This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
CS-MVS96.86 3797.06 1996.26 10898.16 9891.16 14199.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18997.10 3199.17 7498.90 104
CS-MVS-test96.89 3597.04 2396.45 9298.29 8291.66 11599.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18396.92 3599.33 5998.94 97
EC-MVSNet96.42 5796.47 5396.26 10897.01 16591.52 12198.89 597.75 12394.42 5696.64 7197.68 10789.32 8498.60 19997.45 2699.11 8198.67 123
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8397.99 8490.99 6599.58 7795.61 8499.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8298.30 6291.90 4599.85 1895.61 8499.68 499.54 33
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6398.35 5190.21 7599.53 9194.80 10799.63 1499.38 58
EPP-MVSNet95.22 9195.04 8995.76 13497.49 14189.56 19298.67 1097.00 21490.69 18594.24 14097.62 11689.79 8198.81 17693.39 13796.49 16598.92 100
3Dnovator91.36 595.19 9394.44 10897.44 4996.56 19493.36 6598.65 1198.36 2494.12 6589.25 27398.06 7782.20 20599.77 3793.41 13699.32 6099.18 72
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7799.40 5199.62 18
X-MVStestdata91.71 21789.67 27897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7432.69 40591.70 4899.80 3095.66 7799.40 5199.62 18
mvsmamba93.83 13493.46 13094.93 18494.88 29390.85 15198.55 1495.49 29994.24 6391.29 21796.97 14983.04 18498.14 23895.56 8891.17 26195.78 260
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9897.18 5098.29 6392.08 4299.83 2695.63 8299.59 1899.54 33
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10197.14 5298.34 5491.59 5299.87 795.46 8999.59 1899.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9897.15 5198.33 5791.35 5799.86 895.63 8299.59 1899.62 18
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9795.95 10398.33 5791.04 6499.88 495.20 9399.57 2499.60 21
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12596.39 8498.18 7091.61 5099.88 495.59 8799.55 2599.57 26
3Dnovator+91.43 495.40 8494.48 10698.16 1696.90 16995.34 1698.48 2197.87 11194.65 4988.53 28898.02 8283.69 16999.71 4693.18 13998.96 8999.44 49
RRT_MVS93.10 16292.83 15193.93 24194.76 29888.04 24598.47 2296.55 25193.44 9090.01 24797.04 14680.64 22997.93 28094.33 11790.21 27795.83 255
IS-MVSNet94.90 10194.52 10496.05 12097.67 12590.56 16298.44 2396.22 26693.21 9893.99 14697.74 10485.55 14598.45 21189.98 19897.86 12799.14 76
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2598.06 8293.37 9395.54 11898.34 5490.59 7299.88 494.83 10499.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM93.45 14892.27 17696.98 7196.77 18092.62 8298.39 2698.12 6784.50 33888.27 29597.77 10282.39 20299.81 2985.40 29198.81 9498.51 131
nrg03094.05 12593.31 13796.27 10795.22 27294.59 3198.34 2797.46 16392.93 11691.21 22196.64 16887.23 12498.22 23094.99 10185.80 31695.98 250
CPTT-MVS95.57 8295.19 8596.70 7399.27 2691.48 12398.33 2898.11 7087.79 27995.17 12498.03 8087.09 12599.61 6993.51 13299.42 4799.02 86
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
CSCG96.05 6795.91 6696.46 9199.24 2890.47 16598.30 3098.57 1889.01 23693.97 14897.57 11992.62 3399.76 3894.66 11099.27 6399.15 75
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3198.13 6592.72 12296.70 6698.06 7791.35 5799.86 894.83 10499.28 6299.47 46
sasdasda96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
test250691.60 22390.78 22994.04 23097.66 12783.81 32598.27 3475.53 40893.43 9195.23 12298.21 6767.21 35899.07 15093.01 14798.49 10699.25 68
OpenMVScopyleft89.19 1292.86 17691.68 19596.40 9595.34 26192.73 8098.27 3498.12 6784.86 33385.78 33497.75 10378.89 26599.74 4187.50 25698.65 9996.73 227
Vis-MVSNetpermissive95.23 9094.81 9296.51 8597.18 14991.58 11998.26 3698.12 6794.38 6094.90 12798.15 7282.28 20398.92 16591.45 17598.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3798.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
OPU-MVS98.55 398.82 5296.86 398.25 3798.26 6696.04 299.24 12495.36 9199.59 1899.56 29
ACMMPcopyleft96.27 6395.93 6597.28 5799.24 2892.62 8298.25 3798.81 592.99 10994.56 13498.39 4888.96 8999.85 1894.57 11597.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE93.89 13193.28 13895.72 14096.96 16889.75 18798.24 4096.92 22389.47 22292.12 19197.21 13784.42 15898.39 21887.71 24696.50 16499.01 89
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4198.27 3992.37 13198.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
MVSFormer95.37 8595.16 8695.99 12696.34 21291.21 13498.22 4297.57 14791.42 15996.22 9097.32 12986.20 13797.92 28194.07 12099.05 8498.85 110
test_djsdf93.07 16592.76 15494.00 23293.49 34288.70 22498.22 4297.57 14791.42 15990.08 24595.55 23482.85 19097.92 28194.07 12091.58 25295.40 281
MGCFI-Net95.94 7395.40 7997.56 4697.59 13594.62 3098.21 4497.57 14794.41 5796.17 9296.16 19987.54 11599.17 13296.19 6094.73 20098.91 101
test111193.19 15792.82 15294.30 21997.58 13984.56 31798.21 4489.02 39193.53 8694.58 13398.21 6772.69 32099.05 15493.06 14398.48 10899.28 65
ECVR-MVScopyleft93.19 15792.73 15894.57 20497.66 12785.41 30298.21 4488.23 39393.43 9194.70 13198.21 6772.57 32199.07 15093.05 14498.49 10699.25 68
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4497.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4498.28 3699.86 897.52 2299.67 699.75 6
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4498.45 2289.86 20997.11 5498.01 8392.52 3599.69 5296.03 6699.53 2899.36 60
FC-MVSNet-test93.94 12993.57 12295.04 17395.48 25091.45 12698.12 5098.71 1193.37 9390.23 23496.70 16387.66 11097.85 28791.49 17390.39 27595.83 255
FIs94.09 12393.70 11895.27 16395.70 24092.03 10398.10 5198.68 1393.36 9590.39 23196.70 16387.63 11397.94 27792.25 15390.50 27495.84 254
Vis-MVSNet (Re-imp)94.15 11893.88 11594.95 18197.61 13287.92 24998.10 5195.80 28292.22 13393.02 16897.45 12484.53 15797.91 28488.24 23697.97 12599.02 86
VDDNet93.05 16692.07 18096.02 12396.84 17290.39 16998.08 5395.85 28086.22 31295.79 10898.46 4267.59 35599.19 12894.92 10294.85 19398.47 137
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28397.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121190.63 27089.42 28594.27 22198.24 8789.19 21498.05 5697.89 10779.95 37488.25 29694.96 25472.56 32298.13 23989.70 20685.14 32695.49 272
WR-MVS_H92.00 20991.35 20593.95 23795.09 28189.47 19798.04 5798.68 1391.46 15788.34 29194.68 26985.86 14197.56 31285.77 28684.24 34194.82 318
test_vis1_n92.37 19392.26 17792.72 28994.75 30082.64 33598.02 5896.80 23391.18 16997.77 3797.93 8858.02 38398.29 22697.63 1998.21 11897.23 214
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 10998.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 171
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 34997.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11397.64 12990.72 15798.00 6198.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 153
Anonymous2024052991.98 21090.73 23395.73 13998.14 9989.40 20197.99 6297.72 12879.63 37693.54 15697.41 12769.94 33999.56 8591.04 18391.11 26398.22 157
test_fmvsmvis_n_192096.70 4796.84 3396.31 10296.62 18791.73 10997.98 6398.30 3296.19 596.10 9698.95 889.42 8399.76 3898.90 1099.08 8297.43 203
test_fmvs1_n92.73 18392.88 14992.29 29996.08 22981.05 35197.98 6397.08 20390.72 18496.79 6298.18 7063.07 37598.45 21197.62 2098.42 11197.36 206
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6399.26 6599.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6399.26 6599.43 51
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10697.44 4398.55 3390.93 6699.55 8796.06 6299.25 6799.51 37
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12198.07 10590.28 17097.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 160
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6992.66 35991.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16399.76 3898.82 1199.08 8299.48 44
tttt051792.96 17092.33 17594.87 18597.11 15387.16 26897.97 6992.09 37590.63 19193.88 15097.01 14876.50 29099.06 15390.29 19595.45 18498.38 147
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24292.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 14292.63 16196.52 8298.13 10091.27 13197.94 7393.39 36390.57 19696.29 8698.31 6069.00 34599.16 13494.18 11995.87 17499.12 80
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32796.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11595.48 25090.69 15897.91 7698.33 2994.07 6698.93 999.14 187.44 11999.61 6998.63 1398.32 11498.18 160
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12596.67 18590.25 17197.91 7698.38 2394.48 5498.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 164
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14292.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
bld_raw_dy_0_6492.85 17891.91 18795.69 14297.02 16289.81 18597.88 7993.96 35492.57 12692.59 17796.79 15769.53 34399.02 15895.03 9791.78 24998.23 155
UGNet94.04 12693.28 13896.31 10296.85 17191.19 13797.88 7997.68 13394.40 5893.00 16996.18 19673.39 31999.61 6991.72 16798.46 10998.13 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MTMP97.86 8182.03 405
alignmvs95.87 7595.23 8497.78 3197.56 14095.19 2197.86 8197.17 19594.39 5996.47 8096.40 18785.89 14099.20 12796.21 5795.11 19198.95 96
VPA-MVSNet93.24 15492.48 17195.51 15395.70 24092.39 8997.86 8198.66 1692.30 13292.09 19395.37 24080.49 23298.40 21493.95 12385.86 31595.75 265
EPNet95.20 9294.56 10097.14 6592.80 35692.68 8197.85 8494.87 33196.64 392.46 17897.80 10186.23 13499.65 5893.72 13098.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS91.55 22890.84 22793.69 25394.96 28588.28 23697.84 8598.24 4791.46 15788.04 30195.80 21779.67 24897.48 32087.02 26684.54 33895.31 288
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
test_vis1_n_192094.17 11694.58 9992.91 28297.42 14382.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9397.40 205
EIA-MVS95.53 8395.47 7495.71 14197.06 15889.63 18897.82 8897.87 11193.57 8193.92 14995.04 25290.61 7198.95 16294.62 11298.68 9898.54 127
CP-MVSNet91.89 21391.24 21293.82 24595.05 28288.57 22797.82 8898.19 5591.70 15088.21 29795.76 22281.96 20997.52 31887.86 24184.65 33395.37 284
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
API-MVS94.84 10494.49 10595.90 12897.90 11592.00 10497.80 9197.48 15889.19 23094.81 12996.71 16188.84 9199.17 13288.91 22898.76 9696.53 230
pm-mvs190.72 26789.65 28093.96 23694.29 32089.63 18897.79 9296.82 23289.07 23386.12 33395.48 23878.61 26897.78 29486.97 26781.67 35994.46 334
PEN-MVS91.20 24790.44 24393.48 26294.49 31187.91 25197.76 9398.18 5791.29 16287.78 30595.74 22380.35 23597.33 33185.46 29082.96 35495.19 299
PS-MVSNAJss93.74 13893.51 12894.44 20993.91 32889.28 20997.75 9497.56 15192.50 12889.94 24896.54 17988.65 9598.18 23593.83 12990.90 26895.86 251
HQP_MVS93.78 13793.43 13394.82 18796.21 21689.99 17897.74 9597.51 15594.85 3491.34 21196.64 16881.32 21998.60 19993.02 14592.23 23995.86 251
plane_prior297.74 9594.85 34
9.1496.75 4198.93 4797.73 9798.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7599.47 39
jajsoiax92.42 19091.89 18994.03 23193.33 34888.50 23197.73 9797.53 15392.00 14488.85 28096.50 18275.62 30198.11 24493.88 12791.56 25395.48 273
TransMVSNet (Re)88.94 30287.56 30893.08 27794.35 31688.45 23397.73 9795.23 31287.47 28884.26 34895.29 24279.86 24597.33 33179.44 34874.44 38293.45 354
VDD-MVS93.82 13593.08 14196.02 12397.88 11689.96 18297.72 10095.85 28092.43 12995.86 10598.44 4468.42 35299.39 11196.31 4994.85 19398.71 120
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10399.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
thres100view90092.43 18991.58 19894.98 17897.92 11389.37 20397.71 10294.66 33492.20 13593.31 16394.90 25878.06 27899.08 14681.40 33194.08 21296.48 233
v7n90.76 26489.86 26993.45 26493.54 33987.60 25897.70 10397.37 18188.85 24387.65 30794.08 30481.08 22198.10 24584.68 29983.79 34894.66 330
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10498.49 1994.66 4897.24 4998.41 4792.31 4098.94 16396.61 4399.46 4098.96 94
MAR-MVS94.22 11493.46 13096.51 8598.00 10892.19 9997.67 10497.47 16188.13 26993.00 16995.84 21484.86 15399.51 9687.99 23998.17 12197.83 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D93.57 14492.61 16496.47 8997.59 13591.61 11697.67 10497.72 12885.17 32890.29 23398.34 5484.60 15599.73 4283.85 31298.27 11698.06 172
UA-Net95.95 7295.53 7297.20 6397.67 12592.98 7497.65 10798.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19397.35 14399.11 81
thres600view792.49 18891.60 19795.18 16697.91 11489.47 19797.65 10794.66 33492.18 13993.33 16294.91 25778.06 27899.10 14181.61 32894.06 21696.98 218
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13397.14 5298.44 4491.17 6299.85 1894.35 11699.46 4099.57 26
LPG-MVS_test92.94 17292.56 16594.10 22696.16 22188.26 23797.65 10797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
test_fmvs289.77 29589.93 26789.31 35393.68 33676.37 38197.64 11195.90 27789.84 21291.49 20796.26 19458.77 38297.10 33794.65 11191.13 26294.46 334
DTE-MVSNet90.56 27189.75 27693.01 27893.95 32687.25 26397.64 11197.65 13690.74 18287.12 31795.68 22779.97 24397.00 34383.33 31381.66 36094.78 325
test_cas_vis1_n_192094.48 11094.55 10394.28 22096.78 17886.45 28597.63 11397.64 13893.32 9697.68 3898.36 5073.75 31799.08 14696.73 3999.05 8497.31 210
mvs_tets92.31 19691.76 19193.94 23993.41 34588.29 23597.63 11397.53 15392.04 14288.76 28396.45 18474.62 30998.09 24893.91 12591.48 25495.45 277
h-mvs3394.15 11893.52 12796.04 12197.81 11990.22 17297.62 11597.58 14695.19 2096.74 6497.45 12483.67 17099.61 6995.85 7179.73 36798.29 152
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11997.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
iter_conf0593.18 16092.63 16194.83 18696.64 18690.69 15897.60 11695.53 29892.52 12791.58 20496.64 16876.35 29498.13 23995.43 9091.42 25695.68 269
Anonymous20240521192.07 20790.83 22895.76 13498.19 9588.75 22297.58 11895.00 32186.00 31593.64 15397.45 12466.24 36699.53 9190.68 18992.71 23399.01 89
ACMM89.79 892.96 17092.50 17094.35 21396.30 21488.71 22397.58 11897.36 18391.40 16190.53 22896.65 16779.77 24698.75 18391.24 17991.64 25095.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080591.09 25190.07 26394.16 22495.61 24388.31 23497.56 12096.51 25389.56 21889.17 27495.64 22967.08 36298.38 21991.07 18288.44 29495.80 258
dcpmvs_296.37 6097.05 2294.31 21898.96 4684.11 32297.56 12097.51 15593.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
tfpnnormal89.70 29688.40 30193.60 25695.15 27790.10 17497.56 12098.16 6187.28 29486.16 33294.63 27277.57 28398.05 25674.48 37084.59 33692.65 364
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6899.51 3299.40 54
TranMVSNet+NR-MVSNet92.50 18691.63 19695.14 16894.76 29892.07 10197.53 12498.11 7092.90 11789.56 26196.12 20183.16 17997.60 31089.30 21683.20 35395.75 265
anonymousdsp92.16 20491.55 19993.97 23592.58 36189.55 19397.51 12597.42 17689.42 22488.40 29094.84 26180.66 22897.88 28691.87 16391.28 25994.48 333
VNet95.89 7495.45 7597.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4097.61 11785.29 14799.53 9195.81 7495.27 18799.16 73
casdiffmvs_mvgpermissive95.81 7695.57 7196.51 8596.87 17091.49 12297.50 12697.56 15193.99 6995.13 12597.92 8987.89 10798.78 17895.97 6797.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net91.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
test191.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
FMVSNet189.88 29188.31 30294.59 19995.41 25491.18 13897.50 12696.93 21986.62 30487.41 31294.51 27765.94 36897.29 33383.04 31687.43 30295.31 288
thisisatest053093.03 16792.21 17895.49 15597.07 15589.11 21697.49 13192.19 37490.16 20394.09 14496.41 18676.43 29399.05 15490.38 19295.68 18098.31 151
ETV-MVS96.02 6895.89 6796.40 9597.16 15092.44 8897.47 13297.77 12294.55 5096.48 7994.51 27791.23 6198.92 16595.65 8098.19 11997.82 185
XXY-MVS92.16 20491.23 21394.95 18194.75 30090.94 14797.47 13297.43 17589.14 23188.90 27796.43 18579.71 24798.24 22889.56 21087.68 29995.67 270
114514_t93.95 12893.06 14296.63 7699.07 3791.61 11697.46 13497.96 10277.99 38293.00 16997.57 11986.14 13999.33 11589.22 22099.15 7698.94 97
tfpn200view992.38 19291.52 20194.95 18197.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.48 233
thres40092.42 19091.52 20195.12 17097.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.98 218
FMVSNet291.31 24290.08 26094.99 17696.51 20192.21 9697.41 13596.95 21788.82 24688.62 28594.75 26673.87 31397.42 32685.20 29488.55 29395.35 285
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9499.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvs193.21 15593.53 12592.25 30196.55 19681.20 35097.40 13996.96 21690.68 18696.80 6198.04 7969.25 34498.40 21497.58 2198.50 10597.16 215
UniMVSNet (Re)93.31 15292.55 16695.61 14795.39 25593.34 6697.39 14098.71 1193.14 10590.10 24394.83 26287.71 10998.03 26091.67 17183.99 34395.46 276
NR-MVSNet92.34 19491.27 21195.53 15294.95 28693.05 7297.39 14098.07 7992.65 12484.46 34595.71 22485.00 15197.77 29689.71 20583.52 35095.78 260
DP-MVS92.76 18291.51 20396.52 8298.77 5390.99 14497.38 14296.08 27282.38 35889.29 27097.87 9383.77 16899.69 5281.37 33496.69 16198.89 107
ACMP89.59 1092.62 18592.14 17994.05 22996.40 20988.20 24097.36 14397.25 19291.52 15488.30 29396.64 16878.46 27098.72 18891.86 16491.48 25495.23 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SDMVSNet94.17 11693.61 12195.86 13098.09 10191.37 12897.35 14498.20 5293.18 10291.79 19997.28 13179.13 25698.93 16494.61 11392.84 23097.28 211
pmmvs687.81 31686.19 32392.69 29191.32 37186.30 28897.34 14596.41 25880.59 37384.05 35494.37 28667.37 35797.67 30284.75 29879.51 36994.09 346
v891.29 24490.53 24293.57 25994.15 32188.12 24497.34 14597.06 20788.99 23788.32 29294.26 29583.08 18298.01 26287.62 25383.92 34694.57 332
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7399.17 7499.56 29
v1091.04 25490.23 25493.49 26194.12 32288.16 24397.32 14897.08 20388.26 26488.29 29494.22 29882.17 20697.97 26886.45 27384.12 34294.33 339
V4291.58 22690.87 22393.73 24994.05 32588.50 23197.32 14896.97 21588.80 24989.71 25494.33 28882.54 19798.05 25689.01 22585.07 32894.64 331
DeepC-MVS93.07 396.06 6695.66 7097.29 5597.96 10993.17 7097.30 15098.06 8293.92 7193.38 16198.66 2786.83 12799.73 4295.60 8699.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive95.64 7995.49 7396.08 11796.76 18390.45 16697.29 15197.44 17294.00 6895.46 12097.98 8587.52 11798.73 18595.64 8197.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
PVSNet_Blended_VisFu95.27 8894.91 9196.38 9898.20 9390.86 15097.27 15298.25 4590.21 20194.18 14297.27 13387.48 11899.73 4293.53 13197.77 13198.55 126
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9598.59 3090.88 6899.90 296.18 6199.50 3499.58 25
plane_prior89.99 17897.24 15494.06 6792.16 243
PAPM_NR95.01 9594.59 9896.26 10898.89 5190.68 16097.24 15497.73 12691.80 14792.93 17496.62 17689.13 8799.14 13789.21 22197.78 13098.97 93
ACMH87.59 1690.53 27289.42 28593.87 24396.21 21687.92 24997.24 15496.94 21888.45 25983.91 35596.27 19371.92 32398.62 19884.43 30289.43 28495.05 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D91.34 24190.22 25694.68 19794.86 29487.86 25297.23 15897.46 16387.99 27089.90 24996.92 15366.35 36498.23 22990.30 19490.99 26697.96 175
VPNet92.23 20291.31 20894.99 17695.56 24690.96 14697.22 15997.86 11592.96 11590.96 22396.62 17675.06 30498.20 23291.90 16183.65 34995.80 258
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
baseline192.82 18091.90 18895.55 15197.20 14890.77 15597.19 16194.58 33892.20 13592.36 18296.34 19084.16 16498.21 23189.20 22283.90 34797.68 191
F-COLMAP93.58 14392.98 14595.37 16198.40 7588.98 21897.18 16297.29 18987.75 28290.49 22997.10 14385.21 14899.50 9986.70 26996.72 16097.63 192
UniMVSNet_NR-MVSNet93.37 15092.67 16095.47 15895.34 26192.83 7697.17 16398.58 1792.98 11490.13 23995.80 21788.37 10097.85 28791.71 16883.93 34495.73 267
DU-MVS92.90 17492.04 18195.49 15594.95 28692.83 7697.16 16498.24 4793.02 10890.13 23995.71 22483.47 17397.85 28791.71 16883.93 34495.78 260
baseline95.58 8195.42 7896.08 11796.78 17890.41 16897.16 16497.45 16893.69 8095.65 11497.85 9687.29 12298.68 19195.66 7797.25 14899.13 77
Effi-MVS+-dtu93.08 16493.21 14092.68 29296.02 23083.25 33297.14 16696.72 23693.85 7491.20 22293.44 32883.08 18298.30 22591.69 17095.73 17896.50 232
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9797.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
testing387.67 31786.88 31890.05 34596.14 22480.71 35397.10 16892.85 36790.15 20487.54 30994.55 27555.70 38894.10 38073.77 37594.10 21195.35 285
MVSTER93.20 15692.81 15394.37 21296.56 19489.59 19197.06 16997.12 19891.24 16691.30 21495.96 20882.02 20898.05 25693.48 13390.55 27295.47 275
Fast-Effi-MVS+-dtu92.29 19891.99 18493.21 27395.27 26885.52 30097.03 17096.63 24792.09 14089.11 27695.14 24980.33 23698.08 24987.54 25594.74 19996.03 249
DP-MVS Recon95.68 7895.12 8897.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12697.65 11189.97 7999.48 10192.08 16098.59 10398.44 142
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
CANet96.39 5996.02 6497.50 4797.62 13193.38 6397.02 17297.96 10295.42 1594.86 12897.81 9987.38 12199.82 2896.88 3699.20 7299.29 63
FMVSNet391.78 21590.69 23695.03 17496.53 19992.27 9597.02 17296.93 21989.79 21489.35 26794.65 27177.01 28697.47 32186.12 27988.82 28895.35 285
Baseline_NR-MVSNet91.20 24790.62 23792.95 28193.83 33188.03 24697.01 17595.12 31788.42 26089.70 25595.13 25083.47 17397.44 32489.66 20883.24 35293.37 355
ACMH+87.92 1490.20 28389.18 29093.25 27096.48 20486.45 28596.99 17696.68 24188.83 24584.79 34496.22 19570.16 33698.53 20584.42 30388.04 29694.77 326
patch_mono-296.83 4197.44 1395.01 17599.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
OurMVSNet-221017-090.51 27490.19 25891.44 32293.41 34581.25 34896.98 17796.28 26291.68 15186.55 32996.30 19174.20 31297.98 26588.96 22787.40 30495.09 300
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18795.55 11698.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v2v48291.59 22490.85 22693.80 24693.87 33088.17 24296.94 18096.88 22789.54 21989.53 26294.90 25881.70 21598.02 26189.25 21985.04 33095.20 296
LCM-MVSNet-Re92.50 18692.52 16992.44 29496.82 17681.89 34496.92 18193.71 36092.41 13084.30 34794.60 27385.08 15097.03 34091.51 17297.36 14298.40 145
COLMAP_ROBcopyleft87.81 1590.40 27689.28 28893.79 24797.95 11087.13 26996.92 18195.89 27982.83 35586.88 32797.18 13873.77 31699.29 12178.44 35293.62 22394.95 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sd_testset93.10 16292.45 17295.05 17298.09 10189.21 21196.89 18397.64 13893.18 10291.79 19997.28 13175.35 30398.65 19488.99 22692.84 23097.28 211
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13696.89 18397.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
EI-MVSNet-UG-set96.34 6196.30 6096.47 8998.20 9390.93 14896.86 18597.72 12894.67 4796.16 9498.46 4290.43 7399.58 7796.23 5297.96 12698.90 104
test_yl94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
DCV-MVSNet94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
v114491.37 23890.60 23893.68 25493.89 32988.23 23996.84 18897.03 21288.37 26189.69 25694.39 28482.04 20797.98 26587.80 24385.37 32194.84 315
v14419291.06 25390.28 25093.39 26593.66 33787.23 26596.83 18997.07 20587.43 28989.69 25694.28 29281.48 21798.00 26387.18 26384.92 33294.93 309
Fast-Effi-MVS+93.46 14792.75 15695.59 14896.77 18090.03 17596.81 19097.13 19788.19 26591.30 21494.27 29386.21 13698.63 19687.66 25196.46 16798.12 166
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19196.72 23694.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
TAPA-MVS90.10 792.30 19791.22 21495.56 14998.33 8089.60 19096.79 19197.65 13681.83 36291.52 20697.23 13687.94 10698.91 16771.31 38398.37 11298.17 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14890.99 25690.38 24592.81 28793.83 33185.80 29696.78 19396.68 24189.45 22388.75 28493.93 30982.96 18897.82 29187.83 24283.25 35194.80 321
test_fmvs383.21 34783.02 34483.78 36986.77 39268.34 39596.76 19494.91 32686.49 30684.14 35189.48 37436.04 39991.73 39191.86 16480.77 36491.26 381
v192192090.85 26290.03 26593.29 26993.55 33886.96 27396.74 19597.04 21087.36 29189.52 26394.34 28780.23 23897.97 26886.27 27485.21 32594.94 307
Anonymous2024052186.42 32885.44 32889.34 35290.33 37679.79 36696.73 19695.92 27583.71 34883.25 35891.36 36163.92 37396.01 35678.39 35385.36 32292.22 371
v119291.07 25290.23 25493.58 25893.70 33487.82 25496.73 19697.07 20587.77 28089.58 25994.32 29080.90 22697.97 26886.52 27185.48 31994.95 305
PVSNet_BlendedMVS94.06 12493.92 11494.47 20798.27 8389.46 19996.73 19698.36 2490.17 20294.36 13795.24 24688.02 10499.58 7793.44 13490.72 27094.36 338
TAMVS94.01 12793.46 13095.64 14496.16 22190.45 16696.71 19996.89 22689.27 22893.46 15996.92 15387.29 12297.94 27788.70 23295.74 17798.53 128
MVS_Test94.89 10294.62 9795.68 14396.83 17489.55 19396.70 20097.17 19591.17 17095.60 11596.11 20587.87 10898.76 18293.01 14797.17 15198.72 118
SixPastTwentyTwo89.15 30088.54 30090.98 33093.49 34280.28 36296.70 20094.70 33390.78 18084.15 35095.57 23271.78 32597.71 30084.63 30085.07 32894.94 307
hse-mvs293.45 14892.99 14394.81 18997.02 16288.59 22696.69 20296.47 25595.19 2096.74 6496.16 19983.67 17098.48 21095.85 7179.13 37197.35 208
EPNet_dtu91.71 21791.28 21092.99 27993.76 33383.71 32896.69 20295.28 30893.15 10487.02 32195.95 20983.37 17697.38 32979.46 34796.84 15597.88 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft91.00 694.11 12293.43 13396.13 11698.58 6891.15 14296.69 20297.39 17887.29 29391.37 21096.71 16188.39 9999.52 9587.33 25997.13 15297.73 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testgi87.97 31387.21 31390.24 34392.86 35480.76 35296.67 20594.97 32391.74 14985.52 33695.83 21562.66 37794.47 37776.25 36388.36 29595.48 273
AUN-MVS91.76 21690.75 23194.81 18997.00 16688.57 22796.65 20696.49 25489.63 21692.15 18996.12 20178.66 26798.50 20790.83 18479.18 37097.36 206
OPM-MVS93.28 15392.76 15494.82 18794.63 30690.77 15596.65 20697.18 19393.72 7791.68 20397.26 13479.33 25498.63 19692.13 15792.28 23895.07 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC95.86 23396.65 20693.55 8290.14 235
ACMP_Plane95.86 23396.65 20693.55 8290.14 235
HQP-MVS93.19 15792.74 15794.54 20595.86 23389.33 20596.65 20697.39 17893.55 8290.14 23595.87 21280.95 22298.50 20792.13 15792.10 24495.78 260
EU-MVSNet88.72 30788.90 29588.20 35793.15 35174.21 38596.63 21194.22 34885.18 32787.32 31595.97 20776.16 29594.98 37385.27 29286.17 31295.41 278
v124090.70 26889.85 27093.23 27193.51 34186.80 27496.61 21297.02 21387.16 29689.58 25994.31 29179.55 25197.98 26585.52 28985.44 32094.90 312
K. test v387.64 31886.75 32090.32 34293.02 35379.48 37196.61 21292.08 37690.66 18980.25 37394.09 30367.21 35896.65 35185.96 28480.83 36394.83 316
thres20092.23 20291.39 20494.75 19697.61 13289.03 21796.60 21495.09 31892.08 14193.28 16494.00 30678.39 27299.04 15781.26 33694.18 20896.19 240
WTY-MVS94.71 10894.02 11296.79 7297.71 12492.05 10296.59 21597.35 18490.61 19394.64 13296.93 15086.41 13399.39 11191.20 18094.71 20198.94 97
CNLPA94.28 11393.53 12596.52 8298.38 7892.55 8596.59 21596.88 22790.13 20591.91 19597.24 13585.21 14899.09 14487.64 25297.83 12897.92 177
AdaColmapbinary94.34 11293.68 11996.31 10298.59 6691.68 11496.59 21597.81 12189.87 20892.15 18997.06 14583.62 17299.54 8989.34 21598.07 12397.70 190
IterMVS-LS92.29 19891.94 18693.34 26796.25 21586.97 27296.57 21897.05 20890.67 18789.50 26494.80 26486.59 12897.64 30589.91 20086.11 31495.40 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest90.23 28188.98 29393.98 23397.94 11186.64 27896.51 21995.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
EI-MVSNet93.03 16792.88 14993.48 26295.77 23886.98 27196.44 22097.12 19890.66 18991.30 21497.64 11486.56 12998.05 25689.91 20090.55 27295.41 278
CVMVSNet91.23 24591.75 19289.67 34995.77 23874.69 38496.44 22094.88 32885.81 31792.18 18897.64 11479.07 25795.58 36888.06 23895.86 17598.74 117
OMC-MVS95.09 9494.70 9696.25 11198.46 7091.28 13096.43 22297.57 14792.04 14294.77 13097.96 8787.01 12699.09 14491.31 17796.77 15798.36 149
test_prior493.66 5796.42 223
test_vis1_rt86.16 33285.06 33389.46 35193.47 34480.46 35896.41 22486.61 39985.22 32679.15 37788.64 37852.41 39197.06 33893.08 14290.57 27190.87 382
Effi-MVS+94.93 10094.45 10796.36 10096.61 18891.47 12496.41 22497.41 17791.02 17694.50 13595.92 21087.53 11698.78 17893.89 12696.81 15698.84 112
TEST998.70 5694.19 4296.41 22498.02 9488.17 26696.03 9897.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3898.70 5694.19 4296.41 22498.02 9488.58 25396.03 9897.56 12192.73 3199.59 7495.04 9699.37 5799.39 56
WR-MVS92.34 19491.53 20094.77 19495.13 27990.83 15296.40 22897.98 10091.88 14689.29 27095.54 23582.50 19897.80 29289.79 20485.27 32495.69 268
BH-untuned92.94 17292.62 16393.92 24297.22 14686.16 29396.40 22896.25 26590.06 20689.79 25396.17 19883.19 17898.35 22187.19 26297.27 14797.24 213
TDRefinement86.53 32684.76 33791.85 30982.23 39984.25 31996.38 23095.35 30484.97 33284.09 35294.94 25565.76 36998.34 22484.60 30174.52 38192.97 358
test_898.67 5894.06 4996.37 23198.01 9788.58 25395.98 10297.55 12392.73 3199.58 77
test_prior296.35 23292.80 12196.03 9897.59 11892.01 4395.01 10099.38 54
CDPH-MVS95.97 7195.38 8097.77 3398.93 4794.44 3496.35 23297.88 10986.98 29896.65 7097.89 9091.99 4499.47 10292.26 15199.46 4099.39 56
CDS-MVSNet94.14 12193.54 12495.93 12796.18 21991.46 12596.33 23497.04 21088.97 23993.56 15496.51 18087.55 11497.89 28589.80 20395.95 17298.44 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10993.80 11696.64 7497.07 15591.97 10596.32 23598.06 8288.94 24094.50 13596.78 15884.60 15599.27 12291.90 16196.02 17098.68 122
1112_ss93.37 15092.42 17396.21 11297.05 16090.99 14496.31 23696.72 23686.87 30189.83 25296.69 16586.51 13199.14 13788.12 23793.67 22198.50 132
LTVRE_ROB88.41 1390.99 25689.92 26894.19 22296.18 21989.55 19396.31 23697.09 20287.88 27485.67 33595.91 21178.79 26698.57 20381.50 32989.98 27894.44 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040286.46 32784.79 33691.45 32195.02 28385.55 29996.29 23894.89 32780.90 36782.21 36393.97 30868.21 35397.29 33362.98 39288.68 29291.51 377
pmmvs589.86 29388.87 29692.82 28692.86 35486.23 29096.26 23995.39 30184.24 34087.12 31794.51 27774.27 31197.36 33087.61 25487.57 30094.86 314
xiu_mvs_v1_base_debu95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base_debi95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
MVS_111021_LR96.24 6496.19 6396.39 9798.23 9191.35 12996.24 24398.79 693.99 6995.80 10797.65 11189.92 8099.24 12495.87 6999.20 7298.58 125
CANet_DTU94.37 11193.65 12096.55 8096.46 20692.13 10096.21 24496.67 24394.38 6093.53 15797.03 14779.34 25399.71 4690.76 18698.45 11097.82 185
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24598.90 394.30 6295.86 10597.74 10492.33 3899.38 11396.04 6599.42 4799.28 65
D2MVS91.30 24390.95 22192.35 29694.71 30385.52 30096.18 24698.21 5188.89 24286.60 32893.82 31279.92 24497.95 27689.29 21790.95 26793.56 351
BH-RMVSNet92.72 18491.97 18594.97 17997.16 15087.99 24796.15 24795.60 29390.62 19291.87 19797.15 14178.41 27198.57 20383.16 31497.60 13498.36 149
Anonymous2023120687.09 32386.14 32489.93 34791.22 37280.35 35996.11 24895.35 30483.57 35084.16 34993.02 33473.54 31895.61 36672.16 38086.14 31393.84 349
jason94.84 10494.39 10996.18 11495.52 24890.93 14896.09 24996.52 25289.28 22796.01 10197.32 12984.70 15498.77 18195.15 9598.91 9298.85 110
jason: jason.
EG-PatchMatch MVS87.02 32485.44 32891.76 31692.67 35885.00 31196.08 25096.45 25683.41 35279.52 37593.49 32557.10 38597.72 29979.34 34990.87 26992.56 365
131492.81 18192.03 18295.14 16895.33 26489.52 19696.04 25197.44 17287.72 28386.25 33195.33 24183.84 16798.79 17789.26 21897.05 15397.11 216
MVS91.71 21790.44 24395.51 15395.20 27491.59 11896.04 25197.45 16873.44 39087.36 31495.60 23185.42 14699.10 14185.97 28397.46 13695.83 255
MG-MVS95.61 8095.38 8096.31 10298.42 7390.53 16396.04 25197.48 15893.47 8995.67 11398.10 7389.17 8699.25 12391.27 17898.77 9599.13 77
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16798.09 10186.63 28196.00 25498.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
diffmvspermissive95.25 8995.13 8795.63 14596.43 20889.34 20495.99 25597.35 18492.83 11896.31 8597.37 12886.44 13298.67 19296.26 5097.19 15098.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25698.18 5795.23 1995.87 10497.65 11191.45 5399.70 5195.87 6999.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
旧先验295.94 25781.66 36497.34 4898.82 17492.26 151
baseline291.63 22190.86 22493.94 23994.33 31786.32 28795.92 25891.64 37989.37 22586.94 32494.69 26881.62 21698.69 19088.64 23394.57 20296.81 225
ETVMVS90.52 27389.14 29294.67 19896.81 17787.85 25395.91 25993.97 35389.71 21592.34 18592.48 34365.41 37097.96 27281.37 33494.27 20698.21 158
test20.0386.14 33385.40 33088.35 35590.12 37780.06 36495.90 26095.20 31388.59 25281.29 36693.62 32171.43 32792.65 38971.26 38481.17 36292.34 369
testing9191.90 21291.02 21994.53 20696.54 19786.55 28495.86 26195.64 29291.77 14891.89 19693.47 32769.94 33998.86 17090.23 19693.86 21998.18 160
MVP-Stereo90.74 26690.08 26092.71 29093.19 35088.20 24095.86 26196.27 26386.07 31484.86 34394.76 26577.84 28197.75 29783.88 31198.01 12492.17 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9994.56 10096.29 10696.34 21291.21 13495.83 26396.27 26388.93 24196.22 9096.88 15586.20 13798.85 17295.27 9299.05 8498.82 113
testing9991.62 22290.72 23494.32 21696.48 20486.11 29495.81 26494.76 33291.55 15391.75 20193.44 32868.55 35098.82 17490.43 19093.69 22098.04 173
mvs_anonymous93.82 13593.74 11794.06 22896.44 20785.41 30295.81 26497.05 20889.85 21190.09 24496.36 18987.44 11997.75 29793.97 12296.69 16199.02 86
新几何295.79 266
无先验95.79 26697.87 11183.87 34699.65 5887.68 25098.89 107
testing1191.68 22090.75 23194.47 20796.53 19986.56 28395.76 26894.51 34091.10 17491.24 22093.59 32268.59 34998.86 17091.10 18194.29 20598.00 174
OpenMVS_ROBcopyleft81.14 2084.42 34482.28 35090.83 33290.06 37884.05 32495.73 26994.04 35173.89 38980.17 37491.53 36059.15 38197.64 30566.92 39089.05 28790.80 383
dmvs_re90.21 28289.50 28392.35 29695.47 25385.15 30895.70 27094.37 34490.94 17888.42 28993.57 32374.63 30895.67 36582.80 32089.57 28396.22 238
原ACMM295.67 271
BH-w/o92.14 20691.75 19293.31 26896.99 16785.73 29795.67 27195.69 28888.73 25189.26 27294.82 26382.97 18798.07 25385.26 29396.32 16896.13 245
TR-MVS91.48 23290.59 23994.16 22496.40 20987.33 25995.67 27195.34 30787.68 28491.46 20895.52 23676.77 28898.35 22182.85 31993.61 22496.79 226
WB-MVSnew89.88 29189.56 28190.82 33394.57 31083.06 33395.65 27492.85 36787.86 27590.83 22594.10 30279.66 24996.88 34676.34 36294.19 20792.54 366
HY-MVS89.66 993.87 13292.95 14696.63 7697.10 15492.49 8795.64 27596.64 24489.05 23593.00 16995.79 22085.77 14399.45 10589.16 22494.35 20397.96 175
RPSCF90.75 26590.86 22490.42 34196.84 17276.29 38295.61 27696.34 26083.89 34491.38 20997.87 9376.45 29198.78 17887.16 26492.23 23996.20 239
iter_conf05_1193.70 14092.99 14395.84 13297.02 16290.22 17295.57 27794.66 33492.81 12096.17 9296.51 18069.56 34299.07 15095.03 9799.60 1798.23 155
MS-PatchMatch90.27 27989.77 27491.78 31494.33 31784.72 31695.55 27896.73 23586.17 31386.36 33095.28 24471.28 32897.80 29284.09 30698.14 12292.81 361
PAPR94.18 11593.42 13596.48 8897.64 12991.42 12795.55 27897.71 13288.99 23792.34 18595.82 21689.19 8599.11 14086.14 27897.38 14198.90 104
Test_1112_low_res92.84 17991.84 19095.85 13197.04 16189.97 18195.53 28096.64 24485.38 32389.65 25895.18 24785.86 14199.10 14187.70 24793.58 22698.49 134
testing22290.31 27788.96 29494.35 21396.54 19787.29 26095.50 28193.84 35890.97 17791.75 20192.96 33562.18 37998.00 26382.86 31794.08 21297.76 187
FMVSNet587.29 32085.79 32691.78 31494.80 29787.28 26195.49 28295.28 30884.09 34283.85 35691.82 35662.95 37694.17 37978.48 35185.34 32393.91 348
PVSNet_Blended94.87 10394.56 10095.81 13398.27 8389.46 19995.47 28398.36 2488.84 24494.36 13796.09 20688.02 10499.58 7793.44 13498.18 12098.40 145
xiu_mvs_v2_base95.32 8795.29 8395.40 16097.22 14690.50 16495.44 28497.44 17293.70 7996.46 8196.18 19688.59 9899.53 9194.79 10997.81 12996.17 241
ab-mvs93.57 14492.55 16696.64 7497.28 14591.96 10695.40 28597.45 16889.81 21393.22 16796.28 19279.62 25099.46 10390.74 18793.11 22798.50 132
MIMVSNet184.93 34183.05 34390.56 33989.56 38284.84 31595.40 28595.35 30483.91 34380.38 37192.21 35257.23 38493.34 38770.69 38682.75 35793.50 352
ET-MVSNet_ETH3D91.49 23190.11 25995.63 14596.40 20991.57 12095.34 28793.48 36290.60 19575.58 38495.49 23780.08 24096.79 34994.25 11889.76 28198.52 129
test22298.24 8792.21 9695.33 28897.60 14279.22 37895.25 12197.84 9888.80 9299.15 7698.72 118
XVG-ACMP-BASELINE90.93 26090.21 25793.09 27694.31 31985.89 29595.33 28897.26 19091.06 17589.38 26695.44 23968.61 34898.60 19989.46 21291.05 26494.79 323
PS-MVSNAJ95.37 8595.33 8295.49 15597.35 14490.66 16195.31 29097.48 15893.85 7496.51 7795.70 22688.65 9599.65 5894.80 10798.27 11696.17 241
XVG-OURS-SEG-HR93.86 13393.55 12394.81 18997.06 15888.53 23095.28 29197.45 16891.68 15194.08 14597.68 10782.41 20198.90 16893.84 12892.47 23696.98 218
CLD-MVS92.98 16992.53 16894.32 21696.12 22689.20 21295.28 29197.47 16192.66 12389.90 24995.62 23080.58 23098.40 21492.73 14992.40 23795.38 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS95.69 7794.92 9098.01 1998.08 10495.71 995.27 29397.62 14190.43 19995.55 11697.07 14491.72 4699.50 9989.62 20998.94 9098.82 113
PatchMatch-RL92.90 17492.02 18395.56 14998.19 9590.80 15395.27 29397.18 19387.96 27191.86 19895.68 22780.44 23398.99 16084.01 30797.54 13596.89 223
testdata195.26 29593.10 107
test0.0.03 189.37 29988.70 29791.41 32392.47 36385.63 29895.22 29692.70 37091.11 17286.91 32693.65 32079.02 26093.19 38878.00 35489.18 28695.41 278
CHOSEN 1792x268894.15 11893.51 12896.06 11998.27 8389.38 20295.18 29798.48 2185.60 32093.76 15297.11 14283.15 18099.61 6991.33 17698.72 9799.19 71
KD-MVS_self_test85.95 33584.95 33488.96 35489.55 38379.11 37495.13 29896.42 25785.91 31684.07 35390.48 36570.03 33894.82 37480.04 34172.94 38592.94 359
IB-MVS87.33 1789.91 28888.28 30394.79 19395.26 27187.70 25695.12 29993.95 35589.35 22687.03 32092.49 34270.74 33299.19 12889.18 22381.37 36197.49 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 32287.02 31787.47 36095.16 27573.21 38895.00 30093.93 35688.55 25686.96 32291.99 35375.90 29694.00 38161.59 39494.11 20995.20 296
myMVS_eth3d87.18 32186.38 32189.58 35095.16 27579.53 36895.00 30093.93 35688.55 25686.96 32291.99 35356.23 38794.00 38175.47 36894.11 20995.20 296
DSMNet-mixed86.34 32986.12 32587.00 36489.88 38070.43 39094.93 30290.08 38877.97 38385.42 33992.78 33774.44 31093.96 38374.43 37195.14 18896.62 229
UWE-MVS89.91 28889.48 28491.21 32695.88 23278.23 37894.91 30390.26 38789.11 23292.35 18494.52 27668.76 34797.96 27283.95 30995.59 18297.42 204
FA-MVS(test-final)93.52 14692.92 14795.31 16296.77 18088.54 22994.82 30496.21 26889.61 21794.20 14195.25 24583.24 17799.14 13790.01 19796.16 16998.25 153
XVG-OURS93.72 13993.35 13694.80 19297.07 15588.61 22594.79 30597.46 16391.97 14593.99 14697.86 9581.74 21498.88 16992.64 15092.67 23596.92 222
SCA91.84 21491.18 21693.83 24495.59 24484.95 31394.72 30695.58 29590.82 17992.25 18793.69 31675.80 29898.10 24586.20 27695.98 17198.45 139
c3_l91.38 23690.89 22292.88 28495.58 24586.30 28894.68 30796.84 23188.17 26688.83 28294.23 29685.65 14497.47 32189.36 21484.63 33494.89 313
mvsany_test193.93 13093.98 11393.78 24894.94 28886.80 27494.62 30892.55 37288.77 25096.85 6098.49 3888.98 8898.08 24995.03 9795.62 18196.46 235
pmmvs490.93 26089.85 27094.17 22393.34 34790.79 15494.60 30996.02 27384.62 33687.45 31095.15 24881.88 21297.45 32387.70 24787.87 29894.27 343
HyFIR lowres test93.66 14192.92 14795.87 12998.24 8789.88 18394.58 31098.49 1985.06 33093.78 15195.78 22182.86 18998.67 19291.77 16695.71 17999.07 85
MDA-MVSNet-bldmvs85.00 34082.95 34591.17 32993.13 35283.33 33194.56 31195.00 32184.57 33765.13 39592.65 33870.45 33395.85 36073.57 37677.49 37494.33 339
WB-MVS76.77 35776.63 36077.18 37685.32 39356.82 40694.53 31289.39 39082.66 35771.35 38889.18 37675.03 30588.88 39635.42 40466.79 39485.84 390
PMMVS92.86 17692.34 17494.42 21194.92 28986.73 27794.53 31296.38 25984.78 33594.27 13995.12 25183.13 18198.40 21491.47 17496.49 16598.12 166
miper_ehance_all_eth91.59 22491.13 21792.97 28095.55 24786.57 28294.47 31496.88 22787.77 28088.88 27994.01 30586.22 13597.54 31489.49 21186.93 30694.79 323
pmmvs-eth3d86.22 33184.45 33891.53 31988.34 38887.25 26394.47 31495.01 32083.47 35179.51 37689.61 37369.75 34195.71 36383.13 31576.73 37891.64 374
cl____90.96 25990.32 24792.89 28395.37 25886.21 29194.46 31696.64 24487.82 27688.15 29994.18 29982.98 18697.54 31487.70 24785.59 31794.92 311
DIV-MVS_self_test90.97 25890.33 24692.88 28495.36 25986.19 29294.46 31696.63 24787.82 27688.18 29894.23 29682.99 18597.53 31687.72 24485.57 31894.93 309
cl2291.21 24690.56 24193.14 27596.09 22886.80 27494.41 31896.58 25087.80 27888.58 28793.99 30780.85 22797.62 30889.87 20286.93 30694.99 304
LF4IMVS87.94 31487.25 31189.98 34692.38 36680.05 36594.38 31995.25 31187.59 28684.34 34694.74 26764.31 37297.66 30484.83 29687.45 30192.23 370
thisisatest051592.29 19891.30 20995.25 16496.60 18988.90 22094.36 32092.32 37387.92 27293.43 16094.57 27477.28 28599.00 15989.42 21395.86 17597.86 181
GA-MVS91.38 23690.31 24894.59 19994.65 30587.62 25794.34 32196.19 26990.73 18390.35 23293.83 31071.84 32497.96 27287.22 26193.61 22498.21 158
IterMVS90.15 28589.67 27891.61 31895.48 25083.72 32794.33 32296.12 27189.99 20787.31 31694.15 30175.78 30096.27 35586.97 26786.89 30994.83 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS76.05 35875.83 36176.72 38084.77 39456.22 40794.32 32388.96 39281.82 36370.52 38988.91 37774.79 30788.71 39733.69 40564.71 39685.23 391
IterMVS-SCA-FT90.31 27789.81 27291.82 31195.52 24884.20 32194.30 32496.15 27090.61 19387.39 31394.27 29375.80 29896.44 35287.34 25886.88 31094.82 318
test-LLR91.42 23491.19 21592.12 30394.59 30780.66 35494.29 32592.98 36591.11 17290.76 22692.37 34579.02 26098.07 25388.81 22996.74 15897.63 192
TESTMET0.1,190.06 28689.42 28591.97 30694.41 31580.62 35694.29 32591.97 37787.28 29490.44 23092.47 34468.79 34697.67 30288.50 23596.60 16397.61 196
test-mter90.19 28489.54 28292.12 30394.59 30780.66 35494.29 32592.98 36587.68 28490.76 22692.37 34567.67 35498.07 25388.81 22996.74 15897.63 192
CMPMVSbinary62.92 2185.62 33884.92 33587.74 35989.14 38473.12 38994.17 32896.80 23373.98 38873.65 38794.93 25666.36 36397.61 30983.95 30991.28 25992.48 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet78.73 35678.71 35778.79 37492.80 35646.50 41194.14 32943.71 41378.61 38080.83 36791.66 35974.94 30696.36 35367.24 38984.45 33993.50 352
eth_miper_zixun_eth91.02 25590.59 23992.34 29895.33 26484.35 31894.10 33096.90 22488.56 25588.84 28194.33 28884.08 16597.60 31088.77 23184.37 34095.06 302
CostFormer91.18 25090.70 23592.62 29394.84 29581.76 34594.09 33194.43 34184.15 34192.72 17693.77 31479.43 25298.20 23290.70 18892.18 24297.90 178
tpm90.25 28089.74 27791.76 31693.92 32779.73 36793.98 33293.54 36188.28 26391.99 19493.25 33277.51 28497.44 32487.30 26087.94 29798.12 166
miper_enhance_ethall91.54 22991.01 22093.15 27495.35 26087.07 27093.97 33396.90 22486.79 30289.17 27493.43 33186.55 13097.64 30589.97 19986.93 30694.74 327
EGC-MVSNET68.77 36563.01 37086.07 36792.49 36282.24 34293.96 33490.96 3840.71 4102.62 41190.89 36353.66 38993.46 38557.25 39784.55 33782.51 393
TinyColmap86.82 32585.35 33191.21 32694.91 29182.99 33493.94 33594.02 35283.58 34981.56 36594.68 26962.34 37898.13 23975.78 36487.35 30592.52 367
CL-MVSNet_self_test86.31 33085.15 33289.80 34888.83 38681.74 34693.93 33696.22 26686.67 30385.03 34190.80 36478.09 27794.50 37574.92 36971.86 38793.15 357
test_vis3_rt72.73 35970.55 36279.27 37380.02 40068.13 39693.92 33774.30 41076.90 38558.99 39973.58 39920.29 40895.37 37184.16 30472.80 38674.31 398
FE-MVS92.05 20891.05 21895.08 17196.83 17487.93 24893.91 33895.70 28686.30 30994.15 14394.97 25376.59 28999.21 12684.10 30596.86 15498.09 170
miper_lstm_enhance90.50 27590.06 26491.83 31095.33 26483.74 32693.86 33996.70 24087.56 28787.79 30493.81 31383.45 17596.92 34587.39 25784.62 33594.82 318
USDC88.94 30287.83 30792.27 30094.66 30484.96 31293.86 33995.90 27787.34 29283.40 35795.56 23367.43 35698.19 23482.64 32489.67 28293.66 350
tpm289.96 28789.21 28992.23 30294.91 29181.25 34893.78 34194.42 34280.62 37291.56 20593.44 32876.44 29297.94 27785.60 28892.08 24697.49 201
ppachtmachnet_test88.35 31187.29 31091.53 31992.45 36483.57 33093.75 34295.97 27484.28 33985.32 34094.18 29979.00 26496.93 34475.71 36584.99 33194.10 344
mvsany_test383.59 34582.44 34987.03 36383.80 39573.82 38693.70 34390.92 38586.42 30782.51 36290.26 36746.76 39495.71 36390.82 18576.76 37791.57 376
new-patchmatchnet83.18 34881.87 35187.11 36286.88 39175.99 38393.70 34395.18 31485.02 33177.30 38288.40 38065.99 36793.88 38474.19 37470.18 38991.47 379
MSDG91.42 23490.24 25394.96 18097.15 15288.91 21993.69 34596.32 26185.72 31986.93 32596.47 18380.24 23798.98 16180.57 33895.05 19296.98 218
EPMVS90.70 26889.81 27293.37 26694.73 30284.21 32093.67 34688.02 39489.50 22192.38 18193.49 32577.82 28297.78 29486.03 28292.68 23498.11 169
cascas91.20 24790.08 26094.58 20394.97 28489.16 21593.65 34797.59 14579.90 37589.40 26592.92 33675.36 30298.36 22092.14 15694.75 19896.23 237
UnsupCasMVSNet_eth85.99 33484.45 33890.62 33889.97 37982.40 34093.62 34897.37 18189.86 20978.59 37992.37 34565.25 37195.35 37282.27 32670.75 38894.10 344
our_test_388.78 30687.98 30691.20 32892.45 36482.53 33793.61 34995.69 28885.77 31884.88 34293.71 31579.99 24296.78 35079.47 34686.24 31194.28 342
test_f80.57 35379.62 35583.41 37083.38 39767.80 39793.57 35093.72 35980.80 37177.91 38187.63 38633.40 40092.08 39087.14 26579.04 37290.34 385
PM-MVS83.48 34681.86 35288.31 35687.83 39077.59 37993.43 35191.75 37886.91 29980.63 36989.91 37144.42 39595.84 36185.17 29576.73 37891.50 378
tpmrst91.44 23391.32 20791.79 31395.15 27779.20 37393.42 35295.37 30388.55 25693.49 15893.67 31982.49 19998.27 22790.41 19189.34 28597.90 178
PAPM91.52 23090.30 24995.20 16595.30 26789.83 18493.38 35396.85 23086.26 31188.59 28695.80 21784.88 15298.15 23775.67 36695.93 17397.63 192
testmvs13.36 37616.33 3794.48 3925.04 4142.26 41793.18 3543.28 4152.70 4088.24 40921.66 4062.29 4152.19 4107.58 4092.96 4089.00 406
YYNet185.87 33684.23 34090.78 33792.38 36682.46 33993.17 35595.14 31682.12 36067.69 39092.36 34878.16 27695.50 37077.31 35779.73 36794.39 337
MDA-MVSNet_test_wron85.87 33684.23 34090.80 33692.38 36682.57 33693.17 35595.15 31582.15 35967.65 39192.33 35178.20 27395.51 36977.33 35679.74 36694.31 341
PatchmatchNetpermissive91.91 21191.35 20593.59 25795.38 25684.11 32293.15 35795.39 30189.54 21992.10 19293.68 31882.82 19198.13 23984.81 29795.32 18698.52 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs89.83 29489.15 29191.89 30894.92 28980.30 36193.11 35895.46 30086.28 31088.08 30092.65 33880.44 23398.52 20681.47 33089.92 27996.84 224
MDTV_nov1_ep13_2view70.35 39193.10 35983.88 34593.55 15582.47 20086.25 27598.38 147
dmvs_testset81.38 35282.60 34877.73 37591.74 37051.49 40893.03 36084.21 40389.07 23378.28 38091.25 36276.97 28788.53 39856.57 39882.24 35893.16 356
MDTV_nov1_ep1390.76 23095.22 27280.33 36093.03 36095.28 30888.14 26892.84 17593.83 31081.34 21898.08 24982.86 31794.34 204
PVSNet86.66 1892.24 20191.74 19493.73 24997.77 12183.69 32992.88 36296.72 23687.91 27393.00 16994.86 26078.51 26999.05 15486.53 27097.45 14098.47 137
dp88.90 30488.26 30490.81 33494.58 30976.62 38092.85 36394.93 32585.12 32990.07 24693.07 33375.81 29798.12 24380.53 33987.42 30397.71 189
test_post192.81 36416.58 40980.53 23197.68 30186.20 276
pmmvs379.97 35477.50 35987.39 36182.80 39879.38 37292.70 36590.75 38670.69 39178.66 37887.47 38851.34 39293.40 38673.39 37769.65 39089.38 387
tpm cat188.36 31087.21 31391.81 31295.13 27980.55 35792.58 36695.70 28674.97 38787.45 31091.96 35578.01 28098.17 23680.39 34088.74 29196.72 228
PCF-MVS89.48 1191.56 22789.95 26696.36 10096.60 18992.52 8692.51 36797.26 19079.41 37788.90 27796.56 17884.04 16699.55 8777.01 36197.30 14697.01 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test12313.04 37715.66 3805.18 3914.51 4153.45 41692.50 3681.81 4162.50 4097.58 41020.15 4073.67 4142.18 4117.13 4101.07 4099.90 405
GG-mvs-BLEND93.62 25593.69 33589.20 21292.39 36983.33 40487.98 30389.84 37271.00 33096.87 34782.08 32795.40 18594.80 321
APD_test179.31 35577.70 35884.14 36889.11 38569.07 39492.36 37091.50 38069.07 39273.87 38692.63 34039.93 39794.32 37870.54 38780.25 36589.02 388
new_pmnet82.89 34981.12 35488.18 35889.63 38180.18 36391.77 37192.57 37176.79 38675.56 38588.23 38261.22 38094.48 37671.43 38282.92 35589.87 386
MIMVSNet88.50 30986.76 31993.72 25194.84 29587.77 25591.39 37294.05 35086.41 30887.99 30292.59 34163.27 37495.82 36277.44 35592.84 23097.57 199
FPMVS71.27 36169.85 36375.50 38174.64 40459.03 40491.30 37391.50 38058.80 39657.92 40088.28 38129.98 40385.53 40153.43 39982.84 35681.95 394
KD-MVS_2432*160084.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
miper_refine_blended84.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
gg-mvs-nofinetune87.82 31585.61 32794.44 20994.46 31289.27 21091.21 37684.61 40280.88 36889.89 25174.98 39671.50 32697.53 31685.75 28797.21 14996.51 231
ADS-MVSNet289.45 29788.59 29992.03 30595.86 23382.26 34190.93 37794.32 34783.23 35391.28 21891.81 35779.01 26295.99 35779.52 34491.39 25797.84 182
ADS-MVSNet89.89 29088.68 29893.53 26095.86 23384.89 31490.93 37795.07 31983.23 35391.28 21891.81 35779.01 26297.85 28779.52 34491.39 25797.84 182
UnsupCasMVSNet_bld82.13 35179.46 35690.14 34488.00 38982.47 33890.89 37996.62 24978.94 37975.61 38384.40 39256.63 38696.31 35477.30 35866.77 39591.63 375
PVSNet_082.17 1985.46 33983.64 34290.92 33195.27 26879.49 37090.55 38095.60 29383.76 34783.00 36189.95 37071.09 32997.97 26882.75 32260.79 40095.31 288
CHOSEN 280x42093.12 16192.72 15994.34 21596.71 18487.27 26290.29 38197.72 12886.61 30591.34 21195.29 24284.29 16298.41 21393.25 13898.94 9097.35 208
CR-MVSNet90.82 26389.77 27493.95 23794.45 31387.19 26690.23 38295.68 29086.89 30092.40 17992.36 34880.91 22497.05 33981.09 33793.95 21797.60 197
RPMNet88.98 30187.05 31594.77 19494.45 31387.19 26690.23 38298.03 9177.87 38492.40 17987.55 38780.17 23999.51 9668.84 38893.95 21797.60 197
LCM-MVSNet72.55 36069.39 36482.03 37170.81 40965.42 40090.12 38494.36 34655.02 39965.88 39381.72 39324.16 40789.96 39274.32 37368.10 39390.71 384
Patchmtry88.64 30887.25 31192.78 28894.09 32386.64 27889.82 38595.68 29080.81 37087.63 30892.36 34880.91 22497.03 34078.86 35085.12 32794.67 329
PatchT88.87 30587.42 30993.22 27294.08 32485.10 31089.51 38694.64 33781.92 36192.36 18288.15 38380.05 24197.01 34272.43 37993.65 22297.54 200
JIA-IIPM88.26 31287.04 31691.91 30793.52 34081.42 34789.38 38794.38 34380.84 36990.93 22480.74 39479.22 25597.92 28182.76 32191.62 25196.38 236
Patchmatch-test89.42 29887.99 30593.70 25295.27 26885.11 30988.98 38894.37 34481.11 36687.10 31993.69 31682.28 20397.50 31974.37 37294.76 19798.48 136
MVS-HIRNet82.47 35081.21 35386.26 36695.38 25669.21 39388.96 38989.49 38966.28 39380.79 36874.08 39868.48 35197.39 32871.93 38195.47 18392.18 372
testf169.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
APD_test269.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
Patchmatch-RL test87.38 31986.24 32290.81 33488.74 38778.40 37788.12 39293.17 36487.11 29782.17 36489.29 37581.95 21095.60 36788.64 23377.02 37598.41 144
PMMVS270.19 36266.92 36580.01 37276.35 40365.67 39986.22 39387.58 39664.83 39562.38 39680.29 39526.78 40588.49 39963.79 39154.07 40185.88 389
ambc86.56 36583.60 39670.00 39285.69 39494.97 32380.60 37088.45 37937.42 39896.84 34882.69 32375.44 38092.86 360
ANet_high63.94 36859.58 37177.02 37761.24 41166.06 39885.66 39587.93 39578.53 38142.94 40371.04 40025.42 40680.71 40352.60 40030.83 40484.28 392
EMVS52.08 37251.31 37554.39 38872.62 40745.39 41283.84 39675.51 40941.13 40340.77 40559.65 40430.08 40273.60 40628.31 40729.90 40544.18 403
E-PMN53.28 37052.56 37455.43 38774.43 40547.13 41083.63 39776.30 40742.23 40242.59 40462.22 40328.57 40474.40 40531.53 40631.51 40344.78 402
PMVScopyleft53.92 2258.58 36955.40 37268.12 38551.00 41248.64 40978.86 39887.10 39846.77 40135.84 40774.28 3978.76 41186.34 40042.07 40273.91 38369.38 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 37353.82 37346.29 38933.73 41345.30 41378.32 39967.24 41218.02 40650.93 40287.05 38952.99 39053.11 40870.76 38525.29 40640.46 404
MVEpermissive50.73 2353.25 37148.81 37666.58 38665.34 41057.50 40572.49 40070.94 41140.15 40439.28 40663.51 4026.89 41373.48 40738.29 40342.38 40268.76 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 36665.41 36875.18 38292.66 35973.45 38766.50 40194.52 33953.33 40057.80 40166.07 40130.81 40189.20 39548.15 40178.88 37362.90 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36764.89 36969.79 38472.62 40735.23 41565.19 40292.83 36920.35 40565.20 39488.08 38443.14 39682.70 40273.12 37863.46 39791.45 380
wuyk23d25.11 37424.57 37826.74 39073.98 40639.89 41457.88 4039.80 41412.27 40710.39 4086.97 4107.03 41236.44 40925.43 40817.39 4073.89 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.24 37530.99 3770.00 3930.00 4160.00 4180.00 40497.63 1400.00 4110.00 41296.88 15584.38 1590.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.39 3799.85 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41188.65 950.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.06 37810.74 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41296.69 1650.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.53 36875.56 367
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22195.76 7599.58 2299.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5798.10 7392.52 3599.65 5894.58 11499.31 61
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 139
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19298.45 139
sam_mvs81.94 211
MTGPAbinary98.08 74
test_post17.58 40881.76 21398.08 249
patchmatchnet-post90.45 36682.65 19698.10 245
gm-plane-assit93.22 34978.89 37684.82 33493.52 32498.64 19587.72 244
test9_res94.81 10699.38 5499.45 47
agg_prior293.94 12499.38 5499.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11299.57 84
TestCases93.98 23397.94 11186.64 27895.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
新几何197.32 5398.60 6593.59 5897.75 12381.58 36595.75 10997.85 9690.04 7799.67 5686.50 27299.13 7898.69 121
旧先验198.38 7893.38 6397.75 12398.09 7592.30 4199.01 8799.16 73
原ACMM196.38 9898.59 6691.09 14397.89 10787.41 29095.22 12397.68 10790.25 7499.54 8987.95 24099.12 8098.49 134
testdata299.67 5685.96 284
segment_acmp92.89 27
testdata95.46 15998.18 9788.90 22097.66 13482.73 35697.03 5798.07 7690.06 7698.85 17289.67 20798.98 8898.64 124
test1297.65 4298.46 7094.26 3997.66 13495.52 11990.89 6799.46 10399.25 6799.22 70
plane_prior796.21 21689.98 180
plane_prior696.10 22790.00 17681.32 219
plane_prior597.51 15598.60 19993.02 14592.23 23995.86 251
plane_prior496.64 168
plane_prior390.00 17694.46 5591.34 211
plane_prior196.14 224
n20.00 417
nn0.00 417
door-mid91.06 383
lessismore_v090.45 34091.96 36979.09 37587.19 39780.32 37294.39 28466.31 36597.55 31384.00 30876.84 37694.70 328
LGP-MVS_train94.10 22696.16 22188.26 23797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
test1197.88 109
door91.13 382
HQP5-MVS89.33 205
BP-MVS92.13 157
HQP4-MVS90.14 23598.50 20795.78 260
HQP3-MVS97.39 17892.10 244
HQP2-MVS80.95 222
NP-MVS95.99 23189.81 18595.87 212
ACMMP++_ref90.30 276
ACMMP++91.02 265
Test By Simon88.73 94
ITE_SJBPF92.43 29595.34 26185.37 30595.92 27591.47 15687.75 30696.39 18871.00 33097.96 27282.36 32589.86 28093.97 347
DeepMVS_CXcopyleft74.68 38390.84 37564.34 40181.61 40665.34 39467.47 39288.01 38548.60 39380.13 40462.33 39373.68 38479.58 395