This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVScopyleft78.77 284.89 171.62 578.04 482.05 181.64 1157.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2391.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS79.21 184.74 272.75 178.66 381.96 282.94 558.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1790.92 2
DPE-MVScopyleft78.11 483.84 471.42 677.82 681.32 482.92 657.81 984.04 863.19 1488.63 286.00 464.52 578.71 1177.63 1682.26 2490.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 881.93 382.92 658.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2890.29 4
APDe-MVS77.58 682.93 671.35 777.86 580.55 783.38 157.61 1085.57 561.11 2286.10 782.98 864.76 478.29 1576.78 2383.40 690.20 5
SMA-MVScopyleft77.32 782.51 771.26 875.43 1580.19 982.22 858.26 384.83 764.36 978.19 1683.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS77.82 583.46 571.24 975.26 1780.22 882.95 457.85 885.90 364.79 688.54 383.43 766.24 378.21 1878.56 780.34 4989.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS75.62 1279.91 1470.61 1175.76 1178.82 1581.66 1057.12 1479.77 1863.04 1570.69 2581.15 1662.99 1180.23 579.54 383.11 989.16 8
ACMMP_NAP76.15 981.17 970.30 1274.09 2179.47 1181.59 1357.09 1581.38 1263.89 1279.02 1480.48 1962.24 1980.05 679.12 482.94 1288.64 9
SteuartSystems-ACMMP75.23 1379.60 1570.13 1476.81 778.92 1381.74 957.99 675.30 3159.83 2775.69 1978.45 2560.48 3180.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS66.49 174.25 2180.97 1066.41 3367.75 5378.87 1475.61 4054.16 3584.86 658.22 3477.94 1781.01 1762.52 1778.34 1377.38 1780.16 5288.40 11
APD-MVScopyleft75.80 1180.90 1169.86 1775.42 1678.48 1781.43 1457.44 1380.45 1659.32 2885.28 880.82 1863.96 776.89 3076.08 2881.58 4088.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS66.32 273.85 2478.10 2368.90 2467.92 5179.31 1278.16 3059.28 178.24 2361.13 2167.36 3776.10 3463.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft74.31 1978.87 1868.99 2373.49 2478.56 1679.25 2456.51 1875.33 2960.69 2475.30 2079.12 2461.81 2277.78 2277.93 1282.18 3088.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG74.68 1679.22 1669.40 1975.69 1380.01 1079.12 2552.83 4379.34 1963.99 1170.49 2682.02 1260.35 3477.48 2577.22 2084.38 187.97 15
xxxxxxxxxxxxxcwj74.63 1777.07 2871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1052.03 12362.83 1477.13 2775.21 3283.35 787.85 16
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 683.69 1084.46 562.83 1477.13 2775.21 3283.35 787.85 16
NCCC74.27 2077.83 2570.13 1475.70 1277.41 2480.51 1657.09 1578.25 2262.28 1965.54 3978.26 2662.18 2079.13 878.51 1083.01 1187.68 18
HPM-MVS++copyleft76.01 1080.47 1270.81 1076.60 974.96 3780.18 1858.36 281.96 1163.50 1378.80 1582.53 1164.40 678.74 1078.84 581.81 3487.46 19
MCST-MVS73.67 2677.39 2669.33 2076.26 1078.19 1878.77 2754.54 3275.33 2959.99 2667.96 3379.23 2362.43 1878.00 1975.71 3084.02 287.30 20
CP-MVS72.63 2976.95 2967.59 2870.67 3775.53 3577.95 3256.01 2375.65 2858.82 3069.16 3076.48 3260.46 3277.66 2377.20 2181.65 3886.97 21
HFP-MVS74.87 1578.86 2070.21 1373.99 2277.91 1980.36 1756.63 1778.41 2164.27 1074.54 2177.75 2962.96 1278.70 1277.82 1383.02 1086.91 22
ACMMPR73.79 2578.41 2168.40 2672.35 2977.79 2079.32 2256.38 2077.67 2558.30 3374.16 2276.66 3061.40 2478.32 1477.80 1482.68 1686.51 23
zzz-MVS74.25 2177.97 2469.91 1673.43 2574.06 4579.69 2056.44 1980.74 1564.98 568.72 3179.98 2162.92 1378.24 1777.77 1581.99 3286.30 24
HQP-MVS70.88 3575.02 3566.05 3671.69 3274.47 4277.51 3353.17 4072.89 3854.88 4670.03 2870.48 5157.26 5076.02 3775.01 3781.78 3586.21 25
DeepC-MVS_fast65.08 372.00 3176.11 3067.21 3068.93 4777.46 2276.54 3654.35 3374.92 3358.64 3265.18 4174.04 4462.62 1677.92 2077.02 2282.16 3186.21 25
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS68.76 4373.01 3963.81 4965.42 6473.66 4876.39 3852.08 4572.61 4050.33 6660.73 6172.65 4759.43 3873.32 5472.12 5179.19 6285.99 27
X-MVS71.18 3475.66 3465.96 3771.71 3176.96 2777.26 3455.88 2472.75 3954.48 5064.39 4474.47 3954.19 6877.84 2177.37 1882.21 2785.85 28
ACMMPcopyleft71.57 3275.84 3266.59 3270.30 4176.85 3078.46 2953.95 3673.52 3755.56 4070.13 2771.36 4958.55 4277.00 2976.23 2782.71 1585.81 29
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS72.89 2777.13 2767.94 2772.47 2877.25 2579.27 2354.63 3173.71 3657.95 3572.38 2375.33 3660.75 2978.25 1677.36 1982.57 2085.62 30
train_agg73.89 2378.25 2268.80 2575.25 1872.27 5379.75 1956.05 2274.87 3458.97 2981.83 1279.76 2261.05 2777.39 2676.01 2981.71 3785.61 31
TSAR-MVS + ACMM72.56 3079.07 1764.96 4273.24 2673.16 5078.50 2848.80 6979.34 1955.32 4285.04 981.49 1558.57 4175.06 4573.75 4675.35 10985.61 31
SD-MVS74.43 1878.87 1869.26 2174.39 2073.70 4779.06 2655.24 2781.04 1362.71 1680.18 1382.61 1061.70 2375.43 4273.92 4582.44 2285.22 33
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.75.22 1480.06 1369.56 1874.61 1972.74 5180.59 1555.70 2580.80 1462.65 1786.25 682.92 962.07 2176.89 3075.66 3181.77 3685.19 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS71.47 3375.82 3366.41 3372.97 2777.15 2678.14 3154.71 2969.88 4953.07 5870.98 2474.83 3856.95 5476.22 3576.57 2582.62 1885.09 35
ACMP61.42 568.72 4471.37 4565.64 3969.06 4674.45 4375.88 3953.30 3968.10 5155.74 3961.53 6062.29 7856.97 5374.70 4874.23 4382.88 1384.31 36
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train68.87 4172.03 4365.18 4169.33 4574.03 4676.67 3553.88 3768.46 5052.05 6263.21 4963.89 7156.31 5875.99 3874.43 4182.83 1484.18 37
PHI-MVS69.27 4074.84 3662.76 5366.83 5674.83 3873.88 4849.32 6370.61 4650.93 6469.62 2974.84 3757.25 5175.53 4174.32 4278.35 6984.17 38
TSAR-MVS + GP.69.71 3673.92 3864.80 4468.27 4970.56 5871.90 5250.75 5371.38 4357.46 3768.68 3275.42 3560.10 3573.47 5373.99 4480.32 5083.97 39
abl_664.36 4670.08 4277.45 2372.88 5150.15 5871.31 4454.77 4962.79 5277.99 2856.80 5581.50 4183.91 40
OPM-MVS69.33 3971.05 4767.32 2972.34 3075.70 3479.57 2156.34 2155.21 7653.81 5559.51 6568.96 5659.67 3677.61 2476.44 2682.19 2883.88 41
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_030469.49 3873.96 3764.28 4767.92 5176.13 3374.90 4347.60 7163.29 5954.09 5467.44 3676.35 3359.53 3775.81 3975.03 3581.62 3983.70 42
DPM-MVS72.80 2875.90 3169.19 2275.51 1477.68 2181.62 1254.83 2875.96 2762.06 2063.96 4776.58 3158.55 4276.66 3476.77 2482.60 1983.68 43
PCF-MVS59.98 867.32 5071.04 4862.97 5264.77 6674.49 4174.78 4449.54 6067.44 5254.39 5358.35 7072.81 4655.79 6471.54 6269.24 7278.57 6483.41 44
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_Blended_VisFu63.65 6266.92 6359.83 6360.03 9573.44 4966.33 7848.95 6552.20 9650.81 6556.07 7760.25 8953.56 7473.23 5570.01 6779.30 5983.24 45
3Dnovator+62.63 469.51 3772.62 4165.88 3868.21 5076.47 3173.50 5052.74 4470.85 4558.65 3155.97 7869.95 5261.11 2676.80 3275.09 3481.09 4483.23 46
DROMVSNet67.01 5270.27 5463.21 5067.21 5470.47 5969.01 5846.96 7459.16 6853.23 5764.01 4669.71 5460.37 3374.92 4671.24 5782.50 2182.41 47
CANet68.77 4273.01 3963.83 4868.30 4875.19 3673.73 4947.90 7063.86 5654.84 4767.51 3574.36 4257.62 4674.22 5073.57 4980.56 4782.36 48
anonymousdsp52.84 14057.78 13647.06 15940.24 20458.95 15253.70 16133.54 19436.51 20132.69 14443.88 15745.40 16547.97 11367.17 12170.28 6374.22 11882.29 49
QAPM65.27 5769.49 5860.35 5965.43 6372.20 5465.69 8747.23 7263.46 5849.14 7053.56 9071.04 5057.01 5272.60 5871.41 5577.62 7382.14 50
MVS_111021_HR67.62 4870.39 5164.39 4569.77 4370.45 6071.44 5651.72 4960.77 6555.06 4462.14 5766.40 6758.13 4576.13 3674.79 3980.19 5182.04 51
DELS-MVS65.87 5570.30 5360.71 5764.05 7472.68 5270.90 5745.43 8457.49 7149.05 7264.43 4368.66 5755.11 6674.31 4973.02 5079.70 5581.51 52
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++68.17 4570.72 5065.19 4069.41 4470.64 5774.99 4245.76 8070.20 4860.17 2556.42 7673.01 4561.14 2572.80 5670.54 6179.70 5581.42 53
ACMM60.30 767.58 4968.82 6066.13 3570.59 3872.01 5576.54 3654.26 3465.64 5554.78 4850.35 10761.72 8258.74 4075.79 4075.03 3581.88 3381.17 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS65.88 5469.71 5661.41 5561.76 8368.14 7067.65 6444.00 10859.14 6952.69 5965.19 4068.13 6160.90 2874.74 4771.58 5381.46 4281.04 55
test_part163.06 6565.27 7460.47 5866.24 6270.17 6171.86 5345.36 8653.75 8249.61 6844.85 15165.53 6948.93 10371.39 6370.65 5980.82 4680.59 56
canonicalmvs65.62 5672.06 4258.11 7163.94 7571.05 5664.49 9743.18 12974.08 3547.35 7564.17 4571.97 4851.17 9671.87 6070.74 5878.51 6780.56 57
3Dnovator60.86 666.99 5370.32 5263.11 5166.63 5774.52 4071.56 5545.76 8067.37 5355.00 4554.31 8968.19 6058.49 4473.97 5173.63 4881.22 4380.23 58
MAR-MVS68.04 4670.74 4964.90 4371.68 3376.33 3274.63 4550.48 5763.81 5755.52 4154.88 8469.90 5357.39 4975.42 4374.79 3979.71 5480.03 59
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OMC-MVS65.16 5971.35 4657.94 7552.95 15168.82 6569.00 5938.28 16979.89 1755.20 4362.76 5368.31 5956.14 6171.30 6568.70 7976.06 10179.67 60
EPP-MVSNet59.39 8365.45 7352.32 11760.96 8867.70 7758.42 12744.75 9349.71 10627.23 17059.03 6662.20 7943.34 13470.71 7269.13 7479.25 6179.63 61
CS-MVS-test65.18 5868.70 6161.07 5661.92 8068.06 7267.09 7245.18 8858.47 7052.02 6365.76 3866.44 6659.24 3972.71 5770.05 6680.98 4579.40 62
ETV-MVS63.23 6466.08 6959.91 6263.13 7868.13 7167.62 6544.62 9553.39 8546.23 8158.74 6758.19 9657.45 4873.60 5271.38 5680.39 4879.13 63
Vis-MVSNetpermissive58.48 9365.70 7250.06 12953.40 14867.20 8460.24 11743.32 12648.83 11830.23 15562.38 5661.61 8340.35 14871.03 6869.77 6872.82 13779.11 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft57.13 962.81 6765.75 7159.39 6566.47 5969.52 6364.26 9943.07 13161.34 6450.19 6747.29 12564.41 7054.60 6770.18 7968.62 8177.73 7178.89 65
Effi-MVS+63.28 6365.96 7060.17 6064.26 7068.06 7268.78 6145.71 8254.08 7946.64 7955.92 7963.13 7555.94 6270.38 7771.43 5479.68 5878.70 66
GeoE62.43 7064.79 7959.68 6464.15 7367.17 8568.80 6044.42 9955.65 7547.38 7451.54 10162.51 7654.04 7169.99 8068.07 8579.28 6078.57 67
IB-MVS54.11 1158.36 9760.70 9855.62 9358.67 10368.02 7461.56 10643.15 13046.09 14144.06 9344.24 15550.99 13048.71 10666.70 12970.33 6277.60 7478.50 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet65.14 6069.54 5760.00 6166.61 5867.67 7867.53 6655.32 2662.67 6146.22 8267.74 3465.93 6848.07 11272.17 5972.12 5176.28 9378.47 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet57.03 10765.25 7547.44 15846.54 18766.73 8956.30 14143.28 12750.06 10332.99 14162.57 5563.26 7433.31 18168.25 9867.58 9572.20 14978.29 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR63.05 6666.43 6659.10 6761.33 8663.77 11765.87 8443.58 11860.20 6653.70 5662.09 5862.38 7755.84 6370.24 7868.08 8474.30 11778.28 71
AdaColmapbinary67.89 4768.85 5966.77 3173.73 2374.30 4475.28 4153.58 3870.24 4757.59 3651.19 10459.19 9360.74 3075.33 4473.72 4779.69 5777.96 72
diffmvs61.64 7366.55 6555.90 9156.63 12763.71 11867.13 7141.27 14559.49 6746.70 7863.93 4868.01 6350.46 9767.30 11965.51 12673.24 13477.87 73
casdiffmvs64.09 6168.13 6259.37 6661.81 8168.32 6968.48 6244.45 9861.95 6249.12 7163.04 5069.67 5553.83 7270.46 7466.06 11878.55 6577.43 74
v14419258.23 10059.40 12156.87 8557.56 11066.89 8765.70 8545.01 9044.06 15642.88 9746.61 12948.09 13853.49 7866.94 12765.90 12276.61 8777.29 75
v192192057.89 10359.02 12456.58 8857.55 11166.66 9364.72 9644.70 9443.55 15942.73 9846.17 13746.93 15253.51 7666.78 12865.75 12476.29 9277.28 76
v119258.51 9159.66 11457.17 8257.82 10967.72 7666.21 8044.83 9244.15 15543.49 9546.68 12747.94 13953.55 7567.39 11866.51 11277.13 8277.20 77
v124057.55 10558.63 12856.29 9057.30 12166.48 9463.77 10144.56 9642.77 16942.48 10045.64 14346.28 15953.46 7966.32 13465.80 12376.16 9677.13 78
v1059.17 8660.60 9957.50 8057.95 10866.73 8967.09 7244.11 10146.85 13545.42 8648.18 12151.07 12753.63 7367.84 10966.59 11176.79 8476.92 79
v7n55.67 12157.46 14053.59 10556.06 12965.29 10161.06 11243.26 12840.17 18537.99 12640.79 17845.27 16947.09 11667.67 11366.21 11676.08 9876.82 80
CNLPA62.78 6866.31 6758.65 6958.47 10568.41 6865.98 8341.22 14678.02 2456.04 3846.65 12859.50 9257.50 4769.67 8265.27 13072.70 14176.67 81
DI_MVS_plusplus_trai61.88 7265.17 7658.06 7260.05 9465.26 10266.03 8144.22 10055.75 7446.73 7754.64 8768.12 6254.13 7069.13 8666.66 10777.18 8076.61 82
v114458.88 8760.16 10757.39 8158.03 10767.26 8367.14 7044.46 9745.17 14744.33 9247.81 12249.92 13553.20 8367.77 11166.62 11077.15 8176.58 83
MVS_Test62.40 7166.23 6857.94 7559.77 9964.77 10866.50 7741.76 14057.26 7249.33 6962.68 5467.47 6553.50 7768.57 9466.25 11576.77 8576.58 83
V4256.97 10960.14 10853.28 10748.16 18062.78 12366.30 7937.93 17147.44 13242.68 9948.19 12052.59 12151.90 9267.46 11765.94 12172.72 13976.55 85
PVSNet_BlendedMVS61.63 7464.82 7757.91 7757.21 12367.55 8063.47 10346.08 7854.72 7752.46 6058.59 6860.73 8551.82 9470.46 7465.20 13276.44 9076.50 86
PVSNet_Blended61.63 7464.82 7757.91 7757.21 12367.55 8063.47 10346.08 7854.72 7752.46 6058.59 6860.73 8551.82 9470.46 7465.20 13276.44 9076.50 86
TSAR-MVS + COLMAP62.65 6969.90 5554.19 10046.31 18866.73 8965.49 8941.36 14476.57 2646.31 8076.80 1856.68 10253.27 8269.50 8366.65 10872.40 14676.36 88
ACMH+53.71 1259.26 8460.28 10358.06 7264.17 7268.46 6767.51 6750.93 5252.46 9435.83 13440.83 17745.12 17052.32 8869.88 8169.00 7777.59 7576.21 89
DCV-MVSNet59.49 8264.00 8354.23 9961.81 8164.33 11261.42 10943.77 11152.85 9138.94 12255.62 8162.15 8043.24 13769.39 8467.66 9476.22 9575.97 90
IterMVS-LS58.30 9861.39 9254.71 9759.92 9758.40 15759.42 11943.64 11648.71 12140.25 11557.53 7358.55 9552.15 9065.42 14765.34 12872.85 13575.77 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH52.42 1358.24 9959.56 11956.70 8766.34 6069.59 6266.71 7549.12 6446.08 14228.90 16242.67 17241.20 18952.60 8571.39 6370.28 6376.51 8975.72 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+60.36 7863.35 8556.87 8558.70 10265.86 9765.08 9337.11 17553.00 9045.36 8752.12 9856.07 10956.27 5971.28 6669.42 7178.71 6375.69 93
MVSTER57.19 10661.11 9452.62 11550.82 17158.79 15361.55 10737.86 17248.81 11941.31 10757.43 7552.10 12248.60 10768.19 10266.75 10575.56 10575.68 94
Effi-MVS+-dtu60.34 7962.32 8958.03 7464.31 6867.44 8265.99 8242.26 13649.55 10742.00 10448.92 11559.79 9156.27 5968.07 10567.03 9977.35 7875.45 95
CANet_DTU58.88 8764.68 8052.12 11855.77 13166.75 8863.92 10037.04 17653.32 8637.45 13059.81 6361.81 8144.43 12968.25 9867.47 9774.12 11975.33 96
v858.88 8760.57 10156.92 8457.35 11865.69 9966.69 7642.64 13347.89 13045.77 8349.04 11252.98 11952.77 8467.51 11665.57 12576.26 9475.30 97
FA-MVS(training)60.00 8163.14 8756.33 8959.50 10064.30 11365.15 9238.75 16656.20 7345.77 8353.08 9156.45 10452.10 9169.04 8867.67 9376.69 8675.27 98
EIA-MVS61.53 7663.79 8458.89 6863.82 7667.61 7965.35 9042.15 13949.98 10445.66 8557.47 7456.62 10356.59 5770.91 7169.15 7379.78 5374.80 99
v2v48258.69 9060.12 11057.03 8357.16 12566.05 9667.17 6943.52 12046.33 13945.19 8849.46 11151.02 12852.51 8667.30 11966.03 11976.61 8774.62 100
IS_MVSNet57.95 10264.26 8250.60 12461.62 8565.25 10457.18 13345.42 8550.79 10026.49 17557.81 7260.05 9034.51 17671.24 6770.20 6578.36 6874.44 101
TAPA-MVS54.74 1060.85 7766.61 6454.12 10247.38 18465.33 10065.35 9036.51 17875.16 3248.82 7354.70 8663.51 7353.31 8168.36 9664.97 13673.37 12974.27 102
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051756.53 11459.59 11552.95 11252.66 15360.99 13559.21 12240.51 15147.89 13040.40 11352.50 9746.04 16249.78 9867.75 11267.83 8875.15 11074.17 103
Anonymous2023121157.71 10460.79 9654.13 10161.68 8465.81 9860.81 11443.70 11551.97 9739.67 11734.82 19263.59 7243.31 13568.55 9566.63 10975.59 10474.13 104
EG-PatchMatch MVS56.98 10858.24 13255.50 9464.66 6768.62 6661.48 10843.63 11738.44 19441.44 10538.05 18446.18 16143.95 13071.71 6170.61 6077.87 7074.08 105
thisisatest053056.68 11259.68 11353.19 10952.97 15060.96 13659.41 12040.51 15148.26 12741.06 11052.67 9446.30 15849.78 9867.66 11467.83 8875.39 10774.07 106
CHOSEN 1792x268855.85 11958.01 13353.33 10657.26 12262.82 12263.29 10541.55 14246.65 13738.34 12334.55 19353.50 11552.43 8767.10 12467.56 9667.13 17173.92 107
ET-MVSNet_ETH3D58.38 9661.57 9154.67 9842.15 20165.26 10265.70 8543.82 11048.84 11742.34 10159.76 6447.76 14256.68 5667.02 12668.60 8277.33 7973.73 108
thisisatest051553.85 13656.84 14350.37 12750.25 17458.17 16155.99 14539.90 15841.88 17438.16 12545.91 13945.30 16744.58 12866.15 13866.89 10373.36 13073.57 109
Anonymous20240521160.60 9963.44 7766.71 9261.00 11347.23 7250.62 10236.85 18760.63 8843.03 13869.17 8567.72 9275.41 10672.54 110
baseline55.19 12960.88 9548.55 14649.87 17558.10 16258.70 12434.75 18452.82 9239.48 12160.18 6260.86 8445.41 12461.05 16460.74 16763.10 18472.41 111
UniMVSNet (Re)55.15 13060.39 10249.03 13955.31 13364.59 10955.77 14750.63 5448.66 12320.95 18851.47 10250.40 13234.41 17867.81 11067.89 8777.11 8371.88 112
FC-MVSNet-train58.40 9563.15 8652.85 11364.29 6961.84 12655.98 14646.47 7653.06 8834.96 13761.95 5956.37 10739.49 15068.67 9168.36 8375.92 10371.81 113
v14855.58 12357.61 13953.20 10854.59 14161.86 12561.18 11038.70 16744.30 15442.25 10247.53 12350.24 13448.73 10565.15 14862.61 15873.79 12271.61 114
HyFIR lowres test56.87 11158.60 12954.84 9656.62 12869.27 6464.77 9542.21 13745.66 14537.50 12933.08 19557.47 10153.33 8065.46 14667.94 8674.60 11471.35 115
PLCcopyleft52.09 1459.21 8562.47 8855.41 9553.24 14964.84 10764.47 9840.41 15565.92 5444.53 9146.19 13655.69 11055.33 6568.24 10065.30 12974.50 11571.09 116
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT52.18 14657.75 13745.68 16551.01 16962.06 12455.10 15534.75 18444.85 14832.86 14351.13 10551.22 12648.74 10462.47 15861.51 16251.61 21071.02 117
UniMVSNet_NR-MVSNet56.94 11061.14 9352.05 11960.02 9665.21 10557.44 13152.93 4249.37 11024.31 18254.62 8850.54 13139.04 15268.69 9068.84 7878.53 6670.72 118
DU-MVS55.41 12459.59 11550.54 12654.60 13962.97 12057.44 13151.80 4748.62 12424.31 18251.99 9947.00 15139.04 15268.11 10367.75 9176.03 10270.72 118
Fast-Effi-MVS+-dtu56.30 11659.29 12252.82 11458.64 10464.89 10665.56 8832.89 19845.80 14435.04 13645.89 14054.14 11449.41 10167.16 12266.45 11475.37 10870.69 120
GA-MVS55.67 12158.33 13052.58 11655.23 13663.09 11961.08 11140.15 15742.95 16437.02 13252.61 9547.68 14347.51 11465.92 14065.35 12774.49 11670.68 121
NR-MVSNet55.35 12559.46 12050.56 12561.33 8662.97 12057.91 13051.80 4748.62 12420.59 18951.99 9944.73 17634.10 17968.58 9368.64 8077.66 7270.67 122
CostFormer56.57 11359.13 12353.60 10457.52 11361.12 13366.94 7435.95 18053.44 8344.68 9055.87 8054.44 11348.21 10960.37 16858.33 17568.27 16770.33 123
TranMVSNet+NR-MVSNet55.87 11860.14 10850.88 12359.46 10163.82 11657.93 12952.98 4148.94 11620.52 19052.87 9347.33 14836.81 16869.12 8769.03 7677.56 7669.89 124
CLD-MVS67.02 5171.57 4461.71 5471.01 3674.81 3971.62 5438.91 16171.86 4260.70 2364.97 4267.88 6451.88 9376.77 3374.98 3876.11 9769.75 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net55.20 12760.25 10449.31 13352.42 15461.44 12857.03 13444.04 10449.18 11330.47 15148.28 11758.19 9638.22 15568.05 10666.96 10073.69 12469.65 126
test155.20 12760.25 10449.31 13352.42 15461.44 12857.03 13444.04 10449.18 11330.47 15148.28 11758.19 9638.22 15568.05 10666.96 10073.69 12469.65 126
FMVSNet255.04 13159.95 11249.31 13352.42 15461.44 12857.03 13444.08 10349.55 10730.40 15446.89 12658.84 9438.22 15567.07 12566.21 11673.69 12469.65 126
Baseline_NR-MVSNet53.50 13757.89 13448.37 14954.60 13959.25 15056.10 14251.84 4649.32 11117.92 19745.38 14647.68 14336.93 16768.11 10365.95 12072.84 13669.57 129
FMVSNet154.08 13558.68 12748.71 14350.90 17061.35 13156.73 13843.94 10945.91 14329.32 16142.72 17156.26 10837.70 16268.05 10666.96 10073.69 12469.50 130
LS3D60.20 8061.70 9058.45 7064.18 7167.77 7567.19 6848.84 6861.67 6341.27 10845.89 14051.81 12554.18 6968.78 8966.50 11375.03 11269.48 131
CMPMVSbinary37.70 1749.24 16552.71 16645.19 16745.97 19051.23 18547.44 18429.31 20343.04 16344.69 8934.45 19448.35 13743.64 13162.59 15659.82 17060.08 19269.48 131
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch58.19 10160.20 10655.85 9265.17 6564.16 11464.82 9441.48 14350.95 9942.17 10345.38 14656.42 10548.08 11168.30 9766.70 10673.39 12869.46 133
FMVSNet354.78 13259.58 11749.17 13652.37 15761.31 13256.72 13944.04 10449.18 11330.47 15148.28 11758.19 9638.09 15865.48 14565.20 13273.31 13169.45 134
UA-Net58.50 9264.68 8051.30 12266.97 5567.13 8653.68 16245.65 8349.51 10931.58 14962.91 5168.47 5835.85 17268.20 10167.28 9874.03 12069.24 135
IterMVS53.45 13857.12 14149.17 13649.23 17760.93 13759.05 12334.63 18644.53 15033.22 13951.09 10651.01 12948.38 10862.43 15960.79 16670.54 16069.05 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB44.17 1647.06 18250.15 18543.44 17651.39 16358.42 15642.90 20243.51 12122.27 21814.85 20141.94 17634.57 20845.43 12362.28 16062.77 15662.56 18868.83 137
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D52.62 14155.98 14548.70 14451.04 16860.71 13856.87 13746.74 7542.52 17126.96 17242.50 17345.95 16337.87 15966.22 13665.15 13572.74 13868.78 138
baseline255.89 11757.82 13553.64 10357.36 11761.09 13459.75 11840.45 15347.38 13341.26 10951.23 10346.90 15348.11 11065.63 14464.38 14174.90 11368.16 139
MSDG58.46 9458.97 12557.85 7966.27 6166.23 9567.72 6342.33 13553.43 8443.68 9443.39 16345.35 16649.75 10068.66 9267.77 9077.38 7767.96 140
CVMVSNet46.38 18552.01 17339.81 19042.40 19950.26 18746.15 18937.68 17340.03 18615.09 20046.56 13147.56 14533.72 18056.50 19055.65 18363.80 18267.53 141
ambc45.54 20050.66 17352.63 18140.99 20638.36 19524.67 18022.62 21313.94 22329.14 18965.71 14358.06 17658.60 19667.43 142
test111155.24 12659.98 11149.71 13059.80 9864.10 11556.48 14049.34 6252.27 9521.56 18744.49 15351.96 12435.93 17170.59 7369.07 7575.13 11167.40 143
PS-CasMVS48.18 17353.25 16442.27 18251.26 16557.94 16446.51 18850.52 5641.30 17710.56 20845.35 14840.34 19523.04 20058.66 17761.79 16171.74 15367.38 144
test250655.82 12059.57 11851.46 12060.39 9264.55 11058.69 12548.87 6653.91 8026.99 17148.97 11341.72 18837.71 16070.96 6969.49 6976.08 9867.37 145
CP-MVSNet48.37 17153.53 16042.34 18151.35 16458.01 16346.56 18750.54 5541.62 17610.61 20746.53 13340.68 19323.18 19958.71 17661.83 16071.81 15167.36 146
ECVR-MVScopyleft56.44 11560.74 9751.42 12160.39 9264.55 11058.69 12548.87 6653.91 8026.76 17345.55 14553.43 11737.71 16070.96 6969.49 6976.08 9867.32 147
PEN-MVS49.21 16654.32 15643.24 17954.33 14259.26 14947.04 18651.37 5141.67 1759.97 21146.22 13541.80 18722.97 20160.52 16664.03 14373.73 12366.75 148
tfpn200view952.53 14255.51 14749.06 13857.31 11960.24 14055.42 15243.77 11142.85 16727.81 16643.00 16945.06 17237.32 16466.38 13164.54 13872.71 14066.54 149
thres40052.38 14555.51 14748.74 14257.49 11460.10 14355.45 15143.54 11942.90 16626.72 17443.34 16545.03 17436.61 16966.20 13764.53 13972.66 14266.43 150
TDRefinement49.31 16352.44 16945.67 16630.44 21459.42 14759.24 12139.78 15948.76 12031.20 15035.73 18929.90 21442.81 13964.24 15262.59 15970.55 15966.43 150
SixPastTwentyTwo47.55 17950.25 18444.41 17347.30 18554.31 17547.81 18140.36 15633.76 20419.93 19243.75 15932.77 21242.07 14159.82 16960.94 16568.98 16366.37 152
pm-mvs151.02 15455.55 14645.73 16454.16 14358.52 15550.92 16942.56 13440.32 18325.67 17743.66 16050.34 13330.06 18665.85 14163.97 14470.99 15866.21 153
pmmvs454.66 13356.07 14453.00 11154.63 13857.08 16860.43 11644.10 10251.69 9840.55 11246.55 13244.79 17545.95 12262.54 15763.66 14672.36 14766.20 154
EPNet_dtu52.05 14758.26 13144.81 17054.10 14450.09 18952.01 16740.82 14953.03 8927.41 16854.90 8357.96 10026.72 19362.97 15462.70 15767.78 16966.19 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS48.78 17055.06 15241.45 18555.50 13260.40 13943.77 20049.99 5941.92 1738.10 21645.24 14945.56 16417.47 20561.57 16364.60 13773.85 12166.14 156
thres600view751.91 15155.14 15148.14 15157.43 11560.18 14154.60 15743.73 11342.61 17025.20 17843.10 16844.47 17935.19 17466.36 13263.28 15072.66 14266.01 157
WR-MVS_H47.65 17753.67 15940.63 18851.45 16259.74 14644.71 19849.37 6140.69 1817.61 21846.04 13844.34 18117.32 20657.79 18261.18 16373.30 13265.86 158
thres20052.39 14455.37 15048.90 14057.39 11660.18 14155.60 14943.73 11342.93 16527.41 16843.35 16445.09 17136.61 16966.36 13263.92 14572.66 14265.78 159
pmmvs648.35 17251.64 17444.51 17251.92 16057.94 16449.44 17542.17 13834.45 20324.62 18128.87 20646.90 15329.07 19064.60 15163.08 15169.83 16265.68 160
PM-MVS44.55 19048.13 19240.37 18932.85 21346.82 20146.11 19029.28 20440.48 18229.99 15639.98 18034.39 20941.80 14356.08 19353.88 19862.19 18965.31 161
tfpnnormal50.16 16052.19 17247.78 15756.86 12658.37 15854.15 15844.01 10738.35 19625.94 17636.10 18837.89 20234.50 17765.93 13963.42 14871.26 15565.28 162
thres100view90052.04 14854.81 15448.80 14157.31 11959.33 14855.30 15342.92 13242.85 16727.81 16643.00 16945.06 17236.99 16664.74 15063.51 14772.47 14565.21 163
TransMVSNet (Re)51.92 15055.38 14947.88 15560.95 8959.90 14453.95 15945.14 8939.47 18824.85 17943.87 15846.51 15729.15 18867.55 11565.23 13173.26 13365.16 164
USDC51.11 15353.71 15848.08 15344.76 19355.99 17153.01 16640.90 14752.49 9336.14 13344.67 15233.66 21043.27 13663.23 15361.10 16470.39 16164.82 165
pmmvs-eth3d51.33 15252.25 17150.26 12850.82 17154.65 17356.03 14443.45 12543.51 16037.20 13139.20 18139.04 19942.28 14061.85 16262.78 15571.78 15264.72 166
COLMAP_ROBcopyleft46.52 1551.99 14954.86 15348.63 14549.13 17861.73 12760.53 11536.57 17753.14 8732.95 14237.10 18538.68 20040.49 14765.72 14263.08 15172.11 15064.60 167
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat153.30 13953.41 16153.17 11058.16 10659.15 15163.73 10238.27 17050.73 10146.98 7645.57 14444.00 18249.20 10255.90 19554.02 19462.65 18664.50 168
DTE-MVSNet48.03 17653.28 16341.91 18354.64 13757.50 16644.63 19951.66 5041.02 1797.97 21746.26 13440.90 19020.24 20360.45 16762.89 15472.33 14863.97 169
RPSCF46.41 18354.42 15537.06 19825.70 22145.14 20545.39 19420.81 21562.79 6035.10 13544.92 15055.60 11143.56 13256.12 19252.45 20051.80 20963.91 170
test-mter45.30 18750.37 18139.38 19133.65 21146.99 19947.59 18218.59 21738.75 19228.00 16543.28 16646.82 15541.50 14457.28 18455.78 18266.93 17463.70 171
EU-MVSNet40.63 20045.65 19934.78 20439.11 20546.94 20040.02 20834.03 18933.50 20510.37 20935.57 19037.80 20323.65 19851.90 20350.21 20461.49 19063.62 172
gg-mvs-nofinetune49.07 16852.56 16845.00 16961.99 7959.78 14553.55 16441.63 14131.62 21012.08 20529.56 20453.28 11829.57 18766.27 13564.49 14071.19 15762.92 173
CR-MVSNet50.47 15652.61 16747.98 15449.03 17952.94 17848.27 17838.86 16344.41 15139.59 11844.34 15444.65 17846.63 11858.97 17360.31 16865.48 17662.66 174
PatchT48.08 17451.03 17944.64 17142.96 19850.12 18840.36 20735.09 18243.17 16239.59 11842.00 17539.96 19646.63 11858.97 17360.31 16863.21 18362.66 174
CDS-MVSNet52.42 14357.06 14247.02 16053.92 14658.30 15955.50 15046.47 7642.52 17129.38 16049.50 11052.85 12028.49 19166.70 12966.89 10368.34 16662.63 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline154.48 13458.69 12649.57 13160.63 9158.29 16055.70 14844.95 9149.20 11229.62 15854.77 8554.75 11235.29 17367.15 12364.08 14271.21 15662.58 177
test-LLR49.28 16450.29 18248.10 15255.26 13447.16 19749.52 17343.48 12339.22 18931.98 14543.65 16147.93 14041.29 14556.80 18655.36 18567.08 17261.94 178
TESTMET0.1,146.09 18650.29 18241.18 18636.91 20747.16 19749.52 17320.32 21639.22 18931.98 14543.65 16147.93 14041.29 14556.80 18655.36 18567.08 17261.94 178
RPMNet46.41 18348.72 18943.72 17447.77 18352.94 17846.02 19133.92 19044.41 15131.82 14836.89 18637.42 20537.41 16353.88 20154.02 19465.37 17761.47 180
TinyColmap47.08 18047.56 19446.52 16142.35 20053.44 17751.77 16840.70 15043.44 16131.92 14729.78 20323.72 22045.04 12761.99 16159.54 17267.35 17061.03 181
PMMVS49.20 16754.28 15743.28 17834.13 20945.70 20448.98 17626.09 21146.31 14034.92 13855.22 8253.47 11647.48 11559.43 17059.04 17368.05 16860.77 182
pmmvs547.07 18151.02 18042.46 18045.18 19251.47 18448.23 18033.09 19738.17 19728.62 16446.60 13043.48 18330.74 18458.28 17958.63 17468.92 16460.48 183
gm-plane-assit44.74 18845.95 19643.33 17760.88 9046.79 20236.97 21132.24 20124.15 21611.79 20629.26 20532.97 21146.64 11765.09 14962.95 15371.45 15460.42 184
dps50.42 15751.20 17849.51 13255.88 13056.07 17053.73 16038.89 16243.66 15740.36 11445.66 14237.63 20445.23 12559.05 17156.18 17962.94 18560.16 185
tpm48.82 16951.27 17745.96 16354.10 14447.35 19656.05 14330.23 20246.70 13643.21 9652.54 9647.55 14637.28 16554.11 20050.50 20354.90 20360.12 186
PatchMatch-RL50.11 16151.56 17548.43 14746.23 18951.94 18250.21 17238.62 16846.62 13837.51 12842.43 17439.38 19752.24 8960.98 16559.56 17165.76 17560.01 187
MDTV_nov1_ep13_2view47.62 17849.72 18745.18 16848.05 18153.70 17654.90 15633.80 19239.90 18729.79 15738.85 18241.89 18639.17 15158.99 17255.55 18465.34 17859.17 188
Vis-MVSNet (Re-imp)50.37 15857.73 13841.80 18457.53 11254.35 17445.70 19245.24 8749.80 10513.43 20358.23 7156.42 10520.11 20462.96 15563.36 14968.76 16558.96 189
MDTV_nov1_ep1350.32 15952.43 17047.86 15649.87 17554.70 17258.10 12834.29 18845.59 14637.71 12747.44 12447.42 14741.86 14258.07 18155.21 18765.34 17858.56 190
CHOSEN 280x42040.80 19845.05 20135.84 20232.95 21229.57 21744.98 19623.71 21437.54 19918.42 19531.36 19947.07 15046.41 12056.71 18854.65 19248.55 21358.47 191
tpmrst48.08 17449.88 18645.98 16252.71 15248.11 19453.62 16333.70 19348.70 12239.74 11648.96 11446.23 16040.29 14950.14 20949.28 20555.80 20057.71 192
GG-mvs-BLEND36.62 20653.39 16217.06 2150.01 22758.61 15448.63 1770.01 22447.13 1340.02 22843.98 15660.64 870.03 22354.92 19951.47 20253.64 20656.99 193
SCA50.99 15553.22 16548.40 14851.07 16756.78 16950.25 17139.05 16048.31 12641.38 10649.54 10946.70 15646.00 12158.31 17856.28 17862.65 18656.60 194
MDA-MVSNet-bldmvs41.36 19643.15 20639.27 19228.74 21652.68 18044.95 19740.84 14832.89 20618.13 19631.61 19822.09 22138.97 15450.45 20856.11 18064.01 18156.23 195
Anonymous2023120642.28 19445.89 19738.07 19551.96 15948.98 19143.66 20138.81 16538.74 19314.32 20226.74 20840.90 19020.94 20256.64 18954.67 19158.71 19454.59 196
PatchmatchNetpermissive49.92 16251.29 17648.32 15051.83 16151.86 18353.38 16537.63 17447.90 12940.83 11148.54 11645.30 16745.19 12656.86 18553.99 19661.08 19154.57 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet43.79 19248.53 19038.27 19441.46 20248.97 19250.81 17032.88 19944.55 14922.07 18532.05 19647.15 14924.76 19658.73 17556.09 18157.63 19952.14 198
pmmvs335.10 20838.47 21031.17 20726.37 22040.47 21034.51 21518.09 21824.75 21516.88 19823.05 21226.69 21632.69 18250.73 20751.60 20158.46 19751.98 199
TAMVS44.02 19149.18 18837.99 19647.03 18645.97 20345.04 19528.47 20639.11 19120.23 19143.22 16748.52 13628.49 19158.15 18057.95 17758.71 19451.36 200
FPMVS38.36 20540.41 20935.97 20038.92 20639.85 21245.50 19325.79 21241.13 17818.70 19430.10 20124.56 21831.86 18349.42 21146.80 21055.04 20151.03 201
FC-MVSNet-test39.65 20348.35 19129.49 20844.43 19439.28 21430.23 21740.44 15443.59 1583.12 22453.00 9242.03 18510.02 22055.09 19754.77 18948.66 21250.71 202
FMVSNet540.96 19745.81 19835.29 20334.30 20844.55 20747.28 18528.84 20540.76 18021.62 18629.85 20242.44 18424.77 19557.53 18355.00 18854.93 20250.56 203
pmnet_mix0240.48 20143.80 20336.61 19945.79 19140.45 21142.12 20433.18 19640.30 18424.11 18438.76 18337.11 20624.30 19752.97 20246.66 21150.17 21150.33 204
MVS-HIRNet42.24 19541.15 20843.51 17544.06 19740.74 20935.77 21335.35 18135.38 20238.34 12325.63 21038.55 20143.48 13350.77 20647.03 20964.07 18049.98 205
PMVScopyleft27.84 1833.81 20935.28 21332.09 20634.13 20924.81 21932.51 21626.48 21026.41 21419.37 19323.76 21124.02 21925.18 19450.78 20547.24 20854.89 20449.95 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test0.0.03 143.15 19346.95 19538.72 19355.26 13450.56 18642.48 20343.48 12338.16 19815.11 19935.07 19144.69 17716.47 20755.95 19454.34 19359.54 19349.87 207
test20.0340.38 20244.20 20235.92 20153.73 14749.05 19038.54 20943.49 12232.55 2079.54 21227.88 20739.12 19812.24 21256.28 19154.69 19057.96 19849.83 208
EPMVS44.66 18947.86 19340.92 18747.97 18244.70 20647.58 18333.27 19548.11 12829.58 15949.65 10844.38 18034.65 17551.71 20447.90 20752.49 20848.57 209
MIMVSNet135.51 20741.41 20728.63 20927.53 21843.36 20838.09 21033.82 19132.01 2086.77 21921.63 21435.43 20711.97 21455.05 19853.99 19653.59 20748.36 210
testgi38.71 20443.64 20432.95 20552.30 15848.63 19335.59 21435.05 18331.58 2119.03 21530.29 20040.75 19211.19 21855.30 19653.47 19954.53 20545.48 211
new-patchmatchnet33.24 21037.20 21128.62 21044.32 19638.26 21529.68 21836.05 17931.97 2096.33 22026.59 20927.33 21511.12 21950.08 21041.05 21444.23 21545.15 212
ADS-MVSNet40.67 19943.38 20537.50 19744.36 19539.79 21342.09 20532.67 20044.34 15328.87 16340.76 17940.37 19430.22 18548.34 21345.87 21246.81 21444.21 213
N_pmnet32.67 21136.85 21227.79 21140.55 20332.13 21635.80 21226.79 20937.24 2009.10 21332.02 19730.94 21316.30 20847.22 21441.21 21338.21 21737.21 214
new_pmnet23.19 21328.17 21417.37 21317.03 22224.92 21819.66 22016.16 22027.05 2134.42 22120.77 21519.20 22212.19 21337.71 21536.38 21534.77 21831.17 215
Gipumacopyleft25.87 21226.91 21524.66 21228.98 21520.17 22020.46 21934.62 18729.55 2129.10 2134.91 2235.31 22715.76 20949.37 21249.10 20639.03 21629.95 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive12.28 1913.53 21715.72 21710.96 2187.39 22415.71 2226.05 22523.73 21310.29 2243.01 2255.77 2223.41 22811.91 21520.11 21729.79 21613.67 22324.98 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS215.84 21419.68 21611.35 21715.74 22316.95 22113.31 22117.64 21916.08 2200.36 22713.12 21711.47 2241.69 22228.82 21627.24 21719.38 22224.09 218
E-PMN15.09 21513.19 21917.30 21427.80 21712.62 2237.81 22427.54 20714.62 2223.19 2226.89 2202.52 23015.09 21015.93 21920.22 21822.38 21919.53 219
DeepMVS_CXcopyleft6.95 2255.98 2262.25 22211.73 2232.07 22611.85 2185.43 22611.75 21611.40 2228.10 22518.38 220
EMVS14.49 21612.45 22016.87 21627.02 21912.56 2248.13 22327.19 20815.05 2213.14 2236.69 2212.67 22915.08 21114.60 22118.05 21920.67 22017.56 221
test_method12.44 21814.66 2189.85 2191.30 2263.32 22613.00 2223.21 22122.42 21710.22 21014.13 21625.64 21711.43 21719.75 21811.61 22119.96 2215.79 222
test1230.01 2190.02 2210.00 2210.00 2280.00 2280.00 2300.00 2250.01 2250.00 2290.04 2240.00 2310.01 2240.00 2240.01 2220.00 2260.07 223
testmvs0.01 2190.02 2210.00 2210.00 2280.00 2280.01 2290.00 2250.01 2250.00 2290.03 2250.00 2310.01 2240.01 2230.01 2220.00 2260.06 224
uanet_test0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
sosnet-low-res0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
sosnet0.00 2210.00 2230.00 2210.00 2280.00 2280.00 2300.00 2250.00 2270.00 2290.00 2260.00 2310.00 2260.00 2240.00 2240.00 2260.00 225
RE-MVS-def33.01 140
9.1481.81 13
SR-MVS71.46 3554.67 3081.54 14
our_test_351.15 16657.31 16755.12 154
MTAPA65.14 480.20 20
MTMP62.63 1878.04 27
Patchmatch-RL test1.04 228
tmp_tt5.40 2203.97 2252.35 2273.26 2270.44 22317.56 21912.09 20411.48 2197.14 2251.98 22115.68 22015.49 22010.69 224
XVS70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
X-MVStestdata70.49 3976.96 2774.36 4654.48 5074.47 3982.24 25
mPP-MVS71.67 3474.36 42
NP-MVS72.00 41
Patchmtry47.61 19548.27 17838.86 16339.59 118