DVP-MVS | | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 4 | 82.05 1 | 81.64 10 | 57.96 6 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 9 | 79.99 6 | 78.56 7 | 82.31 22 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 2 | 66.42 1 | 80.41 3 | 78.65 6 | 82.65 17 | 90.92 2 |
|
DPE-MVS |  | | 78.11 3 | 83.84 3 | 71.42 5 | 77.82 6 | 81.32 3 | 82.92 6 | 57.81 8 | 84.04 7 | 63.19 13 | 88.63 2 | 86.00 3 | 64.52 4 | 78.71 10 | 77.63 15 | 82.26 23 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 77.58 5 | 82.93 5 | 71.35 6 | 77.86 5 | 80.55 6 | 83.38 1 | 57.61 9 | 85.57 4 | 61.11 21 | 86.10 6 | 82.98 7 | 64.76 3 | 78.29 14 | 76.78 22 | 83.40 6 | 90.20 4 |
|
SMA-MVS |  | | 77.32 6 | 82.51 6 | 71.26 7 | 75.43 14 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 6 | 64.36 8 | 78.19 15 | 83.46 5 | 63.61 7 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 77.82 4 | 83.46 4 | 71.24 8 | 75.26 16 | 80.22 7 | 82.95 4 | 57.85 7 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 6 | 66.24 2 | 78.21 17 | 78.56 7 | 80.34 46 | 89.39 6 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 75.62 11 | 79.91 13 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 17 | 63.04 14 | 70.69 24 | 81.15 15 | 62.99 10 | 80.23 4 | 79.54 3 | 83.11 9 | 89.16 7 |
|
ACMMP_NAP | | | 76.15 8 | 81.17 8 | 70.30 11 | 74.09 20 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 11 | 79.02 13 | 80.48 18 | 62.24 18 | 80.05 5 | 79.12 4 | 82.94 12 | 88.64 8 |
|
SteuartSystems-ACMMP | | | 75.23 12 | 79.60 14 | 70.13 13 | 76.81 7 | 78.92 12 | 81.74 8 | 57.99 5 | 75.30 30 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 9 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 9 | 66.41 32 | 67.75 52 | 78.87 13 | 75.61 39 | 54.16 34 | 84.86 5 | 58.22 33 | 77.94 16 | 81.01 16 | 62.52 16 | 78.34 12 | 77.38 16 | 80.16 49 | 88.40 10 |
|
APD-MVS |  | | 75.80 10 | 80.90 10 | 69.86 16 | 75.42 15 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 15 | 59.32 27 | 85.28 7 | 80.82 17 | 63.96 6 | 76.89 29 | 76.08 27 | 81.58 38 | 88.30 11 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS | | 66.32 2 | 73.85 23 | 78.10 22 | 68.90 23 | 67.92 50 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 22 | 61.13 20 | 67.36 36 | 76.10 33 | 63.40 8 | 79.11 8 | 78.41 10 | 83.52 5 | 88.16 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 74.31 18 | 78.87 17 | 68.99 22 | 73.49 23 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 28 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 21 | 77.78 21 | 77.93 11 | 82.18 28 | 88.06 13 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CSCG | | | 74.68 15 | 79.22 15 | 69.40 18 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 42 | 79.34 18 | 63.99 10 | 70.49 25 | 82.02 11 | 60.35 31 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 14 |
|
xxxxxxxxxxxxxcwj | | | 74.63 16 | 77.07 27 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 52.03 118 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
SF-MVS | | | 77.13 7 | 81.70 7 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 84.46 4 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 23 | 80.51 15 | 57.09 14 | 78.25 21 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 19 | 79.13 7 | 78.51 9 | 83.01 11 | 87.68 17 |
|
HPM-MVS++ |  | | 76.01 9 | 80.47 11 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 12 | 78.80 14 | 82.53 10 | 64.40 5 | 78.74 9 | 78.84 5 | 81.81 32 | 87.46 18 |
|
MCST-MVS | | | 73.67 25 | 77.39 25 | 69.33 19 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 31 | 75.33 28 | 59.99 25 | 67.96 32 | 79.23 22 | 62.43 17 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
CP-MVS | | | 72.63 28 | 76.95 28 | 67.59 27 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 22 | 75.65 27 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 36 | 86.97 20 |
|
HFP-MVS | | | 74.87 14 | 78.86 19 | 70.21 12 | 73.99 21 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 20 | 64.27 9 | 74.54 20 | 77.75 28 | 62.96 11 | 78.70 11 | 77.82 12 | 83.02 10 | 86.91 21 |
|
ACMMPR | | | 73.79 24 | 78.41 20 | 68.40 25 | 72.35 28 | 77.79 19 | 79.32 21 | 56.38 19 | 77.67 24 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 23 | 78.32 13 | 77.80 13 | 82.68 16 | 86.51 22 |
|
zzz-MVS | | | 74.25 20 | 77.97 23 | 69.91 15 | 73.43 24 | 74.06 44 | 79.69 19 | 56.44 18 | 80.74 14 | 64.98 4 | 68.72 30 | 79.98 20 | 62.92 12 | 78.24 16 | 77.77 14 | 81.99 30 | 86.30 23 |
|
HQP-MVS | | | 70.88 34 | 75.02 34 | 66.05 35 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 39 | 72.89 37 | 54.88 45 | 70.03 27 | 70.48 50 | 57.26 47 | 76.02 36 | 75.01 36 | 81.78 33 | 86.21 24 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 30 | 76.11 29 | 67.21 29 | 68.93 46 | 77.46 21 | 76.54 35 | 54.35 32 | 74.92 32 | 58.64 31 | 65.18 38 | 74.04 43 | 62.62 15 | 77.92 19 | 77.02 21 | 82.16 29 | 86.21 24 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 68.76 42 | 73.01 38 | 63.81 48 | 65.42 62 | 73.66 47 | 76.39 37 | 52.08 44 | 72.61 39 | 50.33 62 | 60.73 57 | 72.65 46 | 59.43 35 | 73.32 52 | 72.12 50 | 79.19 59 | 85.99 26 |
|
X-MVS | | | 71.18 33 | 75.66 33 | 65.96 36 | 71.71 30 | 76.96 26 | 77.26 33 | 55.88 23 | 72.75 38 | 54.48 49 | 64.39 41 | 74.47 38 | 54.19 65 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 27 |
|
ACMMP |  | | 71.57 31 | 75.84 31 | 66.59 31 | 70.30 40 | 76.85 29 | 78.46 28 | 53.95 35 | 73.52 36 | 55.56 39 | 70.13 26 | 71.36 48 | 58.55 38 | 77.00 28 | 76.23 26 | 82.71 15 | 85.81 28 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 72.89 26 | 77.13 26 | 67.94 26 | 72.47 27 | 77.25 24 | 79.27 22 | 54.63 30 | 73.71 35 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 15 | 77.36 18 | 82.57 20 | 85.62 29 |
|
train_agg | | | 73.89 22 | 78.25 21 | 68.80 24 | 75.25 17 | 72.27 52 | 79.75 18 | 56.05 21 | 74.87 33 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 26 | 77.39 25 | 76.01 28 | 81.71 35 | 85.61 30 |
|
TSAR-MVS + ACMM | | | 72.56 29 | 79.07 16 | 64.96 41 | 73.24 25 | 73.16 49 | 78.50 27 | 48.80 65 | 79.34 18 | 55.32 41 | 85.04 8 | 81.49 14 | 58.57 37 | 75.06 44 | 73.75 45 | 75.35 103 | 85.61 30 |
|
SD-MVS | | | 74.43 17 | 78.87 17 | 69.26 20 | 74.39 19 | 73.70 46 | 79.06 25 | 55.24 26 | 81.04 12 | 62.71 15 | 80.18 12 | 82.61 9 | 61.70 22 | 75.43 41 | 73.92 44 | 82.44 21 | 85.22 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 75.22 13 | 80.06 12 | 69.56 17 | 74.61 18 | 72.74 50 | 80.59 14 | 55.70 24 | 80.80 13 | 62.65 16 | 86.25 5 | 82.92 8 | 62.07 20 | 76.89 29 | 75.66 30 | 81.77 34 | 85.19 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CDPH-MVS | | | 71.47 32 | 75.82 32 | 66.41 32 | 72.97 26 | 77.15 25 | 78.14 30 | 54.71 28 | 69.88 48 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 51 | 76.22 34 | 76.57 24 | 82.62 18 | 85.09 34 |
|
ACMP | | 61.42 5 | 68.72 43 | 71.37 44 | 65.64 38 | 69.06 45 | 74.45 42 | 75.88 38 | 53.30 38 | 68.10 50 | 55.74 38 | 61.53 56 | 62.29 74 | 56.97 50 | 74.70 45 | 74.23 42 | 82.88 13 | 84.31 35 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 68.87 40 | 72.03 42 | 65.18 40 | 69.33 44 | 74.03 45 | 76.67 34 | 53.88 36 | 68.46 49 | 52.05 59 | 63.21 45 | 63.89 67 | 56.31 55 | 75.99 37 | 74.43 40 | 82.83 14 | 84.18 36 |
|
PHI-MVS | | | 69.27 39 | 74.84 35 | 62.76 51 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 61 | 70.61 45 | 50.93 60 | 69.62 28 | 74.84 36 | 57.25 48 | 75.53 40 | 74.32 41 | 78.35 66 | 84.17 37 |
|
TSAR-MVS + GP. | | | 69.71 35 | 73.92 37 | 64.80 43 | 68.27 48 | 70.56 57 | 71.90 51 | 50.75 52 | 71.38 42 | 57.46 36 | 68.68 31 | 75.42 34 | 60.10 32 | 73.47 51 | 73.99 43 | 80.32 47 | 83.97 38 |
|
abl_6 | | | | | 64.36 45 | 70.08 41 | 77.45 22 | 72.88 50 | 50.15 57 | 71.31 43 | 54.77 48 | 62.79 48 | 77.99 27 | 56.80 52 | | | 81.50 39 | 83.91 39 |
|
OPM-MVS | | | 69.33 38 | 71.05 46 | 67.32 28 | 72.34 29 | 75.70 33 | 79.57 20 | 56.34 20 | 55.21 71 | 53.81 54 | 59.51 61 | 68.96 54 | 59.67 33 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 40 |
|
MVS_0304 | | | 69.49 37 | 73.96 36 | 64.28 46 | 67.92 50 | 76.13 32 | 74.90 42 | 47.60 67 | 63.29 58 | 54.09 53 | 67.44 35 | 76.35 32 | 59.53 34 | 75.81 38 | 75.03 34 | 81.62 37 | 83.70 41 |
|
DPM-MVS | | | 72.80 27 | 75.90 30 | 69.19 21 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 27 | 75.96 26 | 62.06 19 | 63.96 43 | 76.58 30 | 58.55 38 | 76.66 33 | 76.77 23 | 82.60 19 | 83.68 42 |
|
PCF-MVS | | 59.98 8 | 67.32 49 | 71.04 47 | 62.97 50 | 64.77 64 | 74.49 40 | 74.78 43 | 49.54 59 | 67.44 51 | 54.39 52 | 58.35 66 | 72.81 45 | 55.79 61 | 71.54 59 | 69.24 67 | 78.57 61 | 83.41 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet_Blended_VisFu | | | 63.65 58 | 66.92 59 | 59.83 60 | 60.03 90 | 73.44 48 | 66.33 75 | 48.95 63 | 52.20 89 | 50.81 61 | 56.07 74 | 60.25 86 | 53.56 71 | 73.23 53 | 70.01 64 | 79.30 56 | 83.24 44 |
|
3Dnovator+ | | 62.63 4 | 69.51 36 | 72.62 40 | 65.88 37 | 68.21 49 | 76.47 30 | 73.50 49 | 52.74 43 | 70.85 44 | 58.65 30 | 55.97 75 | 69.95 51 | 61.11 25 | 76.80 31 | 75.09 33 | 81.09 42 | 83.23 45 |
|
CANet | | | 68.77 41 | 73.01 38 | 63.83 47 | 68.30 47 | 75.19 35 | 73.73 48 | 47.90 66 | 63.86 55 | 54.84 46 | 67.51 34 | 74.36 41 | 57.62 42 | 74.22 47 | 73.57 48 | 80.56 44 | 82.36 46 |
|
anonymousdsp | | | 52.84 133 | 57.78 129 | 47.06 152 | 40.24 197 | 58.95 145 | 53.70 154 | 33.54 187 | 36.51 194 | 32.69 140 | 43.88 150 | 45.40 159 | 47.97 109 | 67.17 114 | 70.28 60 | 74.22 111 | 82.29 47 |
|
QAPM | | | 65.27 54 | 69.49 55 | 60.35 56 | 65.43 61 | 72.20 53 | 65.69 84 | 47.23 68 | 63.46 57 | 49.14 67 | 53.56 87 | 71.04 49 | 57.01 49 | 72.60 55 | 71.41 53 | 77.62 70 | 82.14 48 |
|
MVS_111021_HR | | | 67.62 47 | 70.39 50 | 64.39 44 | 69.77 42 | 70.45 58 | 71.44 55 | 51.72 48 | 60.77 64 | 55.06 43 | 62.14 53 | 66.40 63 | 58.13 41 | 76.13 35 | 74.79 38 | 80.19 48 | 82.04 49 |
|
DELS-MVS | | | 65.87 52 | 70.30 52 | 60.71 54 | 64.05 73 | 72.68 51 | 70.90 56 | 45.43 79 | 57.49 67 | 49.05 69 | 64.43 40 | 68.66 55 | 55.11 63 | 74.31 46 | 73.02 49 | 79.70 52 | 81.51 50 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MSLP-MVS++ | | | 68.17 44 | 70.72 49 | 65.19 39 | 69.41 43 | 70.64 56 | 74.99 41 | 45.76 75 | 70.20 47 | 60.17 24 | 56.42 73 | 73.01 44 | 61.14 24 | 72.80 54 | 70.54 58 | 79.70 52 | 81.42 51 |
|
ACMM | | 60.30 7 | 67.58 48 | 68.82 57 | 66.13 34 | 70.59 37 | 72.01 54 | 76.54 35 | 54.26 33 | 65.64 54 | 54.78 47 | 50.35 103 | 61.72 78 | 58.74 36 | 75.79 39 | 75.03 34 | 81.88 31 | 81.17 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 63.06 62 | 65.27 71 | 60.47 55 | 66.24 60 | 70.17 59 | 71.86 52 | 45.36 81 | 53.75 76 | 49.61 65 | 44.85 145 | 65.53 65 | 48.93 99 | 71.39 60 | 70.65 56 | 80.82 43 | 80.59 53 |
|
canonicalmvs | | | 65.62 53 | 72.06 41 | 58.11 68 | 63.94 74 | 71.05 55 | 64.49 93 | 43.18 123 | 74.08 34 | 47.35 72 | 64.17 42 | 71.97 47 | 51.17 92 | 71.87 57 | 70.74 55 | 78.51 64 | 80.56 54 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 51 | 63.11 49 | 66.63 55 | 74.52 39 | 71.56 54 | 45.76 75 | 67.37 52 | 55.00 44 | 54.31 86 | 68.19 58 | 58.49 40 | 73.97 48 | 73.63 47 | 81.22 41 | 80.23 55 |
|
MAR-MVS | | | 68.04 45 | 70.74 48 | 64.90 42 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 56 | 63.81 56 | 55.52 40 | 54.88 81 | 69.90 52 | 57.39 45 | 75.42 42 | 74.79 38 | 79.71 51 | 80.03 56 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
OMC-MVS | | | 65.16 55 | 71.35 45 | 57.94 72 | 52.95 144 | 68.82 63 | 69.00 57 | 38.28 162 | 79.89 16 | 55.20 42 | 62.76 49 | 68.31 57 | 56.14 58 | 71.30 62 | 68.70 73 | 76.06 95 | 79.67 57 |
|
EPP-MVSNet | | | 59.39 79 | 65.45 70 | 52.32 113 | 60.96 85 | 67.70 74 | 58.42 121 | 44.75 87 | 49.71 99 | 27.23 166 | 59.03 62 | 62.20 75 | 43.34 130 | 70.71 67 | 69.13 69 | 79.25 58 | 79.63 58 |
|
ETV-MVS | | | 63.23 61 | 66.08 65 | 59.91 59 | 63.13 77 | 68.13 68 | 67.62 63 | 44.62 89 | 53.39 79 | 46.23 78 | 58.74 63 | 58.19 93 | 57.45 44 | 73.60 49 | 71.38 54 | 80.39 45 | 79.13 59 |
|
Vis-MVSNet |  | | 58.48 89 | 65.70 69 | 50.06 123 | 53.40 141 | 67.20 81 | 60.24 113 | 43.32 120 | 48.83 111 | 30.23 151 | 62.38 52 | 61.61 79 | 40.35 144 | 71.03 65 | 69.77 65 | 72.82 130 | 79.11 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 57.13 9 | 62.81 64 | 65.75 67 | 59.39 62 | 66.47 57 | 69.52 61 | 64.26 95 | 43.07 125 | 61.34 63 | 50.19 63 | 47.29 120 | 64.41 66 | 54.60 64 | 70.18 73 | 68.62 75 | 77.73 68 | 78.89 61 |
|
Effi-MVS+ | | | 63.28 60 | 65.96 66 | 60.17 57 | 64.26 68 | 68.06 69 | 68.78 59 | 45.71 77 | 54.08 74 | 46.64 76 | 55.92 76 | 63.13 71 | 55.94 59 | 70.38 71 | 71.43 52 | 79.68 55 | 78.70 62 |
|
GeoE | | | 62.43 67 | 64.79 76 | 59.68 61 | 64.15 72 | 67.17 82 | 68.80 58 | 44.42 93 | 55.65 70 | 47.38 71 | 51.54 97 | 62.51 72 | 54.04 68 | 69.99 74 | 68.07 79 | 79.28 57 | 78.57 63 |
|
IB-MVS | | 54.11 11 | 58.36 93 | 60.70 93 | 55.62 89 | 58.67 96 | 68.02 70 | 61.56 102 | 43.15 124 | 46.09 134 | 44.06 89 | 44.24 148 | 50.99 124 | 48.71 102 | 66.70 122 | 70.33 59 | 77.60 71 | 78.50 64 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet | | | 65.14 56 | 69.54 54 | 60.00 58 | 66.61 56 | 67.67 75 | 67.53 64 | 55.32 25 | 62.67 60 | 46.22 79 | 67.74 33 | 65.93 64 | 48.07 108 | 72.17 56 | 72.12 50 | 76.28 89 | 78.47 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UGNet | | | 57.03 103 | 65.25 72 | 47.44 151 | 46.54 180 | 66.73 86 | 56.30 134 | 43.28 121 | 50.06 96 | 32.99 137 | 62.57 51 | 63.26 70 | 33.31 174 | 68.25 91 | 67.58 88 | 72.20 142 | 78.29 66 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MVS_111021_LR | | | 63.05 63 | 66.43 62 | 59.10 64 | 61.33 83 | 63.77 110 | 65.87 81 | 43.58 111 | 60.20 65 | 53.70 55 | 62.09 54 | 62.38 73 | 55.84 60 | 70.24 72 | 68.08 78 | 74.30 110 | 78.28 67 |
|
AdaColmap |  | | 67.89 46 | 68.85 56 | 66.77 30 | 73.73 22 | 74.30 43 | 75.28 40 | 53.58 37 | 70.24 46 | 57.59 35 | 51.19 100 | 59.19 90 | 60.74 28 | 75.33 43 | 73.72 46 | 79.69 54 | 77.96 68 |
|
diffmvs | | | 61.64 70 | 66.55 61 | 55.90 87 | 56.63 120 | 63.71 111 | 67.13 69 | 41.27 139 | 59.49 66 | 46.70 75 | 63.93 44 | 68.01 60 | 50.46 93 | 67.30 112 | 65.51 119 | 73.24 127 | 77.87 69 |
|
CS-MVS | | | 63.45 59 | 65.72 68 | 60.80 53 | 64.20 69 | 67.86 71 | 68.46 61 | 43.50 115 | 53.86 75 | 49.90 64 | 56.44 72 | 60.45 85 | 57.27 46 | 73.56 50 | 70.13 63 | 81.45 40 | 77.73 70 |
|
casdiffmvs | | | 64.09 57 | 68.13 58 | 59.37 63 | 61.81 79 | 68.32 67 | 68.48 60 | 44.45 92 | 61.95 61 | 49.12 68 | 63.04 46 | 69.67 53 | 53.83 69 | 70.46 68 | 66.06 111 | 78.55 62 | 77.43 71 |
|
v144192 | | | 58.23 96 | 59.40 114 | 56.87 82 | 57.56 103 | 66.89 84 | 65.70 82 | 45.01 84 | 44.06 149 | 42.88 93 | 46.61 124 | 48.09 132 | 53.49 75 | 66.94 120 | 65.90 115 | 76.61 83 | 77.29 72 |
|
v1921920 | | | 57.89 99 | 59.02 117 | 56.58 85 | 57.55 104 | 66.66 90 | 64.72 92 | 44.70 88 | 43.55 152 | 42.73 94 | 46.17 132 | 46.93 146 | 53.51 73 | 66.78 121 | 65.75 117 | 76.29 88 | 77.28 73 |
|
v1192 | | | 58.51 87 | 59.66 108 | 57.17 79 | 57.82 102 | 67.72 73 | 66.21 77 | 44.83 86 | 44.15 148 | 43.49 91 | 46.68 122 | 47.94 133 | 53.55 72 | 67.39 111 | 66.51 105 | 77.13 79 | 77.20 74 |
|
v1240 | | | 57.55 101 | 58.63 121 | 56.29 86 | 57.30 114 | 66.48 91 | 63.77 97 | 44.56 90 | 42.77 162 | 42.48 96 | 45.64 138 | 46.28 153 | 53.46 76 | 66.32 127 | 65.80 116 | 76.16 92 | 77.13 75 |
|
v10 | | | 59.17 82 | 60.60 94 | 57.50 77 | 57.95 101 | 66.73 86 | 67.09 70 | 44.11 95 | 46.85 128 | 45.42 82 | 48.18 116 | 51.07 121 | 53.63 70 | 67.84 102 | 66.59 104 | 76.79 81 | 76.92 76 |
|
v7n | | | 55.67 115 | 57.46 133 | 53.59 101 | 56.06 122 | 65.29 98 | 61.06 108 | 43.26 122 | 40.17 178 | 37.99 122 | 40.79 171 | 45.27 163 | 47.09 112 | 67.67 106 | 66.21 109 | 76.08 94 | 76.82 77 |
|
CNLPA | | | 62.78 65 | 66.31 63 | 58.65 66 | 58.47 98 | 68.41 66 | 65.98 80 | 41.22 140 | 78.02 23 | 56.04 37 | 46.65 123 | 59.50 89 | 57.50 43 | 69.67 76 | 65.27 123 | 72.70 134 | 76.67 78 |
|
DI_MVS_plusplus_trai | | | 61.88 69 | 65.17 73 | 58.06 69 | 60.05 89 | 65.26 99 | 66.03 78 | 44.22 94 | 55.75 69 | 46.73 74 | 54.64 84 | 68.12 59 | 54.13 67 | 69.13 80 | 66.66 100 | 77.18 77 | 76.61 79 |
|
v1144 | | | 58.88 83 | 60.16 102 | 57.39 78 | 58.03 100 | 67.26 80 | 67.14 68 | 44.46 91 | 45.17 140 | 44.33 88 | 47.81 117 | 49.92 129 | 53.20 80 | 67.77 104 | 66.62 103 | 77.15 78 | 76.58 80 |
|
MVS_Test | | | 62.40 68 | 66.23 64 | 57.94 72 | 59.77 93 | 64.77 105 | 66.50 74 | 41.76 134 | 57.26 68 | 49.33 66 | 62.68 50 | 67.47 62 | 53.50 74 | 68.57 87 | 66.25 108 | 76.77 82 | 76.58 80 |
|
V42 | | | 56.97 105 | 60.14 103 | 53.28 103 | 48.16 173 | 62.78 116 | 66.30 76 | 37.93 164 | 47.44 125 | 42.68 95 | 48.19 115 | 52.59 116 | 51.90 88 | 67.46 110 | 65.94 114 | 72.72 132 | 76.55 82 |
|
PVSNet_BlendedMVS | | | 61.63 71 | 64.82 74 | 57.91 74 | 57.21 116 | 67.55 77 | 63.47 99 | 46.08 73 | 54.72 72 | 52.46 57 | 58.59 64 | 60.73 81 | 51.82 90 | 70.46 68 | 65.20 125 | 76.44 86 | 76.50 83 |
|
PVSNet_Blended | | | 61.63 71 | 64.82 74 | 57.91 74 | 57.21 116 | 67.55 77 | 63.47 99 | 46.08 73 | 54.72 72 | 52.46 57 | 58.59 64 | 60.73 81 | 51.82 90 | 70.46 68 | 65.20 125 | 76.44 86 | 76.50 83 |
|
TSAR-MVS + COLMAP | | | 62.65 66 | 69.90 53 | 54.19 96 | 46.31 181 | 66.73 86 | 65.49 86 | 41.36 138 | 76.57 25 | 46.31 77 | 76.80 17 | 56.68 99 | 53.27 79 | 69.50 77 | 66.65 101 | 72.40 139 | 76.36 85 |
|
ACMH+ | | 53.71 12 | 59.26 80 | 60.28 98 | 58.06 69 | 64.17 71 | 68.46 65 | 67.51 65 | 50.93 51 | 52.46 88 | 35.83 130 | 40.83 170 | 45.12 164 | 52.32 85 | 69.88 75 | 69.00 71 | 77.59 72 | 76.21 86 |
|
DCV-MVSNet | | | 59.49 78 | 64.00 80 | 54.23 95 | 61.81 79 | 64.33 107 | 61.42 105 | 43.77 104 | 52.85 85 | 38.94 118 | 55.62 78 | 62.15 76 | 43.24 133 | 69.39 78 | 67.66 87 | 76.22 91 | 75.97 87 |
|
IterMVS-LS | | | 58.30 94 | 61.39 88 | 54.71 93 | 59.92 92 | 58.40 150 | 59.42 115 | 43.64 109 | 48.71 114 | 40.25 111 | 57.53 69 | 58.55 92 | 52.15 87 | 65.42 140 | 65.34 121 | 72.85 128 | 75.77 88 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 52.42 13 | 58.24 95 | 59.56 112 | 56.70 84 | 66.34 58 | 69.59 60 | 66.71 72 | 49.12 62 | 46.08 135 | 28.90 158 | 42.67 165 | 41.20 182 | 52.60 82 | 71.39 60 | 70.28 60 | 76.51 85 | 75.72 89 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Fast-Effi-MVS+ | | | 60.36 75 | 63.35 82 | 56.87 82 | 58.70 95 | 65.86 94 | 65.08 89 | 37.11 168 | 53.00 84 | 45.36 83 | 52.12 94 | 56.07 105 | 56.27 56 | 71.28 63 | 69.42 66 | 78.71 60 | 75.69 90 |
|
MVSTER | | | 57.19 102 | 61.11 90 | 52.62 111 | 50.82 164 | 58.79 146 | 61.55 103 | 37.86 165 | 48.81 112 | 41.31 103 | 57.43 71 | 52.10 117 | 48.60 103 | 68.19 95 | 66.75 98 | 75.56 99 | 75.68 91 |
|
Effi-MVS+-dtu | | | 60.34 76 | 62.32 85 | 58.03 71 | 64.31 66 | 67.44 79 | 65.99 79 | 42.26 130 | 49.55 100 | 42.00 100 | 48.92 110 | 59.79 88 | 56.27 56 | 68.07 98 | 67.03 92 | 77.35 75 | 75.45 92 |
|
CANet_DTU | | | 58.88 83 | 64.68 77 | 52.12 114 | 55.77 124 | 66.75 85 | 63.92 96 | 37.04 169 | 53.32 80 | 37.45 126 | 59.81 59 | 61.81 77 | 44.43 125 | 68.25 91 | 67.47 90 | 74.12 112 | 75.33 93 |
|
v8 | | | 58.88 83 | 60.57 96 | 56.92 81 | 57.35 111 | 65.69 96 | 66.69 73 | 42.64 127 | 47.89 123 | 45.77 80 | 49.04 108 | 52.98 114 | 52.77 81 | 67.51 109 | 65.57 118 | 76.26 90 | 75.30 94 |
|
EIA-MVS | | | 61.53 73 | 63.79 81 | 58.89 65 | 63.82 75 | 67.61 76 | 65.35 87 | 42.15 133 | 49.98 97 | 45.66 81 | 57.47 70 | 56.62 100 | 56.59 54 | 70.91 66 | 69.15 68 | 79.78 50 | 74.80 95 |
|
v2v482 | | | 58.69 86 | 60.12 105 | 57.03 80 | 57.16 118 | 66.05 93 | 67.17 67 | 43.52 113 | 46.33 132 | 45.19 84 | 49.46 107 | 51.02 122 | 52.51 83 | 67.30 112 | 66.03 112 | 76.61 83 | 74.62 96 |
|
IS_MVSNet | | | 57.95 98 | 64.26 79 | 50.60 118 | 61.62 82 | 65.25 101 | 57.18 127 | 45.42 80 | 50.79 93 | 26.49 169 | 57.81 68 | 60.05 87 | 34.51 169 | 71.24 64 | 70.20 62 | 78.36 65 | 74.44 97 |
|
TAPA-MVS | | 54.74 10 | 60.85 74 | 66.61 60 | 54.12 98 | 47.38 177 | 65.33 97 | 65.35 87 | 36.51 171 | 75.16 31 | 48.82 70 | 54.70 83 | 63.51 69 | 53.31 78 | 68.36 89 | 64.97 129 | 73.37 122 | 74.27 98 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
tttt0517 | | | 56.53 110 | 59.59 109 | 52.95 108 | 52.66 146 | 60.99 128 | 59.21 118 | 40.51 145 | 47.89 123 | 40.40 109 | 52.50 93 | 46.04 156 | 49.78 94 | 67.75 105 | 67.83 82 | 75.15 104 | 74.17 99 |
|
Anonymous20231211 | | | 57.71 100 | 60.79 92 | 54.13 97 | 61.68 81 | 65.81 95 | 60.81 110 | 43.70 108 | 51.97 90 | 39.67 113 | 34.82 185 | 63.59 68 | 43.31 131 | 68.55 88 | 66.63 102 | 75.59 98 | 74.13 100 |
|
EG-PatchMatch MVS | | | 56.98 104 | 58.24 125 | 55.50 90 | 64.66 65 | 68.62 64 | 61.48 104 | 43.63 110 | 38.44 187 | 41.44 101 | 38.05 177 | 46.18 155 | 43.95 126 | 71.71 58 | 70.61 57 | 77.87 67 | 74.08 101 |
|
thisisatest0530 | | | 56.68 108 | 59.68 107 | 53.19 105 | 52.97 143 | 60.96 129 | 59.41 116 | 40.51 145 | 48.26 120 | 41.06 106 | 52.67 90 | 46.30 152 | 49.78 94 | 67.66 107 | 67.83 82 | 75.39 101 | 74.07 102 |
|
CHOSEN 1792x2688 | | | 55.85 114 | 58.01 126 | 53.33 102 | 57.26 115 | 62.82 115 | 63.29 101 | 41.55 136 | 46.65 130 | 38.34 119 | 34.55 186 | 53.50 111 | 52.43 84 | 67.10 117 | 67.56 89 | 67.13 164 | 73.92 103 |
|
ET-MVSNet_ETH3D | | | 58.38 92 | 61.57 87 | 54.67 94 | 42.15 194 | 65.26 99 | 65.70 82 | 43.82 103 | 48.84 110 | 42.34 97 | 59.76 60 | 47.76 136 | 56.68 53 | 67.02 119 | 68.60 76 | 77.33 76 | 73.73 104 |
|
thisisatest0515 | | | 53.85 129 | 56.84 136 | 50.37 121 | 50.25 167 | 58.17 154 | 55.99 138 | 39.90 152 | 41.88 167 | 38.16 121 | 45.91 134 | 45.30 161 | 44.58 124 | 66.15 131 | 66.89 96 | 73.36 123 | 73.57 105 |
|
Anonymous202405211 | | | | 60.60 94 | | 63.44 76 | 66.71 89 | 61.00 109 | 47.23 68 | 50.62 95 | | 36.85 180 | 60.63 84 | 43.03 134 | 69.17 79 | 67.72 86 | 75.41 100 | 72.54 106 |
|
baseline | | | 55.19 122 | 60.88 91 | 48.55 139 | 49.87 168 | 58.10 155 | 58.70 120 | 34.75 177 | 52.82 86 | 39.48 117 | 60.18 58 | 60.86 80 | 45.41 120 | 61.05 157 | 60.74 160 | 63.10 177 | 72.41 107 |
|
UniMVSNet (Re) | | | 55.15 123 | 60.39 97 | 49.03 132 | 55.31 126 | 64.59 106 | 55.77 140 | 50.63 53 | 48.66 116 | 20.95 181 | 51.47 98 | 50.40 126 | 34.41 171 | 67.81 103 | 67.89 81 | 77.11 80 | 71.88 108 |
|
FC-MVSNet-train | | | 58.40 91 | 63.15 83 | 52.85 109 | 64.29 67 | 61.84 119 | 55.98 139 | 46.47 71 | 53.06 82 | 34.96 133 | 61.95 55 | 56.37 103 | 39.49 146 | 68.67 84 | 68.36 77 | 75.92 97 | 71.81 109 |
|
v148 | | | 55.58 117 | 57.61 132 | 53.20 104 | 54.59 134 | 61.86 118 | 61.18 106 | 38.70 160 | 44.30 147 | 42.25 98 | 47.53 118 | 50.24 128 | 48.73 101 | 65.15 141 | 62.61 151 | 73.79 115 | 71.61 110 |
|
HyFIR lowres test | | | 56.87 107 | 58.60 122 | 54.84 92 | 56.62 121 | 69.27 62 | 64.77 91 | 42.21 131 | 45.66 138 | 37.50 125 | 33.08 188 | 57.47 98 | 53.33 77 | 65.46 139 | 67.94 80 | 74.60 107 | 71.35 111 |
|
PLC |  | 52.09 14 | 59.21 81 | 62.47 84 | 55.41 91 | 53.24 142 | 64.84 104 | 64.47 94 | 40.41 149 | 65.92 53 | 44.53 87 | 46.19 131 | 55.69 106 | 55.33 62 | 68.24 93 | 65.30 122 | 74.50 108 | 71.09 112 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
IterMVS-SCA-FT | | | 52.18 139 | 57.75 130 | 45.68 158 | 51.01 162 | 62.06 117 | 55.10 148 | 34.75 177 | 44.85 141 | 32.86 139 | 51.13 101 | 51.22 120 | 48.74 100 | 62.47 151 | 61.51 155 | 51.61 203 | 71.02 113 |
|
UniMVSNet_NR-MVSNet | | | 56.94 106 | 61.14 89 | 52.05 115 | 60.02 91 | 65.21 102 | 57.44 125 | 52.93 41 | 49.37 103 | 24.31 176 | 54.62 85 | 50.54 125 | 39.04 148 | 68.69 83 | 68.84 72 | 78.53 63 | 70.72 114 |
|
DU-MVS | | | 55.41 118 | 59.59 109 | 50.54 120 | 54.60 132 | 62.97 113 | 57.44 125 | 51.80 46 | 48.62 117 | 24.31 176 | 51.99 95 | 47.00 145 | 39.04 148 | 68.11 96 | 67.75 85 | 76.03 96 | 70.72 114 |
|
Fast-Effi-MVS+-dtu | | | 56.30 111 | 59.29 115 | 52.82 110 | 58.64 97 | 64.89 103 | 65.56 85 | 32.89 191 | 45.80 137 | 35.04 132 | 45.89 135 | 54.14 110 | 49.41 97 | 67.16 115 | 66.45 107 | 75.37 102 | 70.69 116 |
|
GA-MVS | | | 55.67 115 | 58.33 123 | 52.58 112 | 55.23 129 | 63.09 112 | 61.08 107 | 40.15 151 | 42.95 157 | 37.02 128 | 52.61 91 | 47.68 137 | 47.51 110 | 65.92 133 | 65.35 120 | 74.49 109 | 70.68 117 |
|
NR-MVSNet | | | 55.35 119 | 59.46 113 | 50.56 119 | 61.33 83 | 62.97 113 | 57.91 124 | 51.80 46 | 48.62 117 | 20.59 182 | 51.99 95 | 44.73 170 | 34.10 172 | 68.58 86 | 68.64 74 | 77.66 69 | 70.67 118 |
|
CostFormer | | | 56.57 109 | 59.13 116 | 53.60 100 | 57.52 106 | 61.12 126 | 66.94 71 | 35.95 173 | 53.44 77 | 44.68 86 | 55.87 77 | 54.44 109 | 48.21 105 | 60.37 161 | 58.33 168 | 68.27 160 | 70.33 119 |
|
TranMVSNet+NR-MVSNet | | | 55.87 113 | 60.14 103 | 50.88 117 | 59.46 94 | 63.82 109 | 57.93 123 | 52.98 40 | 48.94 109 | 20.52 183 | 52.87 89 | 47.33 142 | 36.81 162 | 69.12 81 | 69.03 70 | 77.56 73 | 69.89 120 |
|
CLD-MVS | | | 67.02 50 | 71.57 43 | 61.71 52 | 71.01 35 | 74.81 38 | 71.62 53 | 38.91 155 | 71.86 41 | 60.70 22 | 64.97 39 | 67.88 61 | 51.88 89 | 76.77 32 | 74.98 37 | 76.11 93 | 69.75 121 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GBi-Net | | | 55.20 120 | 60.25 99 | 49.31 126 | 52.42 147 | 61.44 121 | 57.03 128 | 44.04 98 | 49.18 106 | 30.47 147 | 48.28 112 | 58.19 93 | 38.22 151 | 68.05 99 | 66.96 93 | 73.69 117 | 69.65 122 |
|
test1 | | | 55.20 120 | 60.25 99 | 49.31 126 | 52.42 147 | 61.44 121 | 57.03 128 | 44.04 98 | 49.18 106 | 30.47 147 | 48.28 112 | 58.19 93 | 38.22 151 | 68.05 99 | 66.96 93 | 73.69 117 | 69.65 122 |
|
FMVSNet2 | | | 55.04 124 | 59.95 106 | 49.31 126 | 52.42 147 | 61.44 121 | 57.03 128 | 44.08 97 | 49.55 100 | 30.40 150 | 46.89 121 | 58.84 91 | 38.22 151 | 67.07 118 | 66.21 109 | 73.69 117 | 69.65 122 |
|
Baseline_NR-MVSNet | | | 53.50 130 | 57.89 127 | 48.37 142 | 54.60 132 | 59.25 143 | 56.10 135 | 51.84 45 | 49.32 104 | 17.92 190 | 45.38 140 | 47.68 137 | 36.93 161 | 68.11 96 | 65.95 113 | 72.84 129 | 69.57 125 |
|
FMVSNet1 | | | 54.08 128 | 58.68 120 | 48.71 136 | 50.90 163 | 61.35 124 | 56.73 132 | 43.94 102 | 45.91 136 | 29.32 157 | 42.72 164 | 56.26 104 | 37.70 156 | 68.05 99 | 66.96 93 | 73.69 117 | 69.50 126 |
|
LS3D | | | 60.20 77 | 61.70 86 | 58.45 67 | 64.18 70 | 67.77 72 | 67.19 66 | 48.84 64 | 61.67 62 | 41.27 104 | 45.89 135 | 51.81 119 | 54.18 66 | 68.78 82 | 66.50 106 | 75.03 105 | 69.48 127 |
|
CMPMVS |  | 37.70 17 | 49.24 158 | 52.71 159 | 45.19 160 | 45.97 183 | 51.23 178 | 47.44 177 | 29.31 196 | 43.04 156 | 44.69 85 | 34.45 187 | 48.35 131 | 43.64 127 | 62.59 149 | 59.82 163 | 60.08 185 | 69.48 127 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MS-PatchMatch | | | 58.19 97 | 60.20 101 | 55.85 88 | 65.17 63 | 64.16 108 | 64.82 90 | 41.48 137 | 50.95 92 | 42.17 99 | 45.38 140 | 56.42 101 | 48.08 107 | 68.30 90 | 66.70 99 | 73.39 121 | 69.46 129 |
|
FMVSNet3 | | | 54.78 125 | 59.58 111 | 49.17 129 | 52.37 150 | 61.31 125 | 56.72 133 | 44.04 98 | 49.18 106 | 30.47 147 | 48.28 112 | 58.19 93 | 38.09 154 | 65.48 138 | 65.20 125 | 73.31 124 | 69.45 130 |
|
UA-Net | | | 58.50 88 | 64.68 77 | 51.30 116 | 66.97 53 | 67.13 83 | 53.68 155 | 45.65 78 | 49.51 102 | 31.58 145 | 62.91 47 | 68.47 56 | 35.85 165 | 68.20 94 | 67.28 91 | 74.03 113 | 69.24 131 |
|
IterMVS | | | 53.45 131 | 57.12 134 | 49.17 129 | 49.23 170 | 60.93 130 | 59.05 119 | 34.63 179 | 44.53 143 | 33.22 135 | 51.09 102 | 51.01 123 | 48.38 104 | 62.43 152 | 60.79 159 | 70.54 153 | 69.05 132 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LTVRE_ROB | | 44.17 16 | 47.06 175 | 50.15 178 | 43.44 169 | 51.39 156 | 58.42 149 | 42.90 195 | 43.51 114 | 22.27 211 | 14.85 194 | 41.94 169 | 34.57 201 | 45.43 119 | 62.28 153 | 62.77 149 | 62.56 181 | 68.83 133 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 52.62 134 | 55.98 138 | 48.70 137 | 51.04 161 | 60.71 131 | 56.87 131 | 46.74 70 | 42.52 164 | 26.96 167 | 42.50 166 | 45.95 157 | 37.87 155 | 66.22 129 | 65.15 128 | 72.74 131 | 68.78 134 |
|
baseline2 | | | 55.89 112 | 57.82 128 | 53.64 99 | 57.36 110 | 61.09 127 | 59.75 114 | 40.45 147 | 47.38 126 | 41.26 105 | 51.23 99 | 46.90 147 | 48.11 106 | 65.63 137 | 64.38 134 | 74.90 106 | 68.16 135 |
|
MSDG | | | 58.46 90 | 58.97 118 | 57.85 76 | 66.27 59 | 66.23 92 | 67.72 62 | 42.33 129 | 53.43 78 | 43.68 90 | 43.39 156 | 45.35 160 | 49.75 96 | 68.66 85 | 67.77 84 | 77.38 74 | 67.96 136 |
|
CVMVSNet | | | 46.38 178 | 52.01 166 | 39.81 183 | 42.40 192 | 50.26 180 | 46.15 182 | 37.68 166 | 40.03 179 | 15.09 193 | 46.56 126 | 47.56 139 | 33.72 173 | 56.50 183 | 55.65 176 | 63.80 175 | 67.53 137 |
|
ambc | | | | 45.54 193 | | 50.66 166 | 52.63 174 | 40.99 199 | | 38.36 188 | 24.67 174 | 22.62 206 | 13.94 216 | 29.14 182 | 65.71 136 | 58.06 169 | 58.60 189 | 67.43 138 |
|
PS-CasMVS | | | 48.18 166 | 53.25 157 | 42.27 175 | 51.26 158 | 57.94 157 | 46.51 181 | 50.52 55 | 41.30 170 | 10.56 201 | 45.35 142 | 40.34 188 | 23.04 193 | 58.66 170 | 61.79 154 | 71.74 146 | 67.38 139 |
|
CP-MVSNet | | | 48.37 164 | 53.53 153 | 42.34 174 | 51.35 157 | 58.01 156 | 46.56 180 | 50.54 54 | 41.62 169 | 10.61 200 | 46.53 128 | 40.68 186 | 23.18 192 | 58.71 169 | 61.83 153 | 71.81 144 | 67.36 140 |
|
PEN-MVS | | | 49.21 159 | 54.32 149 | 43.24 172 | 54.33 135 | 59.26 142 | 47.04 179 | 51.37 50 | 41.67 168 | 9.97 204 | 46.22 130 | 41.80 181 | 22.97 194 | 60.52 159 | 64.03 136 | 73.73 116 | 66.75 141 |
|
tfpn200view9 | | | 52.53 135 | 55.51 140 | 49.06 131 | 57.31 112 | 60.24 133 | 55.42 145 | 43.77 104 | 42.85 160 | 27.81 162 | 43.00 162 | 45.06 166 | 37.32 158 | 66.38 124 | 64.54 131 | 72.71 133 | 66.54 142 |
|
thres400 | | | 52.38 138 | 55.51 140 | 48.74 135 | 57.49 107 | 60.10 136 | 55.45 144 | 43.54 112 | 42.90 159 | 26.72 168 | 43.34 158 | 45.03 168 | 36.61 163 | 66.20 130 | 64.53 132 | 72.66 135 | 66.43 143 |
|
TDRefinement | | | 49.31 156 | 52.44 162 | 45.67 159 | 30.44 207 | 59.42 140 | 59.24 117 | 39.78 153 | 48.76 113 | 31.20 146 | 35.73 182 | 29.90 207 | 42.81 135 | 64.24 145 | 62.59 152 | 70.55 152 | 66.43 143 |
|
SixPastTwentyTwo | | | 47.55 172 | 50.25 177 | 44.41 166 | 47.30 178 | 54.31 168 | 47.81 174 | 40.36 150 | 33.76 197 | 19.93 185 | 43.75 152 | 32.77 205 | 42.07 137 | 59.82 162 | 60.94 158 | 68.98 156 | 66.37 145 |
|
pm-mvs1 | | | 51.02 147 | 55.55 139 | 45.73 157 | 54.16 136 | 58.52 148 | 50.92 162 | 42.56 128 | 40.32 176 | 25.67 171 | 43.66 153 | 50.34 127 | 30.06 179 | 65.85 134 | 63.97 137 | 70.99 151 | 66.21 146 |
|
pmmvs4 | | | 54.66 126 | 56.07 137 | 53.00 107 | 54.63 131 | 57.08 161 | 60.43 112 | 44.10 96 | 51.69 91 | 40.55 108 | 46.55 127 | 44.79 169 | 45.95 118 | 62.54 150 | 63.66 139 | 72.36 140 | 66.20 147 |
|
EPNet_dtu | | | 52.05 140 | 58.26 124 | 44.81 163 | 54.10 137 | 50.09 182 | 52.01 160 | 40.82 143 | 53.03 83 | 27.41 164 | 54.90 80 | 57.96 97 | 26.72 186 | 62.97 147 | 62.70 150 | 67.78 162 | 66.19 148 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
WR-MVS | | | 48.78 163 | 55.06 145 | 41.45 178 | 55.50 125 | 60.40 132 | 43.77 193 | 49.99 58 | 41.92 166 | 8.10 209 | 45.24 143 | 45.56 158 | 17.47 198 | 61.57 156 | 64.60 130 | 73.85 114 | 66.14 149 |
|
thres600view7 | | | 51.91 144 | 55.14 144 | 48.14 144 | 57.43 108 | 60.18 134 | 54.60 150 | 43.73 106 | 42.61 163 | 25.20 172 | 43.10 161 | 44.47 173 | 35.19 167 | 66.36 125 | 63.28 143 | 72.66 135 | 66.01 150 |
|
WR-MVS_H | | | 47.65 170 | 53.67 152 | 40.63 181 | 51.45 155 | 59.74 139 | 44.71 191 | 49.37 60 | 40.69 174 | 7.61 211 | 46.04 133 | 44.34 175 | 17.32 199 | 57.79 175 | 61.18 156 | 73.30 125 | 65.86 151 |
|
thres200 | | | 52.39 137 | 55.37 143 | 48.90 133 | 57.39 109 | 60.18 134 | 55.60 142 | 43.73 106 | 42.93 158 | 27.41 164 | 43.35 157 | 45.09 165 | 36.61 163 | 66.36 125 | 63.92 138 | 72.66 135 | 65.78 152 |
|
pmmvs6 | | | 48.35 165 | 51.64 167 | 44.51 165 | 51.92 153 | 57.94 157 | 49.44 168 | 42.17 132 | 34.45 196 | 24.62 175 | 28.87 199 | 46.90 147 | 29.07 183 | 64.60 144 | 63.08 144 | 69.83 155 | 65.68 153 |
|
PM-MVS | | | 44.55 183 | 48.13 185 | 40.37 182 | 32.85 206 | 46.82 194 | 46.11 183 | 29.28 197 | 40.48 175 | 29.99 152 | 39.98 173 | 34.39 202 | 41.80 139 | 56.08 186 | 53.88 191 | 62.19 182 | 65.31 154 |
|
tfpnnormal | | | 50.16 153 | 52.19 165 | 47.78 150 | 56.86 119 | 58.37 151 | 54.15 151 | 44.01 101 | 38.35 189 | 25.94 170 | 36.10 181 | 37.89 195 | 34.50 170 | 65.93 132 | 63.42 141 | 71.26 148 | 65.28 155 |
|
thres100view900 | | | 52.04 141 | 54.81 147 | 48.80 134 | 57.31 112 | 59.33 141 | 55.30 146 | 42.92 126 | 42.85 160 | 27.81 162 | 43.00 162 | 45.06 166 | 36.99 160 | 64.74 143 | 63.51 140 | 72.47 138 | 65.21 156 |
|
TransMVSNet (Re) | | | 51.92 143 | 55.38 142 | 47.88 148 | 60.95 86 | 59.90 137 | 53.95 152 | 45.14 83 | 39.47 181 | 24.85 173 | 43.87 151 | 46.51 151 | 29.15 181 | 67.55 108 | 65.23 124 | 73.26 126 | 65.16 157 |
|
USDC | | | 51.11 146 | 53.71 151 | 48.08 146 | 44.76 186 | 55.99 164 | 53.01 159 | 40.90 141 | 52.49 87 | 36.14 129 | 44.67 146 | 33.66 203 | 43.27 132 | 63.23 146 | 61.10 157 | 70.39 154 | 64.82 158 |
|
pmmvs-eth3d | | | 51.33 145 | 52.25 164 | 50.26 122 | 50.82 164 | 54.65 166 | 56.03 137 | 43.45 119 | 43.51 153 | 37.20 127 | 39.20 174 | 39.04 192 | 42.28 136 | 61.85 155 | 62.78 148 | 71.78 145 | 64.72 159 |
|
COLMAP_ROB |  | 46.52 15 | 51.99 142 | 54.86 146 | 48.63 138 | 49.13 171 | 61.73 120 | 60.53 111 | 36.57 170 | 53.14 81 | 32.95 138 | 37.10 178 | 38.68 193 | 40.49 143 | 65.72 135 | 63.08 144 | 72.11 143 | 64.60 160 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tpm cat1 | | | 53.30 132 | 53.41 154 | 53.17 106 | 58.16 99 | 59.15 144 | 63.73 98 | 38.27 163 | 50.73 94 | 46.98 73 | 45.57 139 | 44.00 176 | 49.20 98 | 55.90 188 | 54.02 187 | 62.65 179 | 64.50 161 |
|
DTE-MVSNet | | | 48.03 169 | 53.28 156 | 41.91 176 | 54.64 130 | 57.50 159 | 44.63 192 | 51.66 49 | 41.02 172 | 7.97 210 | 46.26 129 | 40.90 183 | 20.24 196 | 60.45 160 | 62.89 147 | 72.33 141 | 63.97 162 |
|
RPSCF | | | 46.41 176 | 54.42 148 | 37.06 191 | 25.70 214 | 45.14 198 | 45.39 187 | 20.81 208 | 62.79 59 | 35.10 131 | 44.92 144 | 55.60 107 | 43.56 128 | 56.12 185 | 52.45 193 | 51.80 202 | 63.91 163 |
|
test-mter | | | 45.30 180 | 50.37 174 | 39.38 184 | 33.65 204 | 46.99 192 | 47.59 175 | 18.59 210 | 38.75 185 | 28.00 161 | 43.28 159 | 46.82 149 | 41.50 140 | 57.28 177 | 55.78 175 | 66.93 167 | 63.70 164 |
|
EU-MVSNet | | | 40.63 193 | 45.65 192 | 34.78 197 | 39.11 198 | 46.94 193 | 40.02 201 | 34.03 182 | 33.50 198 | 10.37 202 | 35.57 183 | 37.80 196 | 23.65 191 | 51.90 196 | 50.21 197 | 61.49 183 | 63.62 165 |
|
gg-mvs-nofinetune | | | 49.07 161 | 52.56 161 | 45.00 162 | 61.99 78 | 59.78 138 | 53.55 157 | 41.63 135 | 31.62 203 | 12.08 198 | 29.56 197 | 53.28 113 | 29.57 180 | 66.27 128 | 64.49 133 | 71.19 150 | 62.92 166 |
|
CR-MVSNet | | | 50.47 149 | 52.61 160 | 47.98 147 | 49.03 172 | 52.94 171 | 48.27 171 | 38.86 157 | 44.41 144 | 39.59 114 | 44.34 147 | 44.65 172 | 46.63 114 | 58.97 166 | 60.31 161 | 65.48 169 | 62.66 167 |
|
PatchT | | | 48.08 167 | 51.03 172 | 44.64 164 | 42.96 191 | 50.12 181 | 40.36 200 | 35.09 175 | 43.17 155 | 39.59 114 | 42.00 168 | 39.96 189 | 46.63 114 | 58.97 166 | 60.31 161 | 63.21 176 | 62.66 167 |
|
CDS-MVSNet | | | 52.42 136 | 57.06 135 | 47.02 153 | 53.92 139 | 58.30 152 | 55.50 143 | 46.47 71 | 42.52 164 | 29.38 156 | 49.50 106 | 52.85 115 | 28.49 184 | 66.70 122 | 66.89 96 | 68.34 159 | 62.63 169 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
baseline1 | | | 54.48 127 | 58.69 119 | 49.57 124 | 60.63 88 | 58.29 153 | 55.70 141 | 44.95 85 | 49.20 105 | 29.62 154 | 54.77 82 | 54.75 108 | 35.29 166 | 67.15 116 | 64.08 135 | 71.21 149 | 62.58 170 |
|
test-LLR | | | 49.28 157 | 50.29 175 | 48.10 145 | 55.26 127 | 47.16 190 | 49.52 166 | 43.48 117 | 39.22 182 | 31.98 141 | 43.65 154 | 47.93 134 | 41.29 141 | 56.80 179 | 55.36 178 | 67.08 165 | 61.94 171 |
|
TESTMET0.1,1 | | | 46.09 179 | 50.29 175 | 41.18 179 | 36.91 200 | 47.16 190 | 49.52 166 | 20.32 209 | 39.22 182 | 31.98 141 | 43.65 154 | 47.93 134 | 41.29 141 | 56.80 179 | 55.36 178 | 67.08 165 | 61.94 171 |
|
RPMNet | | | 46.41 176 | 48.72 182 | 43.72 167 | 47.77 176 | 52.94 171 | 46.02 184 | 33.92 183 | 44.41 144 | 31.82 144 | 36.89 179 | 37.42 198 | 37.41 157 | 53.88 194 | 54.02 187 | 65.37 170 | 61.47 173 |
|
TinyColmap | | | 47.08 173 | 47.56 187 | 46.52 154 | 42.35 193 | 53.44 170 | 51.77 161 | 40.70 144 | 43.44 154 | 31.92 143 | 29.78 196 | 23.72 213 | 45.04 123 | 61.99 154 | 59.54 165 | 67.35 163 | 61.03 174 |
|
PMMVS | | | 49.20 160 | 54.28 150 | 43.28 171 | 34.13 202 | 45.70 197 | 48.98 169 | 26.09 204 | 46.31 133 | 34.92 134 | 55.22 79 | 53.47 112 | 47.48 111 | 59.43 163 | 59.04 166 | 68.05 161 | 60.77 175 |
|
pmmvs5 | | | 47.07 174 | 51.02 173 | 42.46 173 | 45.18 185 | 51.47 177 | 48.23 173 | 33.09 190 | 38.17 190 | 28.62 160 | 46.60 125 | 43.48 177 | 30.74 177 | 58.28 172 | 58.63 167 | 68.92 157 | 60.48 176 |
|
gm-plane-assit | | | 44.74 181 | 45.95 189 | 43.33 170 | 60.88 87 | 46.79 195 | 36.97 204 | 32.24 194 | 24.15 209 | 11.79 199 | 29.26 198 | 32.97 204 | 46.64 113 | 65.09 142 | 62.95 146 | 71.45 147 | 60.42 177 |
|
dps | | | 50.42 150 | 51.20 171 | 49.51 125 | 55.88 123 | 56.07 163 | 53.73 153 | 38.89 156 | 43.66 150 | 40.36 110 | 45.66 137 | 37.63 197 | 45.23 121 | 59.05 164 | 56.18 172 | 62.94 178 | 60.16 178 |
|
tpm | | | 48.82 162 | 51.27 170 | 45.96 156 | 54.10 137 | 47.35 189 | 56.05 136 | 30.23 195 | 46.70 129 | 43.21 92 | 52.54 92 | 47.55 140 | 37.28 159 | 54.11 193 | 50.50 196 | 54.90 196 | 60.12 179 |
|
PatchMatch-RL | | | 50.11 154 | 51.56 168 | 48.43 140 | 46.23 182 | 51.94 175 | 50.21 165 | 38.62 161 | 46.62 131 | 37.51 124 | 42.43 167 | 39.38 190 | 52.24 86 | 60.98 158 | 59.56 164 | 65.76 168 | 60.01 180 |
|
MDTV_nov1_ep13_2view | | | 47.62 171 | 49.72 180 | 45.18 161 | 48.05 174 | 53.70 169 | 54.90 149 | 33.80 185 | 39.90 180 | 29.79 153 | 38.85 175 | 41.89 180 | 39.17 147 | 58.99 165 | 55.55 177 | 65.34 171 | 59.17 181 |
|
Vis-MVSNet (Re-imp) | | | 50.37 151 | 57.73 131 | 41.80 177 | 57.53 105 | 54.35 167 | 45.70 185 | 45.24 82 | 49.80 98 | 13.43 196 | 58.23 67 | 56.42 101 | 20.11 197 | 62.96 148 | 63.36 142 | 68.76 158 | 58.96 182 |
|
MDTV_nov1_ep13 | | | 50.32 152 | 52.43 163 | 47.86 149 | 49.87 168 | 54.70 165 | 58.10 122 | 34.29 181 | 45.59 139 | 37.71 123 | 47.44 119 | 47.42 141 | 41.86 138 | 58.07 174 | 55.21 180 | 65.34 171 | 58.56 183 |
|
CHOSEN 280x420 | | | 40.80 191 | 45.05 194 | 35.84 195 | 32.95 205 | 29.57 210 | 44.98 189 | 23.71 207 | 37.54 192 | 18.42 188 | 31.36 192 | 47.07 144 | 46.41 116 | 56.71 181 | 54.65 185 | 48.55 206 | 58.47 184 |
|
tpmrst | | | 48.08 167 | 49.88 179 | 45.98 155 | 52.71 145 | 48.11 187 | 53.62 156 | 33.70 186 | 48.70 115 | 39.74 112 | 48.96 109 | 46.23 154 | 40.29 145 | 50.14 202 | 49.28 198 | 55.80 193 | 57.71 185 |
|
GG-mvs-BLEND | | | 36.62 199 | 53.39 155 | 17.06 208 | 0.01 220 | 58.61 147 | 48.63 170 | 0.01 217 | 47.13 127 | 0.02 221 | 43.98 149 | 60.64 83 | 0.03 216 | 54.92 192 | 51.47 195 | 53.64 199 | 56.99 186 |
|
SCA | | | 50.99 148 | 53.22 158 | 48.40 141 | 51.07 160 | 56.78 162 | 50.25 164 | 39.05 154 | 48.31 119 | 41.38 102 | 49.54 105 | 46.70 150 | 46.00 117 | 58.31 171 | 56.28 171 | 62.65 179 | 56.60 187 |
|
MDA-MVSNet-bldmvs | | | 41.36 189 | 43.15 199 | 39.27 185 | 28.74 209 | 52.68 173 | 44.95 190 | 40.84 142 | 32.89 199 | 18.13 189 | 31.61 191 | 22.09 214 | 38.97 150 | 50.45 201 | 56.11 173 | 64.01 174 | 56.23 188 |
|
Anonymous20231206 | | | 42.28 187 | 45.89 190 | 38.07 188 | 51.96 152 | 48.98 184 | 43.66 194 | 38.81 159 | 38.74 186 | 14.32 195 | 26.74 201 | 40.90 183 | 20.94 195 | 56.64 182 | 54.67 184 | 58.71 187 | 54.59 189 |
|
PatchmatchNet |  | | 49.92 155 | 51.29 169 | 48.32 143 | 51.83 154 | 51.86 176 | 53.38 158 | 37.63 167 | 47.90 122 | 40.83 107 | 48.54 111 | 45.30 161 | 45.19 122 | 56.86 178 | 53.99 189 | 61.08 184 | 54.57 190 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 43.79 185 | 48.53 183 | 38.27 187 | 41.46 195 | 48.97 185 | 50.81 163 | 32.88 192 | 44.55 142 | 22.07 179 | 32.05 189 | 47.15 143 | 24.76 189 | 58.73 168 | 56.09 174 | 57.63 192 | 52.14 191 |
|
pmmvs3 | | | 35.10 201 | 38.47 203 | 31.17 200 | 26.37 213 | 40.47 203 | 34.51 208 | 18.09 211 | 24.75 208 | 16.88 191 | 23.05 205 | 26.69 209 | 32.69 175 | 50.73 200 | 51.60 194 | 58.46 190 | 51.98 192 |
|
TAMVS | | | 44.02 184 | 49.18 181 | 37.99 189 | 47.03 179 | 45.97 196 | 45.04 188 | 28.47 199 | 39.11 184 | 20.23 184 | 43.22 160 | 48.52 130 | 28.49 184 | 58.15 173 | 57.95 170 | 58.71 187 | 51.36 193 |
|
FPMVS | | | 38.36 198 | 40.41 202 | 35.97 193 | 38.92 199 | 39.85 205 | 45.50 186 | 25.79 205 | 41.13 171 | 18.70 187 | 30.10 194 | 24.56 211 | 31.86 176 | 49.42 204 | 46.80 203 | 55.04 194 | 51.03 194 |
|
FC-MVSNet-test | | | 39.65 196 | 48.35 184 | 29.49 201 | 44.43 187 | 39.28 207 | 30.23 210 | 40.44 148 | 43.59 151 | 3.12 217 | 53.00 88 | 42.03 179 | 10.02 213 | 55.09 190 | 54.77 182 | 48.66 205 | 50.71 195 |
|
FMVSNet5 | | | 40.96 190 | 45.81 191 | 35.29 196 | 34.30 201 | 44.55 200 | 47.28 178 | 28.84 198 | 40.76 173 | 21.62 180 | 29.85 195 | 42.44 178 | 24.77 188 | 57.53 176 | 55.00 181 | 54.93 195 | 50.56 196 |
|
pmnet_mix02 | | | 40.48 194 | 43.80 196 | 36.61 192 | 45.79 184 | 40.45 204 | 42.12 197 | 33.18 189 | 40.30 177 | 24.11 178 | 38.76 176 | 37.11 199 | 24.30 190 | 52.97 195 | 46.66 204 | 50.17 204 | 50.33 197 |
|
MVS-HIRNet | | | 42.24 188 | 41.15 201 | 43.51 168 | 44.06 190 | 40.74 202 | 35.77 206 | 35.35 174 | 35.38 195 | 38.34 119 | 25.63 203 | 38.55 194 | 43.48 129 | 50.77 199 | 47.03 202 | 64.07 173 | 49.98 198 |
|
PMVS |  | 27.84 18 | 33.81 202 | 35.28 206 | 32.09 199 | 34.13 202 | 24.81 212 | 32.51 209 | 26.48 203 | 26.41 207 | 19.37 186 | 23.76 204 | 24.02 212 | 25.18 187 | 50.78 198 | 47.24 201 | 54.89 197 | 49.95 199 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test0.0.03 1 | | | 43.15 186 | 46.95 188 | 38.72 186 | 55.26 127 | 50.56 179 | 42.48 196 | 43.48 117 | 38.16 191 | 15.11 192 | 35.07 184 | 44.69 171 | 16.47 200 | 55.95 187 | 54.34 186 | 59.54 186 | 49.87 200 |
|
test20.03 | | | 40.38 195 | 44.20 195 | 35.92 194 | 53.73 140 | 49.05 183 | 38.54 202 | 43.49 116 | 32.55 200 | 9.54 205 | 27.88 200 | 39.12 191 | 12.24 205 | 56.28 184 | 54.69 183 | 57.96 191 | 49.83 201 |
|
EPMVS | | | 44.66 182 | 47.86 186 | 40.92 180 | 47.97 175 | 44.70 199 | 47.58 176 | 33.27 188 | 48.11 121 | 29.58 155 | 49.65 104 | 44.38 174 | 34.65 168 | 51.71 197 | 47.90 200 | 52.49 201 | 48.57 202 |
|
MIMVSNet1 | | | 35.51 200 | 41.41 200 | 28.63 202 | 27.53 211 | 43.36 201 | 38.09 203 | 33.82 184 | 32.01 201 | 6.77 212 | 21.63 207 | 35.43 200 | 11.97 207 | 55.05 191 | 53.99 189 | 53.59 200 | 48.36 203 |
|
testgi | | | 38.71 197 | 43.64 197 | 32.95 198 | 52.30 151 | 48.63 186 | 35.59 207 | 35.05 176 | 31.58 204 | 9.03 208 | 30.29 193 | 40.75 185 | 11.19 211 | 55.30 189 | 53.47 192 | 54.53 198 | 45.48 204 |
|
new-patchmatchnet | | | 33.24 203 | 37.20 204 | 28.62 203 | 44.32 189 | 38.26 208 | 29.68 211 | 36.05 172 | 31.97 202 | 6.33 213 | 26.59 202 | 27.33 208 | 11.12 212 | 50.08 203 | 41.05 207 | 44.23 208 | 45.15 205 |
|
ADS-MVSNet | | | 40.67 192 | 43.38 198 | 37.50 190 | 44.36 188 | 39.79 206 | 42.09 198 | 32.67 193 | 44.34 146 | 28.87 159 | 40.76 172 | 40.37 187 | 30.22 178 | 48.34 206 | 45.87 205 | 46.81 207 | 44.21 206 |
|
N_pmnet | | | 32.67 204 | 36.85 205 | 27.79 204 | 40.55 196 | 32.13 209 | 35.80 205 | 26.79 202 | 37.24 193 | 9.10 206 | 32.02 190 | 30.94 206 | 16.30 201 | 47.22 207 | 41.21 206 | 38.21 210 | 37.21 207 |
|
new_pmnet | | | 23.19 206 | 28.17 207 | 17.37 206 | 17.03 215 | 24.92 211 | 19.66 213 | 16.16 213 | 27.05 206 | 4.42 214 | 20.77 208 | 19.20 215 | 12.19 206 | 37.71 208 | 36.38 208 | 34.77 211 | 31.17 208 |
|
Gipuma |  | | 25.87 205 | 26.91 208 | 24.66 205 | 28.98 208 | 20.17 213 | 20.46 212 | 34.62 180 | 29.55 205 | 9.10 206 | 4.91 216 | 5.31 220 | 15.76 202 | 49.37 205 | 49.10 199 | 39.03 209 | 29.95 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 12.28 19 | 13.53 210 | 15.72 210 | 10.96 211 | 7.39 217 | 15.71 215 | 6.05 218 | 23.73 206 | 10.29 217 | 3.01 218 | 5.77 215 | 3.41 221 | 11.91 208 | 20.11 210 | 29.79 209 | 13.67 216 | 24.98 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 15.84 207 | 19.68 209 | 11.35 210 | 15.74 216 | 16.95 214 | 13.31 214 | 17.64 212 | 16.08 213 | 0.36 220 | 13.12 210 | 11.47 217 | 1.69 215 | 28.82 209 | 27.24 210 | 19.38 215 | 24.09 211 |
|
E-PMN | | | 15.09 208 | 13.19 212 | 17.30 207 | 27.80 210 | 12.62 216 | 7.81 217 | 27.54 200 | 14.62 215 | 3.19 215 | 6.89 213 | 2.52 223 | 15.09 203 | 15.93 212 | 20.22 211 | 22.38 212 | 19.53 212 |
|
DeepMVS_CX |  | | | | | | 6.95 218 | 5.98 219 | 2.25 215 | 11.73 216 | 2.07 219 | 11.85 211 | 5.43 219 | 11.75 209 | 11.40 215 | | 8.10 218 | 18.38 213 |
|
EMVS | | | 14.49 209 | 12.45 213 | 16.87 209 | 27.02 212 | 12.56 217 | 8.13 216 | 27.19 201 | 15.05 214 | 3.14 216 | 6.69 214 | 2.67 222 | 15.08 204 | 14.60 214 | 18.05 212 | 20.67 213 | 17.56 214 |
|
test_method | | | 12.44 211 | 14.66 211 | 9.85 212 | 1.30 219 | 3.32 219 | 13.00 215 | 3.21 214 | 22.42 210 | 10.22 203 | 14.13 209 | 25.64 210 | 11.43 210 | 19.75 211 | 11.61 214 | 19.96 214 | 5.79 215 |
|
test123 | | | 0.01 212 | 0.02 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 223 | 0.00 218 | 0.01 218 | 0.00 222 | 0.04 217 | 0.00 224 | 0.01 217 | 0.00 217 | 0.01 215 | 0.00 219 | 0.07 216 |
|
testmvs | | | 0.01 212 | 0.02 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.01 222 | 0.00 218 | 0.01 218 | 0.00 222 | 0.03 218 | 0.00 224 | 0.01 217 | 0.01 216 | 0.01 215 | 0.00 219 | 0.06 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 223 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 219 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 223 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 219 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 223 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 219 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 33.01 136 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 12 | | | | | |
|
SR-MVS | | | | | | 71.46 34 | | | 54.67 29 | | | | 81.54 13 | | | | | |
|
our_test_3 | | | | | | 51.15 159 | 57.31 160 | 55.12 147 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 65.14 3 | | 80.20 19 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 17 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 221 | | | | | | | | | | |
|
tmp_tt | | | | | 5.40 213 | 3.97 218 | 2.35 220 | 3.26 220 | 0.44 216 | 17.56 212 | 12.09 197 | 11.48 212 | 7.14 218 | 1.98 214 | 15.68 213 | 15.49 213 | 10.69 217 | |
|
XVS | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 40 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 188 | 48.27 171 | 38.86 157 | | 39.59 114 | | | | | | | |
|