This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft77.32 782.51 771.26 775.43 1580.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2675.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
ACMMP_NAP76.15 981.17 970.30 1174.09 2179.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3680.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3387.46 18
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS77.82 583.46 571.24 875.26 1780.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4689.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1865.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4979.31 1178.16 2959.28 178.24 2161.13 2067.36 3576.10 3363.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2478.56 1579.25 2356.51 1775.33 2760.69 2375.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.87 1578.86 2070.21 1273.99 2277.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2862.96 1278.70 1277.82 1383.02 986.91 21
ACMMPR73.79 2378.41 2168.40 2472.35 2877.79 1979.32 2056.38 1877.67 2358.30 3274.16 2176.66 2961.40 2278.32 1477.80 1482.68 1586.51 22
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5178.87 1375.61 3954.16 3384.86 658.22 3377.94 1681.01 1762.52 1578.34 1377.38 1680.16 4988.40 11
X-MVS71.18 3275.66 3265.96 3571.71 3076.96 2577.26 3355.88 2272.75 3754.48 4864.39 4474.47 3854.19 6677.84 2077.37 1782.21 2685.85 26
PGM-MVS72.89 2577.13 2667.94 2572.47 2777.25 2379.27 2254.63 2973.71 3457.95 3472.38 2275.33 3560.75 2778.25 1677.36 1882.57 1985.62 28
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2452.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
CP-MVS72.63 2776.95 2767.59 2670.67 3675.53 3477.95 3156.01 2175.65 2658.82 2969.16 2976.48 3160.46 3077.66 2277.20 2081.65 3786.97 20
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4577.46 2176.54 3554.35 3174.92 3158.64 3165.18 3974.04 4362.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2186.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1963.96 4776.58 3058.55 4076.66 3276.77 2382.60 1883.68 40
CDPH-MVS71.47 3175.82 3166.41 3172.97 2677.15 2478.14 3054.71 2769.88 4653.07 5670.98 2374.83 3756.95 5276.22 3376.57 2482.62 1785.09 33
OPM-MVS69.33 3771.05 4567.32 2772.34 2975.70 3379.57 1956.34 1955.21 7453.81 5359.51 6468.96 5659.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 4076.85 2878.46 2853.95 3473.52 3555.56 3970.13 2671.36 4858.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1678.48 1681.43 1357.44 1280.45 1459.32 2785.28 880.82 1863.96 776.89 2876.08 2781.58 3988.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg73.89 2178.25 2268.80 2375.25 1872.27 5179.75 1856.05 2074.87 3258.97 2881.83 1179.76 2161.05 2577.39 2576.01 2881.71 3685.61 29
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2654.54 3075.33 2759.99 2567.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1972.74 4980.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3585.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4876.47 3073.50 4952.74 4270.85 4258.65 3055.97 7769.95 5161.11 2476.80 3075.09 3281.09 4283.23 44
MVS_030469.49 3673.96 3564.28 4467.92 4976.13 3274.90 4247.60 6863.29 5754.09 5267.44 3476.35 3259.53 3575.81 3775.03 3381.62 3883.70 39
ACMM60.30 767.58 4768.82 5966.13 3370.59 3772.01 5376.54 3554.26 3265.64 5254.78 4750.35 10661.72 8158.74 3875.79 3875.03 3381.88 3181.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS70.88 3375.02 3366.05 3471.69 3174.47 4177.51 3253.17 3872.89 3654.88 4570.03 2770.48 5057.26 4876.02 3575.01 3581.78 3486.21 23
CLD-MVS67.02 4971.57 4261.71 5171.01 3574.81 3871.62 5138.91 15971.86 4060.70 2264.97 4167.88 6451.88 9276.77 3174.98 3676.11 9569.75 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4170.45 5871.44 5351.72 4760.77 6355.06 4362.14 5666.40 6758.13 4376.13 3474.79 3780.19 4882.04 49
MAR-MVS68.04 4470.74 4764.90 4171.68 3276.33 3174.63 4450.48 5563.81 5455.52 4054.88 8369.90 5257.39 4775.42 4174.79 3779.71 5180.03 56
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4374.03 4476.67 3453.88 3568.46 4752.05 6063.21 4963.89 7056.31 5675.99 3674.43 3982.83 1384.18 35
PHI-MVS69.27 3874.84 3462.76 5066.83 5474.83 3773.88 4749.32 6070.61 4350.93 6369.62 2874.84 3657.25 4975.53 3974.32 4078.35 6784.17 36
ACMP61.42 568.72 4271.37 4365.64 3769.06 4474.45 4275.88 3853.30 3768.10 4855.74 3861.53 5962.29 7756.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4770.56 5671.90 5050.75 5171.38 4157.46 3668.68 3075.42 3460.10 3373.47 5173.99 4280.32 4783.97 37
SD-MVS74.43 1778.87 1869.26 1974.39 2073.70 4579.06 2555.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2573.16 4878.50 2748.80 6679.34 1755.32 4185.04 981.49 1558.57 3975.06 4373.75 4475.35 10785.61 29
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2374.30 4375.28 4053.58 3670.24 4457.59 3551.19 10359.19 9260.74 2875.33 4273.72 4579.69 5477.96 70
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5574.52 3971.56 5245.76 7767.37 5055.00 4454.31 8868.19 6058.49 4273.97 4973.63 4681.22 4180.23 55
CANet68.77 4073.01 3763.83 4568.30 4675.19 3573.73 4847.90 6763.86 5354.84 4667.51 3374.36 4157.62 4474.22 4873.57 4780.56 4482.36 46
DELS-MVS65.87 5370.30 5160.71 5464.05 7172.68 5070.90 5445.43 8157.49 6949.05 7064.43 4368.66 5755.11 6474.31 4773.02 4879.70 5281.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet65.14 5969.54 5560.00 5866.61 5667.67 7667.53 6455.32 2462.67 5946.22 8067.74 3265.93 6848.07 11072.17 5772.12 4976.28 9178.47 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS68.76 4173.01 3763.81 4665.42 6173.66 4676.39 3752.08 4372.61 3850.33 6560.73 6072.65 4659.43 3673.32 5272.12 4979.19 6085.99 25
CS-MVS65.88 5269.71 5461.41 5261.76 8168.14 6867.65 6244.00 10559.14 6752.69 5765.19 3868.13 6160.90 2674.74 4571.58 5181.46 4081.04 53
Effi-MVS+63.28 6265.96 6960.17 5764.26 6768.06 7068.78 5945.71 7954.08 7746.64 7755.92 7863.13 7455.94 6070.38 7571.43 5279.68 5578.70 63
QAPM65.27 5569.49 5660.35 5565.43 6072.20 5265.69 8547.23 6963.46 5549.14 6853.56 8971.04 4957.01 5072.60 5671.41 5377.62 7182.14 48
ETV-MVS63.23 6366.08 6859.91 5963.13 7568.13 6967.62 6344.62 9253.39 8246.23 7958.74 6658.19 9557.45 4673.60 5071.38 5480.39 4579.13 60
EC-MVSNet67.01 5070.27 5263.21 4767.21 5270.47 5769.01 5646.96 7159.16 6653.23 5564.01 4669.71 5460.37 3174.92 4471.24 5582.50 2082.41 45
canonicalmvs65.62 5472.06 4058.11 6863.94 7271.05 5464.49 9543.18 12674.08 3347.35 7364.17 4571.97 4751.17 9571.87 5870.74 5678.51 6580.56 54
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6468.62 6461.48 10643.63 11438.44 19241.44 10338.05 18346.18 16043.95 12871.71 6070.61 5777.87 6874.08 103
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4270.64 5574.99 4145.76 7770.20 4560.17 2456.42 7573.01 4461.14 2372.80 5470.54 5879.70 5281.42 51
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10168.02 7261.56 10443.15 12746.09 13844.06 9144.24 15450.99 12848.71 10466.70 12770.33 5977.60 7278.50 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp52.84 13857.78 13447.06 15740.24 20358.95 15053.70 16033.54 19236.51 19932.69 14243.88 15645.40 16447.97 11167.17 11970.28 6074.22 11682.29 47
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5869.59 5966.71 7349.12 6146.08 13928.90 16042.67 17141.20 18852.60 8471.39 6270.28 6076.51 8775.72 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IS_MVSNet57.95 10064.26 8050.60 12161.62 8365.25 10257.18 13245.42 8250.79 9726.49 17457.81 7160.05 8934.51 17571.24 6570.20 6278.36 6674.44 99
CS-MVS-test65.18 5768.70 6061.07 5361.92 7868.06 7067.09 7045.18 8558.47 6852.02 6165.76 3666.44 6659.24 3772.71 5570.05 6380.98 4379.40 59
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9373.44 4766.33 7648.95 6252.20 9350.81 6456.07 7660.25 8853.56 7273.23 5370.01 6479.30 5783.24 43
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14767.20 8260.24 11543.32 12348.83 11530.23 15362.38 5561.61 8240.35 14671.03 6669.77 6572.82 13579.11 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250655.82 11859.57 11651.46 11760.39 9064.55 10858.69 12348.87 6353.91 7826.99 16948.97 11241.72 18737.71 15870.96 6769.49 6676.08 9667.37 143
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 9064.55 10858.69 12348.87 6353.91 7826.76 17145.55 14453.43 11637.71 15870.96 6769.49 6676.08 9667.32 145
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 10065.86 9565.08 9137.11 17353.00 8745.36 8552.12 9756.07 10856.27 5771.28 6469.42 6878.71 6175.69 91
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6374.49 4074.78 4349.54 5767.44 4954.39 5158.35 6972.81 4555.79 6271.54 6169.24 6978.57 6283.41 42
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS61.53 7463.79 8258.89 6563.82 7367.61 7765.35 8842.15 13749.98 10145.66 8357.47 7356.62 10256.59 5570.91 6969.15 7079.78 5074.80 97
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8667.70 7558.42 12544.75 9049.71 10327.23 16859.03 6562.20 7843.34 13270.71 7069.13 7179.25 5979.63 58
test111155.24 12459.98 10949.71 12759.80 9664.10 11356.48 13949.34 5952.27 9221.56 18644.49 15251.96 12235.93 17070.59 7169.07 7275.13 10967.40 141
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9963.82 11457.93 12752.98 3948.94 11320.52 18952.87 9247.33 14736.81 16669.12 8569.03 7377.56 7469.89 122
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6968.46 6567.51 6550.93 5052.46 9135.83 13240.83 17645.12 16952.32 8769.88 7969.00 7477.59 7376.21 87
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7669.34 6169.80 5545.27 8363.38 5651.11 6265.12 4069.75 5353.51 7471.74 5968.86 7579.33 5678.19 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9465.21 10357.44 13052.93 4049.37 10724.31 18154.62 8750.54 12939.04 15068.69 8868.84 7678.53 6470.72 116
OMC-MVS65.16 5871.35 4457.94 7252.95 15068.82 6369.00 5738.28 16779.89 1555.20 4262.76 5268.31 5956.14 5971.30 6368.70 7776.06 9979.67 57
NR-MVSNet55.35 12359.46 11850.56 12261.33 8462.97 11857.91 12851.80 4548.62 12120.59 18851.99 9844.73 17534.10 17868.58 9168.64 7877.66 7070.67 120
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5769.52 6064.26 9743.07 12961.34 6250.19 6647.29 12464.41 6954.60 6570.18 7768.62 7977.73 6978.89 62
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 20065.26 10065.70 8343.82 10748.84 11442.34 9959.76 6347.76 14156.68 5467.02 12468.60 8077.33 7773.73 106
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6661.84 12455.98 14546.47 7353.06 8534.96 13561.95 5856.37 10639.49 14868.67 8968.36 8175.92 10171.81 111
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8463.77 11565.87 8243.58 11560.20 6453.70 5462.09 5762.38 7655.84 6170.24 7668.08 8274.30 11578.28 68
GeoE62.43 6864.79 7759.68 6164.15 7067.17 8368.80 5844.42 9655.65 7347.38 7251.54 10062.51 7554.04 6969.99 7868.07 8379.28 5878.57 64
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12769.27 6264.77 9342.21 13545.66 14237.50 12733.08 19457.47 10053.33 7965.46 14567.94 8474.60 11271.35 113
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13264.59 10755.77 14650.63 5248.66 12020.95 18751.47 10150.40 13034.41 17767.81 10867.89 8577.11 8171.88 110
thisisatest053056.68 11059.68 11153.19 10652.97 14960.96 13459.41 11840.51 14948.26 12441.06 10852.67 9346.30 15749.78 9767.66 11267.83 8675.39 10574.07 104
tttt051756.53 11259.59 11352.95 10952.66 15260.99 13359.21 12040.51 14947.89 12740.40 11152.50 9646.04 16149.78 9767.75 11067.83 8675.15 10874.17 101
MSDG58.46 9258.97 12357.85 7666.27 5966.23 9367.72 6142.33 13353.43 8143.68 9243.39 16245.35 16549.75 9968.66 9067.77 8877.38 7567.96 138
DU-MVS55.41 12259.59 11350.54 12354.60 13862.97 11857.44 13051.80 4548.62 12124.31 18151.99 9847.00 15039.04 15068.11 10167.75 8976.03 10070.72 116
Anonymous20240521160.60 9763.44 7466.71 9061.00 11147.23 6950.62 9936.85 18660.63 8743.03 13669.17 8367.72 9075.41 10472.54 108
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9864.30 11165.15 9038.75 16456.20 7145.77 8153.08 9056.45 10352.10 9069.04 8667.67 9176.69 8475.27 96
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7964.33 11061.42 10743.77 10852.85 8838.94 12055.62 8062.15 7943.24 13569.39 8267.66 9276.22 9375.97 88
UGNet57.03 10565.25 7347.44 15646.54 18666.73 8756.30 14043.28 12450.06 10032.99 13962.57 5463.26 7333.31 18068.25 9667.58 9372.20 14778.29 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 12162.82 12063.29 10341.55 14046.65 13438.34 12134.55 19253.50 11452.43 8667.10 12267.56 9467.13 17073.92 105
CANet_DTU58.88 8564.68 7852.12 11555.77 13066.75 8663.92 9837.04 17453.32 8337.45 12859.81 6261.81 8044.43 12768.25 9667.47 9574.12 11775.33 94
UA-Net58.50 9064.68 7851.30 11966.97 5367.13 8453.68 16145.65 8049.51 10631.58 14762.91 5168.47 5835.85 17168.20 9967.28 9674.03 11869.24 133
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6567.44 8065.99 8042.26 13449.55 10442.00 10248.92 11459.79 9056.27 5768.07 10367.03 9777.35 7675.45 93
GBi-Net55.20 12560.25 10249.31 13052.42 15361.44 12657.03 13344.04 10149.18 11030.47 14948.28 11658.19 9538.22 15368.05 10466.96 9873.69 12269.65 124
test155.20 12560.25 10249.31 13052.42 15361.44 12657.03 13344.04 10149.18 11030.47 14948.28 11658.19 9538.22 15368.05 10466.96 9873.69 12269.65 124
FMVSNet154.08 13358.68 12548.71 14050.90 16961.35 12956.73 13743.94 10645.91 14029.32 15942.72 17056.26 10737.70 16068.05 10466.96 9873.69 12269.50 128
thisisatest051553.85 13456.84 14150.37 12450.25 17358.17 15955.99 14439.90 15641.88 17238.16 12345.91 13845.30 16644.58 12666.15 13766.89 10173.36 12873.57 107
CDS-MVSNet52.42 14157.06 14047.02 15853.92 14558.30 15755.50 14946.47 7342.52 16929.38 15849.50 10952.85 11928.49 19066.70 12766.89 10168.34 16562.63 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER57.19 10461.11 9252.62 11250.82 17058.79 15161.55 10537.86 17048.81 11641.31 10557.43 7452.10 12148.60 10568.19 10066.75 10375.56 10375.68 92
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6264.16 11264.82 9241.48 14150.95 9642.17 10145.38 14556.42 10448.08 10968.30 9566.70 10473.39 12669.46 131
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9265.26 10066.03 7944.22 9755.75 7246.73 7554.64 8668.12 6254.13 6869.13 8466.66 10577.18 7876.61 80
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18766.73 8765.49 8741.36 14276.57 2446.31 7876.80 1756.68 10153.27 8169.50 8166.65 10672.40 14476.36 86
Anonymous2023121157.71 10260.79 9454.13 9861.68 8265.81 9660.81 11243.70 11251.97 9439.67 11534.82 19163.59 7143.31 13368.55 9366.63 10775.59 10274.13 102
v114458.88 8560.16 10557.39 7858.03 10567.26 8167.14 6844.46 9445.17 14444.33 9047.81 12149.92 13453.20 8267.77 10966.62 10877.15 7976.58 81
v1059.17 8460.60 9757.50 7757.95 10666.73 8767.09 7044.11 9846.85 13245.42 8448.18 12051.07 12553.63 7167.84 10766.59 10976.79 8276.92 77
v119258.51 8959.66 11257.17 7957.82 10767.72 7466.21 7844.83 8944.15 15243.49 9346.68 12647.94 13853.55 7367.39 11666.51 11077.13 8077.20 75
LS3D60.20 7861.70 8858.45 6764.18 6867.77 7367.19 6648.84 6561.67 6141.27 10645.89 13951.81 12354.18 6768.78 8766.50 11175.03 11069.48 129
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10264.89 10465.56 8632.89 19645.80 14135.04 13445.89 13954.14 11349.41 10067.16 12066.45 11275.37 10670.69 118
MVS_Test62.40 6966.23 6757.94 7259.77 9764.77 10666.50 7541.76 13857.26 7049.33 6762.68 5367.47 6553.50 7668.57 9266.25 11376.77 8376.58 81
v7n55.67 11957.46 13853.59 10256.06 12865.29 9961.06 11043.26 12540.17 18337.99 12440.79 17745.27 16847.09 11467.67 11166.21 11476.08 9676.82 78
FMVSNet255.04 12959.95 11049.31 13052.42 15361.44 12657.03 13344.08 10049.55 10430.40 15246.89 12558.84 9338.22 15367.07 12366.21 11473.69 12269.65 124
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7968.32 6768.48 6044.45 9561.95 6049.12 6963.04 5069.67 5553.83 7070.46 7266.06 11678.55 6377.43 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48258.69 8860.12 10857.03 8057.16 12466.05 9467.17 6743.52 11746.33 13645.19 8649.46 11051.02 12652.51 8567.30 11766.03 11776.61 8574.62 98
Baseline_NR-MVSNet53.50 13557.89 13248.37 14754.60 13859.25 14856.10 14151.84 4449.32 10817.92 19645.38 14547.68 14236.93 16568.11 10165.95 11872.84 13469.57 127
V4256.97 10760.14 10653.28 10448.16 17962.78 12166.30 7737.93 16947.44 12942.68 9748.19 11952.59 12051.90 9167.46 11565.94 11972.72 13776.55 83
v14419258.23 9859.40 11956.87 8257.56 10866.89 8565.70 8345.01 8744.06 15342.88 9546.61 12848.09 13753.49 7766.94 12565.90 12076.61 8577.29 73
v124057.55 10358.63 12656.29 8757.30 11966.48 9263.77 9944.56 9342.77 16742.48 9845.64 14246.28 15853.46 7866.32 13365.80 12176.16 9477.13 76
v192192057.89 10159.02 12256.58 8557.55 10966.66 9164.72 9444.70 9143.55 15742.73 9646.17 13646.93 15153.51 7466.78 12665.75 12276.29 9077.28 74
v858.88 8560.57 9956.92 8157.35 11665.69 9766.69 7442.64 13147.89 12745.77 8149.04 11152.98 11852.77 8367.51 11465.57 12376.26 9275.30 95
diffmvspermissive61.64 7166.55 6455.90 8856.63 12663.71 11667.13 6941.27 14359.49 6546.70 7663.93 4868.01 6350.46 9667.30 11765.51 12473.24 13277.87 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GA-MVS55.67 11958.33 12852.58 11355.23 13563.09 11761.08 10940.15 15542.95 16237.02 13052.61 9447.68 14247.51 11265.92 13965.35 12574.49 11470.68 119
IterMVS-LS58.30 9661.39 9054.71 9459.92 9558.40 15559.42 11743.64 11348.71 11840.25 11357.53 7258.55 9452.15 8965.42 14665.34 12672.85 13375.77 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14864.84 10564.47 9640.41 15365.92 5144.53 8946.19 13555.69 10955.33 6368.24 9865.30 12774.50 11371.09 114
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA62.78 6666.31 6658.65 6658.47 10368.41 6665.98 8141.22 14478.02 2256.04 3746.65 12759.50 9157.50 4569.67 8065.27 12872.70 13976.67 79
TransMVSNet (Re)51.92 14955.38 14747.88 15360.95 8759.90 14253.95 15845.14 8639.47 18624.85 17843.87 15746.51 15629.15 18767.55 11365.23 12973.26 13165.16 163
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12267.55 7863.47 10146.08 7554.72 7552.46 5858.59 6760.73 8451.82 9370.46 7265.20 13076.44 8876.50 84
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12267.55 7863.47 10146.08 7554.72 7552.46 5858.59 6760.73 8451.82 9370.46 7265.20 13076.44 8876.50 84
FMVSNet354.78 13059.58 11549.17 13352.37 15661.31 13056.72 13844.04 10149.18 11030.47 14948.28 11658.19 9538.09 15665.48 14465.20 13073.31 12969.45 132
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16760.71 13656.87 13646.74 7242.52 16926.96 17042.50 17245.95 16237.87 15766.22 13565.15 13372.74 13668.78 136
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18365.33 9865.35 8836.51 17675.16 3048.82 7154.70 8563.51 7253.31 8068.36 9464.97 13473.37 12774.27 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
WR-MVS48.78 16955.06 15141.45 18355.50 13160.40 13743.77 19949.99 5641.92 1718.10 21545.24 14845.56 16317.47 20461.57 16264.60 13573.85 11966.14 155
tfpn200view952.53 14055.51 14549.06 13557.31 11760.24 13855.42 15143.77 10842.85 16527.81 16443.00 16845.06 17137.32 16266.38 13064.54 13672.71 13866.54 148
thres40052.38 14355.51 14548.74 13957.49 11260.10 14155.45 15043.54 11642.90 16426.72 17243.34 16445.03 17336.61 16766.20 13664.53 13772.66 14066.43 149
gg-mvs-nofinetune49.07 16752.56 16745.00 16761.99 7759.78 14353.55 16341.63 13931.62 20812.08 20429.56 20353.28 11729.57 18666.27 13464.49 13871.19 15562.92 172
baseline255.89 11557.82 13353.64 10057.36 11561.09 13259.75 11640.45 15147.38 13041.26 10751.23 10246.90 15248.11 10865.63 14364.38 13974.90 11168.16 137
baseline154.48 13258.69 12449.57 12860.63 8958.29 15855.70 14744.95 8849.20 10929.62 15654.77 8454.75 11135.29 17267.15 12164.08 14071.21 15462.58 176
PEN-MVS49.21 16554.32 15543.24 17754.33 14159.26 14747.04 18551.37 4941.67 1739.97 21046.22 13441.80 18622.97 20060.52 16564.03 14173.73 12166.75 147
pm-mvs151.02 15355.55 14445.73 16254.16 14258.52 15350.92 16842.56 13240.32 18125.67 17643.66 15950.34 13130.06 18565.85 14063.97 14270.99 15666.21 152
thres20052.39 14255.37 14848.90 13757.39 11460.18 13955.60 14843.73 11042.93 16327.41 16643.35 16345.09 17036.61 16766.36 13163.92 14372.66 14065.78 158
pmmvs454.66 13156.07 14253.00 10854.63 13757.08 16660.43 11444.10 9951.69 9540.55 11046.55 13144.79 17445.95 12062.54 15663.66 14472.36 14566.20 153
thres100view90052.04 14754.81 15348.80 13857.31 11759.33 14655.30 15242.92 13042.85 16527.81 16443.00 16845.06 17136.99 16464.74 14963.51 14572.47 14365.21 162
tfpnnormal50.16 15952.19 17147.78 15556.86 12558.37 15654.15 15744.01 10438.35 19425.94 17536.10 18737.89 20134.50 17665.93 13863.42 14671.26 15365.28 161
Vis-MVSNet (Re-imp)50.37 15757.73 13641.80 18257.53 11054.35 17245.70 19145.24 8449.80 10213.43 20258.23 7056.42 10420.11 20362.96 15463.36 14768.76 16458.96 188
thres600view751.91 15055.14 14948.14 14957.43 11360.18 13954.60 15643.73 11042.61 16825.20 17743.10 16744.47 17835.19 17366.36 13163.28 14872.66 14066.01 156
pmmvs648.35 17151.64 17344.51 17051.92 15957.94 16249.44 17442.17 13634.45 20124.62 18028.87 20546.90 15229.07 18964.60 15063.08 14969.83 16165.68 159
COLMAP_ROBcopyleft46.52 1551.99 14854.86 15248.63 14249.13 17761.73 12560.53 11336.57 17553.14 8432.95 14037.10 18438.68 19940.49 14565.72 14163.08 14972.11 14864.60 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
gm-plane-assit44.74 18745.95 19543.33 17560.88 8846.79 20136.97 21032.24 19924.15 21411.79 20529.26 20432.97 21046.64 11565.09 14862.95 15171.45 15260.42 183
DTE-MVSNet48.03 17553.28 16241.91 18154.64 13657.50 16444.63 19851.66 4841.02 1777.97 21646.26 13340.90 18920.24 20260.45 16662.89 15272.33 14663.97 168
pmmvs-eth3d51.33 15152.25 17050.26 12550.82 17054.65 17156.03 14343.45 12243.51 15837.20 12939.20 18039.04 19842.28 13861.85 16162.78 15371.78 15064.72 165
LTVRE_ROB44.17 1647.06 18150.15 18443.44 17451.39 16258.42 15442.90 20143.51 11822.27 21614.85 20041.94 17534.57 20745.43 12162.28 15962.77 15462.56 18768.83 135
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPNet_dtu52.05 14658.26 12944.81 16854.10 14350.09 18852.01 16640.82 14753.03 8627.41 16654.90 8257.96 9926.72 19262.97 15362.70 15567.78 16866.19 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14855.58 12157.61 13753.20 10554.59 14061.86 12361.18 10838.70 16544.30 15142.25 10047.53 12250.24 13248.73 10365.15 14762.61 15673.79 12071.61 112
TDRefinement49.31 16252.44 16845.67 16430.44 21359.42 14559.24 11939.78 15748.76 11731.20 14835.73 18829.90 21342.81 13764.24 15162.59 15770.55 15766.43 149
dmvs_re52.07 14555.11 15048.54 14457.27 12051.93 18157.73 12943.13 12843.65 15526.57 17344.52 15150.00 13336.53 16966.58 12962.15 15869.97 16066.91 146
CP-MVSNet48.37 17053.53 15942.34 17951.35 16358.01 16146.56 18650.54 5341.62 17410.61 20646.53 13240.68 19223.18 19858.71 17561.83 15971.81 14967.36 144
PS-CasMVS48.18 17253.25 16342.27 18051.26 16457.94 16246.51 18750.52 5441.30 17510.56 20745.35 14740.34 19423.04 19958.66 17661.79 16071.74 15167.38 142
IterMVS-SCA-FT52.18 14457.75 13545.68 16351.01 16862.06 12255.10 15434.75 18244.85 14532.86 14151.13 10451.22 12448.74 10262.47 15761.51 16151.61 20971.02 115
WR-MVS_H47.65 17653.67 15840.63 18651.45 16159.74 14444.71 19749.37 5840.69 1797.61 21746.04 13744.34 18017.32 20557.79 18161.18 16273.30 13065.86 157
USDC51.11 15253.71 15748.08 15144.76 19255.99 16953.01 16540.90 14552.49 9036.14 13144.67 15033.66 20943.27 13463.23 15261.10 16370.39 15964.82 164
SixPastTwentyTwo47.55 17850.25 18344.41 17147.30 18454.31 17347.81 18040.36 15433.76 20219.93 19143.75 15832.77 21142.07 13959.82 16860.94 16468.98 16266.37 151
IterMVS53.45 13657.12 13949.17 13349.23 17660.93 13559.05 12134.63 18444.53 14733.22 13751.09 10551.01 12748.38 10662.43 15860.79 16570.54 15869.05 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline55.19 12760.88 9348.55 14349.87 17458.10 16058.70 12234.75 18252.82 8939.48 11960.18 6160.86 8345.41 12261.05 16360.74 16663.10 18372.41 109
CR-MVSNet50.47 15552.61 16647.98 15249.03 17852.94 17648.27 17738.86 16144.41 14839.59 11644.34 15344.65 17746.63 11658.97 17260.31 16765.48 17562.66 173
PatchT48.08 17351.03 17844.64 16942.96 19750.12 18740.36 20635.09 18043.17 16039.59 11642.00 17439.96 19546.63 11658.97 17260.31 16763.21 18262.66 173
CMPMVSbinary37.70 1749.24 16452.71 16545.19 16545.97 18951.23 18447.44 18329.31 20143.04 16144.69 8734.45 19348.35 13643.64 12962.59 15559.82 16960.08 19169.48 129
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchMatch-RL50.11 16051.56 17448.43 14546.23 18851.94 18050.21 17138.62 16646.62 13537.51 12642.43 17339.38 19652.24 8860.98 16459.56 17065.76 17460.01 186
TinyColmap47.08 17947.56 19346.52 15942.35 19953.44 17551.77 16740.70 14843.44 15931.92 14529.78 20223.72 21945.04 12561.99 16059.54 17167.35 16961.03 180
PMMVS49.20 16654.28 15643.28 17634.13 20845.70 20348.98 17526.09 20946.31 13734.92 13655.22 8153.47 11547.48 11359.43 16959.04 17268.05 16760.77 181
pmmvs547.07 18051.02 17942.46 17845.18 19151.47 18348.23 17933.09 19538.17 19528.62 16246.60 12943.48 18230.74 18358.28 17858.63 17368.92 16360.48 182
CostFormer56.57 11159.13 12153.60 10157.52 11161.12 13166.94 7235.95 17853.44 8044.68 8855.87 7954.44 11248.21 10760.37 16758.33 17468.27 16670.33 121
ambc45.54 19950.66 17252.63 17940.99 20538.36 19324.67 17922.62 21213.94 22229.14 18865.71 14258.06 17558.60 19567.43 140
TAMVS44.02 19049.18 18737.99 19447.03 18545.97 20245.04 19428.47 20439.11 18920.23 19043.22 16648.52 13528.49 19058.15 17957.95 17658.71 19351.36 199
SCA50.99 15453.22 16448.40 14651.07 16656.78 16750.25 17039.05 15848.31 12341.38 10449.54 10846.70 15546.00 11958.31 17756.28 17762.65 18556.60 193
dps50.42 15651.20 17749.51 12955.88 12956.07 16853.73 15938.89 16043.66 15440.36 11245.66 14137.63 20345.23 12359.05 17056.18 17862.94 18460.16 184
MDA-MVSNet-bldmvs41.36 19543.15 20539.27 19028.74 21552.68 17844.95 19640.84 14632.89 20418.13 19531.61 19722.09 22038.97 15250.45 20756.11 17964.01 18056.23 194
MIMVSNet43.79 19148.53 18938.27 19241.46 20148.97 19150.81 16932.88 19744.55 14622.07 18432.05 19547.15 14824.76 19558.73 17456.09 18057.63 19852.14 197
test-mter45.30 18650.37 18039.38 18933.65 21046.99 19847.59 18118.59 21538.75 19028.00 16343.28 16546.82 15441.50 14257.28 18355.78 18166.93 17363.70 170
CVMVSNet46.38 18452.01 17239.81 18842.40 19850.26 18646.15 18837.68 17140.03 18415.09 19946.56 13047.56 14433.72 17956.50 18955.65 18263.80 18167.53 139
MDTV_nov1_ep13_2view47.62 17749.72 18645.18 16648.05 18053.70 17454.90 15533.80 19039.90 18529.79 15538.85 18141.89 18539.17 14958.99 17155.55 18365.34 17759.17 187
test-LLR49.28 16350.29 18148.10 15055.26 13347.16 19649.52 17243.48 12039.22 18731.98 14343.65 16047.93 13941.29 14356.80 18555.36 18467.08 17161.94 177
TESTMET0.1,146.09 18550.29 18141.18 18436.91 20647.16 19649.52 17220.32 21439.22 18731.98 14343.65 16047.93 13941.29 14356.80 18555.36 18467.08 17161.94 177
MDTV_nov1_ep1350.32 15852.43 16947.86 15449.87 17454.70 17058.10 12634.29 18645.59 14337.71 12547.44 12347.42 14641.86 14058.07 18055.21 18665.34 17758.56 189
FMVSNet540.96 19645.81 19735.29 20134.30 20744.55 20647.28 18428.84 20340.76 17821.62 18529.85 20142.44 18324.77 19457.53 18255.00 18754.93 20150.56 202
FC-MVSNet-test39.65 20248.35 19029.49 20644.43 19339.28 21330.23 21640.44 15243.59 1563.12 22353.00 9142.03 18410.02 21955.09 19654.77 18848.66 21150.71 201
test20.0340.38 20144.20 20135.92 19953.73 14649.05 18938.54 20843.49 11932.55 2059.54 21127.88 20639.12 19712.24 21156.28 19054.69 18957.96 19749.83 207
Anonymous2023120642.28 19345.89 19638.07 19351.96 15848.98 19043.66 20038.81 16338.74 19114.32 20126.74 20740.90 18920.94 20156.64 18854.67 19058.71 19354.59 195
CHOSEN 280x42040.80 19745.05 20035.84 20032.95 21129.57 21644.98 19523.71 21237.54 19718.42 19431.36 19847.07 14946.41 11856.71 18754.65 19148.55 21258.47 190
test0.0.03 143.15 19246.95 19438.72 19155.26 13350.56 18542.48 20243.48 12038.16 19615.11 19835.07 19044.69 17616.47 20655.95 19354.34 19259.54 19249.87 206
tpm cat153.30 13753.41 16053.17 10758.16 10459.15 14963.73 10038.27 16850.73 9846.98 7445.57 14344.00 18149.20 10155.90 19454.02 19362.65 18564.50 167
RPMNet46.41 18248.72 18843.72 17247.77 18252.94 17646.02 19033.92 18844.41 14831.82 14636.89 18537.42 20437.41 16153.88 20054.02 19365.37 17661.47 179
MIMVSNet135.51 20641.41 20628.63 20727.53 21743.36 20738.09 20933.82 18932.01 2066.77 21821.63 21335.43 20611.97 21355.05 19753.99 19553.59 20648.36 209
PatchmatchNetpermissive49.92 16151.29 17548.32 14851.83 16051.86 18253.38 16437.63 17247.90 12640.83 10948.54 11545.30 16645.19 12456.86 18453.99 19561.08 19054.57 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS44.55 18948.13 19140.37 18732.85 21246.82 20046.11 18929.28 20240.48 18029.99 15439.98 17934.39 20841.80 14156.08 19253.88 19762.19 18865.31 160
testgi38.71 20343.64 20332.95 20352.30 15748.63 19235.59 21335.05 18131.58 2099.03 21430.29 19940.75 19111.19 21755.30 19553.47 19854.53 20445.48 210
RPSCF46.41 18254.42 15437.06 19625.70 22045.14 20445.39 19320.81 21362.79 5835.10 13344.92 14955.60 11043.56 13056.12 19152.45 19951.80 20863.91 169
pmmvs335.10 20738.47 20931.17 20526.37 21940.47 20934.51 21418.09 21624.75 21316.88 19723.05 21126.69 21532.69 18150.73 20651.60 20058.46 19651.98 198
GG-mvs-BLEND36.62 20553.39 16117.06 2130.01 22658.61 15248.63 1760.01 22247.13 1310.02 22743.98 15560.64 860.03 22254.92 19851.47 20153.64 20556.99 192
tpm48.82 16851.27 17645.96 16154.10 14347.35 19556.05 14230.23 20046.70 13343.21 9452.54 9547.55 14537.28 16354.11 19950.50 20254.90 20260.12 185
EU-MVSNet40.63 19945.65 19834.78 20239.11 20446.94 19940.02 20734.03 18733.50 20310.37 20835.57 18937.80 20223.65 19751.90 20250.21 20361.49 18963.62 171
tpmrst48.08 17349.88 18545.98 16052.71 15148.11 19353.62 16233.70 19148.70 11939.74 11448.96 11346.23 15940.29 14750.14 20849.28 20455.80 19957.71 191
Gipumacopyleft25.87 21126.91 21424.66 21028.98 21420.17 21920.46 21834.62 18529.55 2109.10 2124.91 2225.31 22615.76 20849.37 21149.10 20539.03 21529.95 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EPMVS44.66 18847.86 19240.92 18547.97 18144.70 20547.58 18233.27 19348.11 12529.58 15749.65 10744.38 17934.65 17451.71 20347.90 20652.49 20748.57 208
PMVScopyleft27.84 1833.81 20835.28 21232.09 20434.13 20824.81 21832.51 21526.48 20826.41 21219.37 19223.76 21024.02 21825.18 19350.78 20447.24 20754.89 20349.95 205
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet42.24 19441.15 20743.51 17344.06 19640.74 20835.77 21235.35 17935.38 20038.34 12125.63 20938.55 20043.48 13150.77 20547.03 20864.07 17949.98 204
FPMVS38.36 20440.41 20835.97 19838.92 20539.85 21145.50 19225.79 21041.13 17618.70 19330.10 20024.56 21731.86 18249.42 21046.80 20955.04 20051.03 200
pmnet_mix0240.48 20043.80 20236.61 19745.79 19040.45 21042.12 20333.18 19440.30 18224.11 18338.76 18237.11 20524.30 19652.97 20146.66 21050.17 21050.33 203
ADS-MVSNet40.67 19843.38 20437.50 19544.36 19439.79 21242.09 20432.67 19844.34 15028.87 16140.76 17840.37 19330.22 18448.34 21245.87 21146.81 21344.21 212
N_pmnet32.67 21036.85 21127.79 20940.55 20232.13 21535.80 21126.79 20737.24 1989.10 21232.02 19630.94 21216.30 20747.22 21341.21 21238.21 21637.21 213
new-patchmatchnet33.24 20937.20 21028.62 20844.32 19538.26 21429.68 21736.05 17731.97 2076.33 21926.59 20827.33 21411.12 21850.08 20941.05 21344.23 21445.15 211
new_pmnet23.19 21228.17 21317.37 21117.03 22124.92 21719.66 21916.16 21827.05 2114.42 22020.77 21419.20 22112.19 21237.71 21436.38 21434.77 21731.17 214
MVEpermissive12.28 1913.53 21615.72 21610.96 2167.39 22315.71 2216.05 22423.73 21110.29 2223.01 2245.77 2213.41 22711.91 21420.11 21629.79 21513.67 22224.98 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS215.84 21319.68 21511.35 21515.74 22216.95 22013.31 22017.64 21716.08 2180.36 22613.12 21611.47 2231.69 22128.82 21527.24 21619.38 22124.09 217
E-PMN15.09 21413.19 21817.30 21227.80 21612.62 2227.81 22327.54 20514.62 2203.19 2216.89 2192.52 22915.09 20915.93 21820.22 21722.38 21819.53 218
EMVS14.49 21512.45 21916.87 21427.02 21812.56 2238.13 22227.19 20615.05 2193.14 2226.69 2202.67 22815.08 21014.60 22018.05 21820.67 21917.56 220
tmp_tt5.40 2183.97 2242.35 2263.26 2260.44 22117.56 21712.09 20311.48 2187.14 2241.98 22015.68 21915.49 21910.69 223
test_method12.44 21714.66 2179.85 2171.30 2253.32 22513.00 2213.21 21922.42 21510.22 20914.13 21525.64 21611.43 21619.75 21711.61 22019.96 2205.79 221
testmvs0.01 2180.02 2200.00 2190.00 2270.00 2270.01 2280.00 2230.01 2230.00 2280.03 2240.00 2300.01 2230.01 2220.01 2210.00 2250.06 223
test1230.01 2180.02 2200.00 2190.00 2270.00 2270.00 2290.00 2230.01 2230.00 2280.04 2230.00 2300.01 2230.00 2230.01 2210.00 2250.07 222
uanet_test0.00 2200.00 2220.00 2190.00 2270.00 2270.00 2290.00 2230.00 2250.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
sosnet-low-res0.00 2200.00 2220.00 2190.00 2270.00 2270.00 2290.00 2230.00 2250.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
sosnet0.00 2200.00 2220.00 2190.00 2270.00 2270.00 2290.00 2230.00 2250.00 2280.00 2250.00 2300.00 2250.00 2230.00 2230.00 2250.00 224
TPM-MVS75.48 1476.70 2979.31 2162.34 1764.71 4277.88 2756.94 5381.88 3183.68 40
RE-MVS-def33.01 138
9.1481.81 13
SR-MVS71.46 3454.67 2881.54 14
our_test_351.15 16557.31 16555.12 153
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 227
XVS70.49 3876.96 2574.36 4554.48 4874.47 3882.24 24
X-MVStestdata70.49 3876.96 2574.36 4554.48 4874.47 3882.24 24
mPP-MVS71.67 3374.36 41
NP-MVS72.00 39
Patchmtry47.61 19448.27 17738.86 16139.59 116
DeepMVS_CXcopyleft6.95 2245.98 2252.25 22011.73 2212.07 22511.85 2175.43 22511.75 21511.40 2218.10 22418.38 219