This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft94.70 795.35 793.93 1397.57 397.57 895.98 1291.91 1494.50 790.35 1593.46 1892.72 1291.89 1995.89 495.22 195.88 3398.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast88.76 193.10 2393.02 3093.19 2397.13 1096.51 3495.35 2791.19 2093.14 2288.14 2785.26 4289.49 3691.45 2495.17 1095.07 295.85 3896.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS95.61 296.36 294.73 396.84 2098.15 397.08 392.92 295.64 391.84 595.98 495.33 192.83 796.00 194.94 396.90 598.45 3
DELS-MVS89.71 5089.68 5289.74 4993.75 5596.22 3993.76 4085.84 5482.53 7985.05 4678.96 7184.24 5984.25 7894.91 1494.91 495.78 4496.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 498.99 1
CNVR-MVS94.37 1294.65 1294.04 1297.29 797.11 1196.00 1192.43 1193.45 1789.85 2090.92 2693.04 992.59 1095.77 594.82 696.11 2697.42 16
DeepPCF-MVS88.51 292.64 3094.42 1790.56 4294.84 4596.92 1991.31 6389.61 3395.16 584.55 4989.91 3091.45 2290.15 3795.12 1194.81 792.90 15597.58 13
DVP-MVScopyleft95.56 396.26 394.73 396.93 1798.19 196.62 792.81 596.15 291.73 695.01 895.31 293.41 195.95 394.77 896.90 598.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS95.12 695.83 594.30 696.82 2297.94 596.98 592.37 1295.40 490.59 1496.16 393.71 692.70 894.80 1794.77 896.37 1597.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS87.86 392.26 3291.86 3592.73 2696.18 3096.87 2095.19 2991.76 1692.17 2886.58 3681.79 5485.85 5290.88 3294.57 2494.61 1095.80 4197.18 20
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP94.06 1494.65 1293.38 2096.97 1697.36 996.12 1091.78 1592.05 2987.34 3194.42 1390.87 2591.87 2095.47 894.59 1196.21 2497.77 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft95.53 496.13 494.82 296.81 2398.05 497.42 193.09 194.31 991.49 797.12 195.03 393.27 395.55 694.58 1296.86 798.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS92.05 3393.74 2290.08 4594.96 4297.06 1493.11 4687.71 4590.71 3880.78 7292.40 2391.03 2387.68 5694.32 3094.48 1396.21 2496.16 43
ACMMP_NAP93.94 1694.49 1593.30 2197.03 1497.31 1095.96 1391.30 1993.41 1988.55 2593.00 2090.33 2991.43 2795.53 794.41 1495.53 5897.47 15
MSLP-MVS++92.02 3591.40 3892.75 2596.01 3395.88 4593.73 4189.00 3589.89 4590.31 1681.28 6088.85 4091.45 2492.88 5394.24 1596.00 2896.76 31
APDe-MVS95.23 595.69 694.70 597.12 1197.81 697.19 292.83 495.06 690.98 1196.47 292.77 1193.38 295.34 994.21 1696.68 1098.17 5
3Dnovator+86.06 491.60 3790.86 4492.47 2896.00 3496.50 3694.70 3387.83 4490.49 4089.92 1974.68 9389.35 3790.66 3394.02 3394.14 1795.67 4996.85 28
NCCC93.69 2093.66 2393.72 1797.37 696.66 3095.93 1792.50 1093.40 2088.35 2687.36 3692.33 1592.18 1394.89 1594.09 1896.00 2896.91 27
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3396.14 992.51 993.87 1690.76 1393.45 1993.84 592.62 995.11 1294.08 1995.58 5697.48 14
SD-MVS94.53 1095.22 893.73 1695.69 3797.03 1595.77 2391.95 1394.41 891.35 894.97 993.34 891.80 2194.72 2193.99 2095.82 4098.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030490.88 4191.35 3990.34 4393.91 5396.79 2494.49 3586.54 5186.57 5882.85 5981.68 5789.70 3487.57 5894.64 2293.93 2196.67 1296.15 44
CANet91.33 3991.46 3791.18 3795.01 4196.71 2593.77 3987.39 4787.72 5387.26 3281.77 5589.73 3387.32 6294.43 2793.86 2296.31 1996.02 46
APD-MVScopyleft94.37 1294.47 1694.26 797.18 996.99 1796.53 892.68 692.45 2589.96 1894.53 1291.63 2192.89 694.58 2393.82 2396.31 1997.26 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM92.97 2494.51 1491.16 3895.88 3596.59 3195.09 3090.45 3193.42 1883.01 5794.68 1190.74 2788.74 4494.75 1993.78 2493.82 13697.63 12
DPM-MVS91.72 3691.48 3692.00 3295.53 3895.75 4895.94 1591.07 2291.20 3585.58 4281.63 5890.74 2788.40 4893.40 4493.75 2595.45 6293.85 85
3Dnovator85.17 590.48 4389.90 5091.16 3894.88 4495.74 4993.82 3885.36 5889.28 4687.81 2974.34 9687.40 4988.56 4693.07 4993.74 2696.53 1395.71 50
TSAR-MVS + MP.94.48 1194.97 993.90 1495.53 3897.01 1696.69 690.71 2594.24 1090.92 1294.97 992.19 1693.03 494.83 1693.60 2796.51 1497.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs89.36 5389.92 4888.70 6291.38 8195.92 4491.81 5882.61 10090.37 4182.73 6182.09 5279.28 8788.30 5091.17 7693.59 2895.36 6697.04 26
xxxxxxxxxxxxxcwj92.95 2591.88 3494.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 671.01 13091.93 1694.40 2893.56 2997.04 297.27 17
SF-MVS94.61 894.96 1094.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 692.54 1391.93 1694.40 2893.56 2997.04 297.27 17
zzz-MVS93.80 1893.45 2694.20 997.53 496.43 3795.88 1891.12 2194.09 1292.74 487.68 3490.77 2692.04 1494.74 2093.56 2995.91 3296.85 28
ACMMPR93.72 1993.94 2093.48 1997.07 1296.93 1895.78 2290.66 2793.88 1589.24 2293.53 1789.08 3992.24 1293.89 3793.50 3295.88 3396.73 32
MCST-MVS93.81 1794.06 1993.53 1896.79 2496.85 2195.95 1491.69 1792.20 2787.17 3390.83 2893.41 791.96 1594.49 2693.50 3297.61 197.12 23
HFP-MVS94.02 1594.22 1893.78 1597.25 896.85 2195.81 2190.94 2494.12 1190.29 1794.09 1589.98 3292.52 1193.94 3593.49 3495.87 3597.10 24
X-MVS92.36 3192.75 3191.90 3496.89 1896.70 2695.25 2890.48 3091.50 3483.95 5188.20 3288.82 4189.11 4093.75 4093.43 3595.75 4596.83 30
DROMVSNet89.96 4990.77 4589.01 5890.54 9295.15 5891.34 6281.43 10885.27 6483.08 5682.83 4987.22 5090.97 3194.79 1893.38 3696.73 996.71 34
IS_MVSNet86.18 7788.18 6283.85 10891.02 8594.72 6887.48 11482.46 10181.05 9770.28 12076.98 8082.20 7076.65 14793.97 3493.38 3695.18 7594.97 63
CS-MVS90.34 4490.58 4690.07 4693.11 6295.82 4790.57 6783.62 7887.07 5685.35 4382.98 4883.47 6291.37 2894.94 1393.37 3896.37 1596.41 39
CDPH-MVS91.14 4092.01 3390.11 4496.18 3096.18 4094.89 3288.80 3988.76 4977.88 8889.18 3187.71 4887.29 6393.13 4893.31 3995.62 5295.84 48
ETV-MVS89.22 5489.76 5188.60 6491.60 7994.61 6989.48 8383.46 8785.20 6681.58 6582.75 5082.59 6788.80 4294.57 2493.28 4096.68 1095.31 59
MP-MVScopyleft93.35 2193.59 2493.08 2497.39 596.82 2395.38 2690.71 2590.82 3788.07 2892.83 2290.29 3091.32 2994.03 3293.19 4195.61 5497.16 21
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
UA-Net86.07 7887.78 6884.06 10592.85 6895.11 6087.73 11184.38 6773.22 15473.18 10879.99 6589.22 3871.47 17593.22 4793.03 4294.76 9390.69 144
PGM-MVS92.76 2793.03 2992.45 2997.03 1496.67 2995.73 2487.92 4390.15 4486.53 3792.97 2188.33 4591.69 2293.62 4393.03 4295.83 3996.41 39
MVS_111021_HR90.56 4291.29 4089.70 5194.71 4795.63 5091.81 5886.38 5287.53 5481.29 6787.96 3385.43 5487.69 5593.90 3692.93 4496.33 1795.69 51
CSCG92.76 2793.16 2892.29 3096.30 2997.74 794.67 3488.98 3792.46 2489.73 2186.67 3892.15 1888.69 4592.26 6092.92 4595.40 6397.89 10
TSAR-MVS + GP.92.71 2993.91 2191.30 3691.96 7596.00 4293.43 4287.94 4292.53 2386.27 4193.57 1691.94 1991.44 2693.29 4692.89 4696.78 897.15 22
CP-MVS93.25 2293.26 2793.24 2296.84 2096.51 3495.52 2590.61 2892.37 2688.88 2390.91 2789.52 3591.91 1893.64 4292.78 4795.69 4797.09 25
test250685.20 8784.11 9986.47 7891.84 7695.28 5489.18 8684.49 6582.59 7775.34 9774.66 9458.07 18981.68 9493.76 3892.71 4896.28 2291.71 130
ECVR-MVScopyleft85.25 8684.47 9586.16 8191.84 7695.28 5489.18 8684.49 6582.59 7773.49 10666.12 13969.28 13881.68 9493.76 3892.71 4896.28 2291.58 137
test111184.86 9284.21 9885.61 8691.75 7895.14 5988.63 10184.57 6481.88 8771.21 11565.66 14568.51 14281.19 9893.74 4192.68 5096.31 1991.86 127
CS-MVS-test90.29 4590.96 4189.51 5493.18 6195.87 4689.18 8683.72 7788.32 5184.82 4884.89 4485.23 5590.25 3594.04 3192.66 5195.94 3095.69 51
train_agg92.87 2693.53 2592.09 3196.88 1995.38 5295.94 1590.59 2990.65 3983.65 5494.31 1491.87 2090.30 3493.38 4592.42 5295.17 7696.73 32
MAR-MVS88.39 6288.44 5988.33 6894.90 4395.06 6190.51 6883.59 8185.27 6479.07 8077.13 7982.89 6687.70 5492.19 6392.32 5394.23 12094.20 81
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM89.49 5289.58 5389.38 5594.73 4695.94 4392.35 5085.00 6185.69 6380.03 7676.97 8187.81 4787.87 5392.18 6492.10 5496.33 1796.40 41
Vis-MVSNetpermissive84.38 10086.68 7981.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7569.98 17992.68 5591.90 5595.33 6994.58 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet89.60 5189.91 4989.24 5796.45 2893.61 8192.95 4888.03 4185.74 6283.36 5587.29 3783.05 6580.98 10192.22 6191.85 5693.69 14195.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)83.65 10486.81 7779.96 14990.46 9692.71 9684.84 15082.00 10480.93 9962.44 16576.29 8382.32 6965.54 19592.29 5991.66 5794.49 11091.47 139
ACMMPcopyleft92.03 3492.16 3291.87 3595.88 3596.55 3294.47 3689.49 3491.71 3285.26 4491.52 2584.48 5890.21 3692.82 5491.63 5895.92 3196.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS87.94 6788.05 6487.81 7091.46 8095.00 6388.67 9882.81 9282.53 7980.81 7180.04 6480.20 7887.48 5992.58 5791.61 5995.63 5194.36 75
PVSNet_Blended_VisFu87.40 7287.80 6786.92 7692.86 6795.40 5188.56 10483.45 8879.55 11082.26 6274.49 9584.03 6079.24 13192.97 5291.53 6095.15 7896.65 35
OpenMVScopyleft82.53 1187.71 6886.84 7588.73 6194.42 4995.06 6191.02 6583.49 8482.50 8182.24 6467.62 13485.48 5385.56 7391.19 7591.30 6195.67 4994.75 68
PVSNet_BlendedMVS88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
PVSNet_Blended88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
CANet_DTU85.43 8487.72 7182.76 11990.95 8893.01 9289.99 7375.46 16982.67 7664.91 15083.14 4780.09 7980.68 10592.03 6691.03 6494.57 10592.08 122
gg-mvs-nofinetune75.64 18777.26 16673.76 19287.92 12192.20 10487.32 11764.67 21051.92 21635.35 22046.44 20877.05 10071.97 17292.64 5691.02 6595.34 6889.53 153
FMVSNet283.87 10183.73 10384.05 10684.20 16589.95 12889.70 7780.21 12279.17 11474.89 9865.91 14077.49 9779.75 12390.87 8791.00 6695.52 5991.71 130
MVS_111021_LR90.14 4890.89 4389.26 5693.23 6094.05 7690.43 6984.65 6390.16 4384.52 5090.14 2983.80 6187.99 5292.50 5890.92 6794.74 9494.70 70
casdiffmvs87.45 7187.15 7387.79 7290.15 10394.22 7289.96 7483.93 7385.08 6780.91 6975.81 8677.88 9686.08 7091.86 6790.86 6895.74 4694.37 74
OPM-MVS87.56 7085.80 8689.62 5293.90 5494.09 7594.12 3788.18 4075.40 13477.30 9176.41 8277.93 9588.79 4392.20 6290.82 6995.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GBi-Net84.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
test184.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
FMVSNet181.64 12480.61 12882.84 11882.36 19089.20 14988.67 9879.58 13170.79 16672.63 11358.95 18372.26 12579.34 12990.73 9090.72 7094.47 11191.62 135
UGNet85.90 8188.23 6183.18 11588.96 11394.10 7487.52 11383.60 8081.66 9077.90 8780.76 6283.19 6466.70 19291.13 8190.71 7394.39 11696.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline184.54 9584.43 9684.67 9390.62 9091.16 11288.63 10183.75 7679.78 10771.16 11675.14 9074.10 11277.84 14091.56 6990.67 7496.04 2788.58 158
CLD-MVS88.66 5788.52 5888.82 6091.37 8294.22 7292.82 4982.08 10388.27 5285.14 4581.86 5378.53 9185.93 7291.17 7690.61 7595.55 5795.00 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_Test86.93 7387.24 7286.56 7790.10 10493.47 8390.31 7080.12 12383.55 7378.12 8479.58 6779.80 8285.45 7490.17 9790.59 7695.29 7193.53 92
LGP-MVS_train88.25 6488.55 5787.89 6992.84 6993.66 8093.35 4385.22 6085.77 6174.03 10386.60 3976.29 10286.62 6891.20 7490.58 7795.29 7195.75 49
FMVSNet384.44 9884.64 9484.21 10184.32 16490.13 12689.85 7680.37 11781.17 9375.50 9369.63 11979.69 8479.62 12689.72 10390.52 7895.59 5591.58 137
EPP-MVSNet86.55 7487.76 6985.15 9090.52 9394.41 7087.24 12082.32 10281.79 8973.60 10578.57 7382.41 6882.07 9291.23 7290.39 7995.14 7995.48 56
DCV-MVSNet85.88 8286.17 8085.54 8789.10 11289.85 13389.34 8480.70 11483.04 7578.08 8676.19 8479.00 8882.42 8989.67 10490.30 8093.63 14495.12 60
OMC-MVS90.23 4790.40 4790.03 4793.45 5895.29 5391.89 5786.34 5393.25 2184.94 4781.72 5686.65 5188.90 4191.69 6890.27 8194.65 10093.95 83
AdaColmapbinary90.29 4588.38 6092.53 2796.10 3295.19 5792.98 4791.40 1889.08 4888.65 2478.35 7481.44 7291.30 3090.81 8990.21 8294.72 9693.59 91
ET-MVSNet_ETH3D84.65 9385.58 8883.56 11274.99 21392.62 10190.29 7180.38 11682.16 8473.01 11183.41 4671.10 12987.05 6587.77 12690.17 8395.62 5291.82 128
MVSTER86.03 7986.12 8185.93 8388.62 11589.93 13189.33 8579.91 12881.87 8881.35 6681.07 6174.91 10780.66 10692.13 6590.10 8495.68 4892.80 104
DI_MVS_plusplus_trai86.41 7685.54 8987.42 7489.24 10993.13 8892.16 5382.65 9882.30 8380.75 7368.30 13080.41 7685.01 7590.56 9590.07 8594.70 9894.01 82
IB-MVS79.09 1282.60 11382.19 11183.07 11691.08 8493.55 8280.90 18181.35 10976.56 12680.87 7064.81 15369.97 13468.87 18285.64 15690.06 8695.36 6694.74 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMM83.27 1087.68 6986.09 8289.54 5393.26 5992.19 10591.43 6186.74 5086.02 6082.85 5975.63 8775.14 10588.41 4790.68 9389.99 8794.59 10392.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+85.33 8585.08 9185.63 8589.69 10693.42 8589.90 7580.31 12179.32 11172.48 11473.52 10274.03 11386.55 6990.99 8489.98 8894.83 8994.27 80
FC-MVSNet-train85.18 8885.31 9085.03 9190.67 8991.62 10987.66 11283.61 7979.75 10874.37 10178.69 7271.21 12878.91 13291.23 7289.96 8994.96 8494.69 71
HQP-MVS89.13 5589.58 5388.60 6493.53 5793.67 7993.29 4487.58 4688.53 5075.50 9387.60 3580.32 7787.07 6490.66 9489.95 9094.62 10296.35 42
Anonymous20240521182.75 10989.58 10792.97 9389.04 9484.13 7178.72 11657.18 18876.64 10183.13 8489.55 10689.92 9193.38 14994.28 79
CDS-MVSNet81.63 12582.09 11281.09 13887.21 13190.28 12287.46 11680.33 12069.06 17570.66 11771.30 11073.87 11467.99 18589.58 10589.87 9292.87 15690.69 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+83.77 10382.98 10684.69 9287.98 12091.87 10788.10 10877.70 15278.10 12073.04 11069.13 12568.51 14286.66 6790.49 9689.85 9394.67 9992.88 101
gm-plane-assit70.29 20070.65 20269.88 20185.03 15678.50 21158.41 21865.47 20650.39 21840.88 21649.60 20450.11 21275.14 15691.43 7189.78 9494.32 11884.73 187
ACMP83.90 888.32 6388.06 6388.62 6392.18 7393.98 7791.28 6485.24 5986.69 5781.23 6885.62 4075.13 10687.01 6689.83 10189.77 9594.79 9095.43 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121184.42 9983.02 10586.05 8288.85 11492.70 9788.92 9783.40 8979.99 10578.31 8355.83 19278.92 8983.33 8289.06 11289.76 9693.50 14694.90 64
TSAR-MVS + COLMAP88.40 6089.09 5587.60 7392.72 7093.92 7892.21 5185.57 5791.73 3173.72 10491.75 2473.22 12287.64 5791.49 7089.71 9793.73 13991.82 128
CPTT-MVS91.39 3890.95 4291.91 3395.06 4095.24 5695.02 3188.98 3791.02 3686.71 3584.89 4488.58 4491.60 2390.82 8889.67 9894.08 12396.45 37
thisisatest053085.15 8985.86 8484.33 9889.19 11192.57 10287.22 12180.11 12482.15 8574.41 10078.15 7573.80 11679.90 11990.99 8489.58 9995.13 8093.75 88
tttt051785.11 9085.81 8584.30 9989.24 10992.68 9887.12 12580.11 12481.98 8674.31 10278.08 7673.57 11879.90 11991.01 8289.58 9995.11 8293.77 87
tfpn200view982.86 10981.46 11684.48 9590.30 10193.09 8989.05 9382.71 9475.14 13569.56 12365.72 14263.13 15880.38 11291.15 7889.51 10194.91 8692.50 118
thres40082.68 11281.15 12184.47 9690.52 9392.89 9488.95 9682.71 9474.33 14269.22 12865.31 14762.61 16480.63 10790.96 8689.50 10294.79 9092.45 120
FA-MVS(training)85.65 8385.79 8785.48 8890.44 9793.47 8388.66 10073.11 17783.34 7482.26 6271.79 10878.39 9283.14 8391.00 8389.47 10395.28 7393.06 97
thres20082.77 11181.25 12084.54 9490.38 9893.05 9089.13 9082.67 9674.40 14169.53 12565.69 14463.03 16180.63 10791.15 7889.42 10494.88 8792.04 124
DU-MVS81.20 12880.30 13282.25 12484.98 15890.94 11485.70 13983.58 8275.74 13164.21 15265.30 14859.60 18280.22 11386.89 13589.31 10594.77 9294.29 76
TranMVSNet+NR-MVSNet80.52 13179.84 14081.33 13584.92 16090.39 12085.53 14484.22 7074.27 14360.68 18164.93 15259.96 17777.48 14286.75 14089.28 10695.12 8193.29 93
test_part183.23 10880.55 13086.35 7988.60 11690.61 11790.78 6681.13 11270.89 16583.01 5755.72 19374.60 10882.19 9087.79 12589.26 10792.39 16095.01 61
thres100view90082.55 11481.01 12584.34 9790.30 10192.27 10389.04 9482.77 9375.14 13569.56 12365.72 14263.13 15879.62 12689.97 10089.26 10794.73 9591.61 136
GeoE84.62 9483.98 10185.35 8989.34 10892.83 9588.34 10578.95 13879.29 11277.16 9268.10 13174.56 10983.40 8189.31 11089.23 10994.92 8594.57 73
PLCcopyleft83.76 988.61 5986.83 7690.70 4094.22 5092.63 9991.50 6087.19 4889.16 4786.87 3475.51 8880.87 7489.98 3890.01 9989.20 11094.41 11590.45 149
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet81.87 11981.33 11982.50 12185.31 15191.30 11085.70 13984.25 6875.89 13064.21 15266.95 13664.65 15480.22 11387.07 13289.18 11195.27 7494.29 76
LS3D85.96 8084.37 9787.81 7094.13 5193.27 8790.26 7289.00 3584.91 6972.84 11271.74 10972.47 12487.45 6089.53 10789.09 11293.20 15189.60 152
diffmvs86.52 7586.76 7886.23 8088.31 11992.63 9989.58 8081.61 10786.14 5980.26 7479.00 7077.27 9883.58 7988.94 11389.06 11394.05 12594.29 76
UniMVSNet (Re)81.22 12781.08 12281.39 13385.35 15091.76 10884.93 14882.88 9176.13 12965.02 14964.94 15163.09 16075.17 15587.71 12789.04 11494.97 8394.88 65
thres600view782.53 11581.02 12384.28 10090.61 9193.05 9088.57 10382.67 9674.12 14568.56 13165.09 15062.13 16980.40 11191.15 7889.02 11594.88 8792.59 112
TAPA-MVS84.37 788.91 5688.93 5688.89 5993.00 6694.85 6592.00 5484.84 6291.68 3380.05 7579.77 6684.56 5788.17 5190.11 9889.00 11695.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D79.24 14876.47 17482.48 12285.66 14690.97 11386.08 13681.63 10664.48 19568.94 13054.47 19557.65 19178.83 13385.20 16688.91 11793.72 14093.60 90
NR-MVSNet80.25 13479.98 13880.56 14485.20 15390.94 11485.65 14183.58 8275.74 13161.36 17665.30 14856.75 19672.38 17188.46 11988.80 11895.16 7793.87 84
anonymousdsp77.94 16179.00 14776.71 17479.03 20287.83 16379.58 18672.87 17865.80 19058.86 19065.82 14162.48 16675.99 15086.77 13988.66 11993.92 13095.68 53
CNLPA88.40 6087.00 7490.03 4793.73 5694.28 7189.56 8185.81 5591.87 3087.55 3069.53 12381.49 7189.23 3989.45 10888.59 12094.31 11993.82 86
PCF-MVS84.60 688.66 5787.75 7089.73 5093.06 6596.02 4193.22 4590.00 3282.44 8280.02 7777.96 7785.16 5687.36 6188.54 11788.54 12194.72 9695.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IterMVS-LS83.28 10782.95 10783.65 10988.39 11888.63 15886.80 12978.64 14376.56 12673.43 10772.52 10775.35 10480.81 10386.43 14888.51 12293.84 13592.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH78.52 1481.86 12080.45 13183.51 11490.51 9591.22 11185.62 14284.23 6970.29 17162.21 16669.04 12764.05 15684.48 7787.57 12888.45 12394.01 12792.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 1792x268882.16 11680.91 12683.61 11091.14 8392.01 10689.55 8279.15 13779.87 10670.29 11952.51 20172.56 12381.39 9688.87 11588.17 12490.15 18592.37 121
GA-MVS79.52 14379.71 14379.30 15385.68 14590.36 12184.55 15278.44 14470.47 17057.87 19168.52 12961.38 17076.21 14989.40 10987.89 12593.04 15489.96 151
thisisatest051579.76 14080.59 12978.80 15784.40 16388.91 15679.48 18776.94 15872.29 15867.33 13567.82 13365.99 14970.80 17788.50 11887.84 12693.86 13492.75 107
pm-mvs178.51 15877.75 16379.40 15284.83 16189.30 14683.55 16179.38 13462.64 19963.68 15758.73 18564.68 15370.78 17889.79 10287.84 12694.17 12291.28 141
HyFIR lowres test81.62 12679.45 14684.14 10491.00 8693.38 8688.27 10678.19 14676.28 12870.18 12148.78 20573.69 11783.52 8087.05 13387.83 12893.68 14289.15 155
EG-PatchMatch MVS76.40 17875.47 18777.48 16885.86 14390.22 12482.45 16773.96 17559.64 20859.60 18552.75 20062.20 16868.44 18488.23 12187.50 12994.55 10687.78 168
MSDG83.87 10181.02 12387.19 7592.17 7489.80 13589.15 8985.72 5680.61 10279.24 7966.66 13768.75 14182.69 8587.95 12487.44 13094.19 12185.92 181
LTVRE_ROB74.41 1675.78 18674.72 19277.02 17285.88 14189.22 14882.44 16877.17 15550.57 21745.45 21165.44 14652.29 21081.25 9785.50 15987.42 13189.94 18792.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal77.46 16674.86 19180.49 14586.34 13988.92 15584.33 15581.26 11061.39 20361.70 17351.99 20253.66 20874.84 15888.63 11687.38 13294.50 10892.08 122
ACMH+79.08 1381.84 12180.06 13683.91 10789.92 10590.62 11686.21 13483.48 8673.88 14765.75 14366.38 13865.30 15284.63 7685.90 15387.25 13393.45 14791.13 142
Baseline_NR-MVSNet79.84 13878.37 15581.55 13284.98 15886.66 17285.06 14683.49 8475.57 13363.31 15958.22 18760.97 17278.00 13886.89 13587.13 13494.47 11193.15 95
WR-MVS76.63 17278.02 16075.02 18684.14 16889.76 13778.34 19480.64 11569.56 17252.32 20061.26 16561.24 17160.66 20084.45 17487.07 13593.99 12892.77 105
baseline84.89 9186.06 8383.52 11387.25 13089.67 14087.76 11075.68 16884.92 6878.40 8280.10 6380.98 7380.20 11586.69 14287.05 13691.86 16792.99 98
PatchMatch-RL83.34 10681.36 11885.65 8490.33 10089.52 14384.36 15481.82 10580.87 10179.29 7874.04 9762.85 16386.05 7188.40 12087.04 13792.04 16486.77 174
baseline282.80 11082.86 10882.73 12087.68 12590.50 11984.92 14978.93 13978.07 12173.06 10975.08 9169.77 13577.31 14388.90 11486.94 13894.50 10890.74 143
TransMVSNet (Re)76.57 17375.16 19078.22 16585.60 14787.24 16882.46 16681.23 11159.80 20759.05 18957.07 18959.14 18666.60 19388.09 12286.82 13994.37 11787.95 167
PEN-MVS76.02 18276.07 17875.95 18183.17 17887.97 16279.65 18580.07 12766.57 18551.45 20260.94 16955.47 20166.81 19182.72 18486.80 14094.59 10392.03 125
v2v48279.84 13878.07 15881.90 12783.75 17090.21 12587.17 12279.85 12970.65 16765.93 14261.93 16360.07 17680.82 10285.25 16286.71 14193.88 13391.70 134
v7n77.22 16776.23 17778.38 16481.89 19389.10 15382.24 17276.36 16265.96 18961.21 17856.56 19055.79 20075.07 15786.55 14486.68 14293.52 14592.95 100
MIMVSNet74.69 19175.60 18673.62 19376.02 21185.31 18481.21 18067.43 19971.02 16359.07 18854.48 19464.07 15566.14 19486.52 14686.64 14391.83 16881.17 199
v1079.62 14178.19 15681.28 13683.73 17189.69 13987.27 11976.86 15970.50 16965.46 14460.58 17360.47 17480.44 11086.91 13486.63 14493.93 12992.55 115
v114479.38 14777.83 16181.18 13783.62 17290.23 12387.15 12478.35 14569.13 17464.02 15560.20 17559.41 18380.14 11786.78 13886.57 14593.81 13792.53 117
V4279.59 14278.43 15380.94 13982.79 18689.71 13886.66 13076.73 16171.38 16167.42 13461.01 16862.30 16778.39 13585.56 15886.48 14693.65 14392.60 111
v119278.94 15177.33 16580.82 14083.25 17689.90 13286.91 12777.72 15168.63 17862.61 16459.17 18057.53 19280.62 10986.89 13586.47 14793.79 13892.75 107
Fast-Effi-MVS+-dtu79.95 13680.69 12779.08 15486.36 13889.14 15185.85 13772.28 18072.85 15759.32 18670.43 11768.42 14477.57 14186.14 15086.44 14893.11 15391.39 140
EPNet_dtu81.98 11883.82 10279.83 15194.10 5285.97 17687.29 11884.08 7280.61 10259.96 18381.62 5977.19 9962.91 19987.21 13086.38 14990.66 18187.77 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet76.36 17976.41 17576.32 17882.73 18788.64 15779.39 18879.62 13067.21 18153.70 19660.72 17155.22 20267.91 18783.52 18086.34 15094.55 10693.19 94
PS-CasMVS75.90 18475.86 18375.96 18082.59 18888.46 16079.23 19179.56 13266.00 18852.77 19859.48 17954.35 20667.14 19083.37 18186.23 15194.47 11193.10 96
v879.90 13778.39 15481.66 13083.97 16989.81 13487.16 12377.40 15471.49 16067.71 13361.24 16662.49 16579.83 12285.48 16086.17 15293.89 13292.02 126
DTE-MVSNet75.14 18975.44 18874.80 18883.18 17787.19 16978.25 19680.11 12466.05 18748.31 20760.88 17054.67 20364.54 19682.57 18686.17 15294.43 11490.53 148
v14419278.81 15277.22 16780.67 14282.95 18189.79 13686.40 13277.42 15368.26 18063.13 16059.50 17858.13 18880.08 11885.93 15286.08 15494.06 12492.83 103
v124078.15 15976.53 17380.04 14882.85 18589.48 14585.61 14376.77 16067.05 18261.18 17958.37 18656.16 19979.89 12186.11 15186.08 15493.92 13092.47 119
v192192078.57 15776.99 17080.41 14782.93 18289.63 14286.38 13377.14 15668.31 17961.80 17258.89 18456.79 19580.19 11686.50 14786.05 15694.02 12692.76 106
FC-MVSNet-test76.53 17581.62 11570.58 20084.99 15785.73 17974.81 20278.85 14177.00 12539.13 21875.90 8573.50 11954.08 20786.54 14585.99 15791.65 16986.68 175
FMVSNet575.50 18876.07 17874.83 18776.16 20981.19 20481.34 17670.21 18973.20 15561.59 17458.97 18268.33 14568.50 18385.87 15485.85 15891.18 17879.11 205
WR-MVS_H75.84 18576.93 17174.57 19182.86 18489.50 14478.34 19479.36 13566.90 18352.51 19960.20 17559.71 17959.73 20183.61 17985.77 15994.65 10092.84 102
MS-PatchMatch81.79 12281.44 11782.19 12690.35 9989.29 14788.08 10975.36 17077.60 12269.00 12964.37 15678.87 9077.14 14688.03 12385.70 16093.19 15286.24 178
PMMVS81.65 12384.05 10078.86 15678.56 20482.63 19883.10 16267.22 20081.39 9170.11 12284.91 4379.74 8382.12 9187.31 12985.70 16092.03 16586.67 177
Effi-MVS+-dtu82.05 11781.76 11382.38 12387.72 12390.56 11886.90 12878.05 14873.85 14866.85 13771.29 11171.90 12682.00 9386.64 14385.48 16292.76 15792.58 113
pmmvs674.83 19072.89 19777.09 17082.11 19187.50 16680.88 18276.97 15752.79 21561.91 17146.66 20760.49 17369.28 18186.74 14185.46 16391.39 17290.56 147
pmmvs576.93 16976.33 17677.62 16781.97 19288.40 16181.32 17774.35 17365.42 19361.42 17563.07 15957.95 19073.23 16985.60 15785.35 16493.41 14888.55 159
TDRefinement79.05 15077.05 16981.39 13388.45 11789.00 15486.92 12682.65 9874.21 14464.41 15159.17 18059.16 18574.52 16185.23 16385.09 16591.37 17387.51 170
USDC80.69 13079.89 13981.62 13186.48 13789.11 15286.53 13178.86 14081.15 9663.48 15872.98 10459.12 18781.16 9987.10 13185.01 16693.23 15084.77 186
CR-MVSNet78.71 15478.86 14878.55 16185.85 14485.15 18582.30 17068.23 19674.71 13865.37 14664.39 15569.59 13777.18 14485.10 16884.87 16792.34 16288.21 162
PatchT76.42 17677.81 16274.80 18878.46 20584.30 19071.82 20865.03 20973.89 14665.37 14661.58 16466.70 14777.18 14485.10 16884.87 16790.94 18088.21 162
TAMVS76.42 17677.16 16875.56 18283.05 17985.55 18280.58 18371.43 18365.40 19461.04 18067.27 13569.22 14067.99 18584.88 17084.78 16989.28 19083.01 192
COLMAP_ROBcopyleft76.78 1580.50 13278.49 15182.85 11790.96 8789.65 14186.20 13583.40 8977.15 12466.54 13862.27 16165.62 15177.89 13985.23 16384.70 17092.11 16384.83 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14878.59 15676.84 17280.62 14383.61 17389.16 15083.65 16079.24 13669.38 17369.34 12759.88 17760.41 17575.19 15483.81 17884.63 17192.70 15890.63 146
IterMVS-SCA-FT79.41 14680.20 13478.49 16285.88 14186.26 17483.95 15771.94 18173.55 15261.94 16970.48 11670.50 13175.23 15385.81 15584.61 17291.99 16690.18 150
pmmvs479.99 13578.08 15782.22 12583.04 18087.16 17084.95 14778.80 14278.64 11774.53 9964.61 15459.41 18379.45 12884.13 17684.54 17392.53 15988.08 164
test0.0.03 176.03 18178.51 15073.12 19687.47 12785.13 18776.32 19978.05 14873.19 15650.98 20570.64 11369.28 13855.53 20385.33 16184.38 17490.39 18381.63 197
GG-mvs-BLEND57.56 21182.61 11028.34 2190.22 22790.10 12779.37 1890.14 22579.56 1090.40 22871.25 11283.40 630.30 22586.27 14983.87 17589.59 18883.83 188
CVMVSNet76.70 17178.46 15274.64 19083.34 17584.48 18981.83 17474.58 17168.88 17651.23 20469.77 11870.05 13367.49 18884.27 17583.81 17689.38 18987.96 166
IterMVS78.79 15379.71 14377.71 16685.26 15285.91 17784.54 15369.84 19273.38 15361.25 17770.53 11570.35 13274.43 16285.21 16583.80 17790.95 17988.77 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap76.73 17073.95 19479.96 14985.16 15585.64 18182.34 16978.19 14670.63 16862.06 16860.69 17249.61 21380.81 10385.12 16783.69 17891.22 17782.27 194
test-mter77.79 16280.02 13775.18 18581.18 19882.85 19680.52 18462.03 21473.62 15162.16 16773.55 10173.83 11573.81 16484.67 17183.34 17991.37 17388.31 161
CHOSEN 280x42080.28 13381.66 11478.67 16082.92 18379.24 21085.36 14566.79 20278.11 11970.32 11875.03 9279.87 8081.09 10089.07 11183.16 18085.54 20787.17 171
testgi71.92 19874.20 19369.27 20284.58 16283.06 19373.40 20574.39 17264.04 19746.17 21068.90 12857.15 19448.89 21184.07 17783.08 18188.18 19579.09 206
test-LLR79.47 14579.84 14079.03 15587.47 12782.40 20181.24 17878.05 14873.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
TESTMET0.1,177.78 16379.84 14075.38 18480.86 19982.40 20181.24 17862.72 21373.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
pmmvs-eth3d74.32 19371.96 19977.08 17177.33 20782.71 19778.41 19376.02 16666.65 18465.98 14154.23 19749.02 21573.14 17082.37 18882.69 18491.61 17086.05 180
MIMVSNet165.00 20666.24 20763.55 20958.41 22080.01 20869.00 21174.03 17455.81 21341.88 21536.81 21649.48 21447.89 21281.32 19182.40 18590.08 18677.88 207
Anonymous2023120670.80 19970.59 20371.04 19981.60 19582.49 20074.64 20375.87 16764.17 19649.27 20644.85 21153.59 20954.68 20683.07 18282.34 18690.17 18483.65 189
SixPastTwentyTwo76.02 18275.72 18476.36 17783.38 17487.54 16575.50 20176.22 16365.50 19257.05 19270.64 11353.97 20774.54 16080.96 19282.12 18791.44 17189.35 154
RPMNet77.07 16877.63 16476.42 17685.56 14885.15 18581.37 17565.27 20774.71 13860.29 18263.71 15866.59 14873.64 16582.71 18582.12 18792.38 16188.39 160
test20.0368.31 20370.05 20466.28 20782.41 18980.84 20567.35 21276.11 16558.44 21040.80 21753.77 19854.54 20442.28 21483.07 18281.96 18988.73 19377.76 208
RPSCF83.46 10583.36 10483.59 11187.75 12287.35 16784.82 15179.46 13383.84 7278.12 8482.69 5179.87 8082.60 8882.47 18781.13 19088.78 19286.13 179
PM-MVS74.17 19473.10 19575.41 18376.07 21082.53 19977.56 19771.69 18271.04 16261.92 17061.23 16747.30 21674.82 15981.78 19079.80 19190.42 18288.05 165
CostFormer80.94 12980.21 13381.79 12887.69 12488.58 15987.47 11570.66 18680.02 10477.88 8873.03 10371.40 12778.24 13679.96 19679.63 19288.82 19188.84 156
CMPMVSbinary56.49 1773.84 19571.73 20176.31 17985.20 15385.67 18075.80 20073.23 17662.26 20065.40 14553.40 19959.70 18071.77 17480.25 19579.56 19386.45 20481.28 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep1379.14 14979.49 14578.74 15985.40 14986.89 17184.32 15670.29 18878.85 11569.42 12675.37 8973.29 12175.64 15280.61 19379.48 19487.36 19881.91 195
SCA79.51 14480.15 13578.75 15886.58 13687.70 16483.07 16368.53 19581.31 9266.40 13973.83 9875.38 10379.30 13080.49 19479.39 19588.63 19482.96 193
tpm76.30 18076.05 18076.59 17586.97 13383.01 19583.83 15867.06 20171.83 15963.87 15669.56 12262.88 16273.41 16879.79 19778.59 19684.41 20986.68 175
EU-MVSNet69.98 20172.30 19867.28 20575.67 21279.39 20973.12 20669.94 19163.59 19842.80 21462.93 16056.71 19755.07 20579.13 20178.55 19787.06 20185.82 182
EPMVS77.53 16578.07 15876.90 17386.89 13484.91 18882.18 17366.64 20381.00 9864.11 15472.75 10669.68 13674.42 16379.36 19978.13 19887.14 20080.68 202
dps78.02 16075.94 18280.44 14686.06 14086.62 17382.58 16569.98 19075.14 13577.76 9069.08 12659.93 17878.47 13479.47 19877.96 19987.78 19683.40 190
PatchmatchNetpermissive78.67 15578.85 14978.46 16386.85 13586.03 17583.77 15968.11 19880.88 10066.19 14072.90 10573.40 12078.06 13779.25 20077.71 20087.75 19781.75 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view73.21 19672.91 19673.56 19480.01 20084.28 19178.62 19266.43 20468.64 17759.12 18760.39 17459.69 18169.81 18078.82 20277.43 20187.36 19881.11 200
ADS-MVSNet74.53 19275.69 18573.17 19581.57 19680.71 20679.27 19063.03 21279.27 11359.94 18467.86 13268.32 14671.08 17677.33 20476.83 20284.12 21279.53 203
pmmvs361.89 20961.74 21162.06 21064.30 21670.83 21764.22 21452.14 21848.78 21944.47 21241.67 21441.70 22163.03 19776.06 20776.02 20384.18 21177.14 209
MDA-MVSNet-bldmvs66.22 20564.49 20868.24 20361.67 21782.11 20370.07 21076.16 16459.14 20947.94 20854.35 19635.82 22367.33 18964.94 21575.68 20486.30 20579.36 204
tpmrst76.55 17475.99 18177.20 16987.32 12983.05 19482.86 16465.62 20578.61 11867.22 13669.19 12465.71 15075.87 15176.75 20675.33 20584.31 21083.28 191
tpm cat177.78 16375.28 18980.70 14187.14 13285.84 17885.81 13870.40 18777.44 12378.80 8163.72 15764.01 15776.55 14875.60 20875.21 20685.51 20885.12 183
MVS-HIRNet68.83 20266.39 20671.68 19877.58 20675.52 21366.45 21365.05 20862.16 20162.84 16144.76 21256.60 19871.96 17378.04 20375.06 20786.18 20672.56 212
ambc61.92 21070.98 21573.54 21563.64 21660.06 20552.23 20138.44 21519.17 22657.12 20282.33 18975.03 20883.21 21384.89 184
pmnet_mix0271.95 19771.83 20072.10 19781.40 19780.63 20773.78 20472.85 17970.90 16454.89 19462.17 16257.42 19362.92 19876.80 20573.98 20986.74 20380.87 201
N_pmnet66.85 20466.63 20567.11 20678.73 20374.66 21470.53 20971.07 18466.46 18646.54 20951.68 20351.91 21155.48 20474.68 20972.38 21080.29 21574.65 211
Gipumacopyleft49.17 21347.05 21651.65 21359.67 21948.39 22141.98 22263.47 21155.64 21433.33 22214.90 22013.78 22741.34 21569.31 21272.30 21170.11 21855.00 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet59.28 21061.47 21256.73 21261.66 21868.29 21859.57 21754.91 21560.83 20434.38 22144.66 21343.65 21849.90 21071.66 21171.56 21279.94 21669.67 213
new-patchmatchnet63.80 20763.31 20964.37 20876.49 20875.99 21263.73 21570.99 18557.27 21143.08 21345.86 20943.80 21745.13 21373.20 21070.68 21386.80 20276.34 210
FPMVS63.63 20860.08 21367.78 20480.01 20071.50 21672.88 20769.41 19461.82 20253.11 19745.12 21042.11 22050.86 20966.69 21363.84 21480.41 21469.46 214
PMVScopyleft50.48 1855.81 21251.93 21460.33 21172.90 21449.34 22048.78 21969.51 19343.49 22054.25 19536.26 21741.04 22239.71 21665.07 21460.70 21576.85 21767.58 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 21544.74 21738.10 21446.97 22352.32 21940.63 22348.08 21935.51 2217.36 22726.86 21924.64 22516.72 22155.24 21859.03 21668.85 21959.59 218
MVEpermissive30.17 1930.88 21733.52 21827.80 22023.78 22539.16 22318.69 22746.90 22021.88 22415.39 22414.37 2227.31 23024.41 22041.63 22056.22 21737.64 22554.07 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt32.73 21843.96 22421.15 22626.71 2248.99 22365.67 19151.39 20356.01 19142.64 21911.76 22256.60 21750.81 21853.55 222
test_method41.78 21448.10 21534.42 21710.74 22619.78 22744.64 22117.73 22259.83 20638.67 21935.82 21854.41 20534.94 21762.87 21643.13 21959.81 22060.82 217
E-PMN31.40 21626.80 21936.78 21551.39 22229.96 22420.20 22554.17 21625.93 22312.75 22514.73 2218.58 22934.10 21927.36 22137.83 22048.07 22343.18 221
EMVS30.49 21825.44 22036.39 21651.47 22129.89 22520.17 22654.00 21726.49 22212.02 22613.94 2238.84 22834.37 21825.04 22234.37 22146.29 22439.53 222
testmvs1.03 2191.63 2210.34 2210.09 2280.35 2280.61 2290.16 2241.49 2250.10 2293.15 2240.15 2310.86 2241.32 2231.18 2220.20 2263.76 224
test1230.87 2201.40 2220.25 2220.03 2290.25 2290.35 2300.08 2261.21 2260.05 2302.84 2250.03 2320.89 2230.43 2241.16 2230.13 2273.87 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def56.08 193
9.1492.16 17
SR-MVS96.58 2790.99 2392.40 14
our_test_381.81 19483.96 19276.61 198
MTAPA92.97 291.03 23
MTMP93.14 190.21 31
Patchmatch-RL test8.55 228
XVS93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
X-MVStestdata93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
abl_690.66 4194.65 4896.27 3892.21 5186.94 4990.23 4286.38 3885.50 4192.96 1088.37 4995.40 6395.46 57
mPP-MVS97.06 1388.08 46
NP-MVS87.47 55
Patchmtry85.54 18382.30 17068.23 19665.37 146
DeepMVS_CXcopyleft48.31 22248.03 22026.08 22156.42 21225.77 22347.51 20631.31 22451.30 20848.49 21953.61 22161.52 216