This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS++99.41 499.64 199.14 899.69 899.75 999.64 898.33 699.67 498.10 1499.66 499.99 199.33 3199.62 598.86 4499.74 4999.90 6
SED-MVS99.44 399.58 499.28 399.69 899.76 699.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3899.61 698.83 5099.70 8399.77 56
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 699.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 2999.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3499.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1599.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3499.56 1098.96 3699.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 999.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3699.34 2499.05 2999.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2199.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6699.35 1699.97 899.55 1499.63 398.66 5799.70 8399.74 72
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2299.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
MTAPA98.09 1699.97 8
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2399.24 1799.71 7499.76 61
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 799.57 799.97 899.53 1699.65 299.25 1599.84 1199.77 56
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP98.46 1199.96 13
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6499.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 2999.25 2898.37 7599.64 11699.66 106
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4499.78 3399.74 72
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3398.89 5699.39 799.79 3099.58 122
XVS97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVStestdata97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVS98.93 3099.37 2498.42 3399.67 1499.62 3499.60 1698.15 2599.08 7293.81 8498.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3499.06 2899.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6699.44 2898.13 2899.65 592.30 10998.91 4499.95 1899.05 5499.42 1898.95 3799.58 14299.82 28
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2799.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
TSAR-MVS + GP.98.66 4099.36 2597.85 4797.16 8499.46 6699.03 4994.59 6499.09 7097.19 3199.73 399.95 1899.39 2798.95 4998.69 5699.75 4499.65 109
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2798.20 8799.64 11699.69 96
SR-MVS99.67 1498.25 1599.94 26
MP-MVScopyleft99.07 2499.36 2598.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1599.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8799.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1799.42 1898.61 6099.73 5799.52 135
SF-MVS99.18 1799.32 2999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
APD-MVScopyleft99.25 1399.38 2399.09 1299.69 899.58 4999.56 1898.32 898.85 9797.87 2198.91 4499.92 2999.30 3699.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8199.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 1999.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net97.13 8599.14 3994.78 11597.21 8299.38 7897.56 11092.04 10498.48 13088.03 13198.39 6699.91 3294.03 19199.33 2599.23 1899.81 2199.25 160
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 9099.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3398.35 7699.82 1599.71 90
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7899.43 2998.21 2199.36 3097.66 2597.79 8199.90 3399.45 2399.17 3498.43 7099.77 3899.51 140
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6399.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1798.93 5199.45 499.61 12499.76 61
mPP-MVS99.53 3199.89 35
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2799.20 3797.75 3998.82 10495.24 5598.85 4799.87 3799.17 4698.74 6997.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8599.48 2497.96 3598.83 10293.86 8398.70 5699.86 3899.44 2499.08 4198.38 7399.61 12499.58 122
abl_698.09 4199.33 4399.22 10098.79 6094.96 5598.52 12997.00 3497.30 9199.86 3898.76 7299.69 8699.41 149
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8799.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2498.78 6499.30 1199.81 2199.67 102
DeepPCF-MVS97.74 398.34 4899.46 1397.04 6998.82 5399.33 9096.28 14797.47 4099.58 994.70 6498.99 3899.85 4197.24 12199.55 1199.34 997.73 20599.56 128
DPM-MVS98.31 5098.53 6598.05 4298.76 5698.77 12299.13 4198.07 3199.10 6994.27 7796.70 10699.84 4298.70 7497.90 12298.11 9299.40 17399.28 157
PGM-MVS98.86 3299.35 2898.29 3699.77 199.63 3099.67 595.63 4798.66 12095.27 5499.11 2999.82 4399.67 499.33 2599.19 2199.73 5799.74 72
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6499.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3198.79 6399.29 1399.75 4499.64 113
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9999.22 3696.70 4399.40 2497.77 2397.89 8099.80 4499.21 3999.02 4598.65 5899.57 14699.07 171
9.1499.79 46
MVS_111021_HR98.59 4299.36 2597.68 5099.42 3699.61 3998.14 9094.81 5699.31 3495.00 5999.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9899.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 2998.71 7098.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.50 698.18 5498.35 7197.99 4498.65 5799.36 8298.94 5398.14 2798.59 12293.62 8996.61 11099.76 4999.03 5697.77 12997.45 12399.57 14698.89 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 10099.03 4997.98 3499.34 3299.00 498.25 7099.71 5099.31 3498.80 6298.82 5299.48 16199.17 164
MVS_111021_LR98.67 3899.41 2297.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6199.56 899.69 5199.04 5599.36 2198.88 4299.60 13299.58 122
CDPH-MVS98.41 4699.10 4197.61 5399.32 4499.36 8299.49 2296.15 4698.82 10491.82 11398.41 6499.66 5299.10 5198.93 5198.97 3599.75 4499.58 122
DROMVSNet98.22 5299.44 1796.79 7895.62 12399.56 5299.01 5192.22 10199.17 5494.51 6999.41 1399.62 5399.49 1999.16 3699.26 1499.91 299.94 1
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6899.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2698.87 5999.49 399.85 999.66 106
CANet98.46 4599.16 3897.64 5298.48 6099.64 2799.35 3294.71 5999.53 1495.17 5697.63 8799.59 5598.38 8898.88 5898.99 3499.74 4999.86 19
UGNet97.66 6899.07 4496.01 9997.19 8399.65 2297.09 12993.39 8999.35 3194.40 7498.79 4999.59 5594.24 18898.04 11498.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9399.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 154
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7499.76 696.02 15193.75 8399.26 4393.38 9393.73 14999.35 5896.47 14398.96 4898.46 6799.77 3899.90 6
RPSCF97.61 6998.16 8196.96 7798.10 6599.00 10898.84 5893.76 8199.45 2094.78 6399.39 1599.31 5998.53 8596.61 16495.43 17497.74 20397.93 197
ETV-MVS98.05 5799.25 3496.65 8295.61 12499.61 3998.26 8693.52 8798.90 9393.74 8899.32 1799.20 6098.90 6499.21 3198.72 5599.87 899.79 42
TAPA-MVS97.53 598.41 4698.84 5897.91 4699.08 4999.33 9099.15 4097.13 4299.34 3293.20 9497.75 8399.19 6199.20 4098.66 7298.13 9099.66 10899.48 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test98.58 4399.42 2197.60 5498.52 5999.91 198.60 6694.60 6399.37 2794.62 6599.40 1499.16 6299.39 2799.36 2198.85 4799.90 399.92 3
FA-MVS(training)96.52 10898.29 7294.45 12195.88 11399.52 5997.66 10781.47 19798.94 8893.79 8795.54 13599.11 6398.29 9098.89 5696.49 14799.63 12199.52 135
CANet_DTU96.64 10499.08 4293.81 13197.10 8599.42 7398.85 5790.01 14099.31 3479.98 18299.78 299.10 6497.42 11898.35 9398.05 9599.47 16399.53 132
MVS_030498.14 5599.03 4997.10 6698.05 6899.63 3099.27 3594.33 7199.63 793.06 9797.32 9099.05 6598.09 9698.82 6198.87 4399.81 2199.89 10
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5899.52 3399.42 7398.91 5494.61 6198.87 9492.24 11194.61 14199.05 6599.10 5198.64 7499.05 2999.74 4999.51 140
CS-MVS98.56 4499.32 2997.68 5098.28 6499.89 298.71 6394.53 6699.41 2395.43 5199.05 3798.66 6799.19 4199.21 3199.07 2699.93 199.94 1
GG-mvs-BLEND69.11 21598.13 8235.26 2203.49 22998.20 16194.89 1712.38 22698.42 1335.82 23096.37 11798.60 685.97 22598.75 6897.98 9799.01 18998.61 182
CHOSEN 280x42097.99 5999.24 3596.53 8698.34 6299.61 3998.36 8089.80 14699.27 4095.08 5899.81 198.58 6998.64 7899.02 4598.92 3998.93 19099.48 144
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10999.62 3497.82 10093.22 9498.82 10491.40 11696.94 10098.56 7095.70 16099.14 3799.41 699.79 3099.75 68
EPNet_dtu96.30 11298.53 6593.70 13598.97 5198.24 15997.36 11594.23 7398.85 9779.18 18699.19 2298.47 7194.09 19097.89 12398.21 8698.39 19698.85 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 6198.86 5696.68 8096.02 10699.72 1298.35 8193.37 9198.75 11794.01 7896.88 10398.40 7298.48 8699.09 3999.42 599.83 1499.80 35
COLMAP_ROBcopyleft96.15 1297.78 6398.17 8097.32 5998.84 5299.45 6899.28 3495.43 5099.48 1991.80 11494.83 14098.36 7398.90 6498.09 10697.85 10499.68 9599.15 165
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT94.89 14197.87 9391.42 17494.86 14597.70 17697.24 12184.88 18998.93 9075.74 19894.26 14598.25 7496.69 13498.52 8697.68 11199.10 18899.73 76
DELS-MVS98.19 5398.77 6097.52 5598.29 6399.71 1599.12 4294.58 6598.80 10795.38 5396.24 11998.24 7597.92 10399.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet94.65 14697.04 12491.88 16995.68 12198.99 11095.89 15279.03 21099.15 5985.81 14696.96 9998.21 7697.10 12394.48 20394.24 19797.74 20397.21 203
EIA-MVS97.70 6798.78 5996.44 9095.72 11899.65 2298.14 9093.72 8498.30 13892.31 10898.63 5797.90 7798.97 5998.92 5398.30 8299.78 3399.80 35
CSCG98.90 3198.93 5498.85 2699.75 399.72 1299.49 2296.58 4499.38 2598.05 1798.97 3997.87 7899.49 1997.78 12898.92 3999.78 3399.90 6
MS-PatchMatch95.99 11997.26 11794.51 11997.46 7598.76 12597.27 11986.97 17499.09 7089.83 12593.51 15397.78 7996.18 14997.53 14295.71 17199.35 17698.41 187
IterMVS94.81 14397.71 9691.42 17494.83 14697.63 18397.38 11485.08 18698.93 9075.67 19994.02 14697.64 8096.66 13798.45 8997.60 11498.90 19199.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11897.94 9193.89 12993.60 16198.67 13296.62 13990.30 13998.76 11488.62 12795.57 13497.63 8194.48 18497.97 11897.48 12199.71 7499.52 135
EPNet98.05 5798.86 5697.10 6699.02 5099.43 7298.47 7294.73 5899.05 7895.62 4798.93 4297.62 8295.48 16898.59 8298.55 6399.29 18099.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 196.69 10198.12 8395.01 11395.49 13198.99 11095.86 15390.82 12898.38 13492.54 10796.66 10897.33 8395.75 15897.75 13198.34 7899.60 13299.40 152
MSDG98.27 5198.29 7298.24 3899.20 4699.22 10099.20 3797.82 3799.37 2794.43 7295.90 12597.31 8499.12 4998.76 6698.35 7699.67 10399.14 168
EPP-MVSNet97.75 6598.71 6196.63 8495.68 12199.56 5297.51 11193.10 9799.22 4794.99 6097.18 9697.30 8598.65 7798.83 6098.93 3899.84 1199.92 3
CDS-MVSNet96.59 10798.02 8894.92 11494.45 14998.96 11397.46 11391.75 10997.86 15990.07 12296.02 12297.25 8696.21 14798.04 11498.38 7399.60 13299.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA94.95 13997.44 10692.04 16195.55 12899.16 10396.26 14879.30 20799.02 8185.73 14798.18 7197.13 8797.69 11196.03 18494.91 18897.69 20697.65 199
HyFIR lowres test95.99 11996.56 13595.32 11097.99 7099.65 2296.54 14088.86 15598.44 13289.77 12684.14 20897.05 8899.03 5698.55 8498.19 8899.73 5799.86 19
PMMVS97.52 7298.39 6996.51 8895.82 11598.73 12997.80 10193.05 9898.76 11494.39 7599.07 3597.03 8998.55 8398.31 9597.61 11399.43 16899.21 163
baseline97.45 7598.70 6295.99 10095.89 11199.36 8298.29 8391.37 11999.21 4992.99 10098.40 6596.87 9097.96 10198.60 8098.60 6199.42 17099.86 19
Vis-MVSNetpermissive96.16 11698.22 7893.75 13295.33 13699.70 1797.27 11990.85 12798.30 13885.51 14995.72 13196.45 9193.69 19798.70 7199.00 3399.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive94.70 14497.08 12291.92 16695.53 12998.85 11795.77 15479.54 20598.95 8685.98 14498.52 5996.45 9197.39 11995.32 19294.09 19897.32 20997.38 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepC-MVS97.63 498.33 4998.57 6398.04 4398.62 5899.65 2299.45 2698.15 2599.51 1792.80 10295.74 12996.44 9399.46 2299.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+-dtu95.38 13298.20 7992.09 16093.91 15398.87 11697.35 11685.01 18899.08 7281.09 17498.10 7396.36 9495.62 16398.43 9297.03 13299.55 15199.50 142
PatchMatch-RL97.77 6498.25 7497.21 6499.11 4899.25 9697.06 13194.09 7498.72 11895.14 5798.47 6296.29 9598.43 8798.65 7397.44 12499.45 16598.94 174
DCV-MVSNet97.56 7198.36 7096.62 8596.44 9598.36 15598.37 7891.73 11099.11 6894.80 6298.36 6796.28 9698.60 8198.12 10398.44 6899.76 4099.87 16
thisisatest053097.23 8198.25 7496.05 9695.60 12699.59 4696.96 13393.23 9299.17 5492.60 10598.75 5396.19 9798.17 9198.19 10196.10 16099.72 6499.77 56
MVS_Test97.30 7998.54 6495.87 10195.74 11799.28 9498.19 8891.40 11899.18 5391.59 11598.17 7296.18 9898.63 7998.61 7798.55 6399.66 10899.78 48
tpmrst93.86 16395.88 15391.50 17395.69 12098.62 13595.64 15779.41 20698.80 10783.76 15795.63 13296.13 9997.25 12092.92 20792.31 20697.27 21096.74 208
tttt051797.23 8198.24 7796.04 9795.60 12699.60 4496.94 13493.23 9299.15 5992.56 10698.74 5496.12 10098.17 9198.21 9996.10 16099.73 5799.78 48
MDTV_nov1_ep1395.57 12697.48 10393.35 14695.43 13398.97 11297.19 12483.72 19598.92 9287.91 13397.75 8396.12 10097.88 10796.84 16395.64 17297.96 20198.10 193
EPMVS95.05 13796.86 12992.94 15195.84 11498.96 11396.68 13679.87 20399.05 7890.15 12197.12 9795.99 10297.49 11695.17 19594.75 19397.59 20796.96 207
GBi-Net96.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
test196.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
FMVSNet397.02 8998.12 8395.73 10693.59 16297.98 16598.34 8291.32 12098.80 10793.92 8097.21 9395.94 10397.63 11398.61 7798.62 5999.61 12499.65 109
gg-mvs-nofinetune90.85 19894.14 17787.02 20494.89 14499.25 9698.64 6476.29 21888.24 21957.50 22379.93 21495.45 10695.18 17798.77 6598.07 9499.62 12299.24 161
CHOSEN 1792x268896.41 10996.99 12595.74 10598.01 6999.72 1297.70 10690.78 13099.13 6790.03 12387.35 19895.36 10798.33 8998.59 8298.91 4199.59 13899.87 16
FMVSNet296.64 10497.50 10195.63 10893.81 15697.98 16598.09 9290.87 12698.99 8493.48 9193.17 15895.25 10897.89 10498.63 7598.80 5399.68 9599.67 102
DI_MVS_plusplus_trai96.90 9397.49 10296.21 9395.61 12499.40 7798.72 6292.11 10299.14 6292.98 10193.08 16195.14 10998.13 9598.05 11397.91 10199.74 4999.73 76
thisisatest051594.61 14896.89 12791.95 16592.00 17998.47 14592.01 20090.73 13298.18 14383.96 15294.51 14295.13 11093.38 19897.38 14694.74 19499.61 12499.79 42
tpm cat194.06 15694.90 16493.06 14995.42 13598.52 14396.64 13880.67 19997.82 16192.63 10493.39 15595.00 11196.06 15391.36 21391.58 21296.98 21396.66 210
MVS-HIRNet92.51 18495.97 15088.48 20193.73 15998.37 15490.33 20675.36 22098.32 13777.78 19289.15 18394.87 11295.14 17897.62 13996.39 15098.51 19397.11 204
MAR-MVS97.71 6698.04 8697.32 5999.35 4298.91 11597.65 10891.68 11198.00 15097.01 3397.72 8594.83 11398.85 7098.44 9198.86 4499.41 17199.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 15297.59 10090.87 18691.74 18798.70 13194.68 18078.73 21297.98 15183.71 15897.71 8694.81 11496.96 12797.97 11897.92 9999.40 17398.04 194
IterMVS-LS96.12 11797.48 10394.53 11895.19 13897.56 19097.15 12589.19 15399.08 7288.23 12994.97 13794.73 11597.84 10997.86 12598.26 8499.60 13299.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR95.50 12997.32 11393.37 14495.49 13198.74 12796.44 14590.82 12898.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
TESTMET0.1,194.95 13997.32 11392.20 15892.62 16798.74 12796.44 14586.67 17798.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
Anonymous2023121197.10 8697.06 12397.14 6596.32 9799.52 5998.16 8993.76 8198.84 10195.98 4390.92 17094.58 11898.90 6497.72 13398.10 9399.71 7499.75 68
Anonymous20240521197.40 10896.45 9499.54 5598.08 9593.79 8098.24 14293.55 15094.41 11998.88 6998.04 11498.24 8599.75 4499.76 61
test-mter94.86 14297.32 11392.00 16392.41 17298.82 11896.18 15086.35 18198.05 14882.28 16896.48 11594.39 12095.46 17098.17 10296.20 15699.32 17899.13 169
Effi-MVS+-dtu95.74 12498.04 8693.06 14993.92 15299.16 10397.90 9888.16 16699.07 7782.02 17098.02 7794.32 12196.74 13398.53 8597.56 11599.61 12499.62 117
FC-MVSNet-train97.04 8897.91 9296.03 9896.00 10898.41 15196.53 14293.42 8899.04 8093.02 9998.03 7694.32 12197.47 11797.93 12097.77 10999.75 4499.88 14
LS3D97.79 6298.25 7497.26 6398.40 6199.63 3099.53 1998.63 199.25 4588.13 13096.93 10194.14 12399.19 4199.14 3799.23 1899.69 8699.42 148
baseline296.36 11197.82 9494.65 11794.60 14899.09 10696.45 14489.63 14898.36 13691.29 11897.60 8894.13 12496.37 14498.45 8997.70 11099.54 15599.41 149
PatchT93.96 16097.36 11090.00 19394.76 14798.65 13390.11 20878.57 21397.96 15480.42 17896.07 12194.10 12596.85 13098.10 10497.49 11999.26 18299.15 165
RPMNet94.66 14597.16 11991.75 17094.98 14298.59 13897.00 13278.37 21497.98 15183.78 15596.27 11894.09 12696.91 12897.36 14796.73 13899.48 16199.09 170
FMVSNet595.42 13096.47 14294.20 12492.26 17595.99 21195.66 15687.15 17397.87 15893.46 9296.68 10793.79 12797.52 11497.10 15897.21 13099.11 18796.62 211
GeoE95.98 12197.24 11894.51 11995.02 14199.38 7898.02 9787.86 16998.37 13587.86 13492.99 16393.54 12898.56 8298.61 7797.92 9999.73 5799.85 22
MDTV_nov1_ep13_2view92.44 18695.66 15688.68 19991.05 20597.92 16992.17 19979.64 20498.83 10276.20 19691.45 16793.51 12995.04 17995.68 19093.70 20197.96 20198.53 184
CR-MVSNet94.57 15197.34 11191.33 17794.90 14398.59 13897.15 12579.14 20897.98 15180.42 17896.59 11393.50 13096.85 13098.10 10497.49 11999.50 16099.15 165
CVMVSNet95.33 13497.09 12093.27 14795.23 13798.39 15395.49 16092.58 10097.71 16583.00 16494.44 14493.28 13193.92 19497.79 12798.54 6599.41 17199.45 146
FMVSNet195.77 12396.41 14795.03 11293.42 16397.86 17297.11 12889.89 14398.53 12792.00 11289.17 18293.23 13298.15 9498.07 10998.34 7899.61 12499.69 96
baseline197.58 7098.05 8597.02 7296.21 10399.45 6897.71 10593.71 8598.47 13195.75 4698.78 5093.20 13398.91 6398.52 8698.44 6899.81 2199.53 132
dps94.63 14795.31 16293.84 13095.53 12998.71 13096.54 14080.12 20297.81 16397.21 3096.98 9892.37 13496.34 14692.46 21091.77 21097.26 21197.08 205
testgi95.67 12597.48 10393.56 13895.07 14099.00 10895.33 16488.47 16198.80 10786.90 14097.30 9192.33 13595.97 15597.66 13597.91 10199.60 13299.38 153
N_pmnet92.21 19494.60 17189.42 19891.88 18297.38 19989.15 21289.74 14797.89 15773.75 20587.94 19592.23 13693.85 19596.10 18293.20 20398.15 20097.43 201
IB-MVS93.96 1595.02 13896.44 14593.36 14597.05 8699.28 9490.43 20593.39 8998.02 14996.02 4294.92 13992.07 13783.52 21495.38 19195.82 16899.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER97.16 8397.71 9696.52 8795.97 11098.48 14498.63 6592.10 10398.68 11995.96 4499.23 2191.79 13896.87 12998.76 6697.37 12899.57 14699.68 101
casdiffmvs96.93 9297.43 10796.34 9195.70 11999.50 6297.75 10493.22 9498.98 8592.64 10394.97 13791.71 13998.93 6098.62 7698.52 6699.82 1599.72 87
TAMVS95.53 12896.50 14194.39 12393.86 15599.03 10796.67 13789.55 15097.33 17390.64 12093.02 16291.58 14096.21 14797.72 13397.43 12599.43 16899.36 154
canonicalmvs97.31 7897.81 9596.72 7996.20 10499.45 6898.21 8791.60 11399.22 4795.39 5298.48 6190.95 14199.16 4797.66 13599.05 2999.76 4099.90 6
anonymousdsp93.12 17295.86 15489.93 19591.09 20498.25 15895.12 16585.08 18697.44 16973.30 20690.89 17190.78 14295.25 17697.91 12195.96 16699.71 7499.82 28
ET-MVSNet_ETH3D96.17 11596.99 12595.21 11188.53 21298.54 14198.28 8492.61 9998.85 9793.60 9099.06 3690.39 14398.63 7995.98 18696.68 14099.61 12499.41 149
PVSNet_BlendedMVS97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
pmnet_mix0292.44 18694.68 16989.83 19692.46 17197.65 18289.92 21090.49 13698.76 11473.05 20991.78 16590.08 14694.86 18294.53 20291.94 20998.21 19998.01 196
pmmvs495.09 13695.90 15294.14 12592.29 17497.70 17695.45 16190.31 13798.60 12190.70 11993.25 15689.90 14796.67 13697.13 15695.42 17599.44 16799.28 157
pm-mvs194.27 15395.57 15792.75 15292.58 16898.13 16394.87 17390.71 13396.70 19083.78 15589.94 17889.85 14894.96 18197.58 14097.07 13199.61 12499.72 87
diffmvs96.83 9497.33 11296.25 9295.76 11699.34 8798.06 9693.22 9499.43 2292.30 10996.90 10289.83 14998.55 8398.00 11798.14 8999.64 11699.70 92
test_part195.56 12795.38 15995.78 10296.07 10598.16 16297.57 10990.78 13097.43 17093.04 9889.12 18589.41 15097.93 10296.38 17297.38 12799.29 18099.78 48
ECVR-MVScopyleft97.27 8097.09 12097.48 5696.95 8899.79 498.48 7094.42 6899.17 5496.28 4093.54 15189.39 15198.89 6799.03 4399.09 2499.88 499.61 120
test111197.09 8796.83 13097.39 5796.92 9099.81 398.44 7494.45 6799.17 5495.85 4592.10 16488.97 15298.78 7199.02 4599.11 2399.88 499.63 115
Effi-MVS+95.81 12297.31 11694.06 12795.09 13999.35 8597.24 12188.22 16498.54 12685.38 15098.52 5988.68 15398.70 7498.32 9497.93 9899.74 4999.84 23
GA-MVS93.93 16196.31 14891.16 18193.61 16098.79 11995.39 16390.69 13498.25 14173.28 20796.15 12088.42 15494.39 18697.76 13095.35 17699.58 14299.45 146
EU-MVSNet92.80 17894.76 16890.51 18891.88 18296.74 20892.48 19888.69 15896.21 19679.00 18791.51 16687.82 15591.83 20695.87 18896.27 15399.21 18398.92 178
pmmvs691.90 19692.53 20391.17 18091.81 18597.63 18393.23 19388.37 16393.43 21580.61 17677.32 21687.47 15694.12 18996.58 16695.72 17098.88 19299.53 132
UniMVSNet_NR-MVSNet94.59 14995.47 15893.55 13991.85 18497.89 17195.03 16692.00 10597.33 17386.12 14293.19 15787.29 15796.60 13996.12 18196.70 13999.72 6499.80 35
Fast-Effi-MVS+95.38 13296.52 13894.05 12894.15 15199.14 10597.24 12186.79 17598.53 12787.62 13694.51 14287.06 15898.76 7298.60 8098.04 9699.72 6499.77 56
CLD-MVS96.74 9896.51 13997.01 7496.71 9298.62 13598.73 6194.38 7098.94 8894.46 7197.33 8987.03 15998.07 9797.20 15496.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS96.37 11096.58 13496.13 9597.31 8098.44 14898.45 7395.22 5198.86 9588.58 12898.33 6887.00 16097.67 11297.23 15296.56 14599.56 14999.62 117
thres100view90096.72 9996.47 14297.00 7596.31 9899.52 5998.28 8494.01 7597.35 17194.52 6795.90 12586.93 16199.09 5398.07 10997.87 10399.81 2199.63 115
tfpn200view996.75 9796.51 13997.03 7096.31 9899.67 1898.41 7593.99 7797.35 17194.52 6795.90 12586.93 16199.14 4898.26 9697.80 10799.82 1599.70 92
thres20096.76 9696.53 13797.03 7096.31 9899.67 1898.37 7893.99 7797.68 16694.49 7095.83 12886.77 16399.18 4498.26 9697.82 10699.82 1599.66 106
ACMM96.26 996.67 10396.69 13296.66 8197.29 8198.46 14696.48 14395.09 5299.21 4993.19 9598.78 5086.73 16498.17 9197.84 12696.32 15299.74 4999.49 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train96.23 11396.89 12795.46 10997.32 7898.77 12298.81 5993.60 8698.58 12385.52 14899.08 3486.67 16597.83 11097.87 12497.51 11799.69 8699.73 76
ACMP96.25 1096.62 10696.72 13196.50 8996.96 8798.75 12697.80 10194.30 7298.85 9793.12 9698.78 5086.61 16697.23 12297.73 13296.61 14399.62 12299.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
new_pmnet90.45 20292.84 20187.66 20288.96 21196.16 21088.71 21384.66 19097.56 16771.91 21385.60 20686.58 16793.28 19996.07 18393.54 20298.46 19494.39 215
OPM-MVS96.22 11495.85 15596.65 8297.75 7198.54 14199.00 5295.53 4896.88 18489.88 12495.95 12486.46 16898.07 9797.65 13796.63 14299.67 10398.83 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xxxxxxxxxxxxxcwj98.14 5597.38 10999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2986.38 16998.92 6199.22 2998.84 4899.76 4099.56 128
thres40096.71 10096.45 14497.02 7296.28 10199.63 3098.41 7594.00 7697.82 16194.42 7395.74 12986.26 17099.18 4498.20 10097.79 10899.81 2199.70 92
UniMVSNet (Re)94.58 15095.34 16093.71 13492.25 17698.08 16494.97 16891.29 12497.03 18287.94 13293.97 14886.25 17196.07 15296.27 17895.97 16599.72 6499.79 42
CostFormer94.25 15594.88 16593.51 14195.43 13398.34 15696.21 14980.64 20097.94 15594.01 7898.30 6986.20 17297.52 11492.71 20892.69 20497.23 21298.02 195
thres600view796.69 10196.43 14697.00 7596.28 10199.67 1898.41 7593.99 7797.85 16094.29 7695.96 12385.91 17399.19 4198.26 9697.63 11299.82 1599.73 76
SixPastTwentyTwo93.44 16895.32 16191.24 17992.11 17798.40 15292.77 19688.64 16098.09 14777.83 19193.51 15385.74 17496.52 14296.91 16194.89 19199.59 13899.73 76
TSAR-MVS + COLMAP96.79 9596.55 13697.06 6897.70 7398.46 14699.07 4696.23 4599.38 2591.32 11798.80 4885.61 17598.69 7697.64 13896.92 13599.37 17599.06 172
ACMH+95.51 1395.40 13196.00 14994.70 11696.33 9698.79 11996.79 13591.32 12098.77 11387.18 13895.60 13385.46 17696.97 12697.15 15596.59 14499.59 13899.65 109
test20.0390.65 20193.71 18987.09 20390.44 20896.24 20989.74 21185.46 18595.59 20872.99 21090.68 17385.33 17784.41 21395.94 18795.10 18499.52 15897.06 206
tmp_tt82.25 21297.73 7288.71 22080.18 22068.65 22399.15 5986.98 13999.47 1085.31 17868.35 22187.51 21583.81 21791.64 220
WR-MVS_H93.54 16694.67 17092.22 15691.95 18097.91 17094.58 18488.75 15796.64 19183.88 15490.66 17485.13 17994.40 18596.54 16895.91 16799.73 5799.89 10
WR-MVS93.43 16994.48 17392.21 15791.52 19697.69 17894.66 18289.98 14196.86 18583.43 15990.12 17685.03 18093.94 19396.02 18595.82 16899.71 7499.82 28
CMPMVSbinary70.31 1890.74 19991.06 20790.36 19197.32 7897.43 19692.97 19587.82 17093.50 21475.34 20283.27 21084.90 18192.19 20592.64 20991.21 21396.50 21694.46 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 20093.93 18586.92 20590.21 21096.79 20690.30 20786.61 17996.05 20169.25 21488.46 19084.86 18285.86 21297.11 15796.47 14999.30 17997.80 198
v1092.79 17994.06 18191.31 17891.78 18697.29 20294.87 17386.10 18296.97 18379.82 18388.16 19284.56 18395.63 16296.33 17695.31 17799.65 11299.80 35
v114492.81 17794.03 18291.40 17691.68 18897.60 18794.73 17788.40 16296.71 18978.48 18988.14 19384.46 18495.45 17196.31 17795.22 18099.65 11299.76 61
Baseline_NR-MVSNet93.87 16293.98 18493.75 13291.66 18997.02 20395.53 15991.52 11797.16 17987.77 13587.93 19683.69 18596.35 14595.10 19797.23 12999.68 9599.73 76
ACMH95.42 1495.27 13595.96 15194.45 12196.83 9198.78 12194.72 17891.67 11298.95 8686.82 14196.42 11683.67 18697.00 12597.48 14496.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)93.45 16794.08 18092.72 15392.83 16597.62 18694.94 16991.54 11695.65 20783.06 16388.93 18683.53 18794.25 18797.41 14597.03 13299.67 10398.40 190
pmmvs592.71 18394.27 17690.90 18591.42 19897.74 17593.23 19386.66 17895.99 20378.96 18891.45 16783.44 18895.55 16597.30 15095.05 18599.58 14298.93 175
V4293.05 17393.90 18792.04 16191.91 18197.66 18094.91 17089.91 14296.85 18680.58 17789.66 17983.43 18995.37 17295.03 19994.90 18999.59 13899.78 48
EG-PatchMatch MVS92.45 18593.92 18690.72 18792.56 16998.43 15094.88 17284.54 19197.18 17679.55 18486.12 20583.23 19093.15 20197.22 15396.00 16299.67 10399.27 159
tpm92.38 19094.79 16789.56 19794.30 15097.50 19394.24 19078.97 21197.72 16474.93 20397.97 7882.91 19196.60 13993.65 20694.81 19298.33 19798.98 173
v192192092.36 19293.57 19190.94 18491.39 19997.39 19894.70 17987.63 17196.60 19276.63 19586.98 20182.89 19295.75 15896.26 17995.14 18399.55 15199.73 76
v892.87 17593.87 18891.72 17292.05 17897.50 19394.79 17688.20 16596.85 18680.11 18190.01 17782.86 19395.48 16895.15 19694.90 18999.66 10899.80 35
v119292.43 18893.61 19091.05 18291.53 19597.43 19694.61 18387.99 16796.60 19276.72 19487.11 20082.74 19495.85 15796.35 17595.30 17899.60 13299.74 72
v14419292.38 19093.55 19391.00 18391.44 19797.47 19594.27 18887.41 17296.52 19478.03 19087.50 19782.65 19595.32 17395.82 18995.15 18299.55 15199.78 48
TranMVSNet+NR-MVSNet93.67 16594.14 17793.13 14891.28 20397.58 18895.60 15891.97 10697.06 18084.05 15190.64 17582.22 19696.17 15094.94 20096.78 13799.69 8699.78 48
CP-MVSNet93.25 17094.00 18392.38 15591.65 19197.56 19094.38 18789.20 15296.05 20183.16 16289.51 18081.97 19796.16 15196.43 17096.56 14599.71 7499.89 10
v124091.99 19593.33 19690.44 18991.29 20197.30 20194.25 18986.79 17596.43 19575.49 20186.34 20481.85 19895.29 17496.42 17195.22 18099.52 15899.73 76
tfpnnormal93.85 16494.12 17993.54 14093.22 16498.24 15995.45 16191.96 10794.61 21083.91 15390.74 17281.75 19997.04 12497.49 14396.16 15899.68 9599.84 23
v2v48292.77 18093.52 19491.90 16891.59 19497.63 18394.57 18590.31 13796.80 18879.22 18588.74 18881.55 20096.04 15495.26 19394.97 18799.66 10899.69 96
DU-MVS93.98 15994.44 17493.44 14291.66 18997.77 17395.03 16691.57 11497.17 17786.12 14293.13 15981.13 20196.60 13995.10 19797.01 13499.67 10399.80 35
test250697.16 8396.68 13397.73 4996.95 8899.79 498.48 7094.42 6899.17 5497.74 2499.15 2580.93 20298.89 6799.03 4399.09 2499.88 499.62 117
USDC94.26 15494.83 16693.59 13796.02 10698.44 14897.84 9988.65 15998.86 9582.73 16794.02 14680.56 20396.76 13297.28 15196.15 15999.55 15198.50 185
NR-MVSNet94.01 15794.51 17293.44 14292.56 16997.77 17395.67 15591.57 11497.17 17785.84 14593.13 15980.53 20495.29 17497.01 15996.17 15799.69 8699.75 68
TinyColmap94.00 15894.35 17593.60 13695.89 11198.26 15797.49 11288.82 15698.56 12583.21 16191.28 16980.48 20596.68 13597.34 14896.26 15599.53 15798.24 191
gm-plane-assit89.44 20592.82 20285.49 20891.37 20095.34 21479.55 22282.12 19691.68 21864.79 22087.98 19480.26 20695.66 16198.51 8897.56 11599.45 16598.41 187
v14892.36 19292.88 19991.75 17091.63 19297.66 18092.64 19790.55 13596.09 19983.34 16088.19 19180.00 20792.74 20293.98 20594.58 19599.58 14299.69 96
test_method87.27 20991.58 20582.25 21275.65 22387.52 22286.81 21672.60 22197.51 16873.20 20885.07 20779.97 20888.69 20997.31 14995.24 17996.53 21598.41 187
PS-CasMVS92.72 18193.36 19591.98 16491.62 19397.52 19294.13 19188.98 15495.94 20481.51 17387.35 19879.95 20995.91 15696.37 17396.49 14799.70 8399.89 10
TDRefinement93.04 17493.57 19192.41 15496.58 9398.77 12297.78 10391.96 10798.12 14680.84 17589.13 18479.87 21087.78 21096.44 16994.50 19699.54 15598.15 192
DeepMVS_CXcopyleft96.85 20587.43 21589.27 15198.30 13875.55 20095.05 13679.47 21192.62 20489.48 21495.18 21995.96 212
LTVRE_ROB93.20 1692.84 17694.92 16390.43 19092.83 16598.63 13497.08 13087.87 16897.91 15668.42 21693.54 15179.46 21296.62 13897.55 14197.40 12699.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS92.72 18193.20 19792.15 15991.29 20197.31 20094.67 18189.81 14496.19 19781.83 17188.58 18979.06 21395.61 16495.21 19496.27 15399.72 6499.82 28
MIMVSNet188.61 20690.68 20886.19 20781.56 21995.30 21587.78 21485.98 18394.19 21372.30 21278.84 21578.90 21490.06 20796.59 16595.47 17399.46 16495.49 213
v7n91.61 19792.95 19890.04 19290.56 20797.69 17893.74 19285.59 18495.89 20576.95 19386.60 20378.60 21593.76 19697.01 15994.99 18699.65 11299.87 16
DTE-MVSNet92.42 18992.85 20091.91 16790.87 20696.97 20494.53 18689.81 14495.86 20681.59 17288.83 18777.88 21695.01 18094.34 20496.35 15199.64 11699.73 76
pmmvs388.19 20791.27 20684.60 21085.60 21693.66 21785.68 21781.13 19892.36 21763.66 22289.51 18077.10 21793.22 20096.37 17392.40 20598.30 19897.46 200
UniMVSNet_ETH3D93.15 17192.33 20494.11 12693.91 15398.61 13794.81 17590.98 12597.06 18087.51 13782.27 21276.33 21897.87 10894.79 20197.47 12299.56 14999.81 33
FPMVS83.82 21184.61 21382.90 21190.39 20990.71 21990.85 20484.10 19495.47 20965.15 21883.44 20974.46 21975.48 21681.63 21779.42 21991.42 22187.14 219
PMVScopyleft72.60 1776.39 21477.66 21774.92 21581.04 22069.37 22768.47 22480.54 20185.39 22065.07 21973.52 21772.91 22065.67 22280.35 21976.81 22088.71 22285.25 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs-eth3d89.81 20389.65 21090.00 19386.94 21495.38 21391.08 20186.39 18094.57 21182.27 16983.03 21164.94 22193.96 19296.57 16793.82 20099.35 17699.24 161
new-patchmatchnet86.12 21087.30 21284.74 20986.92 21595.19 21683.57 21984.42 19392.67 21665.66 21780.32 21364.72 22289.41 20892.33 21289.21 21498.43 19596.69 209
MDA-MVSNet-bldmvs87.84 20889.22 21186.23 20681.74 21896.77 20783.74 21889.57 14994.50 21272.83 21196.64 10964.47 22392.71 20381.43 21892.28 20796.81 21498.47 186
PM-MVS89.55 20490.30 20988.67 20087.06 21395.60 21290.88 20384.51 19296.14 19875.75 19786.89 20263.47 22494.64 18396.85 16293.89 19999.17 18699.29 156
Gipumacopyleft81.40 21281.78 21480.96 21483.21 21785.61 22379.73 22176.25 21997.33 17364.21 22155.32 22055.55 22586.04 21192.43 21192.20 20896.32 21793.99 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 21379.47 21674.70 21676.00 22288.37 22174.22 22376.34 21778.31 22154.13 22469.96 21852.50 22670.14 22084.83 21688.71 21597.35 20893.58 217
EMVS68.12 21768.11 21968.14 21875.51 22471.76 22555.38 22777.20 21677.78 22237.79 22753.59 22143.61 22774.72 21767.05 22276.70 22188.27 22486.24 220
E-PMN68.30 21668.43 21868.15 21774.70 22571.56 22655.64 22677.24 21577.48 22339.46 22651.95 22341.68 22873.28 21870.65 22179.51 21888.61 22386.20 221
MVEpermissive67.97 1965.53 21867.43 22063.31 21959.33 22674.20 22453.09 22870.43 22266.27 22443.13 22545.98 22430.62 22970.65 21979.34 22086.30 21683.25 22589.33 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc80.99 21580.04 22190.84 21890.91 20296.09 19974.18 20462.81 21930.59 23082.44 21596.25 18091.77 21095.91 21898.56 183
testmvs31.24 21940.15 22120.86 22112.61 22717.99 22825.16 22913.30 22448.42 22524.82 22853.07 22230.13 23128.47 22342.73 22337.65 22220.79 22651.04 223
test12326.75 22034.25 22218.01 2227.93 22817.18 22924.85 23012.36 22544.83 22616.52 22941.80 22518.10 23228.29 22433.08 22434.79 22318.10 22749.95 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def69.05 215
our_test_392.30 17397.58 18890.09 209
Patchmatch-RL test66.86 225
NP-MVS98.57 124
Patchmtry98.59 13897.15 12579.14 20880.42 178