This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6799.59 1599.64 10
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6099.59 1599.62 13
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
IU-MVS99.42 695.39 997.94 10290.40 17298.94 597.41 799.66 899.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6099.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10497.18 3898.29 5092.08 3999.83 2295.12 7399.59 1599.54 29
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2199.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7695.95 8798.33 4491.04 6699.88 495.20 7099.57 2099.60 16
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10498.34 4190.59 7599.88 494.83 8399.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5599.40 4599.62 13
X-MVStestdata91.71 19789.67 25697.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6032.69 36291.70 5099.80 2795.66 5599.40 4599.62 13
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10396.39 7098.18 5891.61 5299.88 495.59 6599.55 2199.57 19
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13898.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12598.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10096.70 5298.06 6491.35 5999.86 894.83 8399.28 5999.47 44
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14896.40 6997.99 6990.99 6799.58 7195.61 6299.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8598.98 192.22 11197.14 4198.44 2891.17 6499.85 1494.35 9399.46 3899.57 19
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8696.45 6898.30 4991.90 4599.85 1495.61 6299.68 499.54 29
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16896.77 4998.35 3890.21 7999.53 8994.80 8699.63 1299.38 56
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14098.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2599.39 4799.55 26
test_part299.28 2595.74 698.10 17
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2298.11 5987.79 24595.17 10998.03 6687.09 11899.61 6293.51 11199.42 4399.02 83
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6495.91 6296.46 9399.24 2890.47 15998.30 2498.57 1189.01 20393.97 12897.57 10392.62 2899.76 3094.66 8999.27 6199.15 72
ACMMPcopyleft96.27 5895.93 6197.28 5999.24 2892.62 8798.25 2998.81 392.99 8694.56 11698.39 3588.96 8999.85 1494.57 9297.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15398.06 7390.67 15995.55 10298.78 1091.07 6599.86 896.58 2399.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14298.08 6488.35 22795.09 11097.65 9489.97 8299.48 9992.08 13798.59 9798.44 136
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13298.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2099.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3099.30 5699.55 26
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 9997.59 2498.20 5791.96 4499.86 894.21 9599.25 6599.63 11
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3499.27 6199.54 29
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9298.19 4492.82 9697.93 2098.74 1191.60 5399.86 896.26 3199.52 2599.67 8
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9697.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4799.51 2999.40 53
114514_t93.95 12093.06 13296.63 8099.07 3991.61 11797.46 10697.96 10077.99 34393.00 14997.57 10386.14 13299.33 11489.22 19299.15 7398.94 95
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 16898.85 798.94 193.33 1799.83 2296.72 1999.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.05 4194.59 2898.08 6489.22 19897.03 4798.10 6092.52 3299.65 5394.58 9199.31 55
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7798.10 6191.50 13298.01 1898.32 4692.33 3599.58 7194.85 8199.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4399.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4399.26 6399.43 49
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 10898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4299.25 6599.51 34
9.1496.75 3398.93 4797.73 7498.23 3891.28 14497.88 2298.44 2893.00 2199.65 5395.76 5499.47 36
CDPH-MVS95.97 6795.38 7497.77 3598.93 4794.44 3196.35 20997.88 10586.98 26496.65 5697.89 7291.99 4399.47 10092.26 12899.46 3899.39 54
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14597.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
save fliter98.91 4994.28 3597.02 14598.02 8895.35 8
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14298.21 4088.16 23496.64 5797.70 8991.18 6399.67 4992.44 12799.47 3699.48 41
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8198.24 3491.57 13097.90 2198.37 3692.61 2999.66 5295.59 6599.51 2999.43 49
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12398.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10399.72 3595.10 7499.07 8099.02 83
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12597.73 11891.80 12592.93 15496.62 15689.13 8899.14 13189.21 19397.78 11698.97 91
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 6899.59 1599.56 22
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11598.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5299.17 7299.56 22
DP-MVS92.76 16591.51 18496.52 8598.77 5790.99 14297.38 11396.08 26082.38 32089.29 24097.87 7583.77 16099.69 4481.37 30296.69 14598.89 101
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8298.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2299.46 3898.96 92
TEST998.70 6094.19 4096.41 20198.02 8888.17 23296.03 8197.56 10592.74 2499.59 68
train_agg96.30 5795.83 6497.72 3998.70 6094.19 4096.41 20198.02 8888.58 22096.03 8197.56 10592.73 2599.59 6895.04 7599.37 5299.39 54
test_898.67 6294.06 4996.37 20898.01 9188.58 22095.98 8697.55 10792.73 2599.58 71
agg_prior196.22 6095.77 6597.56 4898.67 6293.79 5596.28 21798.00 9388.76 21795.68 9697.55 10792.70 2799.57 7995.01 7699.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9699.57 79
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20998.00 9392.80 9796.03 8197.59 10192.01 4199.41 10795.01 7699.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10798.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7199.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5698.60 6893.59 6197.75 11681.58 32695.75 9397.85 7890.04 8199.67 4986.50 24499.13 7598.69 116
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25695.22 10897.68 9190.25 7799.54 8687.95 21299.12 7898.49 128
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19297.81 11389.87 17992.15 16797.06 12983.62 16499.54 8689.34 18798.07 10997.70 172
PLCcopyleft91.00 694.11 11493.43 12396.13 11298.58 7191.15 14096.69 17997.39 16887.29 25991.37 18196.71 14288.39 9899.52 9387.33 23297.13 13797.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 23097.73 11881.56 32795.68 9697.85 7890.23 7899.65 5387.68 22299.12 7898.73 112
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30096.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4498.46 7494.26 3797.66 12995.52 10590.89 6999.46 10199.25 6599.22 67
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22498.90 294.30 4695.86 8997.74 8792.33 3599.38 11296.04 4599.42 4399.28 65
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19997.57 13992.04 12094.77 11497.96 7187.01 11999.09 13791.31 15496.77 14198.36 143
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 23097.48 14793.47 7195.67 9998.10 6089.17 8799.25 12091.27 15598.77 9199.13 74
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18097.11 4498.01 6892.52 3299.69 4496.03 4699.53 2499.36 58
F-COLMAP93.58 13392.98 13495.37 15598.40 7888.98 20897.18 13497.29 17987.75 24890.49 19897.10 12785.21 14199.50 9786.70 24196.72 14497.63 174
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2499.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8499.16 70
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19296.88 21790.13 17691.91 17397.24 11885.21 14199.09 13787.64 22597.83 11497.92 160
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15397.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1599.13 7599.48 41
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15398.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
TAPA-MVS90.10 792.30 17891.22 19595.56 14298.33 8589.60 18196.79 16997.65 13181.83 32491.52 17897.23 11987.94 10298.91 15371.31 34698.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16597.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1799.29 5799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16598.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1599.29 5799.56 22
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16996.72 22694.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 11899.08 80
CHOSEN 1792x268894.15 11093.51 11996.06 11598.27 8989.38 19395.18 27098.48 1485.60 28493.76 13297.11 12683.15 17199.61 6291.33 15398.72 9399.19 68
PVSNet_BlendedMVS94.06 11693.92 10594.47 19298.27 8989.46 19096.73 17398.36 1690.17 17494.36 11995.24 22488.02 10099.58 7193.44 11390.72 23694.36 306
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 19095.47 25698.36 1688.84 21194.36 11996.09 18388.02 10099.58 7193.44 11398.18 10698.40 139
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15098.05 8089.85 18297.26 3598.22 5691.80 4799.69 4494.84 8299.28 5999.27 66
Anonymous2023121190.63 24989.42 26094.27 20198.24 9389.19 20498.05 4597.89 10379.95 33588.25 26694.96 23172.56 30398.13 21689.70 17885.14 29295.49 242
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 16097.73 11894.74 3596.49 6498.49 2490.88 7099.58 7196.44 2898.32 10299.13 74
test22298.24 9392.21 10095.33 26197.60 13579.22 33995.25 10797.84 8188.80 9299.15 7398.72 113
HyFIR lowres test93.66 13092.92 13695.87 12598.24 9389.88 17594.58 27898.49 1285.06 29393.78 13195.78 19982.86 18098.67 17391.77 14295.71 16399.07 82
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 22298.79 493.99 5195.80 9197.65 9489.92 8399.24 12195.87 4899.20 7098.58 119
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16197.72 12194.67 3696.16 7798.46 2690.43 7699.58 7196.23 3397.96 11298.90 99
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12398.25 3390.21 17394.18 12397.27 11687.48 11299.73 3293.53 11097.77 11798.55 120
Anonymous20240521192.07 18990.83 20895.76 12898.19 10088.75 21297.58 9395.00 30386.00 27993.64 13397.45 10966.24 33899.53 8990.68 16492.71 20299.01 87
PatchMatch-RL92.90 15892.02 16595.56 14298.19 10090.80 15095.27 26697.18 18487.96 23891.86 17595.68 20680.44 22398.99 14784.01 27897.54 12196.89 196
testdata95.46 15398.18 10288.90 21097.66 12982.73 31997.03 4798.07 6390.06 8098.85 15789.67 17998.98 8598.64 118
Anonymous2024052991.98 19190.73 21295.73 13398.14 10389.40 19297.99 4897.72 12179.63 33793.54 13697.41 11269.94 32099.56 8191.04 15891.11 22998.22 147
LFMVS93.60 13292.63 14596.52 8598.13 10491.27 12997.94 5593.39 33590.57 16896.29 7298.31 4769.00 32299.16 12894.18 9795.87 15899.12 77
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16098.09 10586.63 26496.00 23498.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1899.48 3599.45 45
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26697.62 13490.43 17195.55 10297.07 12891.72 4899.50 9789.62 18198.94 8798.82 107
VNet95.89 6995.45 7197.21 6598.07 10792.94 7997.50 9998.15 5193.87 5397.52 2597.61 10085.29 14099.53 8995.81 5395.27 16999.16 70
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8297.47 15088.13 23693.00 14995.84 19284.86 14699.51 9487.99 21198.17 10797.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6395.66 6697.29 5897.96 10993.17 7397.30 12198.06 7393.92 5293.38 14198.66 1286.83 12099.73 3295.60 6499.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26393.79 22497.95 11087.13 25396.92 15795.89 26682.83 31886.88 29597.18 12173.77 29999.29 11878.44 31993.62 19494.95 274
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 25888.98 26793.98 21197.94 11186.64 26196.51 19695.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
TestCases93.98 21197.94 11186.64 26195.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
thres100view90092.43 17191.58 17994.98 16897.92 11389.37 19497.71 7994.66 31492.20 11393.31 14394.90 23578.06 26899.08 13981.40 29994.08 18696.48 207
thres600view792.49 17091.60 17895.18 15997.91 11489.47 18897.65 8594.66 31492.18 11793.33 14294.91 23478.06 26899.10 13481.61 29694.06 18996.98 191
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6797.48 14789.19 19994.81 11396.71 14288.84 9199.17 12788.91 19998.76 9296.53 204
VDD-MVS93.82 12593.08 13196.02 11897.88 11689.96 17497.72 7795.85 26792.43 10695.86 8998.44 2868.42 32699.39 11096.31 2994.85 17598.71 115
tfpn200view992.38 17491.52 18294.95 17197.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.48 207
thres40092.42 17291.52 18295.12 16397.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.98 191
hse-mvs394.15 11093.52 11896.04 11797.81 11990.22 16597.62 9197.58 13895.19 1496.74 5097.45 10983.67 16299.61 6295.85 5079.73 33098.29 146
test_part192.21 18591.10 19995.51 14697.80 12092.66 8598.02 4797.68 12789.79 18588.80 25396.02 18476.85 27798.18 21290.86 15984.11 30895.69 238
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23698.18 4695.23 1295.87 8897.65 9491.45 5599.70 4395.87 4899.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 18291.74 17593.73 22597.77 12283.69 30592.88 32296.72 22687.91 24093.00 14994.86 23778.51 25899.05 14386.53 24297.45 12698.47 131
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19297.35 17490.61 16594.64 11596.93 13286.41 12699.39 11091.20 15794.71 18198.94 95
UA-Net95.95 6895.53 6797.20 6697.67 12692.98 7897.65 8598.13 5494.81 3196.61 5898.35 3888.87 9099.51 9490.36 16797.35 12999.11 78
IS-MVSNet94.90 9594.52 9696.05 11697.67 12690.56 15698.44 1796.22 25593.21 7793.99 12697.74 8785.55 13898.45 19289.98 17097.86 11399.14 73
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12695.55 25297.71 12688.99 20492.34 16395.82 19489.19 8699.11 13386.14 25097.38 12798.90 99
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14597.96 10095.42 794.86 11297.81 8287.38 11499.82 2596.88 1399.20 7099.29 62
thres20092.23 18391.39 18594.75 18497.61 13089.03 20796.60 19195.09 30092.08 11993.28 14494.00 28178.39 26299.04 14581.26 30394.18 18596.19 212
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17197.61 13087.92 23598.10 4195.80 26992.22 11193.02 14897.45 10984.53 15097.91 25688.24 20797.97 11199.02 83
canonicalmvs96.02 6595.45 7197.75 3797.59 13295.15 2198.28 2697.60 13594.52 4096.27 7396.12 17987.65 10799.18 12696.20 3994.82 17798.91 98
LS3D93.57 13492.61 14796.47 9197.59 13291.61 11797.67 8297.72 12185.17 29190.29 20398.34 4184.60 14899.73 3283.85 28298.27 10398.06 156
alignmvs95.87 7095.23 7897.78 3397.56 13495.19 1897.86 6097.17 18694.39 4396.47 6696.40 16785.89 13399.20 12396.21 3895.11 17398.95 94
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18398.67 597.00 20590.69 15894.24 12297.62 9989.79 8498.81 16093.39 11696.49 15098.92 97
PS-MVSNAJ95.37 7995.33 7695.49 14997.35 13690.66 15595.31 26397.48 14793.85 5496.51 6395.70 20588.65 9499.65 5394.80 8698.27 10396.17 213
ab-mvs93.57 13492.55 14996.64 7897.28 13791.96 11195.40 25897.45 15889.81 18493.22 14796.28 17279.62 24099.46 10190.74 16293.11 19898.50 126
xiu_mvs_v2_base95.32 8195.29 7795.40 15497.22 13890.50 15895.44 25797.44 16293.70 6296.46 6796.18 17588.59 9799.53 8994.79 8897.81 11596.17 213
BH-untuned92.94 15692.62 14693.92 21997.22 13886.16 27396.40 20496.25 25490.06 17789.79 22396.17 17783.19 16998.35 19987.19 23597.27 13297.24 188
baseline192.82 16391.90 16995.55 14497.20 14090.77 15297.19 13394.58 31792.20 11392.36 16196.34 17084.16 15698.21 20789.20 19483.90 31397.68 173
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11198.15 5982.28 19498.92 15191.45 15298.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6595.89 6396.40 9697.16 14292.44 9297.47 10497.77 11494.55 3996.48 6594.51 25391.23 6298.92 15195.65 5898.19 10597.82 168
BH-RMVSNet92.72 16691.97 16794.97 16997.16 14287.99 23496.15 22695.60 27790.62 16491.87 17497.15 12478.41 26198.57 18383.16 28497.60 12098.36 143
MSDG91.42 21290.24 23294.96 17097.15 14488.91 20993.69 30796.32 25085.72 28386.93 29396.47 16280.24 22798.98 14880.57 30595.05 17496.98 191
tttt051792.96 15492.33 15794.87 17497.11 14587.16 25297.97 5392.09 34490.63 16393.88 13097.01 13176.50 27999.06 14290.29 16995.45 16698.38 141
HY-MVS89.66 993.87 12392.95 13596.63 8097.10 14692.49 9195.64 25096.64 23589.05 20293.00 14995.79 19885.77 13699.45 10389.16 19694.35 18397.96 157
thisisatest053093.03 15192.21 16095.49 14997.07 14789.11 20697.49 10392.19 34390.16 17594.09 12496.41 16676.43 28299.05 14390.38 16695.68 16498.31 145
XVG-OURS93.72 12993.35 12694.80 18097.07 14788.61 21594.79 27497.46 15291.97 12393.99 12697.86 7781.74 20598.88 15692.64 12692.67 20496.92 195
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 21398.06 7388.94 20794.50 11796.78 13984.60 14899.27 11991.90 13896.02 15498.68 117
EIA-MVS95.53 7795.47 7095.71 13597.06 15089.63 17997.82 6597.87 10793.57 6493.92 12995.04 23090.61 7498.95 14994.62 9098.68 9498.54 121
XVG-OURS-SEG-HR93.86 12493.55 11594.81 17797.06 15088.53 21995.28 26497.45 15891.68 12894.08 12597.68 9182.41 19298.90 15493.84 10692.47 20696.98 191
1112_ss93.37 13992.42 15596.21 11097.05 15290.99 14296.31 21496.72 22686.87 26789.83 22296.69 14686.51 12499.14 13188.12 20993.67 19298.50 126
Test_1112_low_res92.84 16291.84 17195.85 12697.04 15389.97 17395.53 25496.64 23585.38 28789.65 22895.18 22585.86 13499.10 13487.70 21993.58 19798.49 128
hse-mvs293.45 13792.99 13394.81 17797.02 15488.59 21696.69 17996.47 24495.19 1496.74 5096.16 17883.67 16298.48 19195.85 5079.13 33497.35 186
AUN-MVS91.76 19690.75 21194.81 17797.00 15588.57 21796.65 18396.49 24389.63 18792.15 16796.12 17978.66 25698.50 18790.83 16079.18 33397.36 185
BH-w/o92.14 18891.75 17393.31 24696.99 15685.73 27795.67 24795.69 27388.73 21889.26 24294.82 24082.97 17898.07 22985.26 26596.32 15396.13 217
GeoE93.89 12293.28 12895.72 13496.96 15789.75 17898.24 3296.92 21389.47 19192.12 16997.21 12084.42 15198.39 19787.71 21896.50 14999.01 87
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 25998.02 6783.69 16199.71 3893.18 11998.96 8699.44 47
UGNet94.04 11893.28 12896.31 10396.85 15991.19 13597.88 5997.68 12794.40 4293.00 14996.18 17573.39 30299.61 6291.72 14398.46 9998.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 15092.07 16296.02 11896.84 16090.39 16398.08 4395.85 26786.22 27695.79 9298.46 2667.59 32999.19 12494.92 8094.85 17598.47 131
RPSCF90.75 24490.86 20490.42 31496.84 16076.29 34795.61 25196.34 24983.89 30791.38 18097.87 7576.45 28098.78 16287.16 23792.23 20996.20 211
MVS_Test94.89 9694.62 9195.68 13696.83 16289.55 18496.70 17797.17 18691.17 14895.60 10196.11 18287.87 10498.76 16593.01 12497.17 13698.72 113
LCM-MVSNet-Re92.50 16892.52 15292.44 27196.82 16381.89 31796.92 15793.71 33192.41 10784.30 31594.60 25185.08 14397.03 31191.51 14997.36 12898.40 139
baseline95.58 7595.42 7396.08 11396.78 16490.41 16297.16 13697.45 15893.69 6395.65 10097.85 7887.29 11598.68 17295.66 5597.25 13399.13 74
Fast-Effi-MVS+93.46 13692.75 14195.59 14196.77 16590.03 16796.81 16897.13 18988.19 23091.30 18594.27 26986.21 12998.63 17687.66 22496.46 15298.12 152
QAPM93.45 13792.27 15996.98 7496.77 16592.62 8798.39 2098.12 5684.50 30188.27 26597.77 8582.39 19399.81 2685.40 26398.81 9098.51 125
casdiffmvs95.64 7395.49 6996.08 11396.76 16790.45 16097.29 12297.44 16294.00 5095.46 10697.98 7087.52 11198.73 16795.64 5997.33 13099.08 80
CHOSEN 280x42093.12 14792.72 14394.34 19996.71 16887.27 24690.29 34197.72 12186.61 27191.34 18295.29 22184.29 15598.41 19393.25 11898.94 8797.35 186
CS-MVS96.12 6296.17 5895.97 12196.69 16991.17 13998.49 1497.72 12193.80 5796.17 7697.13 12589.42 8598.60 17997.05 999.03 8398.15 150
Effi-MVS+94.93 9494.45 9996.36 10196.61 17091.47 12396.41 20197.41 16791.02 15394.50 11795.92 18887.53 11098.78 16293.89 10496.81 14098.84 106
thisisatest051592.29 17991.30 19095.25 15796.60 17188.90 21094.36 28792.32 34287.92 23993.43 14094.57 25277.28 27599.00 14689.42 18595.86 15997.86 164
PCF-MVS89.48 1191.56 20489.95 24496.36 10196.60 17192.52 9092.51 32897.26 18079.41 33888.90 24796.56 15884.04 15899.55 8477.01 32897.30 13197.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
MVSTER93.20 14592.81 13894.37 19796.56 17689.59 18297.06 14197.12 19091.24 14591.30 18595.96 18682.02 19998.05 23293.48 11290.55 23895.47 245
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17693.36 6998.65 698.36 1694.12 4889.25 24398.06 6482.20 19699.77 2993.41 11599.32 5399.18 69
FMVSNet391.78 19590.69 21495.03 16596.53 17892.27 9997.02 14596.93 20989.79 18589.35 23794.65 24977.01 27697.47 29486.12 25188.82 25395.35 256
GBi-Net91.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
test191.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
FMVSNet291.31 22090.08 23994.99 16696.51 17992.21 10097.41 10796.95 20788.82 21388.62 25694.75 24373.87 29697.42 29985.20 26688.55 25895.35 256
ACMH+87.92 1490.20 25989.18 26593.25 24896.48 18286.45 26696.99 15096.68 23288.83 21284.79 31296.22 17470.16 31898.53 18584.42 27688.04 26094.77 295
CANet_DTU94.37 10593.65 11396.55 8496.46 18392.13 10496.21 22396.67 23494.38 4493.53 13797.03 13079.34 24399.71 3890.76 16198.45 10097.82 168
mvs_anonymous93.82 12593.74 10994.06 20796.44 18485.41 28295.81 24397.05 19989.85 18290.09 21596.36 16987.44 11397.75 27093.97 10096.69 14599.02 83
diffmvs95.25 8395.13 8195.63 13896.43 18589.34 19595.99 23597.35 17492.83 9596.31 7197.37 11386.44 12598.67 17396.26 3197.19 13598.87 103
ET-MVSNet_ETH3D91.49 20990.11 23895.63 13896.40 18691.57 12195.34 26093.48 33390.60 16775.58 34795.49 21680.08 23096.79 32094.25 9489.76 24798.52 123
TR-MVS91.48 21090.59 21794.16 20496.40 18687.33 24495.67 24795.34 28987.68 25091.46 17995.52 21576.77 27898.35 19982.85 28893.61 19596.79 200
ACMP89.59 1092.62 16792.14 16194.05 20896.40 18688.20 22897.36 11497.25 18291.52 13188.30 26396.64 14978.46 25998.72 17091.86 14191.48 22395.23 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 7995.16 8095.99 12096.34 18991.21 13298.22 3497.57 13991.42 13696.22 7497.32 11486.20 13097.92 25394.07 9899.05 8198.85 104
lupinMVS94.99 9394.56 9396.29 10696.34 18991.21 13295.83 24296.27 25288.93 20896.22 7496.88 13786.20 13098.85 15795.27 6999.05 8198.82 107
ACMM89.79 892.96 15492.50 15394.35 19896.30 19188.71 21397.58 9397.36 17391.40 13990.53 19796.65 14879.77 23698.75 16691.24 15691.64 21995.59 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 17991.94 16893.34 24596.25 19286.97 25696.57 19597.05 19990.67 15989.50 23494.80 24186.59 12197.64 27889.91 17286.11 28095.40 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 12793.43 12394.82 17596.21 19389.99 17097.74 7297.51 14594.85 2691.34 18296.64 14981.32 21098.60 17993.02 12292.23 20995.86 224
plane_prior796.21 19389.98 172
ACMH87.59 1690.53 25189.42 26093.87 22096.21 19387.92 23597.24 12596.94 20888.45 22483.91 32296.27 17371.92 30498.62 17884.43 27589.43 24995.05 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19691.46 12496.33 21297.04 20188.97 20693.56 13496.51 16087.55 10997.89 25789.80 17595.95 15698.44 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 23489.92 24594.19 20296.18 19689.55 18496.31 21497.09 19487.88 24185.67 30395.91 18978.79 25598.57 18381.50 29789.98 24494.44 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 15692.56 14894.10 20596.16 19888.26 22597.65 8597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
LGP-MVS_train94.10 20596.16 19888.26 22597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
TAMVS94.01 11993.46 12195.64 13796.16 19890.45 16096.71 17696.89 21689.27 19793.46 13996.92 13587.29 11597.94 25088.70 20395.74 16198.53 122
plane_prior196.14 201
CLD-MVS92.98 15392.53 15194.32 20096.12 20289.20 20295.28 26497.47 15092.66 10189.90 21995.62 20880.58 22098.40 19492.73 12592.40 20795.38 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 20390.00 16881.32 210
cl-mvsnet291.21 22490.56 22093.14 25396.09 20486.80 25894.41 28596.58 24187.80 24488.58 25893.99 28280.85 21897.62 28189.87 17486.93 27194.99 273
Effi-MVS+-dtu93.08 14893.21 13092.68 26896.02 20583.25 30897.14 13996.72 22693.85 5491.20 19293.44 30083.08 17398.30 20291.69 14695.73 16296.50 206
mvs-test193.63 13193.69 11193.46 24096.02 20584.61 29497.24 12596.72 22693.85 5492.30 16495.76 20083.08 17398.89 15591.69 14696.54 14896.87 197
NP-MVS95.99 20789.81 17795.87 190
ADS-MVSNet289.45 27088.59 27292.03 28095.86 20882.26 31690.93 33794.32 32483.23 31691.28 18891.81 32479.01 25195.99 32879.52 31191.39 22597.84 165
ADS-MVSNet89.89 26588.68 27193.53 23695.86 20884.89 29190.93 33795.07 30183.23 31691.28 18891.81 32479.01 25197.85 25979.52 31191.39 22597.84 165
HQP-NCC95.86 20896.65 18393.55 6590.14 206
ACMP_Plane95.86 20896.65 18393.55 6590.14 206
HQP-MVS93.19 14692.74 14294.54 19195.86 20889.33 19696.65 18397.39 16893.55 6590.14 20695.87 19080.95 21398.50 18792.13 13492.10 21495.78 231
EI-MVSNet93.03 15192.88 13793.48 23895.77 21386.98 25596.44 19797.12 19090.66 16191.30 18597.64 9786.56 12298.05 23289.91 17290.55 23895.41 249
CVMVSNet91.23 22391.75 17389.67 32195.77 21374.69 34996.44 19794.88 30985.81 28192.18 16697.64 9779.07 24695.58 33788.06 21095.86 15998.74 111
RRT_test8_iter0591.19 22890.78 20992.41 27395.76 21583.14 30997.32 11897.46 15291.37 14089.07 24695.57 21070.33 31598.21 20793.56 10986.62 27695.89 223
FIs94.09 11593.70 11095.27 15695.70 21692.03 10798.10 4198.68 793.36 7490.39 20196.70 14487.63 10897.94 25092.25 13090.50 24095.84 227
VPA-MVSNet93.24 14392.48 15495.51 14695.70 21692.39 9397.86 6098.66 992.30 10992.09 17195.37 21980.49 22298.40 19493.95 10185.86 28195.75 235
SCA91.84 19491.18 19793.83 22195.59 21884.95 29094.72 27595.58 27990.82 15492.25 16593.69 29175.80 28598.10 22186.20 24895.98 15598.45 133
cl_fuxian91.38 21490.89 20292.88 26195.58 21986.30 26894.68 27696.84 22288.17 23288.83 25294.23 27285.65 13797.47 29489.36 18684.63 30094.89 282
VPNet92.23 18391.31 18994.99 16695.56 22090.96 14497.22 13197.86 11092.96 9290.96 19396.62 15675.06 29098.20 20991.90 13883.65 31595.80 230
miper_ehance_all_eth91.59 20191.13 19892.97 25895.55 22186.57 26594.47 28196.88 21787.77 24688.88 24994.01 28086.22 12897.54 28789.49 18386.93 27194.79 292
IterMVS-SCA-FT90.31 25589.81 25091.82 28695.52 22284.20 29894.30 29096.15 25890.61 16587.39 28394.27 26975.80 28596.44 32387.34 23186.88 27594.82 287
jason94.84 9894.39 10196.18 11195.52 22290.93 14696.09 22896.52 24289.28 19696.01 8597.32 11484.70 14798.77 16495.15 7298.91 8998.85 104
jason: jason.
FC-MVSNet-test93.94 12193.57 11495.04 16495.48 22491.45 12598.12 4098.71 593.37 7290.23 20496.70 14487.66 10697.85 25991.49 15090.39 24195.83 228
IterMVS90.15 26189.67 25691.61 29395.48 22483.72 30294.33 28996.12 25989.99 17887.31 28694.15 27775.78 28796.27 32686.97 23986.89 27494.83 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet189.88 26688.31 27594.59 18695.41 22691.18 13697.50 9996.93 20986.62 27087.41 28294.51 25365.94 34097.29 30683.04 28687.43 26795.31 258
UniMVSNet (Re)93.31 14192.55 14995.61 14095.39 22793.34 7097.39 11198.71 593.14 8290.10 21494.83 23987.71 10598.03 23691.67 14883.99 30995.46 246
MVS-HIRNet82.47 31881.21 32086.26 33395.38 22869.21 35688.96 34989.49 35466.28 35280.79 33474.08 35668.48 32597.39 30171.93 34495.47 16592.18 339
PatchmatchNetpermissive91.91 19291.35 18693.59 23395.38 22884.11 29993.15 31895.39 28389.54 18892.10 17093.68 29382.82 18298.13 21684.81 26995.32 16898.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet____90.96 23790.32 22692.89 26095.37 23086.21 27194.46 28396.64 23587.82 24288.15 26994.18 27582.98 17797.54 28787.70 21985.59 28394.92 280
cl-mvsnet190.97 23690.33 22592.88 26195.36 23186.19 27294.46 28396.63 23887.82 24288.18 26894.23 27282.99 17697.53 28987.72 21685.57 28494.93 278
miper_enhance_ethall91.54 20791.01 20093.15 25295.35 23287.07 25493.97 29996.90 21486.79 26889.17 24493.43 30286.55 12397.64 27889.97 17186.93 27194.74 296
UniMVSNet_NR-MVSNet93.37 13992.67 14495.47 15295.34 23392.83 8097.17 13598.58 1092.98 9190.13 21095.80 19588.37 9997.85 25991.71 14483.93 31095.73 237
ITE_SJBPF92.43 27295.34 23385.37 28395.92 26391.47 13387.75 27796.39 16871.00 31197.96 24782.36 29389.86 24693.97 316
OpenMVScopyleft89.19 1292.86 16091.68 17696.40 9695.34 23392.73 8398.27 2798.12 5684.86 29685.78 30297.75 8678.89 25499.74 3187.50 22998.65 9596.73 201
eth_miper_zixun_eth91.02 23390.59 21792.34 27595.33 23684.35 29594.10 29696.90 21488.56 22288.84 25194.33 26484.08 15797.60 28388.77 20284.37 30595.06 271
miper_lstm_enhance90.50 25390.06 24291.83 28595.33 23683.74 30193.86 30296.70 23187.56 25387.79 27593.81 28883.45 16796.92 31787.39 23084.62 30194.82 287
131492.81 16492.03 16495.14 16195.33 23689.52 18796.04 23097.44 16287.72 24986.25 29995.33 22083.84 15998.79 16189.26 19097.05 13897.11 189
PAPM91.52 20890.30 22895.20 15895.30 23989.83 17693.38 31496.85 22186.26 27588.59 25795.80 19584.88 14598.15 21575.67 33295.93 15797.63 174
Fast-Effi-MVS+-dtu92.29 17991.99 16693.21 25195.27 24085.52 28097.03 14296.63 23892.09 11889.11 24595.14 22780.33 22698.08 22687.54 22894.74 18096.03 221
Patchmatch-test89.42 27187.99 27893.70 22895.27 24085.11 28688.98 34894.37 32281.11 32887.10 28993.69 29182.28 19497.50 29274.37 33694.76 17898.48 130
PVSNet_082.17 1985.46 30983.64 31290.92 30595.27 24079.49 33790.55 34095.60 27783.76 31083.00 32889.95 33571.09 31097.97 24382.75 29060.79 35695.31 258
IB-MVS87.33 1789.91 26488.28 27694.79 18195.26 24387.70 24195.12 27293.95 33089.35 19587.03 29092.49 31270.74 31399.19 12489.18 19581.37 32697.49 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 11793.31 12796.27 10795.22 24494.59 2898.34 2197.46 15292.93 9391.21 19196.64 14987.23 11798.22 20694.99 7985.80 28295.98 222
MDTV_nov1_ep1390.76 21095.22 24480.33 32993.03 32195.28 29088.14 23592.84 15593.83 28581.34 20998.08 22682.86 28794.34 184
MVS91.71 19790.44 22295.51 14695.20 24691.59 11996.04 23097.45 15873.44 35087.36 28495.60 20985.42 13999.10 13485.97 25597.46 12295.83 228
tfpnnormal89.70 26988.40 27493.60 23295.15 24790.10 16697.56 9598.16 5087.28 26086.16 30094.63 25077.57 27398.05 23274.48 33484.59 30292.65 332
tpmrst91.44 21191.32 18891.79 28895.15 24779.20 34093.42 31395.37 28588.55 22393.49 13893.67 29482.49 19098.27 20390.41 16589.34 25097.90 161
WR-MVS92.34 17591.53 18194.77 18295.13 24990.83 14996.40 20497.98 9891.88 12489.29 24095.54 21482.50 18997.80 26489.79 17685.27 29095.69 238
tpm cat188.36 28487.21 28791.81 28795.13 24980.55 32792.58 32795.70 27274.97 34787.45 28091.96 32278.01 27098.17 21480.39 30788.74 25696.72 202
WR-MVS_H92.00 19091.35 18693.95 21595.09 25189.47 18898.04 4698.68 791.46 13488.34 26194.68 24785.86 13497.56 28585.77 25884.24 30694.82 287
CP-MVSNet91.89 19391.24 19393.82 22295.05 25288.57 21797.82 6598.19 4491.70 12788.21 26795.76 20081.96 20097.52 29187.86 21384.65 29995.37 255
DWT-MVSNet_test90.76 24289.89 24693.38 24395.04 25383.70 30495.85 24194.30 32588.19 23090.46 19992.80 30773.61 30098.50 18788.16 20890.58 23797.95 159
test_040286.46 29884.79 30691.45 29695.02 25485.55 27996.29 21694.89 30880.90 32982.21 32993.97 28368.21 32797.29 30662.98 35488.68 25791.51 343
cascas91.20 22590.08 23994.58 19094.97 25589.16 20593.65 30997.59 13779.90 33689.40 23592.92 30675.36 28998.36 19892.14 13394.75 17996.23 210
PS-CasMVS91.55 20590.84 20793.69 22994.96 25688.28 22497.84 6498.24 3491.46 13488.04 27195.80 19579.67 23897.48 29387.02 23884.54 30395.31 258
DU-MVS92.90 15892.04 16395.49 14994.95 25792.83 8097.16 13698.24 3493.02 8590.13 21095.71 20383.47 16597.85 25991.71 14483.93 31095.78 231
NR-MVSNet92.34 17591.27 19295.53 14594.95 25793.05 7597.39 11198.07 7092.65 10284.46 31395.71 20385.00 14497.77 26989.71 17783.52 31695.78 231
RRT_MVS93.21 14492.32 15895.91 12394.92 25994.15 4396.92 15796.86 22091.42 13691.28 18896.43 16479.66 23998.10 22193.29 11790.06 24395.46 246
tpmvs89.83 26889.15 26691.89 28394.92 25980.30 33093.11 31995.46 28286.28 27488.08 27092.65 30980.44 22398.52 18681.47 29889.92 24596.84 198
PMMVS92.86 16092.34 15694.42 19694.92 25986.73 26094.53 28096.38 24884.78 29894.27 12195.12 22983.13 17298.40 19491.47 15196.49 15098.12 152
tpm289.96 26389.21 26492.23 27794.91 26281.25 32193.78 30494.42 32080.62 33391.56 17793.44 30076.44 28197.94 25085.60 26092.08 21697.49 183
TinyColmap86.82 29685.35 30291.21 30194.91 26282.99 31093.94 30094.02 32983.58 31281.56 33194.68 24762.34 34898.13 21675.78 33087.35 27092.52 334
UniMVSNet_ETH3D91.34 21990.22 23594.68 18594.86 26487.86 23897.23 13097.46 15287.99 23789.90 21996.92 13566.35 33698.23 20590.30 16890.99 23297.96 157
CostFormer91.18 22990.70 21392.62 26994.84 26581.76 31894.09 29794.43 31984.15 30492.72 15693.77 28979.43 24298.20 20990.70 16392.18 21297.90 161
MIMVSNet88.50 28386.76 29193.72 22794.84 26587.77 24091.39 33294.05 32786.41 27387.99 27392.59 31163.27 34595.82 33377.44 32292.84 20197.57 181
FMVSNet587.29 29385.79 29791.78 28994.80 26787.28 24595.49 25595.28 29084.09 30583.85 32391.82 32362.95 34694.17 34678.48 31885.34 28993.91 317
TranMVSNet+NR-MVSNet92.50 16891.63 17795.14 16194.76 26892.07 10597.53 9798.11 5992.90 9489.56 23196.12 17983.16 17097.60 28389.30 18883.20 31995.75 235
XXY-MVS92.16 18691.23 19494.95 17194.75 26990.94 14597.47 10497.43 16589.14 20088.90 24796.43 16479.71 23798.24 20489.56 18287.68 26495.67 240
EPMVS90.70 24789.81 25093.37 24494.73 27084.21 29793.67 30888.02 35589.50 19092.38 16093.49 29877.82 27297.78 26786.03 25492.68 20398.11 155
D2MVS91.30 22190.95 20192.35 27494.71 27185.52 28096.18 22598.21 4088.89 20986.60 29693.82 28779.92 23497.95 24989.29 18990.95 23393.56 320
USDC88.94 27587.83 28092.27 27694.66 27284.96 28993.86 30295.90 26587.34 25883.40 32495.56 21267.43 33098.19 21182.64 29289.67 24893.66 319
MVS_030488.79 27987.57 28192.46 27094.65 27386.15 27496.40 20497.17 18686.44 27288.02 27291.71 32656.68 35397.03 31184.47 27492.58 20594.19 312
GA-MVS91.38 21490.31 22794.59 18694.65 27387.62 24294.34 28896.19 25790.73 15790.35 20293.83 28571.84 30597.96 24787.22 23493.61 19598.21 148
OPM-MVS93.28 14292.76 13994.82 17594.63 27590.77 15296.65 18397.18 18493.72 6091.68 17697.26 11779.33 24498.63 17692.13 13492.28 20895.07 270
test-LLR91.42 21291.19 19692.12 27894.59 27680.66 32494.29 29192.98 33791.11 15090.76 19592.37 31479.02 24998.07 22988.81 20096.74 14297.63 174
test-mter90.19 26089.54 25992.12 27894.59 27680.66 32494.29 29192.98 33787.68 25090.76 19592.37 31467.67 32898.07 22988.81 20096.74 14297.63 174
dp88.90 27788.26 27790.81 30794.58 27876.62 34692.85 32394.93 30785.12 29290.07 21793.07 30475.81 28498.12 21980.53 30687.42 26897.71 171
PEN-MVS91.20 22590.44 22293.48 23894.49 27987.91 23797.76 7098.18 4691.29 14187.78 27695.74 20280.35 22597.33 30485.46 26282.96 32095.19 268
gg-mvs-nofinetune87.82 28985.61 29894.44 19394.46 28089.27 20191.21 33684.61 36080.88 33089.89 22174.98 35471.50 30797.53 28985.75 25997.21 13496.51 205
CR-MVSNet90.82 24189.77 25293.95 21594.45 28187.19 25090.23 34295.68 27586.89 26692.40 15892.36 31780.91 21597.05 31081.09 30493.95 19097.60 179
RPMNet88.98 27487.05 28994.77 18294.45 28187.19 25090.23 34298.03 8477.87 34592.40 15887.55 34780.17 22999.51 9468.84 35093.95 19097.60 179
TESTMET0.1,190.06 26289.42 26091.97 28194.41 28380.62 32694.29 29191.97 34687.28 26090.44 20092.47 31368.79 32397.67 27588.50 20696.60 14797.61 178
TransMVSNet (Re)88.94 27587.56 28293.08 25594.35 28488.45 22297.73 7495.23 29487.47 25484.26 31695.29 22179.86 23597.33 30479.44 31574.44 34393.45 323
MS-PatchMatch90.27 25689.77 25291.78 28994.33 28584.72 29395.55 25296.73 22586.17 27786.36 29895.28 22371.28 30997.80 26484.09 27798.14 10892.81 329
baseline291.63 20090.86 20493.94 21794.33 28586.32 26795.92 23891.64 34889.37 19486.94 29294.69 24681.62 20798.69 17188.64 20494.57 18296.81 199
XVG-ACMP-BASELINE90.93 23890.21 23693.09 25494.31 28785.89 27595.33 26197.26 18091.06 15289.38 23695.44 21868.61 32498.60 17989.46 18491.05 23094.79 292
pm-mvs190.72 24689.65 25893.96 21494.29 28889.63 17997.79 6896.82 22389.07 20186.12 30195.48 21778.61 25797.78 26786.97 23981.67 32494.46 303
v891.29 22290.53 22193.57 23594.15 28988.12 23297.34 11597.06 19888.99 20488.32 26294.26 27183.08 17398.01 23887.62 22683.92 31294.57 301
v1091.04 23290.23 23393.49 23794.12 29088.16 23197.32 11897.08 19588.26 22988.29 26494.22 27482.17 19797.97 24386.45 24584.12 30794.33 307
Patchmtry88.64 28287.25 28592.78 26594.09 29186.64 26189.82 34595.68 27580.81 33287.63 27992.36 31780.91 21597.03 31178.86 31785.12 29394.67 298
PatchT88.87 27887.42 28393.22 25094.08 29285.10 28789.51 34694.64 31681.92 32392.36 16188.15 34480.05 23197.01 31472.43 34293.65 19397.54 182
V4291.58 20390.87 20393.73 22594.05 29388.50 22097.32 11896.97 20688.80 21689.71 22494.33 26482.54 18898.05 23289.01 19785.07 29494.64 300
DTE-MVSNet90.56 25089.75 25493.01 25693.95 29487.25 24797.64 8997.65 13190.74 15687.12 28795.68 20679.97 23397.00 31583.33 28381.66 32594.78 294
tpm90.25 25789.74 25591.76 29193.92 29579.73 33693.98 29893.54 33288.28 22891.99 17293.25 30377.51 27497.44 29787.30 23387.94 26198.12 152
PS-MVSNAJss93.74 12893.51 11994.44 19393.91 29689.28 20097.75 7197.56 14292.50 10589.94 21896.54 15988.65 9498.18 21293.83 10790.90 23495.86 224
v114491.37 21690.60 21693.68 23093.89 29788.23 22796.84 16497.03 20388.37 22689.69 22694.39 26082.04 19897.98 24087.80 21585.37 28794.84 284
v2v48291.59 20190.85 20693.80 22393.87 29888.17 23096.94 15696.88 21789.54 18889.53 23294.90 23581.70 20698.02 23789.25 19185.04 29695.20 267
v14890.99 23490.38 22492.81 26493.83 29985.80 27696.78 17196.68 23289.45 19288.75 25593.93 28482.96 17997.82 26387.83 21483.25 31794.80 290
Baseline_NR-MVSNet91.20 22590.62 21592.95 25993.83 29988.03 23397.01 14995.12 29988.42 22589.70 22595.13 22883.47 16597.44 29789.66 18083.24 31893.37 324
EPNet_dtu91.71 19791.28 19192.99 25793.76 30183.71 30396.69 17995.28 29093.15 8187.02 29195.95 18783.37 16897.38 30279.46 31496.84 13997.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 23090.23 23393.58 23493.70 30287.82 23996.73 17397.07 19687.77 24689.58 22994.32 26680.90 21797.97 24386.52 24385.48 28594.95 274
GG-mvs-BLEND93.62 23193.69 30389.20 20292.39 33083.33 36187.98 27489.84 33771.00 31196.87 31882.08 29595.40 16794.80 290
v14419291.06 23190.28 22993.39 24293.66 30487.23 24996.83 16597.07 19687.43 25589.69 22694.28 26881.48 20898.00 23987.18 23684.92 29894.93 278
v192192090.85 24090.03 24393.29 24793.55 30586.96 25796.74 17297.04 20187.36 25789.52 23394.34 26380.23 22897.97 24386.27 24685.21 29194.94 276
v7n90.76 24289.86 24793.45 24193.54 30687.60 24397.70 8097.37 17188.85 21087.65 27894.08 27981.08 21298.10 22184.68 27183.79 31494.66 299
JIA-IIPM88.26 28687.04 29091.91 28293.52 30781.42 32089.38 34794.38 32180.84 33190.93 19480.74 35279.22 24597.92 25382.76 28991.62 22096.38 209
v124090.70 24789.85 24893.23 24993.51 30886.80 25896.61 18997.02 20487.16 26289.58 22994.31 26779.55 24197.98 24085.52 26185.44 28694.90 281
test_djsdf93.07 14992.76 13994.00 21093.49 30988.70 21498.22 3497.57 13991.42 13690.08 21695.55 21382.85 18197.92 25394.07 9891.58 22195.40 252
SixPastTwentyTwo89.15 27388.54 27390.98 30493.49 30980.28 33196.70 17794.70 31390.78 15584.15 31895.57 21071.78 30697.71 27384.63 27285.07 29494.94 276
mvs_tets92.31 17791.76 17293.94 21793.41 31188.29 22397.63 9097.53 14392.04 12088.76 25496.45 16374.62 29298.09 22593.91 10391.48 22395.45 248
OurMVSNet-221017-090.51 25290.19 23791.44 29793.41 31181.25 32196.98 15296.28 25191.68 12886.55 29796.30 17174.20 29597.98 24088.96 19887.40 26995.09 269
pmmvs490.93 23889.85 24894.17 20393.34 31390.79 15194.60 27796.02 26184.62 29987.45 28095.15 22681.88 20397.45 29687.70 21987.87 26294.27 311
jajsoiax92.42 17291.89 17094.03 20993.33 31488.50 22097.73 7497.53 14392.00 12288.85 25096.50 16175.62 28898.11 22093.88 10591.56 22295.48 243
gm-plane-assit93.22 31578.89 34384.82 29793.52 29798.64 17587.72 216
MVP-Stereo90.74 24590.08 23992.71 26693.19 31688.20 22895.86 24096.27 25286.07 27884.86 31194.76 24277.84 27197.75 27083.88 28198.01 11092.17 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 28188.90 26888.20 32693.15 31774.21 35096.63 18894.22 32685.18 29087.32 28595.97 18576.16 28394.98 34185.27 26486.17 27895.41 249
MDA-MVSNet-bldmvs85.00 31082.95 31491.17 30393.13 31883.33 30794.56 27995.00 30384.57 30065.13 35592.65 30970.45 31495.85 33173.57 33977.49 33694.33 307
K. test v387.64 29186.75 29290.32 31593.02 31979.48 33896.61 18992.08 34590.66 16180.25 33994.09 27867.21 33296.65 32285.96 25680.83 32894.83 285
pmmvs589.86 26788.87 26992.82 26392.86 32086.23 27096.26 21895.39 28384.24 30387.12 28794.51 25374.27 29497.36 30387.61 22787.57 26594.86 283
testgi87.97 28787.21 28790.24 31692.86 32080.76 32396.67 18294.97 30591.74 12685.52 30495.83 19362.66 34794.47 34576.25 32988.36 25995.48 243
EPNet95.20 8694.56 9397.14 6892.80 32292.68 8497.85 6394.87 31296.64 192.46 15797.80 8486.23 12799.65 5393.72 10898.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 32178.71 32378.79 33692.80 32246.50 36594.14 29543.71 36878.61 34180.83 33391.66 32774.94 29196.36 32467.24 35184.45 30493.50 321
EG-PatchMatch MVS87.02 29585.44 29991.76 29192.67 32485.00 28896.08 22996.45 24583.41 31579.52 34193.49 29857.10 35297.72 27279.34 31690.87 23592.56 333
Gipumacopyleft67.86 32565.41 32875.18 33992.66 32573.45 35166.50 35994.52 31853.33 35757.80 35866.07 35830.81 36189.20 35448.15 35878.88 33562.90 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 18691.55 18093.97 21392.58 32689.55 18497.51 9897.42 16689.42 19388.40 26094.84 23880.66 21997.88 25891.87 14091.28 22794.48 302
test0.0.03 189.37 27288.70 27091.41 29892.47 32785.63 27895.22 26992.70 34091.11 15086.91 29493.65 29579.02 24993.19 35178.00 32189.18 25195.41 249
our_test_388.78 28087.98 27991.20 30292.45 32882.53 31293.61 31195.69 27385.77 28284.88 31093.71 29079.99 23296.78 32179.47 31386.24 27794.28 310
ppachtmachnet_test88.35 28587.29 28491.53 29492.45 32883.57 30693.75 30595.97 26284.28 30285.32 30894.18 27579.00 25396.93 31675.71 33184.99 29794.10 313
YYNet185.87 30684.23 31090.78 31092.38 33082.46 31493.17 31695.14 29882.12 32267.69 35092.36 31778.16 26695.50 33977.31 32479.73 33094.39 305
MDA-MVSNet_test_wron85.87 30684.23 31090.80 30992.38 33082.57 31193.17 31695.15 29782.15 32167.65 35192.33 32078.20 26395.51 33877.33 32379.74 32994.31 309
LF4IMVS87.94 28887.25 28589.98 31892.38 33080.05 33494.38 28695.25 29387.59 25284.34 31494.74 24464.31 34397.66 27784.83 26887.45 26692.23 337
lessismore_v090.45 31391.96 33379.09 34287.19 35880.32 33894.39 26066.31 33797.55 28684.00 27976.84 33894.70 297
bset_n11_16_dypcd91.55 20590.59 21794.44 19391.51 33490.25 16492.70 32593.42 33492.27 11090.22 20594.74 24478.42 26097.80 26494.19 9687.86 26395.29 265
pmmvs687.81 29086.19 29492.69 26791.32 33586.30 26897.34 11596.41 24780.59 33484.05 32194.37 26267.37 33197.67 27584.75 27079.51 33294.09 315
Anonymous2023120687.09 29486.14 29589.93 31991.22 33680.35 32896.11 22795.35 28683.57 31384.16 31793.02 30573.54 30195.61 33572.16 34386.14 27993.84 318
KD-MVS_2432*160084.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
miper_refine_blended84.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
DeepMVS_CXcopyleft74.68 34090.84 33964.34 36081.61 36365.34 35367.47 35288.01 34648.60 35780.13 36062.33 35573.68 34579.58 354
Anonymous2024052186.42 29985.44 29989.34 32290.33 34079.79 33596.73 17395.92 26383.71 31183.25 32591.36 32963.92 34496.01 32778.39 32085.36 28892.22 338
test20.0386.14 30385.40 30188.35 32490.12 34180.06 33395.90 23995.20 29588.59 21981.29 33293.62 29671.43 30892.65 35271.26 34781.17 32792.34 336
OpenMVS_ROBcopyleft81.14 2084.42 31482.28 31790.83 30690.06 34284.05 30095.73 24694.04 32873.89 34980.17 34091.53 32859.15 35097.64 27866.92 35289.05 25290.80 347
UnsupCasMVSNet_eth85.99 30484.45 30890.62 31189.97 34382.40 31593.62 31097.37 17189.86 18078.59 34492.37 31465.25 34295.35 34082.27 29470.75 34894.10 313
DSMNet-mixed86.34 30086.12 29687.00 33189.88 34470.43 35394.93 27390.08 35377.97 34485.42 30792.78 30874.44 29393.96 34774.43 33595.14 17096.62 203
new_pmnet82.89 31781.12 32188.18 32789.63 34580.18 33291.77 33192.57 34176.79 34675.56 34888.23 34361.22 34994.48 34471.43 34582.92 32189.87 349
MIMVSNet184.93 31183.05 31390.56 31289.56 34684.84 29295.40 25895.35 28683.91 30680.38 33792.21 32157.23 35193.34 35070.69 34982.75 32393.50 321
DIV-MVS_2432*160085.95 30584.95 30488.96 32389.55 34779.11 34195.13 27196.42 24685.91 28084.07 32090.48 33170.03 31994.82 34280.04 30872.94 34692.94 327
CMPMVSbinary62.92 2185.62 30884.92 30587.74 32889.14 34873.12 35294.17 29496.80 22473.98 34873.65 34994.93 23366.36 33597.61 28283.95 28091.28 22792.48 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_2432*160086.31 30185.15 30389.80 32088.83 34981.74 31993.93 30196.22 25586.67 26985.03 30990.80 33078.09 26794.50 34374.92 33371.86 34793.15 325
Patchmatch-RL test87.38 29286.24 29390.81 30788.74 35078.40 34488.12 35093.17 33687.11 26382.17 33089.29 33981.95 20195.60 33688.64 20477.02 33798.41 138
pmmvs-eth3d86.22 30284.45 30891.53 29488.34 35187.25 24794.47 28195.01 30283.47 31479.51 34289.61 33869.75 32195.71 33483.13 28576.73 33991.64 341
UnsupCasMVSNet_bld82.13 31979.46 32290.14 31788.00 35282.47 31390.89 33996.62 24078.94 34075.61 34684.40 35056.63 35496.31 32577.30 32566.77 35291.63 342
PM-MVS83.48 31581.86 31988.31 32587.83 35377.59 34593.43 31291.75 34786.91 26580.63 33589.91 33644.42 35895.84 33285.17 26776.73 33991.50 344
new-patchmatchnet83.18 31681.87 31887.11 33086.88 35475.99 34893.70 30695.18 29685.02 29477.30 34588.40 34165.99 33993.88 34874.19 33870.18 34991.47 345
ambc86.56 33283.60 35570.00 35585.69 35294.97 30580.60 33688.45 34037.42 36096.84 31982.69 29175.44 34192.86 328
pmmvs379.97 32077.50 32487.39 32982.80 35679.38 33992.70 32590.75 35270.69 35178.66 34387.47 34851.34 35693.40 34973.39 34069.65 35089.38 350
TDRefinement86.53 29784.76 30791.85 28482.23 35784.25 29696.38 20795.35 28684.97 29584.09 31994.94 23265.76 34198.34 20184.60 27374.52 34292.97 326
PMMVS270.19 32466.92 32780.01 33576.35 35865.67 35886.22 35187.58 35764.83 35462.38 35680.29 35326.78 36588.49 35563.79 35354.07 35785.88 351
FPMVS71.27 32369.85 32575.50 33874.64 35959.03 36191.30 33391.50 34958.80 35557.92 35788.28 34229.98 36385.53 35753.43 35682.84 32281.95 353
E-PMN53.28 32952.56 33355.43 34474.43 36047.13 36483.63 35576.30 36442.23 35942.59 36162.22 36028.57 36474.40 36131.53 36131.51 35944.78 358
wuyk23d25.11 33324.57 33726.74 34773.98 36139.89 36857.88 3619.80 36912.27 36410.39 3656.97 3677.03 36936.44 36525.43 36317.39 3633.89 363
test_method66.11 32664.89 32969.79 34172.62 36235.23 36965.19 36092.83 33920.35 36265.20 35488.08 34543.14 35982.70 35873.12 34163.46 35391.45 346
EMVS52.08 33151.31 33454.39 34572.62 36245.39 36683.84 35475.51 36541.13 36040.77 36259.65 36130.08 36273.60 36228.31 36229.90 36144.18 359
LCM-MVSNet72.55 32269.39 32682.03 33470.81 36465.42 35990.12 34494.36 32355.02 35665.88 35381.72 35124.16 36789.96 35374.32 33768.10 35190.71 348
MVEpermissive50.73 2353.25 33048.81 33566.58 34365.34 36557.50 36272.49 35870.94 36640.15 36139.28 36363.51 3596.89 37073.48 36338.29 36042.38 35868.76 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 32759.58 33077.02 33761.24 36666.06 35785.66 35387.93 35678.53 34242.94 36071.04 35725.42 36680.71 35952.60 35730.83 36084.28 352
PMVScopyleft53.92 2258.58 32855.40 33168.12 34251.00 36748.64 36378.86 35687.10 35946.77 35835.84 36474.28 3558.76 36886.34 35642.07 35973.91 34469.38 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 33253.82 33246.29 34633.73 36845.30 36778.32 35767.24 36718.02 36350.93 35987.05 34952.99 35553.11 36470.76 34825.29 36240.46 360
testmvs13.36 33516.33 3384.48 3495.04 3692.26 37193.18 3153.28 3702.70 3658.24 36621.66 3632.29 3722.19 3667.58 3642.96 3649.00 362
test12313.04 33615.66 3395.18 3484.51 3703.45 37092.50 3291.81 3712.50 3667.58 36720.15 3643.67 3712.18 3677.13 3651.07 3659.90 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.24 33430.99 3360.00 3500.00 3710.00 3720.00 36297.63 1330.00 3670.00 36896.88 13784.38 1520.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.39 3389.85 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36888.65 940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.06 33710.74 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36896.69 1460.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
GSMVS98.45 133
sam_mvs182.76 18398.45 133
sam_mvs81.94 202
MTGPAbinary98.08 64
test_post192.81 32416.58 36680.53 22197.68 27486.20 248
test_post17.58 36581.76 20498.08 226
patchmatchnet-post90.45 33282.65 18798.10 221
MTMP97.86 6082.03 362
test9_res94.81 8599.38 4899.45 45
agg_prior293.94 10299.38 4899.50 37
test_prior493.66 5996.42 200
test_prior296.35 20992.80 9796.03 8197.59 10192.01 4195.01 7699.38 48
旧先验295.94 23781.66 32597.34 3498.82 15992.26 128
新几何295.79 244
无先验95.79 24497.87 10783.87 30999.65 5387.68 22298.89 101
原ACMM295.67 247
testdata299.67 4985.96 256
segment_acmp92.89 22
testdata195.26 26893.10 84
plane_prior597.51 14598.60 17993.02 12292.23 20995.86 224
plane_prior496.64 149
plane_prior390.00 16894.46 4191.34 182
plane_prior297.74 7294.85 26
plane_prior89.99 17097.24 12594.06 4992.16 213
n20.00 372
nn0.00 372
door-mid91.06 351
test1197.88 105
door91.13 350
HQP5-MVS89.33 196
BP-MVS92.13 134
HQP4-MVS90.14 20698.50 18795.78 231
HQP3-MVS97.39 16892.10 214
HQP2-MVS80.95 213
MDTV_nov1_ep13_2view70.35 35493.10 32083.88 30893.55 13582.47 19186.25 24798.38 141
ACMMP++_ref90.30 242
ACMMP++91.02 231
Test By Simon88.73 93