This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
CS-MVS98.56 4499.32 2997.68 5098.28 6499.89 298.71 6394.53 6699.41 2395.43 5199.05 3798.66 6799.19 4199.21 3199.07 2699.93 199.94 1
DROMVSNet98.22 5299.44 1796.79 7895.62 12399.56 5299.01 5192.22 10199.17 5494.51 6999.41 1399.62 5399.49 1999.16 3699.26 1499.91 299.94 1
CS-MVS-test98.58 4399.42 2197.60 5498.52 5999.91 198.60 6694.60 6399.37 2794.62 6599.40 1499.16 6299.39 2799.36 2198.85 4799.90 399.92 3
EPP-MVSNet97.75 6598.71 6196.63 8495.68 12199.56 5297.51 11193.10 9799.22 4794.99 6097.18 9697.30 8598.65 7798.83 6098.93 3899.84 1199.92 3
LTVRE_ROB93.20 1692.84 17694.92 16390.43 19092.83 16598.63 13497.08 13087.87 16897.91 15668.42 21693.54 15179.46 21296.62 13897.55 14197.40 12699.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++99.41 499.64 199.14 899.69 899.75 999.64 898.33 699.67 498.10 1499.66 499.99 199.33 3199.62 598.86 4499.74 4999.90 6
canonicalmvs97.31 7897.81 9596.72 7996.20 10499.45 6898.21 8791.60 11399.22 4795.39 5298.48 6190.95 14199.16 4797.66 13599.05 2999.76 4099.90 6
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7499.76 696.02 15193.75 8399.26 4393.38 9393.73 14999.35 5896.47 14398.96 4898.46 6799.77 3899.90 6
CSCG98.90 3198.93 5498.85 2699.75 399.72 1299.49 2296.58 4499.38 2598.05 1798.97 3997.87 7899.49 1997.78 12898.92 3999.78 3399.90 6
MVS_030498.14 5599.03 4997.10 6698.05 6899.63 3099.27 3594.33 7199.63 793.06 9797.32 9099.05 6598.09 9698.82 6198.87 4399.81 2199.89 10
PS-CasMVS92.72 18193.36 19591.98 16491.62 19397.52 19294.13 19188.98 15495.94 20481.51 17387.35 19879.95 20995.91 15696.37 17396.49 14799.70 8399.89 10
CP-MVSNet93.25 17094.00 18392.38 15591.65 19197.56 19094.38 18789.20 15296.05 20183.16 16289.51 18081.97 19796.16 15196.43 17096.56 14599.71 7499.89 10
WR-MVS_H93.54 16694.67 17092.22 15691.95 18097.91 17094.58 18488.75 15796.64 19183.88 15490.66 17485.13 17994.40 18596.54 16895.91 16799.73 5799.89 10
FC-MVSNet-train97.04 8897.91 9296.03 9896.00 10898.41 15196.53 14293.42 8899.04 8093.02 9998.03 7694.32 12197.47 11797.93 12097.77 10999.75 4499.88 14
IterMVS-LS96.12 11797.48 10394.53 11895.19 13897.56 19097.15 12589.19 15399.08 7288.23 12994.97 13794.73 11597.84 10997.86 12598.26 8499.60 13299.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DCV-MVSNet97.56 7198.36 7096.62 8596.44 9598.36 15598.37 7891.73 11099.11 6894.80 6298.36 6796.28 9698.60 8198.12 10398.44 6899.76 4099.87 16
v7n91.61 19792.95 19890.04 19290.56 20797.69 17893.74 19285.59 18495.89 20576.95 19386.60 20378.60 21593.76 19697.01 15994.99 18699.65 11299.87 16
CHOSEN 1792x268896.41 10996.99 12595.74 10598.01 6999.72 1297.70 10690.78 13099.13 6790.03 12387.35 19895.36 10798.33 8998.59 8298.91 4199.59 13899.87 16
CANet98.46 4599.16 3897.64 5298.48 6099.64 2799.35 3294.71 5999.53 1495.17 5697.63 8799.59 5598.38 8898.88 5898.99 3499.74 4999.86 19
baseline97.45 7598.70 6295.99 10095.89 11199.36 8298.29 8391.37 11999.21 4992.99 10098.40 6596.87 9097.96 10198.60 8098.60 6199.42 17099.86 19
HyFIR lowres test95.99 11996.56 13595.32 11097.99 7099.65 2296.54 14088.86 15598.44 13289.77 12684.14 20897.05 8899.03 5698.55 8498.19 8899.73 5799.86 19
GeoE95.98 12197.24 11894.51 11995.02 14199.38 7898.02 9787.86 16998.37 13587.86 13492.99 16393.54 12898.56 8298.61 7797.92 9999.73 5799.85 22
tfpnnormal93.85 16494.12 17993.54 14093.22 16498.24 15995.45 16191.96 10794.61 21083.91 15390.74 17281.75 19997.04 12497.49 14396.16 15899.68 9599.84 23
Effi-MVS+95.81 12297.31 11694.06 12795.09 13999.35 8597.24 12188.22 16498.54 12685.38 15098.52 5988.68 15398.70 7498.32 9497.93 9899.74 4999.84 23
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3499.06 2899.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet98.05 5798.86 5697.10 6699.02 5099.43 7298.47 7294.73 5899.05 7895.62 4798.93 4297.62 8295.48 16898.59 8298.55 6399.29 18099.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2199.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp93.12 17295.86 15489.93 19591.09 20498.25 15895.12 16585.08 18697.44 16973.30 20690.89 17190.78 14295.25 17697.91 12195.96 16699.71 7499.82 28
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6699.44 2898.13 2899.65 592.30 10998.91 4499.95 1899.05 5499.42 1898.95 3799.58 14299.82 28
PEN-MVS92.72 18193.20 19792.15 15991.29 20197.31 20094.67 18189.81 14496.19 19781.83 17188.58 18979.06 21395.61 16495.21 19496.27 15399.72 6499.82 28
WR-MVS93.43 16994.48 17392.21 15791.52 19697.69 17894.66 18289.98 14196.86 18583.43 15990.12 17685.03 18093.94 19396.02 18595.82 16899.71 7499.82 28
UniMVSNet_ETH3D93.15 17192.33 20494.11 12693.91 15398.61 13794.81 17590.98 12597.06 18087.51 13782.27 21276.33 21897.87 10894.79 20197.47 12299.56 14999.81 33
DeepC-MVS97.63 498.33 4998.57 6398.04 4398.62 5899.65 2299.45 2698.15 2599.51 1792.80 10295.74 12996.44 9399.46 2299.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS97.70 6798.78 5996.44 9095.72 11899.65 2298.14 9093.72 8498.30 13892.31 10898.63 5797.90 7798.97 5998.92 5398.30 8299.78 3399.80 35
v892.87 17593.87 18891.72 17292.05 17897.50 19394.79 17688.20 16596.85 18680.11 18190.01 17782.86 19395.48 16895.15 19694.90 18999.66 10899.80 35
v1092.79 17994.06 18191.31 17891.78 18697.29 20294.87 17386.10 18296.97 18379.82 18388.16 19284.56 18395.63 16296.33 17695.31 17799.65 11299.80 35
UniMVSNet_NR-MVSNet94.59 14995.47 15893.55 13991.85 18497.89 17195.03 16692.00 10597.33 17386.12 14293.19 15787.29 15796.60 13996.12 18196.70 13999.72 6499.80 35
DU-MVS93.98 15994.44 17493.44 14291.66 18997.77 17395.03 16691.57 11497.17 17786.12 14293.13 15981.13 20196.60 13995.10 19797.01 13499.67 10399.80 35
UGNet97.66 6899.07 4496.01 9997.19 8399.65 2297.09 12993.39 8999.35 3194.40 7498.79 4999.59 5594.24 18898.04 11498.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet97.86 6198.86 5696.68 8096.02 10699.72 1298.35 8193.37 9198.75 11794.01 7896.88 10398.40 7298.48 8699.09 3999.42 599.83 1499.80 35
ETV-MVS98.05 5799.25 3496.65 8295.61 12499.61 3998.26 8693.52 8798.90 9393.74 8899.32 1799.20 6098.90 6499.21 3198.72 5599.87 899.79 42
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 699.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 2999.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
thisisatest051594.61 14896.89 12791.95 16592.00 17998.47 14592.01 20090.73 13298.18 14383.96 15294.51 14295.13 11093.38 19897.38 14694.74 19499.61 12499.79 42
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 999.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3699.34 2499.05 2999.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet (Re)94.58 15095.34 16093.71 13492.25 17698.08 16494.97 16891.29 12497.03 18287.94 13293.97 14886.25 17196.07 15296.27 17895.97 16599.72 6499.79 42
DELS-MVS98.19 5398.77 6097.52 5598.29 6399.71 1599.12 4294.58 6598.80 10795.38 5396.24 11998.24 7597.92 10399.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tttt051797.23 8198.24 7796.04 9795.60 12699.60 4496.94 13493.23 9299.15 5992.56 10698.74 5496.12 10098.17 9198.21 9996.10 16099.73 5799.78 48
test_part195.56 12795.38 15995.78 10296.07 10598.16 16297.57 10990.78 13097.43 17093.04 9889.12 18589.41 15097.93 10296.38 17297.38 12799.29 18099.78 48
v14419292.38 19093.55 19391.00 18391.44 19797.47 19594.27 18887.41 17296.52 19478.03 19087.50 19782.65 19595.32 17395.82 18995.15 18299.55 15199.78 48
V4293.05 17393.90 18792.04 16191.91 18197.66 18094.91 17089.91 14296.85 18680.58 17789.66 17983.43 18995.37 17295.03 19994.90 18999.59 13899.78 48
MVS_Test97.30 7998.54 6495.87 10195.74 11799.28 9498.19 8891.40 11899.18 5391.59 11598.17 7296.18 9898.63 7998.61 7798.55 6399.66 10899.78 48
TranMVSNet+NR-MVSNet93.67 16594.14 17793.13 14891.28 20397.58 18895.60 15891.97 10697.06 18084.05 15190.64 17582.22 19696.17 15094.94 20096.78 13799.69 8699.78 48
PVSNet_BlendedMVS97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
SED-MVS99.44 399.58 499.28 399.69 899.76 699.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3899.61 698.83 5099.70 8399.77 56
thisisatest053097.23 8198.25 7496.05 9695.60 12699.59 4696.96 13393.23 9299.17 5492.60 10598.75 5396.19 9798.17 9198.19 10196.10 16099.72 6499.77 56
Fast-Effi-MVS+95.38 13296.52 13894.05 12894.15 15199.14 10597.24 12186.79 17598.53 12787.62 13694.51 14287.06 15898.76 7298.60 8098.04 9699.72 6499.77 56
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 799.57 799.97 899.53 1699.65 299.25 1599.84 1199.77 56
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2799.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
Anonymous20240521197.40 10896.45 9499.54 5598.08 9593.79 8098.24 14293.55 15094.41 11998.88 6998.04 11498.24 8599.75 4499.76 61
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3499.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114492.81 17794.03 18291.40 17691.68 18897.60 18794.73 17788.40 16296.71 18978.48 18988.14 19384.46 18495.45 17196.31 17795.22 18099.65 11299.76 61
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2399.24 1799.71 7499.76 61
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6399.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1798.93 5199.45 499.61 12499.76 61
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2799.20 3797.75 3998.82 10495.24 5598.85 4799.87 3799.17 4698.74 6997.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMH95.42 1495.27 13595.96 15194.45 12196.83 9198.78 12194.72 17891.67 11298.95 8686.82 14196.42 11683.67 18697.00 12597.48 14496.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121197.10 8697.06 12397.14 6596.32 9799.52 5998.16 8993.76 8198.84 10195.98 4390.92 17094.58 11898.90 6497.72 13398.10 9399.71 7499.75 68
X-MVS98.93 3099.37 2498.42 3399.67 1499.62 3499.60 1698.15 2599.08 7293.81 8498.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
NR-MVSNet94.01 15794.51 17293.44 14292.56 16997.77 17395.67 15591.57 11497.17 17785.84 14593.13 15980.53 20495.29 17497.01 15996.17 15799.69 8699.75 68
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10999.62 3497.82 10093.22 9498.82 10491.40 11696.94 10098.56 7095.70 16099.14 3799.41 699.79 3099.75 68
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6699.35 1699.97 899.55 1499.63 398.66 5799.70 8399.74 72
v119292.43 18893.61 19091.05 18291.53 19597.43 19694.61 18387.99 16796.60 19276.72 19487.11 20082.74 19495.85 15796.35 17595.30 17899.60 13299.74 72
PGM-MVS98.86 3299.35 2898.29 3699.77 199.63 3099.67 595.63 4798.66 12095.27 5499.11 2999.82 4399.67 499.33 2599.19 2199.73 5799.74 72
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4499.78 3399.74 72
IterMVS-SCA-FT94.89 14197.87 9391.42 17494.86 14597.70 17697.24 12184.88 18998.93 9075.74 19894.26 14598.25 7496.69 13498.52 8697.68 11199.10 18899.73 76
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2299.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
v192192092.36 19293.57 19190.94 18491.39 19997.39 19894.70 17987.63 17196.60 19276.63 19586.98 20182.89 19295.75 15896.26 17995.14 18399.55 15199.73 76
DI_MVS_plusplus_trai96.90 9397.49 10296.21 9395.61 12499.40 7798.72 6292.11 10299.14 6292.98 10193.08 16195.14 10998.13 9598.05 11397.91 10199.74 4999.73 76
v124091.99 19593.33 19690.44 18991.29 20197.30 20194.25 18986.79 17596.43 19575.49 20186.34 20481.85 19895.29 17496.42 17195.22 18099.52 15899.73 76
thres600view796.69 10196.43 14697.00 7596.28 10199.67 1898.41 7593.99 7797.85 16094.29 7695.96 12385.91 17399.19 4198.26 9697.63 11299.82 1599.73 76
MP-MVScopyleft99.07 2499.36 2598.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1599.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet92.42 18992.85 20091.91 16790.87 20696.97 20494.53 18689.81 14495.86 20681.59 17288.83 18777.88 21695.01 18094.34 20496.35 15199.64 11699.73 76
Baseline_NR-MVSNet93.87 16293.98 18493.75 13291.66 18997.02 20395.53 15991.52 11797.16 17987.77 13587.93 19683.69 18596.35 14595.10 19797.23 12999.68 9599.73 76
SixPastTwentyTwo93.44 16895.32 16191.24 17992.11 17798.40 15292.77 19688.64 16098.09 14777.83 19193.51 15385.74 17496.52 14296.91 16194.89 19199.59 13899.73 76
LGP-MVS_train96.23 11396.89 12795.46 10997.32 7898.77 12298.81 5993.60 8698.58 12385.52 14899.08 3486.67 16597.83 11097.87 12497.51 11799.69 8699.73 76
pm-mvs194.27 15395.57 15792.75 15292.58 16898.13 16394.87 17390.71 13396.70 19083.78 15589.94 17889.85 14894.96 18197.58 14097.07 13199.61 12499.72 87
casdiffmvs96.93 9297.43 10796.34 9195.70 11999.50 6297.75 10493.22 9498.98 8592.64 10394.97 13791.71 13998.93 6098.62 7698.52 6699.82 1599.72 87
IterMVS94.81 14397.71 9691.42 17494.83 14697.63 18397.38 11485.08 18698.93 9075.67 19994.02 14697.64 8096.66 13798.45 8997.60 11498.90 19199.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 9099.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3398.35 7699.82 1599.71 90
ACMP96.25 1096.62 10696.72 13196.50 8996.96 8798.75 12697.80 10194.30 7298.85 9793.12 9698.78 5086.61 16697.23 12297.73 13296.61 14399.62 12299.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1599.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3499.56 1098.96 3699.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpn200view996.75 9796.51 13997.03 7096.31 9899.67 1898.41 7593.99 7797.35 17194.52 6795.90 12586.93 16199.14 4898.26 9697.80 10799.82 1599.70 92
thres40096.71 10096.45 14497.02 7296.28 10199.63 3098.41 7594.00 7697.82 16194.42 7395.74 12986.26 17099.18 4498.20 10097.79 10899.81 2199.70 92
diffmvs96.83 9497.33 11296.25 9295.76 11699.34 8798.06 9693.22 9499.43 2292.30 10996.90 10289.83 14998.55 8398.00 11798.14 8999.64 11699.70 92
v14892.36 19292.88 19991.75 17091.63 19297.66 18092.64 19790.55 13596.09 19983.34 16088.19 19180.00 20792.74 20293.98 20594.58 19599.58 14299.69 96
v2v48292.77 18093.52 19491.90 16891.59 19497.63 18394.57 18590.31 13796.80 18879.22 18588.74 18881.55 20096.04 15495.26 19394.97 18799.66 10899.69 96
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2798.20 8799.64 11699.69 96
FMVSNet195.77 12396.41 14795.03 11293.42 16397.86 17297.11 12889.89 14398.53 12792.00 11289.17 18293.23 13298.15 9498.07 10998.34 7899.61 12499.69 96
Vis-MVSNetpermissive96.16 11698.22 7893.75 13295.33 13699.70 1797.27 11990.85 12798.30 13885.51 14995.72 13196.45 9193.69 19798.70 7199.00 3399.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVSTER97.16 8397.71 9696.52 8795.97 11098.48 14498.63 6592.10 10398.68 11995.96 4499.23 2191.79 13896.87 12998.76 6697.37 12899.57 14699.68 101
GBi-Net96.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
test196.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
FMVSNet296.64 10497.50 10195.63 10893.81 15697.98 16598.09 9290.87 12698.99 8493.48 9193.17 15895.25 10897.89 10498.63 7598.80 5399.68 9599.67 102
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8799.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2498.78 6499.30 1199.81 2199.67 102
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6499.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 2999.25 2898.37 7599.64 11699.66 106
thres20096.76 9696.53 13797.03 7096.31 9899.67 1898.37 7893.99 7797.68 16694.49 7095.83 12886.77 16399.18 4498.26 9697.82 10699.82 1599.66 106
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6899.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2698.87 5999.49 399.85 999.66 106
TSAR-MVS + GP.98.66 4099.36 2597.85 4797.16 8499.46 6699.03 4994.59 6499.09 7097.19 3199.73 399.95 1899.39 2798.95 4998.69 5699.75 4499.65 109
FMVSNet397.02 8998.12 8395.73 10693.59 16297.98 16598.34 8291.32 12098.80 10793.92 8097.21 9395.94 10397.63 11398.61 7798.62 5999.61 12499.65 109
CDS-MVSNet96.59 10798.02 8894.92 11494.45 14998.96 11397.46 11391.75 10997.86 15990.07 12296.02 12297.25 8696.21 14798.04 11498.38 7399.60 13299.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+95.51 1395.40 13196.00 14994.70 11696.33 9698.79 11996.79 13591.32 12098.77 11387.18 13895.60 13385.46 17696.97 12697.15 15596.59 14499.59 13899.65 109
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6499.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3198.79 6399.29 1399.75 4499.64 113
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8199.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 1999.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111197.09 8796.83 13097.39 5796.92 9099.81 398.44 7494.45 6799.17 5495.85 4592.10 16488.97 15298.78 7199.02 4599.11 2399.88 499.63 115
thres100view90096.72 9996.47 14297.00 7596.31 9899.52 5998.28 8494.01 7597.35 17194.52 6795.90 12586.93 16199.09 5398.07 10997.87 10399.81 2199.63 115
test250697.16 8396.68 13397.73 4996.95 8899.79 498.48 7094.42 6899.17 5497.74 2499.15 2580.93 20298.89 6799.03 4399.09 2499.88 499.62 117
Effi-MVS+-dtu95.74 12498.04 8693.06 14993.92 15299.16 10397.90 9888.16 16699.07 7782.02 17098.02 7794.32 12196.74 13398.53 8597.56 11599.61 12499.62 117
HQP-MVS96.37 11096.58 13496.13 9597.31 8098.44 14898.45 7395.22 5198.86 9588.58 12898.33 6887.00 16097.67 11297.23 15296.56 14599.56 14999.62 117
ECVR-MVScopyleft97.27 8097.09 12097.48 5696.95 8899.79 498.48 7094.42 6899.17 5496.28 4093.54 15189.39 15198.89 6799.03 4399.09 2499.88 499.61 120
IB-MVS93.96 1595.02 13896.44 14593.36 14597.05 8699.28 9490.43 20593.39 8998.02 14996.02 4294.92 13992.07 13783.52 21495.38 19195.82 16899.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8599.48 2497.96 3598.83 10293.86 8398.70 5699.86 3899.44 2499.08 4198.38 7399.61 12499.58 122
CDPH-MVS98.41 4699.10 4197.61 5399.32 4499.36 8299.49 2296.15 4698.82 10491.82 11398.41 6499.66 5299.10 5198.93 5198.97 3599.75 4499.58 122
APD-MVScopyleft99.25 1399.38 2399.09 1299.69 899.58 4999.56 1898.32 898.85 9797.87 2198.91 4499.92 2999.30 3699.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.67 3899.41 2297.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6199.56 899.69 5199.04 5599.36 2198.88 4299.60 13299.58 122
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3398.89 5699.39 799.79 3099.58 122
MVS_111021_HR98.59 4299.36 2597.68 5099.42 3699.61 3998.14 9094.81 5699.31 3495.00 5999.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
xxxxxxxxxxxxxcwj98.14 5597.38 10999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2986.38 16998.92 6199.22 2998.84 4899.76 4099.56 128
SF-MVS99.18 1799.32 2999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
DeepPCF-MVS97.74 398.34 4899.46 1397.04 6998.82 5399.33 9096.28 14797.47 4099.58 994.70 6498.99 3899.85 4197.24 12199.55 1199.34 997.73 20599.56 128
CLD-MVS96.74 9896.51 13997.01 7496.71 9298.62 13598.73 6194.38 7098.94 8894.46 7197.33 8987.03 15998.07 9797.20 15496.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet_DTU96.64 10499.08 4293.81 13197.10 8599.42 7398.85 5790.01 14099.31 3479.98 18299.78 299.10 6497.42 11898.35 9398.05 9599.47 16399.53 132
pmmvs691.90 19692.53 20391.17 18091.81 18597.63 18393.23 19388.37 16393.43 21580.61 17677.32 21687.47 15694.12 18996.58 16695.72 17098.88 19299.53 132
baseline197.58 7098.05 8597.02 7296.21 10399.45 6897.71 10593.71 8598.47 13195.75 4698.78 5093.20 13398.91 6398.52 8698.44 6899.81 2199.53 132
FA-MVS(training)96.52 10898.29 7294.45 12195.88 11399.52 5997.66 10781.47 19798.94 8893.79 8795.54 13599.11 6398.29 9098.89 5696.49 14799.63 12199.52 135
FC-MVSNet-test96.07 11897.94 9193.89 12993.60 16198.67 13296.62 13990.30 13998.76 11488.62 12795.57 13497.63 8194.48 18497.97 11897.48 12199.71 7499.52 135
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8799.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1799.42 1898.61 6099.73 5799.52 135
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9899.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 2998.71 7098.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS97.71 6698.04 8697.32 5999.35 4298.91 11597.65 10891.68 11198.00 15097.01 3397.72 8594.83 11398.85 7098.44 9198.86 4499.41 17199.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7899.43 2998.21 2199.36 3097.66 2597.79 8199.90 3399.45 2399.17 3498.43 7099.77 3899.51 140
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5899.52 3399.42 7398.91 5494.61 6198.87 9492.24 11194.61 14199.05 6599.10 5198.64 7499.05 2999.74 4999.51 140
Fast-Effi-MVS+-dtu95.38 13298.20 7992.09 16093.91 15398.87 11697.35 11685.01 18899.08 7281.09 17498.10 7396.36 9495.62 16398.43 9297.03 13299.55 15199.50 142
ACMM96.26 996.67 10396.69 13296.66 8197.29 8198.46 14696.48 14395.09 5299.21 4993.19 9598.78 5086.73 16498.17 9197.84 12696.32 15299.74 4999.49 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42097.99 5999.24 3596.53 8698.34 6299.61 3998.36 8089.80 14699.27 4095.08 5899.81 198.58 6998.64 7899.02 4598.92 3998.93 19099.48 144
TAPA-MVS97.53 598.41 4698.84 5897.91 4699.08 4999.33 9099.15 4097.13 4299.34 3293.20 9497.75 8399.19 6199.20 4098.66 7298.13 9099.66 10899.48 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GA-MVS93.93 16196.31 14891.16 18193.61 16098.79 11995.39 16390.69 13498.25 14173.28 20796.15 12088.42 15494.39 18697.76 13095.35 17699.58 14299.45 146
CVMVSNet95.33 13497.09 12093.27 14795.23 13798.39 15395.49 16092.58 10097.71 16583.00 16494.44 14493.28 13193.92 19497.79 12798.54 6599.41 17199.45 146
LS3D97.79 6298.25 7497.26 6398.40 6199.63 3099.53 1998.63 199.25 4588.13 13096.93 10194.14 12399.19 4199.14 3799.23 1899.69 8699.42 148
ET-MVSNet_ETH3D96.17 11596.99 12595.21 11188.53 21298.54 14198.28 8492.61 9998.85 9793.60 9099.06 3690.39 14398.63 7995.98 18696.68 14099.61 12499.41 149
baseline296.36 11197.82 9494.65 11794.60 14899.09 10696.45 14489.63 14898.36 13691.29 11897.60 8894.13 12496.37 14498.45 8997.70 11099.54 15599.41 149
abl_698.09 4199.33 4399.22 10098.79 6094.96 5598.52 12997.00 3497.30 9199.86 3898.76 7299.69 8699.41 149
test0.0.03 196.69 10198.12 8395.01 11395.49 13198.99 11095.86 15390.82 12898.38 13492.54 10796.66 10897.33 8395.75 15897.75 13198.34 7899.60 13299.40 152
testgi95.67 12597.48 10393.56 13895.07 14099.00 10895.33 16488.47 16198.80 10786.90 14097.30 9192.33 13595.97 15597.66 13597.91 10199.60 13299.38 153
TAMVS95.53 12896.50 14194.39 12393.86 15599.03 10796.67 13789.55 15097.33 17390.64 12093.02 16291.58 14096.21 14797.72 13397.43 12599.43 16899.36 154
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9399.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 154
PM-MVS89.55 20490.30 20988.67 20087.06 21395.60 21290.88 20384.51 19296.14 19875.75 19786.89 20263.47 22494.64 18396.85 16293.89 19999.17 18699.29 156
DPM-MVS98.31 5098.53 6598.05 4298.76 5698.77 12299.13 4198.07 3199.10 6994.27 7796.70 10699.84 4298.70 7497.90 12298.11 9299.40 17399.28 157
pmmvs495.09 13695.90 15294.14 12592.29 17497.70 17695.45 16190.31 13798.60 12190.70 11993.25 15689.90 14796.67 13697.13 15695.42 17599.44 16799.28 157
EG-PatchMatch MVS92.45 18593.92 18690.72 18792.56 16998.43 15094.88 17284.54 19197.18 17679.55 18486.12 20583.23 19093.15 20197.22 15396.00 16299.67 10399.27 159
UA-Net97.13 8599.14 3994.78 11597.21 8299.38 7897.56 11092.04 10498.48 13088.03 13198.39 6699.91 3294.03 19199.33 2599.23 1899.81 2199.25 160
pmmvs-eth3d89.81 20389.65 21090.00 19386.94 21495.38 21391.08 20186.39 18094.57 21182.27 16983.03 21164.94 22193.96 19296.57 16793.82 20099.35 17699.24 161
gg-mvs-nofinetune90.85 19894.14 17787.02 20494.89 14499.25 9698.64 6476.29 21888.24 21957.50 22379.93 21495.45 10695.18 17798.77 6598.07 9499.62 12299.24 161
PMMVS97.52 7298.39 6996.51 8895.82 11598.73 12997.80 10193.05 9898.76 11494.39 7599.07 3597.03 8998.55 8398.31 9597.61 11399.43 16899.21 163
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 10099.03 4997.98 3499.34 3299.00 498.25 7099.71 5099.31 3498.80 6298.82 5299.48 16199.17 164
CR-MVSNet94.57 15197.34 11191.33 17794.90 14398.59 13897.15 12579.14 20897.98 15180.42 17896.59 11393.50 13096.85 13098.10 10497.49 11999.50 16099.15 165
PatchT93.96 16097.36 11090.00 19394.76 14798.65 13390.11 20878.57 21397.96 15480.42 17896.07 12194.10 12596.85 13098.10 10497.49 11999.26 18299.15 165
COLMAP_ROBcopyleft96.15 1297.78 6398.17 8097.32 5998.84 5299.45 6899.28 3495.43 5099.48 1991.80 11494.83 14098.36 7398.90 6498.09 10697.85 10499.68 9599.15 165
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG98.27 5198.29 7298.24 3899.20 4699.22 10099.20 3797.82 3799.37 2794.43 7295.90 12597.31 8499.12 4998.76 6698.35 7699.67 10399.14 168
test-mter94.86 14297.32 11392.00 16392.41 17298.82 11896.18 15086.35 18198.05 14882.28 16896.48 11594.39 12095.46 17098.17 10296.20 15699.32 17899.13 169
RPMNet94.66 14597.16 11991.75 17094.98 14298.59 13897.00 13278.37 21497.98 15183.78 15596.27 11894.09 12696.91 12897.36 14796.73 13899.48 16199.09 170
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9999.22 3696.70 4399.40 2497.77 2397.89 8099.80 4499.21 3999.02 4598.65 5899.57 14699.07 171
TSAR-MVS + COLMAP96.79 9596.55 13697.06 6897.70 7398.46 14699.07 4696.23 4599.38 2591.32 11798.80 4885.61 17598.69 7697.64 13896.92 13599.37 17599.06 172
tpm92.38 19094.79 16789.56 19794.30 15097.50 19394.24 19078.97 21197.72 16474.93 20397.97 7882.91 19196.60 13993.65 20694.81 19298.33 19798.98 173
PatchMatch-RL97.77 6498.25 7497.21 6499.11 4899.25 9697.06 13194.09 7498.72 11895.14 5798.47 6296.29 9598.43 8798.65 7397.44 12499.45 16598.94 174
pmmvs592.71 18394.27 17690.90 18591.42 19897.74 17593.23 19386.66 17895.99 20378.96 18891.45 16783.44 18895.55 16597.30 15095.05 18599.58 14298.93 175
test-LLR95.50 12997.32 11393.37 14495.49 13198.74 12796.44 14590.82 12898.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
TESTMET0.1,194.95 13997.32 11392.20 15892.62 16798.74 12796.44 14586.67 17798.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
EU-MVSNet92.80 17894.76 16890.51 18891.88 18296.74 20892.48 19888.69 15896.21 19679.00 18791.51 16687.82 15591.83 20695.87 18896.27 15399.21 18398.92 178
PCF-MVS97.50 698.18 5498.35 7197.99 4498.65 5799.36 8298.94 5398.14 2798.59 12293.62 8996.61 11099.76 4999.03 5697.77 12997.45 12399.57 14698.89 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet_dtu96.30 11298.53 6593.70 13598.97 5198.24 15997.36 11594.23 7398.85 9779.18 18699.19 2298.47 7194.09 19097.89 12398.21 8698.39 19698.85 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS96.22 11495.85 15596.65 8297.75 7198.54 14199.00 5295.53 4896.88 18489.88 12495.95 12486.46 16898.07 9797.65 13796.63 14299.67 10398.83 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND69.11 21598.13 8235.26 2203.49 22998.20 16194.89 1712.38 22698.42 1335.82 23096.37 11798.60 685.97 22598.75 6897.98 9799.01 18998.61 182
ambc80.99 21580.04 22190.84 21890.91 20296.09 19974.18 20462.81 21930.59 23082.44 21596.25 18091.77 21095.91 21898.56 183
MDTV_nov1_ep13_2view92.44 18695.66 15688.68 19991.05 20597.92 16992.17 19979.64 20498.83 10276.20 19691.45 16793.51 12995.04 17995.68 19093.70 20197.96 20198.53 184
USDC94.26 15494.83 16693.59 13796.02 10698.44 14897.84 9988.65 15998.86 9582.73 16794.02 14680.56 20396.76 13297.28 15196.15 15999.55 15198.50 185
MDA-MVSNet-bldmvs87.84 20889.22 21186.23 20681.74 21896.77 20783.74 21889.57 14994.50 21272.83 21196.64 10964.47 22392.71 20381.43 21892.28 20796.81 21498.47 186
test_method87.27 20991.58 20582.25 21275.65 22387.52 22286.81 21672.60 22197.51 16873.20 20885.07 20779.97 20888.69 20997.31 14995.24 17996.53 21598.41 187
gm-plane-assit89.44 20592.82 20285.49 20891.37 20095.34 21479.55 22282.12 19691.68 21864.79 22087.98 19480.26 20695.66 16198.51 8897.56 11599.45 16598.41 187
MS-PatchMatch95.99 11997.26 11794.51 11997.46 7598.76 12597.27 11986.97 17499.09 7089.83 12593.51 15397.78 7996.18 14997.53 14295.71 17199.35 17698.41 187
TransMVSNet (Re)93.45 16794.08 18092.72 15392.83 16597.62 18694.94 16991.54 11695.65 20783.06 16388.93 18683.53 18794.25 18797.41 14597.03 13299.67 10398.40 190
TinyColmap94.00 15894.35 17593.60 13695.89 11198.26 15797.49 11288.82 15698.56 12583.21 16191.28 16980.48 20596.68 13597.34 14896.26 15599.53 15798.24 191
TDRefinement93.04 17493.57 19192.41 15496.58 9398.77 12297.78 10391.96 10798.12 14680.84 17589.13 18479.87 21087.78 21096.44 16994.50 19699.54 15598.15 192
MDTV_nov1_ep1395.57 12697.48 10393.35 14695.43 13398.97 11297.19 12483.72 19598.92 9287.91 13397.75 8396.12 10097.88 10796.84 16395.64 17297.96 20198.10 193
MIMVSNet94.49 15297.59 10090.87 18691.74 18798.70 13194.68 18078.73 21297.98 15183.71 15897.71 8694.81 11496.96 12797.97 11897.92 9999.40 17398.04 194
CostFormer94.25 15594.88 16593.51 14195.43 13398.34 15696.21 14980.64 20097.94 15594.01 7898.30 6986.20 17297.52 11492.71 20892.69 20497.23 21298.02 195
pmnet_mix0292.44 18694.68 16989.83 19692.46 17197.65 18289.92 21090.49 13698.76 11473.05 20991.78 16590.08 14694.86 18294.53 20291.94 20998.21 19998.01 196
RPSCF97.61 6998.16 8196.96 7798.10 6599.00 10898.84 5893.76 8199.45 2094.78 6399.39 1599.31 5998.53 8596.61 16495.43 17497.74 20397.93 197
Anonymous2023120690.70 20093.93 18586.92 20590.21 21096.79 20690.30 20786.61 17996.05 20169.25 21488.46 19084.86 18285.86 21297.11 15796.47 14999.30 17997.80 198
SCA94.95 13997.44 10692.04 16195.55 12899.16 10396.26 14879.30 20799.02 8185.73 14798.18 7197.13 8797.69 11196.03 18494.91 18897.69 20697.65 199
pmmvs388.19 20791.27 20684.60 21085.60 21693.66 21785.68 21781.13 19892.36 21763.66 22289.51 18077.10 21793.22 20096.37 17392.40 20598.30 19897.46 200
N_pmnet92.21 19494.60 17189.42 19891.88 18297.38 19989.15 21289.74 14797.89 15773.75 20587.94 19592.23 13693.85 19596.10 18293.20 20398.15 20097.43 201
PatchmatchNetpermissive94.70 14497.08 12291.92 16695.53 12998.85 11795.77 15479.54 20598.95 8685.98 14498.52 5996.45 9197.39 11995.32 19294.09 19897.32 20997.38 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet94.65 14697.04 12491.88 16995.68 12198.99 11095.89 15279.03 21099.15 5985.81 14696.96 9998.21 7697.10 12394.48 20394.24 19797.74 20397.21 203
MVS-HIRNet92.51 18495.97 15088.48 20193.73 15998.37 15490.33 20675.36 22098.32 13777.78 19289.15 18394.87 11295.14 17897.62 13996.39 15098.51 19397.11 204
dps94.63 14795.31 16293.84 13095.53 12998.71 13096.54 14080.12 20297.81 16397.21 3096.98 9892.37 13496.34 14692.46 21091.77 21097.26 21197.08 205
test20.0390.65 20193.71 18987.09 20390.44 20896.24 20989.74 21185.46 18595.59 20872.99 21090.68 17385.33 17784.41 21395.94 18795.10 18499.52 15897.06 206
EPMVS95.05 13796.86 12992.94 15195.84 11498.96 11396.68 13679.87 20399.05 7890.15 12197.12 9795.99 10297.49 11695.17 19594.75 19397.59 20796.96 207
tpmrst93.86 16395.88 15391.50 17395.69 12098.62 13595.64 15779.41 20698.80 10783.76 15795.63 13296.13 9997.25 12092.92 20792.31 20697.27 21096.74 208
new-patchmatchnet86.12 21087.30 21284.74 20986.92 21595.19 21683.57 21984.42 19392.67 21665.66 21780.32 21364.72 22289.41 20892.33 21289.21 21498.43 19596.69 209
tpm cat194.06 15694.90 16493.06 14995.42 13598.52 14396.64 13880.67 19997.82 16192.63 10493.39 15595.00 11196.06 15391.36 21391.58 21296.98 21396.66 210
FMVSNet595.42 13096.47 14294.20 12492.26 17595.99 21195.66 15687.15 17397.87 15893.46 9296.68 10793.79 12797.52 11497.10 15897.21 13099.11 18796.62 211
DeepMVS_CXcopyleft96.85 20587.43 21589.27 15198.30 13875.55 20095.05 13679.47 21192.62 20489.48 21495.18 21995.96 212
MIMVSNet188.61 20690.68 20886.19 20781.56 21995.30 21587.78 21485.98 18394.19 21372.30 21278.84 21578.90 21490.06 20796.59 16595.47 17399.46 16495.49 213
CMPMVSbinary70.31 1890.74 19991.06 20790.36 19197.32 7897.43 19692.97 19587.82 17093.50 21475.34 20283.27 21084.90 18192.19 20592.64 20991.21 21396.50 21694.46 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet90.45 20292.84 20187.66 20288.96 21196.16 21088.71 21384.66 19097.56 16771.91 21385.60 20686.58 16793.28 19996.07 18393.54 20298.46 19494.39 215
Gipumacopyleft81.40 21281.78 21480.96 21483.21 21785.61 22379.73 22176.25 21997.33 17364.21 22155.32 22055.55 22586.04 21192.43 21192.20 20896.32 21793.99 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 21379.47 21674.70 21676.00 22288.37 22174.22 22376.34 21778.31 22154.13 22469.96 21852.50 22670.14 22084.83 21688.71 21597.35 20893.58 217
MVEpermissive67.97 1965.53 21867.43 22063.31 21959.33 22674.20 22453.09 22870.43 22266.27 22443.13 22545.98 22430.62 22970.65 21979.34 22086.30 21683.25 22589.33 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS83.82 21184.61 21382.90 21190.39 20990.71 21990.85 20484.10 19495.47 20965.15 21883.44 20974.46 21975.48 21681.63 21779.42 21991.42 22187.14 219
EMVS68.12 21768.11 21968.14 21875.51 22471.76 22555.38 22777.20 21677.78 22237.79 22753.59 22143.61 22774.72 21767.05 22276.70 22188.27 22486.24 220
E-PMN68.30 21668.43 21868.15 21774.70 22571.56 22655.64 22677.24 21577.48 22339.46 22651.95 22341.68 22873.28 21870.65 22179.51 21888.61 22386.20 221
PMVScopyleft72.60 1776.39 21477.66 21774.92 21581.04 22069.37 22768.47 22480.54 20185.39 22065.07 21973.52 21772.91 22065.67 22280.35 21976.81 22088.71 22285.25 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21940.15 22120.86 22112.61 22717.99 22825.16 22913.30 22448.42 22524.82 22853.07 22230.13 23128.47 22342.73 22337.65 22220.79 22651.04 223
test12326.75 22034.25 22218.01 2227.93 22817.18 22924.85 23012.36 22544.83 22616.52 22941.80 22518.10 23228.29 22433.08 22434.79 22318.10 22749.95 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def69.05 215
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
our_test_392.30 17397.58 18890.09 209
MTAPA98.09 1699.97 8
MTMP98.46 1199.96 13
Patchmatch-RL test66.86 225
tmp_tt82.25 21297.73 7288.71 22080.18 22068.65 22399.15 5986.98 13999.47 1085.31 17868.35 22187.51 21583.81 21791.64 220
XVS97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVStestdata97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
mPP-MVS99.53 3199.89 35
NP-MVS98.57 124
Patchmtry98.59 13897.15 12579.14 20880.42 178