This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVScopyleft78.77 284.89 171.62 578.04 482.05 181.64 1157.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2391.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS79.21 184.74 272.75 178.66 381.96 282.94 558.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1790.92 2
DPE-MVScopyleft78.11 483.84 471.42 677.82 681.32 482.92 657.81 984.04 863.19 1488.63 286.00 464.52 578.71 1177.63 1682.26 2490.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 881.93 382.92 658.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2890.29 4
APDe-MVS77.58 682.93 671.35 777.86 580.55 783.38 157.61 1085.57 561.11 2286.10 782.98 864.76 478.29 1576.78 2383.40 690.20 5
SMA-MVScopyleft77.32 782.51 771.26 875.43 1580.19 982.22 858.26 384.83 764.36 978.19 1683.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS77.82 583.46 571.24 975.26 1780.22 882.95 457.85 885.90 364.79 688.54 383.43 766.24 378.21 1878.56 780.34 4989.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS75.62 1279.91 1470.61 1175.76 1178.82 1581.66 1057.12 1479.77 1863.04 1570.69 2581.15 1662.99 1180.23 579.54 383.11 989.16 8
ACMMP_NAP76.15 981.17 970.30 1274.09 2179.47 1181.59 1357.09 1581.38 1263.89 1279.02 1480.48 1962.24 1980.05 679.12 482.94 1288.64 9
SteuartSystems-ACMMP75.23 1379.60 1570.13 1476.81 778.92 1381.74 957.99 675.30 3159.83 2775.69 1978.45 2560.48 3080.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS66.49 174.25 2180.97 1066.41 3367.75 5378.87 1475.61 4054.16 3584.86 658.22 3477.94 1781.01 1762.52 1778.34 1377.38 1780.16 5288.40 11
APD-MVScopyleft75.80 1180.90 1169.86 1775.42 1678.48 1781.43 1457.44 1380.45 1659.32 2885.28 880.82 1863.96 776.89 3076.08 2881.58 4088.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS66.32 273.85 2478.10 2368.90 2467.92 5179.31 1278.16 3059.28 178.24 2361.13 2167.36 3776.10 3463.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft74.31 1978.87 1868.99 2373.49 2478.56 1679.25 2456.51 1875.33 2960.69 2475.30 2079.12 2461.81 2277.78 2277.93 1282.18 3088.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG74.68 1679.22 1669.40 1975.69 1380.01 1079.12 2552.83 4379.34 1963.99 1170.49 2682.02 1260.35 3477.48 2577.22 2084.38 187.97 15
xxxxxxxxxxxxxcwj74.63 1777.07 2871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1052.03 12262.83 1477.13 2775.21 3283.35 787.85 16
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1084.46 562.83 1477.13 2775.21 3283.35 787.85 16
NCCC74.27 2077.83 2570.13 1475.70 1277.41 2480.51 1657.09 1578.25 2262.28 1965.54 3878.26 2662.18 2079.13 878.51 1083.01 1187.68 18
HPM-MVS++copyleft76.01 1080.47 1270.81 1076.60 974.96 3780.18 1858.36 281.96 1163.50 1378.80 1582.53 1164.40 678.74 1078.84 581.81 3487.46 19
MCST-MVS73.67 2677.39 2669.33 2076.26 1078.19 1878.77 2754.54 3275.33 2959.99 2667.96 3379.23 2362.43 1878.00 1975.71 3084.02 287.30 20
CP-MVS72.63 2976.95 2967.59 2870.67 3775.53 3577.95 3256.01 2375.65 2858.82 3069.16 3076.48 3260.46 3177.66 2377.20 2181.65 3886.97 21
HFP-MVS74.87 1578.86 2070.21 1373.99 2277.91 1980.36 1756.63 1778.41 2164.27 1074.54 2177.75 2962.96 1278.70 1277.82 1383.02 1086.91 22
ACMMPR73.79 2578.41 2168.40 2672.35 2977.79 2079.32 2256.38 2077.67 2558.30 3374.16 2276.66 3061.40 2478.32 1477.80 1482.68 1686.51 23
zzz-MVS74.25 2177.97 2469.91 1673.43 2574.06 4579.69 2056.44 1980.74 1564.98 568.72 3179.98 2162.92 1378.24 1777.77 1581.99 3286.30 24
HQP-MVS70.88 3575.02 3566.05 3671.69 3274.47 4277.51 3353.17 4072.89 3854.88 4670.03 2870.48 5157.26 5076.02 3775.01 3781.78 3586.21 25
DeepC-MVS_fast65.08 372.00 3176.11 3067.21 3068.93 4777.46 2276.54 3654.35 3374.92 3358.64 3265.18 3974.04 4462.62 1677.92 2077.02 2282.16 3186.21 25
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS68.76 4373.01 3963.81 4965.42 6473.66 4876.39 3852.08 4572.61 4050.33 6460.73 6172.65 4759.43 3973.32 5572.12 5179.19 6285.99 27
X-MVS71.18 3475.66 3465.96 3771.71 3176.96 2777.26 3455.88 2472.75 3954.48 5064.39 4274.47 3954.19 6877.84 2177.37 1882.21 2785.85 28
ACMMPcopyleft71.57 3275.84 3266.59 3270.30 4176.85 3078.46 2953.95 3673.52 3755.56 4070.13 2771.36 4958.55 4277.00 2976.23 2782.71 1585.81 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS72.89 2777.13 2767.94 2772.47 2877.25 2579.27 2354.63 3173.71 3657.95 3572.38 2375.33 3660.75 2878.25 1677.36 1982.57 2085.62 30
train_agg73.89 2378.25 2268.80 2575.25 1872.27 5379.75 1956.05 2274.87 3458.97 2981.83 1279.76 2261.05 2777.39 2676.01 2981.71 3785.61 31
TSAR-MVS + ACMM72.56 3079.07 1764.96 4273.24 2673.16 5078.50 2848.80 6979.34 1955.32 4285.04 981.49 1558.57 4175.06 4573.75 4675.35 10885.61 31
SD-MVS74.43 1878.87 1869.26 2174.39 2073.70 4779.06 2655.24 2781.04 1362.71 1680.18 1382.61 1061.70 2375.43 4273.92 4582.44 2285.22 33
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.75.22 1480.06 1369.56 1874.61 1972.74 5180.59 1555.70 2580.80 1462.65 1786.25 682.92 962.07 2176.89 3075.66 3181.77 3685.19 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS71.47 3375.82 3366.41 3372.97 2777.15 2678.14 3154.71 2969.88 4953.07 5870.98 2474.83 3856.95 5476.22 3576.57 2582.62 1885.09 35
ACMP61.42 568.72 4471.37 4565.64 3969.06 4674.45 4375.88 3953.30 3968.10 5155.74 3961.53 6062.29 7856.97 5374.70 4874.23 4382.88 1384.31 36
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train68.87 4172.03 4365.18 4169.33 4574.03 4676.67 3553.88 3768.46 5052.05 6163.21 4963.89 7156.31 5875.99 3874.43 4182.83 1484.18 37
PHI-MVS69.27 4074.84 3662.76 5366.83 5674.83 3873.88 4849.32 6370.61 4650.93 6269.62 2974.84 3757.25 5175.53 4174.32 4278.35 6984.17 38
TSAR-MVS + GP.69.71 3673.92 3864.80 4468.27 4970.56 5871.90 5250.75 5371.38 4357.46 3768.68 3275.42 3560.10 3573.47 5473.99 4480.32 5083.97 39
abl_664.36 4670.08 4277.45 2372.88 5150.15 5871.31 4454.77 4962.79 5277.99 2856.80 5581.50 4183.91 40
OPM-MVS69.33 3971.05 4767.32 2972.34 3075.70 3479.57 2156.34 2155.21 7453.81 5559.51 6568.96 5659.67 3777.61 2476.44 2682.19 2883.88 41
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_030469.49 3873.96 3764.28 4767.92 5176.13 3374.90 4347.60 7163.29 5954.09 5467.44 3676.35 3359.53 3875.81 3975.03 3581.62 3983.70 42
DPM-MVS72.80 2875.90 3169.19 2275.51 1477.68 2181.62 1254.83 2875.96 2762.06 2063.96 4576.58 3158.55 4276.66 3476.77 2482.60 1983.68 43
PCF-MVS59.98 867.32 5071.04 4862.97 5264.77 6674.49 4174.78 4449.54 6067.44 5254.39 5358.35 7072.81 4655.79 6471.54 6269.24 7278.57 6483.41 44
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_Blended_VisFu63.65 6266.92 6359.83 6260.03 9573.44 4966.33 7748.95 6552.20 9550.81 6356.07 7760.25 8953.56 7473.23 5670.01 6779.30 5983.24 45
3Dnovator+62.63 469.51 3772.62 4165.88 3868.21 5076.47 3173.50 5052.74 4470.85 4558.65 3155.97 7869.95 5261.11 2676.80 3275.09 3481.09 4483.23 46
DROMVSNet67.01 5270.27 5463.21 5067.21 5470.47 5969.01 5846.96 7459.16 6853.23 5764.01 4469.71 5460.37 3274.92 4671.24 5682.50 2182.41 47
CANet68.77 4273.01 3963.83 4868.30 4875.19 3673.73 4947.90 7063.86 5654.84 4767.51 3574.36 4257.62 4674.22 5073.57 4980.56 4782.36 48
anonymousdsp52.84 13957.78 13547.06 15840.24 20358.95 15153.70 16033.54 19336.51 20032.69 14343.88 15645.40 16447.97 11267.17 12070.28 6474.22 11782.29 49
QAPM65.27 5669.49 5760.35 5865.43 6372.20 5465.69 8647.23 7263.46 5849.14 6953.56 9071.04 5057.01 5272.60 5871.41 5477.62 7382.14 50
MVS_111021_HR67.62 4870.39 5164.39 4569.77 4370.45 6071.44 5651.72 4960.77 6555.06 4462.14 5766.40 6758.13 4576.13 3674.79 3980.19 5182.04 51
CS-MVS-test65.21 5768.35 6161.55 5562.29 7966.33 9369.01 5846.96 7453.61 8149.35 6763.37 4867.61 6560.37 3274.92 4671.04 5781.34 4281.58 52
DELS-MVS65.87 5470.30 5360.71 5664.05 7472.68 5270.90 5745.43 8557.49 6949.05 7164.43 4168.66 5755.11 6674.31 4973.02 5079.70 5581.51 53
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++68.17 4570.72 5065.19 4069.41 4470.64 5774.99 4245.76 8170.20 4860.17 2556.42 7673.01 4561.14 2572.80 5770.54 6279.70 5581.42 54
CS-MVS64.01 6168.64 6058.60 6960.26 9365.23 10465.49 8838.99 16057.42 7046.13 8263.70 4768.62 5859.83 3673.63 5270.66 5980.93 4581.24 55
ACMM60.30 767.58 4968.82 5966.13 3570.59 3872.01 5576.54 3654.26 3465.64 5554.78 4850.35 10661.72 8258.74 4075.79 4075.03 3581.88 3381.17 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part163.06 6565.27 7460.47 5766.24 6270.17 6171.86 5345.36 8753.75 8049.61 6644.85 15065.53 6948.93 10271.39 6370.65 6080.82 4680.59 57
canonicalmvs65.62 5572.06 4258.11 7163.94 7571.05 5664.49 9643.18 12874.08 3547.35 7464.17 4371.97 4851.17 9571.87 6070.74 5878.51 6780.56 58
3Dnovator60.86 666.99 5370.32 5263.11 5166.63 5774.52 4071.56 5545.76 8167.37 5355.00 4554.31 8968.19 6158.49 4473.97 5173.63 4881.22 4380.23 59
MAR-MVS68.04 4670.74 4964.90 4371.68 3376.33 3274.63 4550.48 5763.81 5755.52 4154.88 8469.90 5357.39 4975.42 4374.79 3979.71 5480.03 60
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OMC-MVS65.16 5871.35 4657.94 7552.95 15068.82 6569.00 6038.28 16879.89 1755.20 4362.76 5368.31 6056.14 6171.30 6568.70 7976.06 10079.67 61
EPP-MVSNet59.39 8265.45 7352.32 11660.96 8767.70 7558.42 12644.75 9349.71 10527.23 16959.03 6662.20 7943.34 13370.71 7269.13 7479.25 6179.63 62
ETV-MVS63.23 6466.08 6959.91 6163.13 7868.13 7067.62 6544.62 9553.39 8446.23 8058.74 6758.19 9657.45 4873.60 5371.38 5580.39 4879.13 63
Vis-MVSNetpermissive58.48 9265.70 7250.06 12853.40 14767.20 8260.24 11643.32 12548.83 11730.23 15462.38 5661.61 8340.35 14771.03 6869.77 6872.82 13679.11 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft57.13 962.81 6765.75 7159.39 6466.47 5969.52 6364.26 9843.07 13061.34 6450.19 6547.29 12464.41 7054.60 6770.18 7968.62 8177.73 7178.89 65
Effi-MVS+63.28 6365.96 7060.17 5964.26 7068.06 7168.78 6245.71 8354.08 7746.64 7855.92 7963.13 7555.94 6270.38 7771.43 5379.68 5878.70 66
GeoE62.43 7064.79 7959.68 6364.15 7367.17 8368.80 6144.42 9955.65 7347.38 7351.54 10062.51 7654.04 7169.99 8068.07 8579.28 6078.57 67
IB-MVS54.11 1158.36 9660.70 9755.62 9258.67 10268.02 7261.56 10543.15 12946.09 14044.06 9244.24 15450.99 12948.71 10566.70 12870.33 6377.60 7478.50 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet65.14 5969.54 5660.00 6066.61 5867.67 7667.53 6655.32 2662.67 6146.22 8167.74 3465.93 6848.07 11172.17 5972.12 5176.28 9278.47 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet57.03 10665.25 7547.44 15746.54 18666.73 8756.30 14043.28 12650.06 10232.99 14062.57 5563.26 7433.31 18068.25 9767.58 9472.20 14878.29 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR63.05 6666.43 6659.10 6661.33 8563.77 11665.87 8343.58 11760.20 6653.70 5662.09 5862.38 7755.84 6370.24 7868.08 8474.30 11678.28 71
AdaColmapbinary67.89 4768.85 5866.77 3173.73 2374.30 4475.28 4153.58 3870.24 4757.59 3651.19 10359.19 9360.74 2975.33 4473.72 4779.69 5777.96 72
diffmvs61.64 7366.55 6555.90 9056.63 12663.71 11767.13 7141.27 14459.49 6746.70 7763.93 4668.01 6350.46 9667.30 11865.51 12573.24 13377.87 73
casdiffmvs64.09 6068.13 6259.37 6561.81 8168.32 6968.48 6344.45 9861.95 6249.12 7063.04 5069.67 5553.83 7270.46 7466.06 11778.55 6577.43 74
v14419258.23 9959.40 12056.87 8557.56 10966.89 8565.70 8445.01 9044.06 15542.88 9646.61 12848.09 13753.49 7866.94 12665.90 12176.61 8677.29 75
v192192057.89 10259.02 12356.58 8857.55 11066.66 9164.72 9544.70 9443.55 15842.73 9746.17 13646.93 15153.51 7666.78 12765.75 12376.29 9177.28 76
v119258.51 9059.66 11357.17 8257.82 10867.72 7466.21 7944.83 9244.15 15443.49 9446.68 12647.94 13853.55 7567.39 11766.51 11177.13 8277.20 77
v124057.55 10458.63 12756.29 8957.30 12066.48 9263.77 10044.56 9642.77 16842.48 9945.64 14246.28 15853.46 7966.32 13365.80 12276.16 9577.13 78
v1059.17 8560.60 9857.50 8057.95 10766.73 8767.09 7244.11 10146.85 13445.42 8548.18 12051.07 12653.63 7367.84 10866.59 11076.79 8476.92 79
v7n55.67 12057.46 13953.59 10456.06 12865.29 10061.06 11143.26 12740.17 18437.99 12540.79 17745.27 16847.09 11567.67 11266.21 11576.08 9776.82 80
CNLPA62.78 6866.31 6758.65 6858.47 10468.41 6865.98 8241.22 14578.02 2456.04 3846.65 12759.50 9257.50 4769.67 8265.27 12972.70 14076.67 81
DI_MVS_plusplus_trai61.88 7265.17 7658.06 7260.05 9465.26 10166.03 8044.22 10055.75 7246.73 7654.64 8768.12 6254.13 7069.13 8666.66 10677.18 8076.61 82
v114458.88 8660.16 10657.39 8158.03 10667.26 8167.14 7044.46 9745.17 14644.33 9147.81 12149.92 13453.20 8367.77 11066.62 10977.15 8176.58 83
MVS_Test62.40 7166.23 6857.94 7559.77 9964.77 10866.50 7641.76 13957.26 7149.33 6862.68 5467.47 6653.50 7768.57 9366.25 11476.77 8576.58 83
V4256.97 10860.14 10753.28 10648.16 17962.78 12266.30 7837.93 17047.44 13142.68 9848.19 11952.59 12051.90 9167.46 11665.94 12072.72 13876.55 85
PVSNet_BlendedMVS61.63 7464.82 7757.91 7757.21 12267.55 7863.47 10246.08 7954.72 7552.46 5958.59 6860.73 8551.82 9370.46 7465.20 13176.44 8976.50 86
PVSNet_Blended61.63 7464.82 7757.91 7757.21 12267.55 7863.47 10246.08 7954.72 7552.46 5958.59 6860.73 8551.82 9370.46 7465.20 13176.44 8976.50 86
TSAR-MVS + COLMAP62.65 6969.90 5554.19 9946.31 18766.73 8765.49 8841.36 14376.57 2646.31 7976.80 1856.68 10253.27 8269.50 8366.65 10772.40 14576.36 88
ACMH+53.71 1259.26 8360.28 10258.06 7264.17 7268.46 6767.51 6750.93 5252.46 9335.83 13340.83 17645.12 16952.32 8869.88 8169.00 7777.59 7576.21 89
DCV-MVSNet59.49 8164.00 8354.23 9861.81 8164.33 11261.42 10843.77 11052.85 9038.94 12155.62 8162.15 8043.24 13669.39 8467.66 9376.22 9475.97 90
IterMVS-LS58.30 9761.39 9154.71 9659.92 9758.40 15659.42 11843.64 11548.71 12040.25 11457.53 7358.55 9552.15 9065.42 14665.34 12772.85 13475.77 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH52.42 1358.24 9859.56 11856.70 8766.34 6069.59 6266.71 7449.12 6446.08 14128.90 16142.67 17141.20 18852.60 8571.39 6370.28 6476.51 8875.72 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+60.36 7863.35 8556.87 8558.70 10165.86 9665.08 9237.11 17453.00 8945.36 8652.12 9756.07 10856.27 5971.28 6669.42 7178.71 6375.69 93
MVSTER57.19 10561.11 9352.62 11450.82 17058.79 15261.55 10637.86 17148.81 11841.31 10657.43 7552.10 12148.60 10668.19 10166.75 10475.56 10475.68 94
Effi-MVS+-dtu60.34 7962.32 8858.03 7464.31 6867.44 8065.99 8142.26 13549.55 10642.00 10348.92 11459.79 9156.27 5968.07 10467.03 9877.35 7875.45 95
CANet_DTU58.88 8664.68 8052.12 11755.77 13066.75 8663.92 9937.04 17553.32 8537.45 12959.81 6361.81 8144.43 12868.25 9767.47 9674.12 11875.33 96
v858.88 8660.57 10056.92 8457.35 11765.69 9866.69 7542.64 13247.89 12945.77 8349.04 11152.98 11852.77 8467.51 11565.57 12476.26 9375.30 97
EIA-MVS61.53 7663.79 8458.89 6763.82 7667.61 7765.35 9042.15 13849.98 10345.66 8457.47 7456.62 10356.59 5770.91 7169.15 7379.78 5374.80 98
v2v48258.69 8960.12 10957.03 8357.16 12466.05 9567.17 6943.52 11946.33 13845.19 8749.46 11051.02 12752.51 8667.30 11866.03 11876.61 8674.62 99
IS_MVSNet57.95 10164.26 8250.60 12361.62 8465.25 10357.18 13245.42 8650.79 9926.49 17457.81 7260.05 9034.51 17571.24 6770.20 6678.36 6874.44 100
TAPA-MVS54.74 1060.85 7766.61 6454.12 10147.38 18365.33 9965.35 9036.51 17775.16 3248.82 7254.70 8663.51 7353.31 8168.36 9564.97 13573.37 12874.27 101
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051756.53 11359.59 11452.95 11152.66 15260.99 13459.21 12140.51 15047.89 12940.40 11252.50 9646.04 16149.78 9767.75 11167.83 8875.15 10974.17 102
Anonymous2023121157.71 10360.79 9554.13 10061.68 8365.81 9760.81 11343.70 11451.97 9639.67 11634.82 19163.59 7243.31 13468.55 9466.63 10875.59 10374.13 103
EG-PatchMatch MVS56.98 10758.24 13155.50 9364.66 6768.62 6661.48 10743.63 11638.44 19341.44 10438.05 18346.18 16043.95 12971.71 6170.61 6177.87 7074.08 104
thisisatest053056.68 11159.68 11253.19 10852.97 14960.96 13559.41 11940.51 15048.26 12641.06 10952.67 9346.30 15749.78 9767.66 11367.83 8875.39 10674.07 105
CHOSEN 1792x268855.85 11858.01 13253.33 10557.26 12162.82 12163.29 10441.55 14146.65 13638.34 12234.55 19253.50 11452.43 8767.10 12367.56 9567.13 17073.92 106
ET-MVSNet_ETH3D58.38 9561.57 9054.67 9742.15 20065.26 10165.70 8443.82 10948.84 11642.34 10059.76 6447.76 14156.68 5667.02 12568.60 8277.33 7973.73 107
thisisatest051553.85 13556.84 14250.37 12650.25 17358.17 16055.99 14439.90 15741.88 17338.16 12445.91 13845.30 16644.58 12766.15 13766.89 10273.36 12973.57 108
Anonymous20240521160.60 9863.44 7766.71 9061.00 11247.23 7250.62 10136.85 18660.63 8843.03 13769.17 8567.72 9275.41 10572.54 109
baseline55.19 12860.88 9448.55 14549.87 17458.10 16158.70 12334.75 18352.82 9139.48 12060.18 6260.86 8445.41 12361.05 16360.74 16663.10 18372.41 110
UniMVSNet (Re)55.15 12960.39 10149.03 13855.31 13264.59 10955.77 14650.63 5448.66 12220.95 18751.47 10150.40 13134.41 17767.81 10967.89 8777.11 8371.88 111
FC-MVSNet-train58.40 9463.15 8652.85 11264.29 6961.84 12555.98 14546.47 7753.06 8734.96 13661.95 5956.37 10639.49 14968.67 9068.36 8375.92 10271.81 112
v14855.58 12257.61 13853.20 10754.59 14061.86 12461.18 10938.70 16644.30 15342.25 10147.53 12250.24 13348.73 10465.15 14762.61 15773.79 12171.61 113
HyFIR lowres test56.87 11058.60 12854.84 9556.62 12769.27 6464.77 9442.21 13645.66 14437.50 12833.08 19457.47 10153.33 8065.46 14567.94 8674.60 11371.35 114
PLCcopyleft52.09 1459.21 8462.47 8755.41 9453.24 14864.84 10764.47 9740.41 15465.92 5444.53 9046.19 13555.69 10955.33 6568.24 9965.30 12874.50 11471.09 115
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT52.18 14557.75 13645.68 16451.01 16862.06 12355.10 15434.75 18344.85 14732.86 14251.13 10451.22 12548.74 10362.47 15761.51 16151.61 20971.02 116
UniMVSNet_NR-MVSNet56.94 10961.14 9252.05 11860.02 9665.21 10557.44 13052.93 4249.37 10924.31 18154.62 8850.54 13039.04 15168.69 8968.84 7878.53 6670.72 117
DU-MVS55.41 12359.59 11450.54 12554.60 13862.97 11957.44 13051.80 4748.62 12324.31 18151.99 9847.00 15039.04 15168.11 10267.75 9176.03 10170.72 117
Fast-Effi-MVS+-dtu56.30 11559.29 12152.82 11358.64 10364.89 10665.56 8732.89 19745.80 14335.04 13545.89 13954.14 11349.41 10067.16 12166.45 11375.37 10770.69 119
GA-MVS55.67 12058.33 12952.58 11555.23 13563.09 11861.08 11040.15 15642.95 16337.02 13152.61 9447.68 14247.51 11365.92 13965.35 12674.49 11570.68 120
NR-MVSNet55.35 12459.46 11950.56 12461.33 8562.97 11957.91 12951.80 4748.62 12320.59 18851.99 9844.73 17534.10 17868.58 9268.64 8077.66 7270.67 121
CostFormer56.57 11259.13 12253.60 10357.52 11261.12 13266.94 7335.95 17953.44 8244.68 8955.87 8054.44 11248.21 10860.37 16758.33 17468.27 16670.33 122
TranMVSNet+NR-MVSNet55.87 11760.14 10750.88 12259.46 10063.82 11557.93 12852.98 4148.94 11520.52 18952.87 9247.33 14736.81 16769.12 8769.03 7677.56 7669.89 123
CLD-MVS67.02 5171.57 4461.71 5471.01 3674.81 3971.62 5438.91 16171.86 4260.70 2364.97 4067.88 6451.88 9276.77 3374.98 3876.11 9669.75 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net55.20 12660.25 10349.31 13252.42 15361.44 12757.03 13344.04 10449.18 11230.47 15048.28 11658.19 9638.22 15468.05 10566.96 9973.69 12369.65 125
test155.20 12660.25 10349.31 13252.42 15361.44 12757.03 13344.04 10449.18 11230.47 15048.28 11658.19 9638.22 15468.05 10566.96 9973.69 12369.65 125
FMVSNet255.04 13059.95 11149.31 13252.42 15361.44 12757.03 13344.08 10349.55 10630.40 15346.89 12558.84 9438.22 15467.07 12466.21 11573.69 12369.65 125
Baseline_NR-MVSNet53.50 13657.89 13348.37 14854.60 13859.25 14956.10 14151.84 4649.32 11017.92 19645.38 14547.68 14236.93 16668.11 10265.95 11972.84 13569.57 128
FMVSNet154.08 13458.68 12648.71 14250.90 16961.35 13056.73 13743.94 10845.91 14229.32 16042.72 17056.26 10737.70 16168.05 10566.96 9973.69 12369.50 129
LS3D60.20 8061.70 8958.45 7064.18 7167.77 7367.19 6848.84 6861.67 6341.27 10745.89 13951.81 12454.18 6968.78 8866.50 11275.03 11169.48 130
CMPMVSbinary37.70 1749.24 16452.71 16545.19 16645.97 18951.23 18447.44 18329.31 20243.04 16244.69 8834.45 19348.35 13643.64 13062.59 15559.82 16960.08 19169.48 130
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch58.19 10060.20 10555.85 9165.17 6564.16 11364.82 9341.48 14250.95 9842.17 10245.38 14556.42 10448.08 11068.30 9666.70 10573.39 12769.46 132
FMVSNet354.78 13159.58 11649.17 13552.37 15661.31 13156.72 13844.04 10449.18 11230.47 15048.28 11658.19 9638.09 15765.48 14465.20 13173.31 13069.45 133
UA-Net58.50 9164.68 8051.30 12166.97 5567.13 8453.68 16145.65 8449.51 10831.58 14862.91 5168.47 5935.85 17168.20 10067.28 9774.03 11969.24 134
IterMVS53.45 13757.12 14049.17 13549.23 17660.93 13659.05 12234.63 18544.53 14933.22 13851.09 10551.01 12848.38 10762.43 15860.79 16570.54 15969.05 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB44.17 1647.06 18150.15 18443.44 17551.39 16258.42 15542.90 20143.51 12022.27 21714.85 20041.94 17534.57 20745.43 12262.28 15962.77 15562.56 18768.83 136
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D52.62 14055.98 14448.70 14351.04 16760.71 13756.87 13646.74 7642.52 17026.96 17142.50 17245.95 16237.87 15866.22 13565.15 13472.74 13768.78 137
baseline255.89 11657.82 13453.64 10257.36 11661.09 13359.75 11740.45 15247.38 13241.26 10851.23 10246.90 15248.11 10965.63 14364.38 14074.90 11268.16 138
MSDG58.46 9358.97 12457.85 7966.27 6166.23 9467.72 6442.33 13453.43 8343.68 9343.39 16245.35 16549.75 9968.66 9167.77 9077.38 7767.96 139
CVMVSNet46.38 18452.01 17239.81 18942.40 19850.26 18646.15 18837.68 17240.03 18515.09 19946.56 13047.56 14433.72 17956.50 18955.65 18263.80 18167.53 140
ambc45.54 19950.66 17252.63 18040.99 20538.36 19424.67 17922.62 21213.94 22229.14 18865.71 14258.06 17558.60 19567.43 141
test111155.24 12559.98 11049.71 12959.80 9864.10 11456.48 13949.34 6252.27 9421.56 18644.49 15251.96 12335.93 17070.59 7369.07 7575.13 11067.40 142
PS-CasMVS48.18 17253.25 16342.27 18151.26 16457.94 16346.51 18750.52 5641.30 17610.56 20745.35 14740.34 19423.04 19958.66 17661.79 16071.74 15267.38 143
test250655.82 11959.57 11751.46 11960.39 9164.55 11058.69 12448.87 6653.91 7826.99 17048.97 11241.72 18737.71 15970.96 6969.49 6976.08 9767.37 144
CP-MVSNet48.37 17053.53 15942.34 18051.35 16358.01 16246.56 18650.54 5541.62 17510.61 20646.53 13240.68 19223.18 19858.71 17561.83 15971.81 15067.36 145
ECVR-MVScopyleft56.44 11460.74 9651.42 12060.39 9164.55 11058.69 12448.87 6653.91 7826.76 17245.55 14453.43 11637.71 15970.96 6969.49 6976.08 9767.32 146
PEN-MVS49.21 16554.32 15543.24 17854.33 14159.26 14847.04 18551.37 5141.67 1749.97 21046.22 13441.80 18622.97 20060.52 16564.03 14273.73 12266.75 147
tfpn200view952.53 14155.51 14649.06 13757.31 11860.24 13955.42 15143.77 11042.85 16627.81 16543.00 16845.06 17137.32 16366.38 13064.54 13772.71 13966.54 148
thres40052.38 14455.51 14648.74 14157.49 11360.10 14255.45 15043.54 11842.90 16526.72 17343.34 16445.03 17336.61 16866.20 13664.53 13872.66 14166.43 149
TDRefinement49.31 16252.44 16845.67 16530.44 21359.42 14659.24 12039.78 15848.76 11931.20 14935.73 18829.90 21342.81 13864.24 15162.59 15870.55 15866.43 149
SixPastTwentyTwo47.55 17850.25 18344.41 17247.30 18454.31 17447.81 18040.36 15533.76 20319.93 19143.75 15832.77 21142.07 14059.82 16860.94 16468.98 16266.37 151
pm-mvs151.02 15355.55 14545.73 16354.16 14258.52 15450.92 16842.56 13340.32 18225.67 17643.66 15950.34 13230.06 18565.85 14063.97 14370.99 15766.21 152
pmmvs454.66 13256.07 14353.00 11054.63 13757.08 16760.43 11544.10 10251.69 9740.55 11146.55 13144.79 17445.95 12162.54 15663.66 14572.36 14666.20 153
EPNet_dtu52.05 14658.26 13044.81 16954.10 14350.09 18852.01 16640.82 14853.03 8827.41 16754.90 8357.96 10026.72 19262.97 15362.70 15667.78 16866.19 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS48.78 16955.06 15141.45 18455.50 13160.40 13843.77 19949.99 5941.92 1728.10 21545.24 14845.56 16317.47 20461.57 16264.60 13673.85 12066.14 155
thres600view751.91 15055.14 15048.14 15057.43 11460.18 14054.60 15643.73 11242.61 16925.20 17743.10 16744.47 17835.19 17366.36 13163.28 14972.66 14166.01 156
WR-MVS_H47.65 17653.67 15840.63 18751.45 16159.74 14544.71 19749.37 6140.69 1807.61 21746.04 13744.34 18017.32 20557.79 18161.18 16273.30 13165.86 157
thres20052.39 14355.37 14948.90 13957.39 11560.18 14055.60 14843.73 11242.93 16427.41 16743.35 16345.09 17036.61 16866.36 13163.92 14472.66 14165.78 158
pmmvs648.35 17151.64 17344.51 17151.92 15957.94 16349.44 17442.17 13734.45 20224.62 18028.87 20546.90 15229.07 18964.60 15063.08 15069.83 16165.68 159
PM-MVS44.55 18948.13 19140.37 18832.85 21246.82 20046.11 18929.28 20340.48 18129.99 15539.98 17934.39 20841.80 14256.08 19253.88 19762.19 18865.31 160
tfpnnormal50.16 15952.19 17147.78 15656.86 12558.37 15754.15 15744.01 10738.35 19525.94 17536.10 18737.89 20134.50 17665.93 13863.42 14771.26 15465.28 161
thres100view90052.04 14754.81 15348.80 14057.31 11859.33 14755.30 15242.92 13142.85 16627.81 16543.00 16845.06 17136.99 16564.74 14963.51 14672.47 14465.21 162
TransMVSNet (Re)51.92 14955.38 14847.88 15460.95 8859.90 14353.95 15845.14 8939.47 18724.85 17843.87 15746.51 15629.15 18767.55 11465.23 13073.26 13265.16 163
USDC51.11 15253.71 15748.08 15244.76 19255.99 17053.01 16540.90 14652.49 9236.14 13244.67 15133.66 20943.27 13563.23 15261.10 16370.39 16064.82 164
pmmvs-eth3d51.33 15152.25 17050.26 12750.82 17054.65 17256.03 14343.45 12443.51 15937.20 13039.20 18039.04 19842.28 13961.85 16162.78 15471.78 15164.72 165
COLMAP_ROBcopyleft46.52 1551.99 14854.86 15248.63 14449.13 17761.73 12660.53 11436.57 17653.14 8632.95 14137.10 18438.68 19940.49 14665.72 14163.08 15072.11 14964.60 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat153.30 13853.41 16053.17 10958.16 10559.15 15063.73 10138.27 16950.73 10046.98 7545.57 14344.00 18149.20 10155.90 19454.02 19362.65 18564.50 167
DTE-MVSNet48.03 17553.28 16241.91 18254.64 13657.50 16544.63 19851.66 5041.02 1787.97 21646.26 13340.90 18920.24 20260.45 16662.89 15372.33 14763.97 168
RPSCF46.41 18254.42 15437.06 19725.70 22045.14 20445.39 19320.81 21462.79 6035.10 13444.92 14955.60 11043.56 13156.12 19152.45 19951.80 20863.91 169
test-mter45.30 18650.37 18039.38 19033.65 21046.99 19847.59 18118.59 21638.75 19128.00 16443.28 16546.82 15441.50 14357.28 18355.78 18166.93 17363.70 170
EU-MVSNet40.63 19945.65 19834.78 20339.11 20446.94 19940.02 20734.03 18833.50 20410.37 20835.57 18937.80 20223.65 19751.90 20250.21 20361.49 18963.62 171
gg-mvs-nofinetune49.07 16752.56 16745.00 16861.99 8059.78 14453.55 16341.63 14031.62 20912.08 20429.56 20353.28 11729.57 18666.27 13464.49 13971.19 15662.92 172
CR-MVSNet50.47 15552.61 16647.98 15349.03 17852.94 17748.27 17738.86 16344.41 15039.59 11744.34 15344.65 17746.63 11758.97 17260.31 16765.48 17562.66 173
PatchT48.08 17351.03 17844.64 17042.96 19750.12 18740.36 20635.09 18143.17 16139.59 11742.00 17439.96 19546.63 11758.97 17260.31 16763.21 18262.66 173
CDS-MVSNet52.42 14257.06 14147.02 15953.92 14558.30 15855.50 14946.47 7742.52 17029.38 15949.50 10952.85 11928.49 19066.70 12866.89 10268.34 16562.63 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline154.48 13358.69 12549.57 13060.63 9058.29 15955.70 14744.95 9149.20 11129.62 15754.77 8554.75 11135.29 17267.15 12264.08 14171.21 15562.58 176
test-LLR49.28 16350.29 18148.10 15155.26 13347.16 19649.52 17243.48 12239.22 18831.98 14443.65 16047.93 13941.29 14456.80 18555.36 18467.08 17161.94 177
TESTMET0.1,146.09 18550.29 18141.18 18536.91 20647.16 19649.52 17220.32 21539.22 18831.98 14443.65 16047.93 13941.29 14456.80 18555.36 18467.08 17161.94 177
RPMNet46.41 18248.72 18843.72 17347.77 18252.94 17746.02 19033.92 18944.41 15031.82 14736.89 18537.42 20437.41 16253.88 20054.02 19365.37 17661.47 179
TinyColmap47.08 17947.56 19346.52 16042.35 19953.44 17651.77 16740.70 14943.44 16031.92 14629.78 20223.72 21945.04 12661.99 16059.54 17167.35 16961.03 180
PMMVS49.20 16654.28 15643.28 17734.13 20845.70 20348.98 17526.09 21046.31 13934.92 13755.22 8253.47 11547.48 11459.43 16959.04 17268.05 16760.77 181
pmmvs547.07 18051.02 17942.46 17945.18 19151.47 18348.23 17933.09 19638.17 19628.62 16346.60 12943.48 18230.74 18358.28 17858.63 17368.92 16360.48 182
gm-plane-assit44.74 18745.95 19543.33 17660.88 8946.79 20136.97 21032.24 20024.15 21511.79 20529.26 20432.97 21046.64 11665.09 14862.95 15271.45 15360.42 183
dps50.42 15651.20 17749.51 13155.88 12956.07 16953.73 15938.89 16243.66 15640.36 11345.66 14137.63 20345.23 12459.05 17056.18 17862.94 18460.16 184
tpm48.82 16851.27 17645.96 16254.10 14347.35 19556.05 14230.23 20146.70 13543.21 9552.54 9547.55 14537.28 16454.11 19950.50 20254.90 20260.12 185
PatchMatch-RL50.11 16051.56 17448.43 14646.23 18851.94 18150.21 17138.62 16746.62 13737.51 12742.43 17339.38 19652.24 8960.98 16459.56 17065.76 17460.01 186
MDTV_nov1_ep13_2view47.62 17749.72 18645.18 16748.05 18053.70 17554.90 15533.80 19139.90 18629.79 15638.85 18141.89 18539.17 15058.99 17155.55 18365.34 17759.17 187
Vis-MVSNet (Re-imp)50.37 15757.73 13741.80 18357.53 11154.35 17345.70 19145.24 8849.80 10413.43 20258.23 7156.42 10420.11 20362.96 15463.36 14868.76 16458.96 188
MDTV_nov1_ep1350.32 15852.43 16947.86 15549.87 17454.70 17158.10 12734.29 18745.59 14537.71 12647.44 12347.42 14641.86 14158.07 18055.21 18665.34 17758.56 189
CHOSEN 280x42040.80 19745.05 20035.84 20132.95 21129.57 21644.98 19523.71 21337.54 19818.42 19431.36 19847.07 14946.41 11956.71 18754.65 19148.55 21258.47 190
tpmrst48.08 17349.88 18545.98 16152.71 15148.11 19353.62 16233.70 19248.70 12139.74 11548.96 11346.23 15940.29 14850.14 20849.28 20455.80 19957.71 191
GG-mvs-BLEND36.62 20553.39 16117.06 2140.01 22658.61 15348.63 1760.01 22347.13 1330.02 22743.98 15560.64 870.03 22254.92 19851.47 20153.64 20556.99 192
SCA50.99 15453.22 16448.40 14751.07 16656.78 16850.25 17039.05 15948.31 12541.38 10549.54 10846.70 15546.00 12058.31 17756.28 17762.65 18556.60 193
MDA-MVSNet-bldmvs41.36 19543.15 20539.27 19128.74 21552.68 17944.95 19640.84 14732.89 20518.13 19531.61 19722.09 22038.97 15350.45 20756.11 17964.01 18056.23 194
Anonymous2023120642.28 19345.89 19638.07 19451.96 15848.98 19043.66 20038.81 16538.74 19214.32 20126.74 20740.90 18920.94 20156.64 18854.67 19058.71 19354.59 195
PatchmatchNetpermissive49.92 16151.29 17548.32 14951.83 16051.86 18253.38 16437.63 17347.90 12840.83 11048.54 11545.30 16645.19 12556.86 18453.99 19561.08 19054.57 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet43.79 19148.53 18938.27 19341.46 20148.97 19150.81 16932.88 19844.55 14822.07 18432.05 19547.15 14824.76 19558.73 17456.09 18057.63 19852.14 197
pmmvs335.10 20738.47 20931.17 20626.37 21940.47 20934.51 21418.09 21724.75 21416.88 19723.05 21126.69 21532.69 18150.73 20651.60 20058.46 19651.98 198
TAMVS44.02 19049.18 18737.99 19547.03 18545.97 20245.04 19428.47 20539.11 19020.23 19043.22 16648.52 13528.49 19058.15 17957.95 17658.71 19351.36 199
FPMVS38.36 20440.41 20835.97 19938.92 20539.85 21145.50 19225.79 21141.13 17718.70 19330.10 20024.56 21731.86 18249.42 21046.80 20955.04 20051.03 200
FC-MVSNet-test39.65 20248.35 19029.49 20744.43 19339.28 21330.23 21640.44 15343.59 1573.12 22353.00 9142.03 18410.02 21955.09 19654.77 18848.66 21150.71 201
FMVSNet540.96 19645.81 19735.29 20234.30 20744.55 20647.28 18428.84 20440.76 17921.62 18529.85 20142.44 18324.77 19457.53 18255.00 18754.93 20150.56 202
pmnet_mix0240.48 20043.80 20236.61 19845.79 19040.45 21042.12 20333.18 19540.30 18324.11 18338.76 18237.11 20524.30 19652.97 20146.66 21050.17 21050.33 203
MVS-HIRNet42.24 19441.15 20743.51 17444.06 19640.74 20835.77 21235.35 18035.38 20138.34 12225.63 20938.55 20043.48 13250.77 20547.03 20864.07 17949.98 204
PMVScopyleft27.84 1833.81 20835.28 21232.09 20534.13 20824.81 21832.51 21526.48 20926.41 21319.37 19223.76 21024.02 21825.18 19350.78 20447.24 20754.89 20349.95 205
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test0.0.03 143.15 19246.95 19438.72 19255.26 13350.56 18542.48 20243.48 12238.16 19715.11 19835.07 19044.69 17616.47 20655.95 19354.34 19259.54 19249.87 206
test20.0340.38 20144.20 20135.92 20053.73 14649.05 18938.54 20843.49 12132.55 2069.54 21127.88 20639.12 19712.24 21156.28 19054.69 18957.96 19749.83 207
EPMVS44.66 18847.86 19240.92 18647.97 18144.70 20547.58 18233.27 19448.11 12729.58 15849.65 10744.38 17934.65 17451.71 20347.90 20652.49 20748.57 208
MIMVSNet135.51 20641.41 20628.63 20827.53 21743.36 20738.09 20933.82 19032.01 2076.77 21821.63 21335.43 20611.97 21355.05 19753.99 19553.59 20648.36 209
testgi38.71 20343.64 20332.95 20452.30 15748.63 19235.59 21335.05 18231.58 2109.03 21430.29 19940.75 19111.19 21755.30 19553.47 19854.53 20445.48 210
new-patchmatchnet33.24 20937.20 21028.62 20944.32 19538.26 21429.68 21736.05 17831.97 2086.33 21926.59 20827.33 21411.12 21850.08 20941.05 21344.23 21445.15 211
ADS-MVSNet40.67 19843.38 20437.50 19644.36 19439.79 21242.09 20432.67 19944.34 15228.87 16240.76 17840.37 19330.22 18448.34 21245.87 21146.81 21344.21 212
N_pmnet32.67 21036.85 21127.79 21040.55 20232.13 21535.80 21126.79 20837.24 1999.10 21232.02 19630.94 21216.30 20747.22 21341.21 21238.21 21637.21 213
new_pmnet23.19 21228.17 21317.37 21217.03 22124.92 21719.66 21916.16 21927.05 2124.42 22020.77 21419.20 22112.19 21237.71 21436.38 21434.77 21731.17 214
Gipumacopyleft25.87 21126.91 21424.66 21128.98 21420.17 21920.46 21834.62 18629.55 2119.10 2124.91 2225.31 22615.76 20849.37 21149.10 20539.03 21529.95 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive12.28 1913.53 21615.72 21610.96 2177.39 22315.71 2216.05 22423.73 21210.29 2233.01 2245.77 2213.41 22711.91 21420.11 21629.79 21513.67 22224.98 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS215.84 21319.68 21511.35 21615.74 22216.95 22013.31 22017.64 21816.08 2190.36 22613.12 21611.47 2231.69 22128.82 21527.24 21619.38 22124.09 217
E-PMN15.09 21413.19 21817.30 21327.80 21612.62 2227.81 22327.54 20614.62 2213.19 2216.89 2192.52 22915.09 20915.93 21820.22 21722.38 21819.53 218
DeepMVS_CXcopyleft6.95 2245.98 2252.25 22111.73 2222.07 22511.85 2175.43 22511.75 21511.40 2218.10 22418.38 219
EMVS14.49 21512.45 21916.87 21527.02 21812.56 2238.13 22227.19 20715.05 2203.14 2226.69 2202.67 22815.08 21014.60 22018.05 21820.67 21917.56 220
test_method12.44 21714.66 2179.85 2181.30 2253.32 22513.00 2213.21 22022.42 21610.22 20914.13 21525.64 21611.43 21619.75 21711.61 22019.96 2205.79 221
test1230.01 2180.02 2200.00 2200.00 2270.00 2270.00 2290.00 2240.01 2240.00 2280.04 2230.00 2300.01 2230.00 2230.01 2210.00 2250.07 222
testmvs0.01 2180.02 2200.00 2200.00 2270.00 2270.01 2280.00 2240.01 2240.00 2280.03 2240.00 2300.01 2230.01 2220.01 2210.00 2250.06 223
uanet_test0.00 2200.00 2220.00 2200.00 2270.00 2270.00 2290.00 2240.00 2260.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
sosnet-low-res0.00 2200.00 2220.00 2200.00 2270.00 2270.00 2290.00 2240.00 2260.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
sosnet0.00 2200.00 2220.00 2200.00 2270.00 2270.00 2290.00 2240.00 2260.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
RE-MVS-def33.01 139
9.1481.81 13
SR-MVS71.46 3554.67 3081.54 14
our_test_351.15 16557.31 16655.12 153
MTAPA65.14 480.20 20
MTMP62.63 1878.04 27
Patchmatch-RL test1.04 227
tmp_tt5.40 2193.97 2242.35 2263.26 2260.44 22217.56 21812.09 20311.48 2187.14 2241.98 22015.68 21915.49 21910.69 223
XVS70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
X-MVStestdata70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
mPP-MVS71.67 3474.36 42
NP-MVS72.00 41
Patchmtry47.61 19448.27 17738.86 16339.59 117