39 19894.70 17987.63 17196.60 19276.63 19586.98 20182.89 19295.75 15896.26 17995.14 18399.55 15199.73 76
MDTV_nov1_ep13_2view92.44 18695.66 15688.68 19991.05 20597.92 16992.17 19979.64 20498.83 10276.20 19691.45 16793.51 12995.04 17995.68 19093.70 20197.96 20198.53 184
PM-MVS89.55 20490.30 20988.67 20087.06 21395.60 21290.88 20384.51 19296.14 19875.75 19786.89 20263.47 22494.64 18396.85 16293.89 19999.17 18699.29 156
IterMVS-SCA-FT94.89 14197.87 9391.42 17494.86 14597.70 17697.24 12184.88 18998.93 9075.74 19894.26 14598.25 7496.69 13498.52 8697.68 11199.10 18899.73 76
IterMVS94.81 14397.71 9691.42 17494.83 14697.63 18397.38 11485.08 18698.93 9075.67 19994.02 14697.64 8096.66 13798.45 8997.60 11498.90 19199.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepMVS_CXcopyleft96.85 20587.43 21589.27 15198.30 13875.55 20095.05 13679.47 21192.62 20489.48 21495.18 21995.96 212
v124091.99 19593.33 19690.44 18991.29 20197.30 20194.25 18986.79 17596.43 19575.49 20186.34 20481.85 19895.29 17496.42 17195.22 18099.52 15899.73 76
CMPMVSbinary70.31 1890.74 19991.06 20790.36 19197.32 7897.43 19692.97 19587.82 17093.50 21475.34 20283.27 21084.90 18192.19 20592.64 20991.21 21396.50 21694.46 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm92.38 19094.79 16789.56 19794.30 15097.50 19394.24 19078.97 21197.72 16474.93 20397.97 7882.91 19196.60 13993.65 20694.81 19298.33 19798.98 173
ambc80.99 21580.04 22190.84 21890.91 20296.09 19974.18 20462.81 21930.59 23082.44 21596.25 18091.77 21095.91 21898.56 183
N_pmnet92.21 19494.60 17189.42 19891.88 18297.38 19989.15 21289.74 14797.89 15773.75 20587.94 19592.23 13693.85 19596.10 18293.20 20398.15 20097.43 201
anonymousdsp93.12 17295.86 15489.93 19591.09 20498.25 15895.12 16585.08 18697.44 16973.30 20690.89 17190.78 14295.25 17697.91 12195.96 16699.71 7499.82 28
GA-MVS93.93 16196.31 14891.16 18193.61 16098.79 11995.39 16390.69 13498.25 14173.28 20796.15 12088.42 15494.39 18697.76 13095.35 17699.58 14299.45 146
test_method87.27 20991.58 20582.25 21275.65 22387.52 22286.81 21672.60 22197.51 16873.20 20885.07 20779.97 20888.69 20997.31 14995.24 17996.53 21598.41 187
pmnet_mix0292.44 18694.68 16989.83 19692.46 17197.65 18289.92 21090.49 13698.76 11473.05 20991.78 16590.08 14694.86 18294.53 20291.94 20998.21 19998.01 196
test20.0390.65 20193.71 18987.09 20390.44 20896.24 20989.74 21185.46 18595.59 20872.99 21090.68 17385.33 17784.41 21395.94 18795.10 18499.52 15897.06 206
MDA-MVSNet-bldmvs87.84 20889.22 21186.23 20681.74 21896.77 20783.74 21889.57 14994.50 21272.83 21196.64 10964.47 22392.71 20381.43 21892.28 20796.81 21498.47 186
MIMVSNet188.61 20690.68 20886.19 20781.56 21995.30 21587.78 21485.98 18394.19 21372.30 21278.84 21578.90 21490.06 20796.59 16595.47 17399.46 16495.49 213
new_pmnet90.45 20292.84 20187.66 20288.96 21196.16 21088.71 21384.66 19097.56 16771.91 21385.60 20686.58 16793.28 19996.07 18393.54 20298.46 19494.39 215
Anonymous2023120690.70 20093.93 18586.92 20590.21 21096.79 20690.30 20786.61 17996.05 20169.25 21488.46 19084.86 18285.86 21297.11 15796.47 14999.30 17997.80 198
RE-MVS-def69.05 215
LTVRE_ROB93.20 1692.84 17694.92 16390.43 19092.83 16598.63 13497.08 13087.87 16897.91 15668.42 21693.54 15179.46 21296.62 13897.55 14197.40 12699.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet86.12 21087.30 21284.74 20986.92 21595.19 21683.57 21984.42 19392.67 21665.66 21780.32 21364.72 22289.41 20892.33 21289.21 21498.43 19596.69 209
FPMVS83.82 21184.61 21382.90 21190.39 20990.71 21990.85 20484.10 19495.47 20965.15 21883.44 20974.46 21975.48 21681.63 21779.42 21991.42 22187.14 219
PMVScopyleft72.60 1776.39 21477.66 21774.92 21581.04 22069.37 22768.47 22480.54 20185.39 22065.07 21973.52 21772.91 22065.67 22280.35 21976.81 22088.71 22285.25 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gm-plane-assit89.44 20592.82 20285.49 20891.37 20095.34 21479.55 22282.12 19691.68 21864.79 22087.98 19480.26 20695.66 16198.51 8897.56 11599.45 16598.41 187
Gipumacopyleft81.40 21281.78 21480.96 21483.21 21785.61 22379.73 22176.25 21997.33 17364.21 22155.32 22055.55 22586.04 21192.43 21192.20 20896.32 21793.99 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs388.19 20791.27 20684.60 21085.60 21693.66 21785.68 21781.13 19892.36 21763.66 22289.51 18077.10 21793.22 20096.37 17392.40 20598.30 19897.46 200
gg-mvs-nofinetune90.85 19894.14 17787.02 20494.89 14499.25 9698.64 6476.29 21888.24 21957.50 22379.93 21495.45 10695.18 17798.77 6598.07 9499.62 12299.24 161
PMMVS277.26 21379.47 21674.70 21676.00 22288.37 22174.22 22376.34 21778.31 22154.13 22469.96 21852.50 22670.14 22084.83 21688.71 21597.35 20893.58 217
MVEpermissive67.97 1965.53 21867.43 22063.31 21959.33 22674.20 22453.09 22870.43 22266.27 22443.13 22545.98 22430.62 22970.65 21979.34 22086.30 21683.25 22589.33 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN68.30 21668.43 21868.15 21774.70 22571.56 22655.64 22677.24 21577.48 22339.46 22651.95 22341.68 22873.28 21870.65 22179.51 21888.61 22386.20 221
EMVS68.12 21768.11 21968.14 21875.51 22471.76 22555.38 22777.20 21677.78 22237.79 22753.59 22143.61 22774.72 21767.05 22276.70 22188.27 22486.24 220
testmvs31.24 21940.15 22120.86 22112.61 22717.99 22825.16 22913.30 22448.42 22524.82 22853.07 22230.13 23128.47 22342.73 22337.65 22220.79 22651.04 223
test12326.75 22034.25 22218.01 2227.93 22817.18 22924.85 23012.36 22544.83 22616.52 22941.80 22518.10 23228.29 22433.08 22434.79 22318.10 22749.95 224
GG-mvs-BLEND69.11 21598.13 8235.26 2203.49 22998.20 16194.89 1712.38 22698.42 1335.82 23096.37 11798.60 685.97 22598.75 6897.98 9799.01 18998.61 182
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
Anonymous20240521197.40 10896.45 9499.54 5598.08 9593.79 8098.24 14293.55 15094.41 11998.88 6998.04 11498.24 8599.75 4499.76 61
our_test_392.30 17397.58 18890.09 209
Patchmatch-RL test66.86 225
mPP-MVS99.53 3199.89 35
NP-MVS98.57 124