This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10697.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10397.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
IU-MVS99.42 795.39 1197.94 10790.40 20798.94 897.41 3599.66 1099.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10397.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10493.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10295.95 10998.33 6091.04 6999.88 495.20 10099.57 2599.60 23
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9895.54 12498.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8198.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
X-MVStestdata91.71 22389.67 28797.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8132.69 42091.70 5299.80 3395.66 8699.40 5599.62 20
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13196.39 9198.18 7391.61 5499.88 495.59 9699.55 2699.57 28
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 16098.08 7795.07 3096.11 10198.59 3290.88 7499.90 296.18 7099.50 3599.58 27
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12896.70 7398.06 8091.35 6199.86 994.83 11199.28 6699.47 49
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7598.87 698.06 8591.17 17596.40 9097.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11198.98 292.22 13797.14 5898.44 4691.17 6799.85 1894.35 12499.46 4199.57 28
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11596.45 8998.30 6591.90 4999.85 1895.61 9399.68 499.54 36
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8498.74 998.06 8590.57 20196.77 7098.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17398.07 8293.54 9196.08 10397.69 11193.86 1699.71 4996.50 5499.39 5799.55 34
test_part299.28 2595.74 898.10 30
CPTT-MVS95.57 8995.19 9296.70 7899.27 2691.48 13098.33 2698.11 7387.79 28995.17 13098.03 8387.09 13199.61 7293.51 13999.42 5099.02 90
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 7295.91 7296.46 9899.24 2890.47 17098.30 2898.57 1889.01 24693.97 15897.57 12492.62 3799.76 4194.66 11799.27 6799.15 78
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8798.25 3598.81 592.99 11594.56 14298.39 5088.96 9499.85 1894.57 12297.63 14199.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18798.06 8590.67 19295.55 12298.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 8495.12 9697.37 5499.19 3194.19 4297.03 17798.08 7788.35 27295.09 13297.65 11689.97 8599.48 10492.08 16898.59 10998.44 152
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16698.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5892.82 12697.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10495.59 1496.61 7997.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
114514_t93.95 13893.06 15196.63 8299.07 3791.61 12397.46 13997.96 10577.99 39493.00 17997.57 12486.14 14599.33 11889.22 22999.15 8198.94 101
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20198.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-296.83 4497.44 1695.01 18199.05 3985.39 30896.98 18598.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
ZD-MVS99.05 3994.59 3298.08 7789.22 23997.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10298.10 7591.50 15998.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
RE-MVS-def96.72 4699.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13598.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9897.98 6398.06 8593.11 11297.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
dcpmvs_296.37 6597.05 2594.31 22398.96 4984.11 32997.56 12497.51 16293.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
9.1496.75 4598.93 5097.73 9998.23 5091.28 17097.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24197.88 11286.98 30896.65 7797.89 9391.99 4899.47 10592.26 15999.46 4199.39 59
save fliter98.91 5294.28 3897.02 17998.02 9795.35 19
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15898.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
PAPM_NR95.01 10294.59 10696.26 11598.89 5490.68 16597.24 16097.73 13391.80 15192.93 18496.62 18289.13 9299.14 14589.21 23097.78 13898.97 97
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15198.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
DP-MVS92.76 18791.51 20996.52 8998.77 5690.99 15197.38 14896.08 28282.38 37089.29 27897.87 9683.77 17599.69 5581.37 34496.69 17098.89 112
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 1994.66 5197.24 5498.41 4992.31 4498.94 17196.61 5199.46 4198.96 98
TEST998.70 5994.19 4296.41 23398.02 9788.17 27696.03 10497.56 12692.74 3399.59 77
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23398.02 9788.58 26396.03 10497.56 12692.73 3499.59 7795.04 10499.37 6199.39 59
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
test_898.67 6194.06 4996.37 24098.01 10088.58 26395.98 10897.55 12892.73 3499.58 80
agg_prior98.67 6193.79 5498.00 10195.68 11899.57 87
test_prior97.23 6398.67 6192.99 7898.00 10199.41 11299.29 66
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14198.04 9294.81 4296.59 8198.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5698.60 6893.59 5897.75 13081.58 37795.75 11597.85 9990.04 8399.67 5986.50 28299.13 8398.69 128
原ACMM196.38 10598.59 6991.09 15097.89 11087.41 30095.22 12997.68 11290.25 8099.54 9287.95 25099.12 8598.49 144
AdaColmapbinary94.34 12293.68 12996.31 10998.59 6991.68 12196.59 22497.81 12689.87 21792.15 19897.06 15383.62 17999.54 9289.34 22498.07 13097.70 199
PLCcopyleft91.00 694.11 13293.43 14296.13 12398.58 7191.15 14996.69 21197.39 18787.29 30391.37 21996.71 16888.39 10499.52 9887.33 26997.13 16197.73 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33796.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4298.46 7394.26 3997.66 14195.52 12590.89 7399.46 10699.25 7199.22 73
MVS_111021_HR96.68 5596.58 5296.99 7598.46 7392.31 9896.20 25498.90 394.30 6895.86 11197.74 10992.33 4299.38 11696.04 7499.42 5099.28 68
OMC-MVS95.09 10194.70 10496.25 11898.46 7391.28 13796.43 23197.57 15492.04 14694.77 13897.96 9087.01 13299.09 15291.31 18596.77 16698.36 159
MG-MVS95.61 8795.38 8796.31 10998.42 7690.53 16896.04 26097.48 16693.47 9595.67 11998.10 7689.17 9199.25 12791.27 18698.77 10199.13 80
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 179
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21897.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
F-COLMAP93.58 15192.98 15395.37 16798.40 7888.98 22297.18 16897.29 19887.75 29290.49 23897.10 15185.21 15499.50 10286.70 27996.72 16997.63 201
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 8193.38 6397.75 13098.09 7892.30 4599.01 9299.16 76
CNLPA94.28 12393.53 13596.52 8998.38 8192.55 9096.59 22496.88 23690.13 21391.91 20597.24 14385.21 15499.09 15287.64 26297.83 13697.92 186
TAPA-MVS90.10 792.30 20291.22 22095.56 15598.33 8389.60 19496.79 20097.65 14381.83 37491.52 21597.23 14487.94 11198.91 17571.31 39698.37 11898.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 20096.72 24594.17 6997.44 4797.66 11592.76 3199.33 11896.86 4497.76 14099.08 87
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19296.92 4299.33 6398.94 101
CHOSEN 1792x268894.15 12893.51 13896.06 12698.27 8689.38 20695.18 30898.48 2185.60 33193.76 16297.11 15083.15 18799.61 7291.33 18498.72 10399.19 74
PVSNet_BlendedMVS94.06 13493.92 12494.47 21298.27 8689.46 20396.73 20598.36 2490.17 21094.36 14795.24 25388.02 10999.58 8093.44 14190.72 27794.36 347
PVSNet_Blended94.87 11094.56 10895.81 14098.27 8689.46 20395.47 29298.36 2488.84 25494.36 14796.09 21188.02 10999.58 8093.44 14198.18 12698.40 155
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
Anonymous2023121190.63 27989.42 29494.27 22698.24 9089.19 21898.05 5797.89 11079.95 38688.25 30694.96 26172.56 33098.13 24889.70 21485.14 33495.49 280
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8298.24 9091.20 14396.89 19197.73 13394.74 4796.49 8598.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
test22298.24 9092.21 10295.33 29797.60 14979.22 39095.25 12797.84 10188.80 9799.15 8198.72 125
HyFIR lowres test93.66 14992.92 15595.87 13698.24 9089.88 18894.58 32298.49 1985.06 34193.78 16195.78 22682.86 19698.67 20291.77 17495.71 18899.07 89
MVS_111021_LR96.24 6996.19 6896.39 10498.23 9491.35 13696.24 25298.79 693.99 7495.80 11397.65 11689.92 8699.24 12895.87 7899.20 7698.58 135
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
EI-MVSNet-UG-set96.34 6696.30 6596.47 9698.20 9690.93 15596.86 19397.72 13594.67 5096.16 10098.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
PVSNet_Blended_VisFu95.27 9594.91 9996.38 10598.20 9690.86 15797.27 15898.25 4590.21 20994.18 15297.27 14187.48 12499.73 4593.53 13897.77 13998.55 136
Anonymous20240521192.07 21290.83 23595.76 14198.19 9888.75 22697.58 12195.00 33286.00 32693.64 16397.45 13066.24 37799.53 9490.68 19792.71 24399.01 93
PatchMatch-RL92.90 18092.02 18995.56 15598.19 9890.80 15995.27 30297.18 20287.96 28191.86 20895.68 23280.44 24198.99 16784.01 31797.54 14396.89 233
testdata95.46 16598.18 10088.90 22497.66 14182.73 36897.03 6398.07 7990.06 8298.85 18089.67 21598.98 9398.64 131
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19997.10 3899.17 7898.90 108
Anonymous2024052991.98 21590.73 24195.73 14698.14 10289.40 20597.99 6297.72 13579.63 38893.54 16697.41 13469.94 35099.56 8891.04 19191.11 27098.22 165
LFMVS93.60 15092.63 16896.52 8998.13 10391.27 13897.94 7393.39 37490.57 20196.29 9498.31 6369.00 35599.16 14094.18 12695.87 18399.12 83
SDMVSNet94.17 12693.61 13195.86 13898.09 10491.37 13597.35 15098.20 5393.18 10891.79 20997.28 13979.13 26498.93 17294.61 12092.84 24097.28 221
sd_testset93.10 16992.45 17895.05 17898.09 10489.21 21596.89 19197.64 14593.18 10891.79 20997.28 13975.35 31198.65 20488.99 23592.84 24097.28 221
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17398.09 10486.63 28496.00 26398.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
DPM-MVS95.69 8394.92 9898.01 2098.08 10795.71 995.27 30297.62 14890.43 20595.55 12297.07 15291.72 5099.50 10289.62 21798.94 9598.82 120
MVSMamba_PlusPlus96.51 5996.48 5696.59 8598.07 10891.97 11198.14 4997.79 12790.43 20597.34 5297.52 12991.29 6399.19 13398.12 1599.64 1498.60 133
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17597.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 168
VNet95.89 7995.45 8297.21 6598.07 10892.94 8097.50 13198.15 6593.87 7897.52 4497.61 12285.29 15399.53 9495.81 8395.27 19699.16 76
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29497.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
mamv494.66 11696.10 6990.37 35298.01 11173.41 40096.82 19897.78 12889.95 21694.52 14397.43 13392.91 2799.09 15298.28 1499.16 8098.60 133
MAR-MVS94.22 12493.46 14096.51 9298.00 11392.19 10597.67 10897.47 16988.13 27993.00 17995.84 21984.86 15999.51 9987.99 24998.17 12797.83 193
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7497.30 15698.06 8593.92 7693.38 17198.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 28589.28 29793.79 25297.95 11587.13 27296.92 18995.89 28982.83 36786.88 33897.18 14673.77 32499.29 12578.44 36493.62 23394.95 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 29088.98 30293.98 23897.94 11686.64 28196.51 22895.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
TestCases93.98 23897.94 11686.64 28195.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
thres100view90092.43 19491.58 20494.98 18497.92 11889.37 20797.71 10494.66 34592.20 13993.31 17394.90 26578.06 28799.08 15581.40 34194.08 22296.48 243
thres600view792.49 19391.60 20395.18 17297.91 11989.47 20197.65 11194.66 34592.18 14393.33 17294.91 26478.06 28799.10 14981.61 33894.06 22696.98 228
API-MVS94.84 11194.49 11395.90 13597.90 12092.00 11097.80 9297.48 16689.19 24094.81 13696.71 16888.84 9699.17 13888.91 23798.76 10296.53 240
VDD-MVS93.82 14493.08 15096.02 13097.88 12189.96 18697.72 10295.85 29092.43 13395.86 11198.44 4668.42 36299.39 11496.31 5794.85 20398.71 127
tfpn200view992.38 19791.52 20794.95 18897.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.48 243
thres40092.42 19591.52 20795.12 17697.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.98 228
h-mvs3394.15 12893.52 13796.04 12897.81 12490.22 17797.62 11997.58 15395.19 2396.74 7197.45 13083.67 17799.61 7295.85 8079.73 37698.29 162
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7395.96 26598.18 6095.23 2295.87 11097.65 11691.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 20691.74 20093.73 25497.77 12683.69 33692.88 37496.72 24587.91 28393.00 17994.86 26778.51 27899.05 16286.53 28097.45 14898.47 147
test_yl94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
DCV-MVSNet94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
WTY-MVS94.71 11594.02 12296.79 7797.71 12992.05 10896.59 22497.35 19390.61 19894.64 14096.93 15786.41 13999.39 11491.20 18894.71 21198.94 101
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7997.65 11198.13 6894.81 4296.61 7998.35 5488.87 9599.51 9990.36 20197.35 15199.11 84
IS-MVSNet94.90 10894.52 11296.05 12797.67 13090.56 16798.44 2196.22 27693.21 10393.99 15697.74 10985.55 15198.45 22189.98 20697.86 13599.14 79
test250691.60 22990.78 23694.04 23597.66 13283.81 33298.27 3275.53 42193.43 9695.23 12898.21 7067.21 36899.07 15993.01 15498.49 11299.25 71
ECVR-MVScopyleft93.19 16592.73 16594.57 20997.66 13285.41 30698.21 4288.23 40693.43 9694.70 13998.21 7072.57 32999.07 15993.05 15198.49 11299.25 71
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13490.72 16398.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 163
PAPR94.18 12593.42 14496.48 9597.64 13491.42 13495.55 28797.71 13988.99 24792.34 19495.82 22189.19 9099.11 14886.14 28897.38 14998.90 108
balanced_conf0396.84 4396.89 3496.68 7997.63 13692.22 10198.17 4897.82 12594.44 6198.23 2897.36 13690.97 7199.22 13097.74 1999.66 1098.61 132
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17997.96 10595.42 1894.86 13597.81 10487.38 12799.82 2896.88 4399.20 7699.29 66
thres20092.23 20791.39 21094.75 20197.61 13889.03 22196.60 22395.09 32992.08 14593.28 17494.00 31678.39 28199.04 16581.26 34794.18 21896.19 250
Vis-MVSNet (Re-imp)94.15 12893.88 12594.95 18897.61 13887.92 25298.10 5195.80 29392.22 13793.02 17897.45 13084.53 16397.91 29288.24 24597.97 13299.02 90
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15494.41 6396.17 9996.16 20487.54 12099.17 13896.19 6894.73 21098.91 105
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
LS3D93.57 15292.61 17096.47 9697.59 14091.61 12397.67 10897.72 13585.17 33990.29 24298.34 5784.60 16199.73 4583.85 32298.27 12298.06 180
test111193.19 16592.82 15994.30 22497.58 14484.56 32398.21 4289.02 40493.53 9294.58 14198.21 7072.69 32899.05 16293.06 15098.48 11499.28 68
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8197.17 20494.39 6596.47 8796.40 19285.89 14699.20 13296.21 6595.11 20198.95 100
EPP-MVSNet95.22 9895.04 9795.76 14197.49 14689.56 19698.67 1097.00 22390.69 19094.24 15097.62 12189.79 8798.81 18493.39 14496.49 17498.92 104
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9597.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
test_vis1_n_192094.17 12694.58 10792.91 28797.42 14882.02 35497.83 8797.85 11994.68 4998.10 3098.49 4070.15 34899.32 12097.91 1798.82 9897.40 215
PS-MVSNAJ95.37 9295.33 8995.49 16197.35 14990.66 16695.31 29997.48 16693.85 7996.51 8495.70 23188.65 10099.65 6194.80 11498.27 12296.17 251
ab-mvs93.57 15292.55 17296.64 8097.28 15091.96 11395.40 29497.45 17689.81 22293.22 17796.28 19779.62 25899.46 10690.74 19593.11 23798.50 142
xiu_mvs_v2_base95.32 9495.29 9095.40 16697.22 15190.50 16995.44 29397.44 18093.70 8496.46 8896.18 20188.59 10399.53 9494.79 11697.81 13796.17 251
BH-untuned92.94 17892.62 16993.92 24797.22 15186.16 29796.40 23796.25 27590.06 21489.79 26196.17 20383.19 18598.35 23187.19 27297.27 15697.24 223
baseline192.82 18591.90 19395.55 15797.20 15390.77 16197.19 16794.58 34892.20 13992.36 19196.34 19584.16 17098.21 24189.20 23183.90 35697.68 200
Vis-MVSNetpermissive95.23 9794.81 10096.51 9297.18 15491.58 12698.26 3498.12 7094.38 6694.90 13498.15 7582.28 21098.92 17391.45 18398.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 7395.89 7396.40 10297.16 15592.44 9397.47 13797.77 12994.55 5596.48 8694.51 28591.23 6698.92 17395.65 8998.19 12597.82 194
BH-RMVSNet92.72 18991.97 19194.97 18697.16 15587.99 25096.15 25695.60 30490.62 19791.87 20797.15 14978.41 28098.57 21383.16 32497.60 14298.36 159
MSDG91.42 24190.24 26194.96 18797.15 15788.91 22393.69 35796.32 26985.72 33086.93 33696.47 18880.24 24598.98 16880.57 35095.05 20296.98 228
tttt051792.96 17692.33 18194.87 19197.11 15887.16 27197.97 6992.09 38890.63 19693.88 16097.01 15676.50 29999.06 16190.29 20395.45 19398.38 157
HY-MVS89.66 993.87 14292.95 15496.63 8297.10 15992.49 9295.64 28596.64 25389.05 24593.00 17995.79 22585.77 14999.45 10889.16 23394.35 21397.96 184
thisisatest053093.03 17392.21 18495.49 16197.07 16089.11 22097.49 13692.19 38790.16 21194.09 15496.41 19176.43 30299.05 16290.38 20095.68 18998.31 161
XVG-OURS93.72 14893.35 14594.80 19797.07 16088.61 22994.79 31797.46 17191.97 14993.99 15697.86 9881.74 22198.88 17792.64 15892.67 24596.92 232
sss94.51 11893.80 12696.64 8097.07 16091.97 11196.32 24498.06 8588.94 25094.50 14496.78 16584.60 16199.27 12691.90 16996.02 17998.68 129
EIA-MVS95.53 9095.47 8195.71 14897.06 16389.63 19297.82 8997.87 11493.57 8793.92 15995.04 25990.61 7798.95 16994.62 11998.68 10498.54 137
XVG-OURS-SEG-HR93.86 14393.55 13394.81 19497.06 16388.53 23495.28 30097.45 17691.68 15594.08 15597.68 11282.41 20898.90 17693.84 13592.47 24696.98 228
1112_ss93.37 15892.42 17996.21 11997.05 16590.99 15196.31 24596.72 24586.87 31189.83 26096.69 17286.51 13799.14 14588.12 24693.67 23198.50 142
Test_1112_low_res92.84 18491.84 19595.85 13997.04 16689.97 18595.53 28996.64 25385.38 33489.65 26695.18 25485.86 14799.10 14987.70 25793.58 23698.49 144
mvsmamba94.57 11794.14 12195.87 13697.03 16789.93 18797.84 8595.85 29091.34 16694.79 13796.80 16480.67 23698.81 18494.85 10998.12 12998.85 116
hse-mvs293.45 15692.99 15294.81 19497.02 16888.59 23096.69 21196.47 26395.19 2396.74 7196.16 20483.67 17798.48 22095.85 8079.13 38097.35 218
EC-MVSNet96.42 6296.47 5796.26 11597.01 16991.52 12898.89 597.75 13094.42 6296.64 7897.68 11289.32 8998.60 20997.45 3299.11 8698.67 130
AUN-MVS91.76 22290.75 23994.81 19497.00 17088.57 23196.65 21596.49 26289.63 22592.15 19896.12 20678.66 27698.50 21790.83 19279.18 37997.36 216
BH-w/o92.14 21191.75 19893.31 27396.99 17185.73 30195.67 28095.69 29988.73 26189.26 28094.82 27082.97 19498.07 26285.26 30396.32 17796.13 255
GeoE93.89 14193.28 14795.72 14796.96 17289.75 19198.24 3896.92 23289.47 23192.12 20097.21 14584.42 16498.39 22887.71 25696.50 17399.01 93
3Dnovator+91.43 495.40 9194.48 11498.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29798.02 8583.69 17699.71 4993.18 14698.96 9499.44 52
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12194.39 35496.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9296.87 17491.49 12997.50 13197.56 15893.99 7495.13 13197.92 9287.89 11298.78 18795.97 7697.33 15299.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet94.04 13693.28 14796.31 10996.85 17691.19 14497.88 8097.68 14094.40 6493.00 17996.18 20173.39 32799.61 7291.72 17598.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 17292.07 18696.02 13096.84 17790.39 17498.08 5395.85 29086.22 32395.79 11498.46 4467.59 36599.19 13394.92 10894.85 20398.47 147
RPSCF90.75 27390.86 23190.42 35196.84 17776.29 39495.61 28696.34 26883.89 35591.38 21897.87 9676.45 30098.78 18787.16 27492.23 24996.20 249
FE-MVS92.05 21391.05 22595.08 17796.83 17987.93 25193.91 35095.70 29786.30 32094.15 15394.97 26076.59 29899.21 13184.10 31596.86 16398.09 178
MVS_Test94.89 10994.62 10595.68 14996.83 17989.55 19796.70 20997.17 20491.17 17595.60 12196.11 21087.87 11398.76 19193.01 15497.17 16098.72 125
reproduce_monomvs91.30 25091.10 22491.92 31496.82 18182.48 34897.01 18297.49 16594.64 5388.35 30095.27 25070.53 34398.10 25395.20 10084.60 34495.19 307
LCM-MVSNet-Re92.50 19192.52 17592.44 30096.82 18181.89 35596.92 18993.71 37192.41 13484.30 35894.60 28085.08 15697.03 35091.51 18097.36 15098.40 155
ETVMVS90.52 28289.14 30194.67 20396.81 18387.85 25695.91 26893.97 36589.71 22492.34 19492.48 35565.41 38297.96 28181.37 34494.27 21698.21 166
GDP-MVS95.62 8695.13 9497.09 7196.79 18493.26 7197.89 7997.83 12493.58 8696.80 6797.82 10383.06 19199.16 14094.40 12397.95 13498.87 114
test_cas_vis1_n_192094.48 12094.55 11194.28 22596.78 18586.45 28997.63 11797.64 14593.32 10197.68 4298.36 5373.75 32599.08 15596.73 4799.05 8997.31 220
baseline95.58 8895.42 8596.08 12496.78 18590.41 17397.16 17097.45 17693.69 8595.65 12097.85 9987.29 12898.68 20195.66 8697.25 15799.13 80
FA-MVS(test-final)93.52 15492.92 15595.31 16896.77 18788.54 23394.82 31696.21 27889.61 22694.20 15195.25 25283.24 18499.14 14590.01 20596.16 17898.25 163
Fast-Effi-MVS+93.46 15592.75 16395.59 15496.77 18790.03 17996.81 19997.13 20688.19 27591.30 22394.27 30286.21 14298.63 20687.66 26196.46 17698.12 174
QAPM93.45 15692.27 18296.98 7696.77 18792.62 8798.39 2498.12 7084.50 34988.27 30597.77 10782.39 20999.81 3085.40 30198.81 9998.51 141
casdiffmvspermissive95.64 8595.49 7996.08 12496.76 19090.45 17197.29 15797.44 18094.00 7395.46 12697.98 8887.52 12398.73 19595.64 9097.33 15299.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42093.12 16892.72 16694.34 22096.71 19187.27 26590.29 39497.72 13586.61 31591.34 22095.29 24784.29 16898.41 22393.25 14598.94 9597.35 218
BP-MVS195.89 7995.49 7997.08 7296.67 19293.20 7298.08 5396.32 26994.56 5496.32 9297.84 10184.07 17299.15 14296.75 4698.78 10098.90 108
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13296.67 19290.25 17697.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 172
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19491.73 11697.98 6398.30 3296.19 596.10 10298.95 1189.42 8899.76 4198.90 1099.08 8797.43 213
Effi-MVS+94.93 10794.45 11596.36 10796.61 19591.47 13196.41 23397.41 18591.02 18194.50 14495.92 21587.53 12198.78 18793.89 13396.81 16598.84 119
thisisatest051592.29 20391.30 21595.25 17096.60 19688.90 22494.36 33292.32 38687.92 28293.43 17094.57 28177.28 29499.00 16689.42 22295.86 18497.86 190
PCF-MVS89.48 1191.56 23389.95 27596.36 10796.60 19692.52 9192.51 37997.26 19979.41 38988.90 28696.56 18484.04 17399.55 9077.01 37397.30 15597.01 227
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base_debi95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
MVSTER93.20 16492.81 16094.37 21796.56 20189.59 19597.06 17697.12 20791.24 17191.30 22395.96 21382.02 21598.05 26593.48 14090.55 27995.47 283
3Dnovator91.36 595.19 10094.44 11697.44 5296.56 20193.36 6598.65 1198.36 2494.12 7089.25 28198.06 8082.20 21299.77 4093.41 14399.32 6499.18 75
test_fmvs193.21 16393.53 13592.25 30896.55 20381.20 36197.40 14596.96 22590.68 19196.80 6798.04 8269.25 35498.40 22497.58 2798.50 11197.16 225
testing9191.90 21891.02 22694.53 21196.54 20486.55 28795.86 27095.64 30391.77 15291.89 20693.47 33869.94 35098.86 17890.23 20493.86 22998.18 168
testing22290.31 28688.96 30394.35 21896.54 20487.29 26395.50 29093.84 36990.97 18291.75 21192.96 34662.18 39298.00 27282.86 32794.08 22297.76 196
testing1191.68 22690.75 23994.47 21296.53 20686.56 28695.76 27794.51 35191.10 17991.24 22893.59 33368.59 35998.86 17891.10 18994.29 21598.00 183
FMVSNet391.78 22190.69 24495.03 18096.53 20692.27 10097.02 17996.93 22889.79 22389.35 27594.65 27877.01 29597.47 33186.12 28988.82 29495.35 293
UBG91.55 23490.76 23793.94 24496.52 20885.06 31595.22 30594.54 34990.47 20491.98 20492.71 34972.02 33298.74 19488.10 24795.26 19798.01 182
GBi-Net91.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
test191.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
FMVSNet291.31 24990.08 26894.99 18296.51 20992.21 10297.41 14196.95 22688.82 25688.62 29494.75 27373.87 32197.42 33685.20 30488.55 29995.35 293
WBMVS90.69 27889.99 27492.81 29296.48 21285.00 31695.21 30796.30 27189.46 23289.04 28594.05 31472.45 33197.82 29989.46 22087.41 31195.61 278
testing9991.62 22890.72 24294.32 22196.48 21286.11 29895.81 27394.76 34391.55 15791.75 21193.44 33968.55 36098.82 18290.43 19893.69 23098.04 181
ACMH+87.92 1490.20 29289.18 29993.25 27596.48 21286.45 28996.99 18496.68 25088.83 25584.79 35596.22 20070.16 34798.53 21584.42 31388.04 30294.77 335
CANet_DTU94.37 12193.65 13096.55 8796.46 21592.13 10696.21 25396.67 25294.38 6693.53 16797.03 15579.34 26199.71 4990.76 19498.45 11697.82 194
mvs_anonymous93.82 14493.74 12794.06 23396.44 21685.41 30695.81 27397.05 21789.85 22090.09 25396.36 19487.44 12597.75 30793.97 12996.69 17099.02 90
diffmvspermissive95.25 9695.13 9495.63 15196.43 21789.34 20895.99 26497.35 19392.83 12596.31 9397.37 13586.44 13898.67 20296.26 5897.19 15998.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D91.49 23890.11 26795.63 15196.40 21891.57 12795.34 29693.48 37390.60 20075.58 39695.49 24280.08 24896.79 35994.25 12589.76 28798.52 139
RRT-MVS94.51 11894.35 11894.98 18496.40 21886.55 28797.56 12497.41 18593.19 10694.93 13397.04 15479.12 26599.30 12496.19 6897.32 15499.09 86
TR-MVS91.48 23990.59 24794.16 22996.40 21887.33 26295.67 28095.34 31887.68 29491.46 21795.52 24176.77 29798.35 23182.85 32993.61 23496.79 236
ACMP89.59 1092.62 19092.14 18594.05 23496.40 21888.20 24497.36 14997.25 20191.52 15888.30 30396.64 17578.46 27998.72 19891.86 17291.48 26395.23 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 9295.16 9395.99 13396.34 22291.21 14198.22 4097.57 15491.42 16396.22 9797.32 13786.20 14397.92 28994.07 12799.05 8998.85 116
lupinMVS94.99 10694.56 10896.29 11396.34 22291.21 14195.83 27296.27 27388.93 25196.22 9796.88 16286.20 14398.85 18095.27 9999.05 8998.82 120
ACMM89.79 892.96 17692.50 17694.35 21896.30 22488.71 22797.58 12197.36 19291.40 16590.53 23796.65 17479.77 25498.75 19291.24 18791.64 25995.59 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 20391.94 19293.34 27296.25 22586.97 27596.57 22797.05 21790.67 19289.50 27294.80 27186.59 13497.64 31589.91 20886.11 32295.40 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 14693.43 14294.82 19296.21 22689.99 18297.74 9797.51 16294.85 3791.34 22096.64 17581.32 22698.60 20993.02 15292.23 24995.86 261
plane_prior796.21 22689.98 184
ACMH87.59 1690.53 28189.42 29493.87 24896.21 22687.92 25297.24 16096.94 22788.45 26983.91 36696.27 19871.92 33398.62 20884.43 31289.43 29095.05 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 13193.54 13495.93 13496.18 22991.46 13296.33 24397.04 21988.97 24993.56 16496.51 18687.55 11997.89 29389.80 21195.95 18198.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 26489.92 27794.19 22796.18 22989.55 19796.31 24597.09 21187.88 28485.67 34695.91 21678.79 27598.57 21381.50 33989.98 28494.44 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 17892.56 17194.10 23196.16 23188.26 24197.65 11197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
LGP-MVS_train94.10 23196.16 23188.26 24197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
TAMVS94.01 13793.46 14095.64 15096.16 23190.45 17196.71 20896.89 23589.27 23893.46 16996.92 16087.29 12897.94 28688.70 24195.74 18698.53 138
testing387.67 32786.88 32890.05 35696.14 23480.71 36497.10 17492.85 38090.15 21287.54 31994.55 28255.70 40194.10 39273.77 38894.10 22195.35 293
plane_prior196.14 234
CLD-MVS92.98 17592.53 17494.32 22196.12 23689.20 21695.28 30097.47 16992.66 12989.90 25795.62 23580.58 23898.40 22492.73 15792.40 24795.38 291
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 23790.00 18081.32 226
cl2291.21 25490.56 24993.14 28096.09 23886.80 27794.41 33096.58 25987.80 28888.58 29693.99 31780.85 23597.62 31889.87 21086.93 31494.99 313
test_fmvs1_n92.73 18892.88 15792.29 30696.08 23981.05 36297.98 6397.08 21290.72 18996.79 6998.18 7363.07 38798.45 22197.62 2698.42 11797.36 216
Effi-MVS+-dtu93.08 17093.21 14992.68 29896.02 24083.25 33997.14 17296.72 24593.85 7991.20 23093.44 33983.08 18998.30 23591.69 17895.73 18796.50 242
NP-MVS95.99 24189.81 19095.87 217
UWE-MVS89.91 29789.48 29391.21 33595.88 24278.23 39094.91 31590.26 40089.11 24292.35 19394.52 28468.76 35797.96 28183.95 31995.59 19197.42 214
ADS-MVSNet289.45 30788.59 30992.03 31295.86 24382.26 35290.93 39094.32 35983.23 36591.28 22691.81 36979.01 27195.99 36879.52 35691.39 26597.84 191
ADS-MVSNet89.89 29988.68 30893.53 26595.86 24384.89 32090.93 39095.07 33083.23 36591.28 22691.81 36979.01 27197.85 29579.52 35691.39 26597.84 191
HQP-NCC95.86 24396.65 21593.55 8890.14 244
ACMP_Plane95.86 24396.65 21593.55 8890.14 244
HQP-MVS93.19 16592.74 16494.54 21095.86 24389.33 20996.65 21597.39 18793.55 8890.14 24495.87 21780.95 23098.50 21792.13 16592.10 25495.78 269
mmtdpeth89.70 30588.96 30391.90 31695.84 24884.42 32497.46 13995.53 31090.27 20894.46 14690.50 37769.74 35398.95 16997.39 3669.48 40292.34 379
EI-MVSNet93.03 17392.88 15793.48 26795.77 24986.98 27496.44 22997.12 20790.66 19491.30 22397.64 11986.56 13598.05 26589.91 20890.55 27995.41 286
CVMVSNet91.23 25391.75 19889.67 36095.77 24974.69 39696.44 22994.88 33985.81 32892.18 19797.64 11979.07 26695.58 37988.06 24895.86 18498.74 124
FIs94.09 13393.70 12895.27 16995.70 25192.03 10998.10 5198.68 1393.36 10090.39 24096.70 17087.63 11897.94 28692.25 16190.50 28195.84 264
VPA-MVSNet93.24 16292.48 17795.51 15995.70 25192.39 9497.86 8198.66 1692.30 13692.09 20295.37 24580.49 24098.40 22493.95 13085.86 32395.75 273
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25392.21 10297.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
tt080591.09 25990.07 27194.16 22995.61 25488.31 23897.56 12496.51 26189.56 22789.17 28295.64 23467.08 37298.38 22991.07 19088.44 30095.80 267
SCA91.84 22091.18 22293.83 24995.59 25584.95 31994.72 31895.58 30690.82 18492.25 19693.69 32775.80 30698.10 25386.20 28695.98 18098.45 149
c3_l91.38 24390.89 22992.88 28995.58 25686.30 29294.68 31996.84 24088.17 27688.83 29194.23 30585.65 15097.47 33189.36 22384.63 34294.89 322
VPNet92.23 20791.31 21494.99 18295.56 25790.96 15397.22 16597.86 11892.96 12190.96 23196.62 18275.06 31298.20 24291.90 16983.65 35895.80 267
miper_ehance_all_eth91.59 23091.13 22392.97 28595.55 25886.57 28594.47 32696.88 23687.77 29088.88 28894.01 31586.22 14197.54 32489.49 21986.93 31494.79 332
IterMVS-SCA-FT90.31 28689.81 28191.82 32095.52 25984.20 32894.30 33696.15 28090.61 19887.39 32394.27 30275.80 30696.44 36387.34 26886.88 31894.82 327
jason94.84 11194.39 11796.18 12195.52 25990.93 15596.09 25896.52 26089.28 23796.01 10797.32 13784.70 16098.77 19095.15 10398.91 9798.85 116
jason: jason.
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12295.48 26190.69 16497.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 168
FC-MVSNet-test93.94 13993.57 13295.04 17995.48 26191.45 13398.12 5098.71 1193.37 9890.23 24396.70 17087.66 11597.85 29591.49 18190.39 28295.83 265
IterMVS90.15 29489.67 28791.61 32795.48 26183.72 33494.33 33496.12 28189.99 21587.31 32694.15 31075.78 30896.27 36686.97 27786.89 31794.83 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re90.21 29189.50 29292.35 30395.47 26485.15 31295.70 27994.37 35690.94 18388.42 29893.57 33474.63 31695.67 37682.80 33089.57 28996.22 248
FMVSNet189.88 30088.31 31294.59 20495.41 26591.18 14597.50 13196.93 22886.62 31487.41 32294.51 28565.94 38097.29 34383.04 32687.43 30995.31 296
UniMVSNet (Re)93.31 16092.55 17295.61 15395.39 26693.34 6697.39 14698.71 1193.14 11190.10 25294.83 26987.71 11498.03 26991.67 17983.99 35295.46 284
MVS-HIRNet82.47 36281.21 36586.26 37995.38 26769.21 40688.96 40389.49 40266.28 40880.79 38074.08 41368.48 36197.39 33871.93 39495.47 19292.18 384
PatchmatchNetpermissive91.91 21791.35 21193.59 26295.38 26784.11 32993.15 36995.39 31289.54 22892.10 20193.68 32982.82 19898.13 24884.81 30795.32 19598.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 26790.32 25592.89 28895.37 26986.21 29594.46 32896.64 25387.82 28688.15 30994.18 30882.98 19397.54 32487.70 25785.59 32594.92 320
DIV-MVS_self_test90.97 26690.33 25492.88 28995.36 27086.19 29694.46 32896.63 25687.82 28688.18 30894.23 30582.99 19297.53 32687.72 25485.57 32694.93 318
miper_enhance_ethall91.54 23691.01 22793.15 27995.35 27187.07 27393.97 34596.90 23386.79 31289.17 28293.43 34286.55 13697.64 31589.97 20786.93 31494.74 336
UniMVSNet_NR-MVSNet93.37 15892.67 16795.47 16495.34 27292.83 8197.17 16998.58 1792.98 12090.13 24895.80 22288.37 10597.85 29591.71 17683.93 35395.73 275
ITE_SJBPF92.43 30195.34 27285.37 30995.92 28591.47 16087.75 31696.39 19371.00 34097.96 28182.36 33589.86 28693.97 356
OpenMVScopyleft89.19 1292.86 18291.68 20196.40 10295.34 27292.73 8598.27 3298.12 7084.86 34485.78 34597.75 10878.89 27499.74 4487.50 26698.65 10596.73 237
eth_miper_zixun_eth91.02 26390.59 24792.34 30595.33 27584.35 32594.10 34296.90 23388.56 26588.84 29094.33 29784.08 17197.60 32088.77 24084.37 34995.06 311
miper_lstm_enhance90.50 28490.06 27291.83 31995.33 27583.74 33393.86 35196.70 24987.56 29787.79 31493.81 32383.45 18296.92 35587.39 26784.62 34394.82 327
131492.81 18692.03 18895.14 17495.33 27589.52 20096.04 26097.44 18087.72 29386.25 34295.33 24683.84 17498.79 18689.26 22797.05 16297.11 226
PAPM91.52 23790.30 25795.20 17195.30 27889.83 18993.38 36596.85 23986.26 32288.59 29595.80 22284.88 15898.15 24775.67 37895.93 18297.63 201
Fast-Effi-MVS+-dtu92.29 20391.99 19093.21 27895.27 27985.52 30497.03 17796.63 25692.09 14489.11 28495.14 25680.33 24498.08 25887.54 26594.74 20996.03 259
Patchmatch-test89.42 30887.99 31593.70 25795.27 27985.11 31388.98 40294.37 35681.11 37887.10 33093.69 32782.28 21097.50 32974.37 38494.76 20798.48 146
PVSNet_082.17 1985.46 35183.64 35490.92 34095.27 27979.49 38290.55 39395.60 30483.76 35983.00 37389.95 38371.09 33997.97 27782.75 33260.79 41395.31 296
IB-MVS87.33 1789.91 29788.28 31394.79 19895.26 28287.70 25995.12 31093.95 36689.35 23687.03 33192.49 35470.74 34299.19 13389.18 23281.37 37097.49 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 13593.31 14696.27 11495.22 28394.59 3298.34 2597.46 17192.93 12291.21 22996.64 17587.23 13098.22 24094.99 10785.80 32495.98 260
MDTV_nov1_ep1390.76 23795.22 28380.33 37193.03 37295.28 31988.14 27892.84 18593.83 32081.34 22598.08 25882.86 32794.34 214
MVS91.71 22390.44 25195.51 15995.20 28591.59 12596.04 26097.45 17673.44 40487.36 32495.60 23685.42 15299.10 14985.97 29397.46 14495.83 265
Syy-MVS87.13 33287.02 32787.47 37395.16 28673.21 40195.00 31293.93 36788.55 26686.96 33391.99 36575.90 30494.00 39361.59 40794.11 21995.20 304
myMVS_eth3d87.18 33186.38 33189.58 36195.16 28679.53 38095.00 31293.93 36788.55 26686.96 33391.99 36556.23 40094.00 39375.47 38094.11 21995.20 304
tfpnnormal89.70 30588.40 31193.60 26195.15 28890.10 17897.56 12498.16 6487.28 30486.16 34394.63 27977.57 29298.05 26574.48 38284.59 34592.65 373
tpmrst91.44 24091.32 21391.79 32295.15 28879.20 38593.42 36495.37 31488.55 26693.49 16893.67 33082.49 20698.27 23790.41 19989.34 29197.90 187
WR-MVS92.34 19991.53 20694.77 19995.13 29090.83 15896.40 23797.98 10391.88 15089.29 27895.54 24082.50 20597.80 30189.79 21285.27 33295.69 276
tpm cat188.36 32087.21 32391.81 32195.13 29080.55 36892.58 37895.70 29774.97 40087.45 32091.96 36778.01 28998.17 24680.39 35288.74 29796.72 238
WR-MVS_H92.00 21491.35 21193.95 24295.09 29289.47 20198.04 5898.68 1391.46 16188.34 30194.68 27685.86 14797.56 32285.77 29684.24 35094.82 327
CP-MVSNet91.89 21991.24 21893.82 25095.05 29388.57 23197.82 8998.19 5891.70 15488.21 30795.76 22781.96 21697.52 32887.86 25184.65 34195.37 292
test_040286.46 33884.79 34791.45 33095.02 29485.55 30396.29 24794.89 33880.90 37982.21 37593.97 31868.21 36397.29 34362.98 40588.68 29891.51 390
cascas91.20 25590.08 26894.58 20894.97 29589.16 21993.65 35997.59 15279.90 38789.40 27392.92 34775.36 31098.36 23092.14 16494.75 20896.23 247
PS-CasMVS91.55 23490.84 23493.69 25894.96 29688.28 24097.84 8598.24 4791.46 16188.04 31195.80 22279.67 25697.48 33087.02 27684.54 34795.31 296
DU-MVS92.90 18092.04 18795.49 16194.95 29792.83 8197.16 17098.24 4793.02 11490.13 24895.71 22983.47 18097.85 29591.71 17683.93 35395.78 269
NR-MVSNet92.34 19991.27 21795.53 15894.95 29793.05 7697.39 14698.07 8292.65 13084.46 35695.71 22985.00 15797.77 30589.71 21383.52 35995.78 269
mvsany_test193.93 14093.98 12393.78 25394.94 29986.80 27794.62 32092.55 38588.77 26096.85 6698.49 4088.98 9398.08 25895.03 10595.62 19096.46 245
tpmvs89.83 30389.15 30091.89 31794.92 30080.30 37293.11 37095.46 31186.28 32188.08 31092.65 35080.44 24198.52 21681.47 34089.92 28596.84 234
PMMVS92.86 18292.34 18094.42 21694.92 30086.73 28094.53 32496.38 26784.78 34694.27 14995.12 25883.13 18898.40 22491.47 18296.49 17498.12 174
tpm289.96 29689.21 29892.23 30994.91 30281.25 35993.78 35394.42 35380.62 38491.56 21493.44 33976.44 30197.94 28685.60 29892.08 25697.49 210
TinyColmap86.82 33585.35 34191.21 33594.91 30282.99 34293.94 34794.02 36483.58 36181.56 37794.68 27662.34 39198.13 24875.78 37687.35 31392.52 377
UniMVSNet_ETH3D91.34 24890.22 26494.68 20294.86 30487.86 25597.23 16497.46 17187.99 28089.90 25796.92 16066.35 37598.23 23990.30 20290.99 27397.96 184
CostFormer91.18 25890.70 24392.62 29994.84 30581.76 35694.09 34394.43 35284.15 35292.72 18693.77 32479.43 26098.20 24290.70 19692.18 25297.90 187
MIMVSNet88.50 31986.76 32993.72 25694.84 30587.77 25891.39 38594.05 36286.41 31887.99 31292.59 35363.27 38695.82 37377.44 36792.84 24097.57 208
FMVSNet587.29 33085.79 33691.78 32394.80 30787.28 26495.49 29195.28 31984.09 35383.85 36791.82 36862.95 38894.17 39178.48 36385.34 33193.91 357
TranMVSNet+NR-MVSNet92.50 19191.63 20295.14 17494.76 30892.07 10797.53 12998.11 7392.90 12489.56 26996.12 20683.16 18697.60 32089.30 22583.20 36295.75 273
test_vis1_n92.37 19892.26 18392.72 29594.75 30982.64 34498.02 5996.80 24291.18 17497.77 4197.93 9158.02 39698.29 23697.63 2598.21 12497.23 224
XXY-MVS92.16 20991.23 21994.95 18894.75 30990.94 15497.47 13797.43 18389.14 24188.90 28696.43 19079.71 25598.24 23889.56 21887.68 30695.67 277
EPMVS90.70 27689.81 28193.37 27194.73 31184.21 32793.67 35888.02 40789.50 23092.38 19093.49 33677.82 29197.78 30386.03 29292.68 24498.11 177
D2MVS91.30 25090.95 22892.35 30394.71 31285.52 30496.18 25598.21 5188.89 25286.60 33993.82 32279.92 25297.95 28589.29 22690.95 27493.56 360
USDC88.94 31287.83 31792.27 30794.66 31384.96 31893.86 35195.90 28787.34 30283.40 36895.56 23867.43 36698.19 24482.64 33489.67 28893.66 359
GA-MVS91.38 24390.31 25694.59 20494.65 31487.62 26094.34 33396.19 27990.73 18890.35 24193.83 32071.84 33497.96 28187.22 27193.61 23498.21 166
OPM-MVS93.28 16192.76 16194.82 19294.63 31590.77 16196.65 21597.18 20293.72 8291.68 21397.26 14279.33 26298.63 20692.13 16592.28 24895.07 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 24191.19 22192.12 31094.59 31680.66 36594.29 33792.98 37891.11 17790.76 23592.37 35779.02 26998.07 26288.81 23896.74 16797.63 201
test-mter90.19 29389.54 29192.12 31094.59 31680.66 36594.29 33792.98 37887.68 29490.76 23592.37 35767.67 36498.07 26288.81 23896.74 16797.63 201
dp88.90 31488.26 31490.81 34494.58 31876.62 39292.85 37594.93 33685.12 34090.07 25593.07 34475.81 30598.12 25180.53 35187.42 31097.71 198
WB-MVSnew89.88 30089.56 29090.82 34394.57 31983.06 34195.65 28492.85 38087.86 28590.83 23494.10 31179.66 25796.88 35676.34 37494.19 21792.54 376
PEN-MVS91.20 25590.44 25193.48 26794.49 32087.91 25497.76 9598.18 6091.29 16787.78 31595.74 22880.35 24397.33 34185.46 30082.96 36395.19 307
gg-mvs-nofinetune87.82 32585.61 33794.44 21494.46 32189.27 21491.21 38984.61 41580.88 38089.89 25974.98 41171.50 33697.53 32685.75 29797.21 15896.51 241
CR-MVSNet90.82 27189.77 28393.95 24294.45 32287.19 26990.23 39595.68 30186.89 31092.40 18892.36 36080.91 23297.05 34981.09 34893.95 22797.60 206
RPMNet88.98 31187.05 32594.77 19994.45 32287.19 26990.23 39598.03 9477.87 39692.40 18887.55 40080.17 24799.51 9968.84 40193.95 22797.60 206
TESTMET0.1,190.06 29589.42 29491.97 31394.41 32480.62 36794.29 33791.97 39087.28 30490.44 23992.47 35668.79 35697.67 31288.50 24496.60 17297.61 205
TransMVSNet (Re)88.94 31287.56 31893.08 28294.35 32588.45 23797.73 9995.23 32387.47 29884.26 35995.29 24779.86 25397.33 34179.44 36074.44 39393.45 363
MS-PatchMatch90.27 28889.77 28391.78 32394.33 32684.72 32295.55 28796.73 24486.17 32486.36 34195.28 24971.28 33897.80 30184.09 31698.14 12892.81 370
baseline291.63 22790.86 23193.94 24494.33 32686.32 29195.92 26791.64 39289.37 23586.94 33594.69 27581.62 22398.69 20088.64 24294.57 21296.81 235
XVG-ACMP-BASELINE90.93 26890.21 26593.09 28194.31 32885.89 29995.33 29797.26 19991.06 18089.38 27495.44 24468.61 35898.60 20989.46 22091.05 27194.79 332
pm-mvs190.72 27589.65 28993.96 24194.29 32989.63 19297.79 9396.82 24189.07 24386.12 34495.48 24378.61 27797.78 30386.97 27781.67 36894.46 343
v891.29 25290.53 25093.57 26494.15 33088.12 24897.34 15197.06 21688.99 24788.32 30294.26 30483.08 18998.01 27187.62 26383.92 35594.57 341
v1091.04 26290.23 26293.49 26694.12 33188.16 24797.32 15497.08 21288.26 27488.29 30494.22 30782.17 21397.97 27786.45 28384.12 35194.33 348
Patchmtry88.64 31887.25 32192.78 29494.09 33286.64 28189.82 39995.68 30180.81 38287.63 31892.36 36080.91 23297.03 35078.86 36285.12 33594.67 338
PatchT88.87 31587.42 31993.22 27794.08 33385.10 31489.51 40094.64 34781.92 37392.36 19188.15 39680.05 24997.01 35272.43 39293.65 23297.54 209
V4291.58 23290.87 23093.73 25494.05 33488.50 23597.32 15496.97 22488.80 25989.71 26294.33 29782.54 20498.05 26589.01 23485.07 33694.64 340
DTE-MVSNet90.56 28089.75 28593.01 28393.95 33587.25 26697.64 11597.65 14390.74 18787.12 32795.68 23279.97 25197.00 35383.33 32381.66 36994.78 334
tpm90.25 28989.74 28691.76 32593.92 33679.73 37993.98 34493.54 37288.28 27391.99 20393.25 34377.51 29397.44 33487.30 27087.94 30398.12 174
PS-MVSNAJss93.74 14793.51 13894.44 21493.91 33789.28 21397.75 9697.56 15892.50 13289.94 25696.54 18588.65 10098.18 24593.83 13690.90 27595.86 261
v114491.37 24590.60 24693.68 25993.89 33888.23 24396.84 19697.03 22188.37 27189.69 26494.39 29282.04 21497.98 27487.80 25385.37 32994.84 324
v2v48291.59 23090.85 23393.80 25193.87 33988.17 24696.94 18896.88 23689.54 22889.53 27094.90 26581.70 22298.02 27089.25 22885.04 33895.20 304
v14890.99 26490.38 25392.81 29293.83 34085.80 30096.78 20296.68 25089.45 23388.75 29393.93 31982.96 19597.82 29987.83 25283.25 36094.80 330
Baseline_NR-MVSNet91.20 25590.62 24592.95 28693.83 34088.03 24997.01 18295.12 32888.42 27089.70 26395.13 25783.47 18097.44 33489.66 21683.24 36193.37 364
EPNet_dtu91.71 22391.28 21692.99 28493.76 34283.71 33596.69 21195.28 31993.15 11087.02 33295.95 21483.37 18397.38 33979.46 35996.84 16497.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 26090.23 26293.58 26393.70 34387.82 25796.73 20597.07 21487.77 29089.58 26794.32 29980.90 23497.97 27786.52 28185.48 32794.95 314
GG-mvs-BLEND93.62 26093.69 34489.20 21692.39 38183.33 41787.98 31389.84 38571.00 34096.87 35782.08 33795.40 19494.80 330
test_fmvs289.77 30489.93 27689.31 36693.68 34576.37 39397.64 11595.90 28789.84 22191.49 21696.26 19958.77 39597.10 34794.65 11891.13 26994.46 343
v14419291.06 26190.28 25893.39 27093.66 34687.23 26896.83 19797.07 21487.43 29989.69 26494.28 30181.48 22498.00 27287.18 27384.92 34094.93 318
v192192090.85 27090.03 27393.29 27493.55 34786.96 27696.74 20497.04 21987.36 30189.52 27194.34 29680.23 24697.97 27786.27 28485.21 33394.94 316
v7n90.76 27289.86 27893.45 26993.54 34887.60 26197.70 10797.37 19088.85 25387.65 31794.08 31381.08 22998.10 25384.68 30983.79 35794.66 339
JIA-IIPM88.26 32287.04 32691.91 31593.52 34981.42 35889.38 40194.38 35580.84 38190.93 23280.74 40879.22 26397.92 28982.76 33191.62 26096.38 246
v124090.70 27689.85 27993.23 27693.51 35086.80 27796.61 22197.02 22287.16 30689.58 26794.31 30079.55 25997.98 27485.52 29985.44 32894.90 321
test_djsdf93.07 17192.76 16194.00 23793.49 35188.70 22898.22 4097.57 15491.42 16390.08 25495.55 23982.85 19797.92 28994.07 12791.58 26195.40 289
SixPastTwentyTwo89.15 31088.54 31090.98 33993.49 35180.28 37396.70 20994.70 34490.78 18584.15 36195.57 23771.78 33597.71 31084.63 31085.07 33694.94 316
test_vis1_rt86.16 34385.06 34489.46 36293.47 35380.46 36996.41 23386.61 41285.22 33779.15 38988.64 39152.41 40497.06 34893.08 14990.57 27890.87 395
mvs_tets92.31 20191.76 19793.94 24493.41 35488.29 23997.63 11797.53 16092.04 14688.76 29296.45 18974.62 31798.09 25793.91 13291.48 26395.45 285
OurMVSNet-221017-090.51 28390.19 26691.44 33193.41 35481.25 35996.98 18596.28 27291.68 15586.55 34096.30 19674.20 32097.98 27488.96 23687.40 31295.09 309
pmmvs490.93 26889.85 27994.17 22893.34 35690.79 16094.60 32196.02 28384.62 34787.45 32095.15 25581.88 21997.45 33387.70 25787.87 30494.27 352
jajsoiax92.42 19591.89 19494.03 23693.33 35788.50 23597.73 9997.53 16092.00 14888.85 28996.50 18775.62 30998.11 25293.88 13491.56 26295.48 281
gm-plane-assit93.22 35878.89 38884.82 34593.52 33598.64 20587.72 254
MVP-Stereo90.74 27490.08 26892.71 29693.19 35988.20 24495.86 27096.27 27386.07 32584.86 35494.76 27277.84 29097.75 30783.88 32198.01 13192.17 385
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 31788.90 30588.20 37093.15 36074.21 39796.63 22094.22 36185.18 33887.32 32595.97 21276.16 30394.98 38585.27 30286.17 32095.41 286
MDA-MVSNet-bldmvs85.00 35282.95 35791.17 33893.13 36183.33 33894.56 32395.00 33284.57 34865.13 41092.65 35070.45 34495.85 37173.57 38977.49 38394.33 348
K. test v387.64 32886.75 33090.32 35393.02 36279.48 38396.61 22192.08 38990.66 19480.25 38594.09 31267.21 36896.65 36185.96 29480.83 37294.83 325
MonoMVSNet91.92 21691.77 19692.37 30292.94 36383.11 34097.09 17595.55 30792.91 12390.85 23394.55 28281.27 22896.52 36293.01 15487.76 30597.47 212
pmmvs589.86 30288.87 30692.82 29192.86 36486.23 29496.26 24895.39 31284.24 35187.12 32794.51 28574.27 31997.36 34087.61 26487.57 30794.86 323
testgi87.97 32387.21 32390.24 35492.86 36480.76 36396.67 21494.97 33491.74 15385.52 34795.83 22062.66 39094.47 38976.25 37588.36 30195.48 281
EPNet95.20 9994.56 10897.14 6892.80 36692.68 8697.85 8494.87 34296.64 292.46 18797.80 10686.23 14099.65 6193.72 13798.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 36978.71 37078.79 38792.80 36646.50 42694.14 34143.71 42878.61 39280.83 37991.66 37174.94 31496.36 36467.24 40284.45 34893.50 361
EG-PatchMatch MVS87.02 33485.44 33891.76 32592.67 36885.00 31696.08 25996.45 26483.41 36479.52 38793.49 33657.10 39897.72 30979.34 36190.87 27692.56 375
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7492.66 36991.83 11597.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
Gipumacopyleft67.86 38065.41 38275.18 39592.66 36973.45 39966.50 41694.52 35053.33 41557.80 41666.07 41630.81 41689.20 40848.15 41478.88 38262.90 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 20991.55 20593.97 24092.58 37189.55 19797.51 13097.42 18489.42 23488.40 29994.84 26880.66 23797.88 29491.87 17191.28 26794.48 342
EGC-MVSNET68.77 37963.01 38586.07 38092.49 37282.24 35393.96 34690.96 3970.71 4252.62 42690.89 37553.66 40293.46 39757.25 41084.55 34682.51 406
test0.0.03 189.37 30988.70 30791.41 33292.47 37385.63 30295.22 30592.70 38391.11 17786.91 33793.65 33179.02 26993.19 40178.00 36689.18 29295.41 286
our_test_388.78 31687.98 31691.20 33792.45 37482.53 34693.61 36195.69 29985.77 32984.88 35393.71 32579.99 25096.78 36079.47 35886.24 31994.28 351
ppachtmachnet_test88.35 32187.29 32091.53 32892.45 37483.57 33793.75 35495.97 28484.28 35085.32 35194.18 30879.00 27396.93 35475.71 37784.99 33994.10 353
YYNet185.87 34884.23 35290.78 34792.38 37682.46 35093.17 36795.14 32782.12 37267.69 40492.36 36078.16 28595.50 38177.31 36979.73 37694.39 346
MDA-MVSNet_test_wron85.87 34884.23 35290.80 34692.38 37682.57 34593.17 36795.15 32682.15 37167.65 40692.33 36378.20 28295.51 38077.33 36879.74 37594.31 350
LF4IMVS87.94 32487.25 32189.98 35792.38 37680.05 37794.38 33195.25 32287.59 29684.34 35794.74 27464.31 38497.66 31484.83 30687.45 30892.23 382
lessismore_v090.45 35091.96 37979.09 38787.19 41080.32 38494.39 29266.31 37697.55 32384.00 31876.84 38594.70 337
dmvs_testset81.38 36582.60 36077.73 38891.74 38051.49 42393.03 37284.21 41689.07 24378.28 39291.25 37476.97 29688.53 41156.57 41182.24 36793.16 365
pmmvs687.81 32686.19 33392.69 29791.32 38186.30 29297.34 15196.41 26680.59 38584.05 36594.37 29467.37 36797.67 31284.75 30879.51 37894.09 355
Anonymous2023120687.09 33386.14 33489.93 35891.22 38280.35 37096.11 25795.35 31583.57 36284.16 36093.02 34573.54 32695.61 37772.16 39386.14 32193.84 358
KD-MVS_2432*160084.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
miper_refine_blended84.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
DeepMVS_CXcopyleft74.68 39690.84 38564.34 41481.61 41965.34 40967.47 40788.01 39848.60 40880.13 41862.33 40673.68 39579.58 408
Anonymous2024052186.42 33985.44 33889.34 36590.33 38679.79 37896.73 20595.92 28583.71 36083.25 37091.36 37363.92 38596.01 36778.39 36585.36 33092.22 383
test20.0386.14 34485.40 34088.35 36890.12 38780.06 37695.90 26995.20 32488.59 26281.29 37893.62 33271.43 33792.65 40271.26 39781.17 37192.34 379
OpenMVS_ROBcopyleft81.14 2084.42 35682.28 36290.83 34290.06 38884.05 33195.73 27894.04 36373.89 40380.17 38691.53 37259.15 39497.64 31566.92 40389.05 29390.80 396
UnsupCasMVSNet_eth85.99 34584.45 35090.62 34889.97 38982.40 35193.62 36097.37 19089.86 21878.59 39192.37 35765.25 38395.35 38382.27 33670.75 39994.10 353
DSMNet-mixed86.34 34086.12 33587.00 37789.88 39070.43 40394.93 31490.08 40177.97 39585.42 35092.78 34874.44 31893.96 39574.43 38395.14 19896.62 239
new_pmnet82.89 36181.12 36688.18 37189.63 39180.18 37591.77 38492.57 38476.79 39875.56 39788.23 39561.22 39394.48 38871.43 39582.92 36489.87 399
MIMVSNet184.93 35383.05 35590.56 34989.56 39284.84 32195.40 29495.35 31583.91 35480.38 38392.21 36457.23 39793.34 39970.69 39982.75 36693.50 361
KD-MVS_self_test85.95 34684.95 34588.96 36789.55 39379.11 38695.13 30996.42 26585.91 32784.07 36490.48 37870.03 34994.82 38680.04 35372.94 39692.94 368
ttmdpeth85.91 34784.76 34889.36 36489.14 39480.25 37495.66 28393.16 37783.77 35883.39 36995.26 25166.24 37795.26 38480.65 34975.57 39092.57 374
CMPMVSbinary62.92 2185.62 35084.92 34687.74 37289.14 39473.12 40294.17 34096.80 24273.98 40173.65 40094.93 26366.36 37497.61 31983.95 31991.28 26792.48 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test179.31 36877.70 37184.14 38189.11 39669.07 40792.36 38291.50 39369.07 40673.87 39992.63 35239.93 41294.32 39070.54 40080.25 37489.02 401
CL-MVSNet_self_test86.31 34185.15 34289.80 35988.83 39781.74 35793.93 34896.22 27686.67 31385.03 35290.80 37678.09 28694.50 38774.92 38171.86 39893.15 366
dongtai69.99 37669.33 37871.98 39788.78 39861.64 41789.86 39859.93 42775.67 39974.96 39885.45 40350.19 40681.66 41643.86 41555.27 41472.63 412
mvs5depth86.53 33685.08 34390.87 34188.74 39982.52 34791.91 38394.23 36086.35 31987.11 32993.70 32666.52 37397.76 30681.37 34475.80 38992.31 381
Patchmatch-RL test87.38 32986.24 33290.81 34488.74 39978.40 38988.12 40793.17 37687.11 30782.17 37689.29 38881.95 21795.60 37888.64 24277.02 38498.41 154
pmmvs-eth3d86.22 34284.45 35091.53 32888.34 40187.25 26694.47 32695.01 33183.47 36379.51 38889.61 38669.75 35295.71 37483.13 32576.73 38791.64 387
UnsupCasMVSNet_bld82.13 36479.46 36990.14 35588.00 40282.47 34990.89 39296.62 25878.94 39175.61 39584.40 40656.63 39996.31 36577.30 37066.77 40791.63 388
PM-MVS83.48 35881.86 36488.31 36987.83 40377.59 39193.43 36391.75 39186.91 30980.63 38189.91 38444.42 41095.84 37285.17 30576.73 38791.50 391
MVStest182.38 36380.04 36789.37 36387.63 40482.83 34395.03 31193.37 37573.90 40273.50 40194.35 29562.89 38993.25 40073.80 38765.92 40892.04 386
new-patchmatchnet83.18 36081.87 36387.11 37586.88 40575.99 39593.70 35595.18 32585.02 34277.30 39488.40 39365.99 37993.88 39674.19 38670.18 40091.47 392
test_fmvs383.21 35983.02 35683.78 38286.77 40668.34 40896.76 20394.91 33786.49 31684.14 36289.48 38736.04 41491.73 40491.86 17280.77 37391.26 394
WB-MVS76.77 37076.63 37377.18 38985.32 40756.82 42194.53 32489.39 40382.66 36971.35 40289.18 38975.03 31388.88 40935.42 41866.79 40685.84 403
SSC-MVS76.05 37175.83 37476.72 39384.77 40856.22 42294.32 33588.96 40581.82 37570.52 40388.91 39074.79 31588.71 41033.69 41964.71 40985.23 404
kuosan65.27 38264.66 38467.11 40083.80 40961.32 41888.53 40460.77 42668.22 40767.67 40580.52 40949.12 40770.76 42229.67 42153.64 41669.26 414
mvsany_test383.59 35782.44 36187.03 37683.80 40973.82 39893.70 35590.92 39886.42 31782.51 37490.26 38046.76 40995.71 37490.82 19376.76 38691.57 389
ambc86.56 37883.60 41170.00 40585.69 40994.97 33480.60 38288.45 39237.42 41396.84 35882.69 33375.44 39192.86 369
test_f80.57 36679.62 36883.41 38383.38 41267.80 41093.57 36293.72 37080.80 38377.91 39387.63 39933.40 41592.08 40387.14 27579.04 38190.34 398
pmmvs379.97 36777.50 37287.39 37482.80 41379.38 38492.70 37790.75 39970.69 40578.66 39087.47 40151.34 40593.40 39873.39 39069.65 40189.38 400
TDRefinement86.53 33684.76 34891.85 31882.23 41484.25 32696.38 23995.35 31584.97 34384.09 36394.94 26265.76 38198.34 23484.60 31174.52 39292.97 367
test_vis3_rt72.73 37270.55 37579.27 38680.02 41568.13 40993.92 34974.30 42376.90 39758.99 41473.58 41420.29 42395.37 38284.16 31472.80 39774.31 411
testf169.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
APD_test269.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
PMMVS270.19 37566.92 37980.01 38576.35 41865.67 41286.22 40887.58 40964.83 41062.38 41180.29 41026.78 42088.49 41263.79 40454.07 41585.88 402
FPMVS71.27 37469.85 37675.50 39474.64 41959.03 41991.30 38691.50 39358.80 41157.92 41588.28 39429.98 41885.53 41453.43 41282.84 36581.95 407
E-PMN53.28 38552.56 38955.43 40274.43 42047.13 42583.63 41276.30 42042.23 41742.59 41962.22 41828.57 41974.40 41931.53 42031.51 41844.78 417
wuyk23d25.11 38924.57 39326.74 40573.98 42139.89 42957.88 4189.80 42912.27 42210.39 4236.97 4257.03 42736.44 42425.43 42317.39 4223.89 422
test_method66.11 38164.89 38369.79 39872.62 42235.23 43065.19 41792.83 38220.35 42065.20 40988.08 39743.14 41182.70 41573.12 39163.46 41091.45 393
EMVS52.08 38751.31 39054.39 40372.62 42245.39 42783.84 41175.51 42241.13 41840.77 42059.65 41930.08 41773.60 42028.31 42229.90 42044.18 418
LCM-MVSNet72.55 37369.39 37782.03 38470.81 42465.42 41390.12 39794.36 35855.02 41465.88 40881.72 40724.16 42289.96 40574.32 38568.10 40590.71 397
MVEpermissive50.73 2353.25 38648.81 39166.58 40165.34 42557.50 42072.49 41570.94 42440.15 41939.28 42163.51 4176.89 42873.48 42138.29 41742.38 41768.76 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 38359.58 38677.02 39061.24 42666.06 41185.66 41087.93 40878.53 39342.94 41871.04 41525.42 42180.71 41752.60 41330.83 41984.28 405
PMVScopyleft53.92 2258.58 38455.40 38768.12 39951.00 42748.64 42478.86 41387.10 41146.77 41635.84 42274.28 4128.76 42686.34 41342.07 41673.91 39469.38 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 38853.82 38846.29 40433.73 42845.30 42878.32 41467.24 42518.02 42150.93 41787.05 40252.99 40353.11 42370.76 39825.29 42140.46 419
testmvs13.36 39116.33 3944.48 4075.04 4292.26 43293.18 3663.28 4302.70 4238.24 42421.66 4212.29 4302.19 4257.58 4242.96 4239.00 421
test12313.04 39215.66 3955.18 4064.51 4303.45 43192.50 3801.81 4312.50 4247.58 42520.15 4223.67 4292.18 4267.13 4251.07 4249.90 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
eth-test20.00 431
eth-test0.00 431
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.24 39030.99 3920.00 4080.00 4310.00 4330.00 41997.63 1470.00 4260.00 42796.88 16284.38 1650.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.39 3949.85 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42688.65 1000.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.06 39310.74 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42796.69 1720.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.53 38075.56 379
PC_three_145290.77 18698.89 1498.28 6896.24 198.35 23195.76 8499.58 2399.59 24
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
GSMVS98.45 149
sam_mvs182.76 19998.45 149
sam_mvs81.94 218
MTGPAbinary98.08 77
test_post192.81 37616.58 42480.53 23997.68 31186.20 286
test_post17.58 42381.76 22098.08 258
patchmatchnet-post90.45 37982.65 20398.10 253
MTMP97.86 8182.03 418
test9_res94.81 11399.38 5899.45 50
agg_prior293.94 13199.38 5899.50 43
test_prior493.66 5796.42 232
test_prior296.35 24192.80 12796.03 10497.59 12392.01 4795.01 10699.38 58
旧先验295.94 26681.66 37697.34 5298.82 18292.26 159
新几何295.79 275
无先验95.79 27597.87 11483.87 35799.65 6187.68 26098.89 112
原ACMM295.67 280
testdata299.67 5985.96 294
segment_acmp92.89 30
testdata195.26 30493.10 113
plane_prior597.51 16298.60 20993.02 15292.23 24995.86 261
plane_prior496.64 175
plane_prior390.00 18094.46 6091.34 220
plane_prior297.74 9794.85 37
plane_prior89.99 18297.24 16094.06 7292.16 253
n20.00 432
nn0.00 432
door-mid91.06 396
test1197.88 112
door91.13 395
HQP5-MVS89.33 209
BP-MVS92.13 165
HQP4-MVS90.14 24498.50 21795.78 269
HQP3-MVS97.39 18792.10 254
HQP2-MVS80.95 230
MDTV_nov1_ep13_2view70.35 40493.10 37183.88 35693.55 16582.47 20786.25 28598.38 157
ACMMP++_ref90.30 283
ACMMP++91.02 272
Test By Simon88.73 99