This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27796.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 27998.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26498.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28491.37 20296.71 16088.39 9999.52 9587.33 25497.13 15197.73 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35391.52 19897.23 13687.94 10698.91 16371.31 37498.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM89.79 892.96 16792.50 16794.35 20896.30 20588.71 22197.58 11797.36 18191.40 15790.53 21896.65 16779.77 24498.75 17691.24 17791.64 23995.59 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 26996.64 24289.05 22793.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
ACMP89.59 1092.62 18192.14 17694.05 22296.40 20088.20 23897.36 14297.25 19091.52 15088.30 28496.64 16878.46 26898.72 18191.86 16291.48 24495.23 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 35897.26 18879.41 36888.90 26896.56 17984.04 16499.55 8777.01 35397.30 14597.01 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25192.73 7898.27 3398.12 6784.86 32485.78 32597.75 10378.89 26399.74 4187.50 25198.65 9896.73 217
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21596.18 21089.55 19196.31 23597.09 20087.88 26685.67 32695.91 20978.79 26498.57 19681.50 32289.98 26994.44 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 27589.18 28293.25 26396.48 19686.45 27996.99 17596.68 23988.83 23784.79 33596.22 19570.16 33598.53 19884.42 29888.04 28794.77 318
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28093.79 24097.95 10987.13 26596.92 18095.89 27782.83 34686.88 31897.18 13873.77 31599.29 12178.44 34493.62 21394.95 297
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH87.59 1690.53 26689.42 27793.87 23696.21 20787.92 24797.24 15396.94 21688.45 25183.91 34696.27 19371.92 32298.62 19184.43 29789.43 27595.05 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS87.33 1789.91 28088.28 29394.79 19095.26 26187.70 25395.12 29193.95 34889.35 21987.03 31192.49 33470.74 33199.19 12889.18 21881.37 35297.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet86.66 1892.24 19891.74 19093.73 24297.77 12083.69 32292.88 35396.72 23487.91 26593.00 16694.86 25878.51 26799.05 15186.53 26597.45 13998.47 135
PVSNet_082.17 1985.46 32983.64 33290.92 32395.27 25879.49 36290.55 37195.60 29183.76 33883.00 35289.95 36171.09 32897.97 26182.75 31560.79 39195.31 280
OpenMVS_ROBcopyleft81.14 2084.42 33482.28 34090.83 32490.06 36884.05 31795.73 26494.04 34673.89 38080.17 36591.53 35159.15 37297.64 29766.92 38189.05 27890.80 374
CMPMVSbinary62.92 2185.62 32884.92 32587.74 35089.14 37473.12 38094.17 31996.80 23173.98 37973.65 37894.93 25466.36 35697.61 30183.95 30491.28 24992.48 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft53.92 2258.58 35955.40 36268.12 37651.00 40248.64 40078.86 38987.10 38946.77 39235.84 39874.28 3888.76 40286.34 39142.07 39373.91 37469.38 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 36148.81 36666.58 37765.34 40057.50 39672.49 39170.94 40240.15 39539.28 39763.51 3936.89 40473.48 39838.29 39442.38 39368.76 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24090.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
WAC-MVS79.53 36075.56 358
Syy-MVS87.13 31287.02 30787.47 35195.16 26573.21 37995.00 29293.93 34988.55 24886.96 31391.99 34475.90 29494.00 37261.59 38594.11 20295.20 288
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23292.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 34991.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
myMVS_eth3d87.18 31186.38 31189.58 34195.16 26579.53 36095.00 29293.93 34988.55 24886.96 31391.99 34456.23 37894.00 37275.47 35994.11 20295.20 288
testing387.67 30786.88 30890.05 33696.14 21580.71 34597.10 16792.85 36090.15 19887.54 30094.55 27355.70 37994.10 37173.77 36694.10 20495.35 277
SSC-MVS76.05 34875.83 35176.72 37184.77 38456.22 39894.32 31488.96 38381.82 35470.52 38088.91 36874.79 30688.71 38833.69 39664.71 38785.23 382
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
WB-MVS76.77 34776.63 35077.18 36785.32 38356.82 39794.53 30389.39 38182.66 34871.35 37989.18 36775.03 30488.88 38735.42 39566.79 38585.84 381
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 194
dmvs_re90.21 27489.50 27692.35 28995.47 24385.15 30195.70 26594.37 33990.94 17288.42 28093.57 31874.63 30795.67 35682.80 31389.57 27496.22 228
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25498.93 16094.61 11092.84 22097.28 201
dmvs_testset81.38 34282.60 33877.73 36691.74 36051.49 39993.03 35184.21 39489.07 22578.28 37191.25 35376.97 28588.53 38956.57 38982.24 34993.16 348
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30298.65 18788.99 22192.84 22097.28 201
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
test_cas_vis1_n_192094.48 10794.55 10094.28 21396.78 17386.45 27997.63 11297.64 13893.32 9497.68 3898.36 5073.75 31699.08 14496.73 3999.05 8397.31 200
test_vis1_n_192094.17 11394.58 9692.91 27597.42 14082.02 33597.83 8497.85 11694.68 4698.10 2998.49 3870.15 33699.32 11797.91 1598.82 9297.40 195
test_vis1_n92.37 18992.26 17492.72 28294.75 29082.64 32798.02 5696.80 23191.18 16597.77 3797.93 8858.02 37498.29 21997.63 1998.21 11797.23 204
test_fmvs1_n92.73 17992.88 14692.29 29296.08 22081.05 34397.98 6197.08 20190.72 17896.79 6298.18 7063.07 36798.45 20497.62 2098.42 11097.36 196
mvsany_test193.93 12793.98 11093.78 24194.94 27886.80 27094.62 29992.55 36488.77 24296.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 225
APD_test179.31 34577.70 34884.14 35989.11 37569.07 38592.36 36191.50 37269.07 38373.87 37792.63 33239.93 38894.32 36970.54 37880.25 35689.02 379
test_vis1_rt86.16 32285.06 32389.46 34293.47 33480.46 35096.41 22386.61 39085.22 31779.15 36888.64 36952.41 38297.06 33093.08 13990.57 26290.87 373
test_vis3_rt72.73 34970.55 35279.27 36480.02 39068.13 38793.92 32874.30 40176.90 37658.99 39073.58 39020.29 39995.37 36284.16 29972.80 37774.31 389
test_fmvs289.77 28589.93 26189.31 34493.68 32676.37 37297.64 11095.90 27589.84 20691.49 19996.26 19458.77 37397.10 32994.65 10891.13 25294.46 326
test_fmvs193.21 15293.53 12292.25 29496.55 19181.20 34297.40 13896.96 21490.68 18096.80 6198.04 7969.25 34098.40 20797.58 2198.50 10497.16 205
test_fmvs383.21 33783.02 33483.78 36086.77 38268.34 38696.76 19394.91 32486.49 29784.14 34289.48 36536.04 39091.73 38291.86 16280.77 35591.26 372
mvsany_test383.59 33582.44 33987.03 35483.80 38573.82 37793.70 33490.92 37786.42 29882.51 35390.26 35846.76 38595.71 35490.82 18276.76 36891.57 367
testf169.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
APD_test269.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
test_f80.57 34379.62 34583.41 36183.38 38767.80 38893.57 34193.72 35180.80 36277.91 37287.63 37733.40 39192.08 38187.14 26079.04 36390.34 376
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 32995.70 28486.30 30094.15 14094.97 25176.59 28799.21 12684.10 30096.86 15398.09 164
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29596.21 26689.61 21094.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19596.64 16879.28 25298.13 23295.34 9091.49 24395.70 258
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31089.73 18597.71 10093.65 35392.78 12090.46 22096.67 16675.88 29597.97 26192.92 14690.89 25995.48 264
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29796.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
EGC-MVSNET68.77 35563.01 36086.07 35892.49 35282.24 33493.96 32590.96 3760.71 4012.62 40290.89 35453.66 38093.46 37657.25 38884.55 32882.51 384
test250691.60 21790.78 22594.04 22397.66 12683.81 31898.27 3375.53 39993.43 8995.23 11998.21 6767.21 35199.07 14893.01 14498.49 10599.25 68
test111193.19 15492.82 14994.30 21297.58 13684.56 31098.21 4389.02 38293.53 8494.58 13098.21 6772.69 31999.05 15193.06 14098.48 10799.28 65
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29598.21 4388.23 38493.43 8994.70 12898.21 6772.57 32099.07 14893.05 14198.49 10599.25 68
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
tt080591.09 24590.07 25794.16 21795.61 23388.31 23297.56 11996.51 25189.56 21189.17 26595.64 22767.08 35598.38 21291.07 17988.44 28595.80 248
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 17598.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 406
eth-test0.00 406
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21592.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
test_method66.11 35764.89 35969.79 37572.62 39735.23 40665.19 39392.83 36120.35 39665.20 38588.08 37543.14 38782.70 39373.12 36963.46 38891.45 371
Anonymous2024052186.42 31885.44 31889.34 34390.33 36679.79 35896.73 19595.92 27383.71 33983.25 34991.36 35263.92 36596.01 34778.39 34585.36 31392.22 362
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 35898.29 150
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36297.35 198
CL-MVSNet_self_test86.31 32085.15 32289.80 33988.83 37681.74 33893.93 32796.22 26486.67 29485.03 33290.80 35578.09 27594.50 36674.92 36071.86 37893.15 349
KD-MVS_2432*160084.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
KD-MVS_self_test85.95 32584.95 32488.96 34589.55 37379.11 36695.13 29096.42 25585.91 30784.07 34490.48 35670.03 33794.82 36580.04 33372.94 37692.94 351
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 20992.15 18396.12 20078.66 26598.50 20090.83 18179.18 36197.36 196
ZD-MVS99.05 3994.59 2998.08 7489.22 22297.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 19498.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
cl2291.21 24090.56 23593.14 26896.09 21986.80 27094.41 30996.58 24887.80 26988.58 27893.99 30380.85 22597.62 30089.87 19786.93 29794.99 296
miper_ehance_all_eth91.59 21891.13 21492.97 27395.55 23786.57 27894.47 30596.88 22587.77 27188.88 27094.01 30186.22 13397.54 30689.49 20686.93 29794.79 315
miper_enhance_ethall91.54 22391.01 21693.15 26795.35 25087.07 26693.97 32496.90 22286.79 29389.17 26593.43 32486.55 12897.64 29789.97 19486.93 29794.74 319
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
dcpmvs_296.37 5997.05 2294.31 21198.96 4684.11 31597.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
cl____90.96 25390.32 24192.89 27695.37 24886.21 28594.46 30796.64 24287.82 26788.15 29094.18 29682.98 18497.54 30687.70 24285.59 30894.92 303
DIV-MVS_self_test90.97 25290.33 24092.88 27795.36 24986.19 28694.46 30796.63 24587.82 26788.18 28994.23 29382.99 18397.53 30887.72 23985.57 30994.93 301
eth_miper_zixun_eth91.02 24990.59 23392.34 29195.33 25484.35 31194.10 32196.90 22288.56 24788.84 27294.33 28584.08 16397.60 30288.77 22684.37 33195.06 294
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20091.57 11895.34 27993.48 35590.60 18975.58 37595.49 23580.08 23896.79 34094.25 11589.76 27298.52 127
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28487.86 25097.23 15797.46 16187.99 26289.90 24096.92 15366.35 35798.23 22290.30 19090.99 25697.96 167
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
miper_refine_blended84.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
miper_lstm_enhance90.50 26890.06 25891.83 30395.33 25483.74 31993.86 33096.70 23887.56 27887.79 29593.81 30983.45 17396.92 33787.39 25284.62 32694.82 310
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
D2MVS91.30 23790.95 21792.35 28994.71 29385.52 29396.18 24598.21 5188.89 23486.60 31993.82 30879.92 24297.95 26889.29 21290.95 25793.56 343
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28597.62 14190.43 19395.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36690.16 19794.09 14196.41 18676.43 29199.05 15190.38 18895.68 17998.31 149
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36793.54 15397.41 12769.94 33899.56 8591.04 18091.11 25398.22 153
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30693.64 15097.45 12466.24 35999.53 9190.68 18692.71 22399.01 89
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26497.97 6792.09 36790.63 18593.88 14797.01 14876.50 28899.06 15090.29 19195.45 18298.38 145
our_test_388.78 29687.98 29691.20 32092.45 35482.53 32993.61 34095.69 28685.77 30984.88 33393.71 31179.99 24096.78 34179.47 33886.24 30294.28 334
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31192.32 36587.92 26493.43 15794.57 27277.28 28399.00 15589.42 20895.86 17497.86 173
ppachtmachnet_test88.35 30187.29 30091.53 31292.45 35483.57 32393.75 33395.97 27284.28 33085.32 33194.18 29679.00 26296.93 33675.71 35684.99 32294.10 336
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19098.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.45 137
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27699.08 14481.40 32494.08 20596.48 223
tfpnnormal89.70 28688.40 29193.60 24995.15 26790.10 17297.56 11998.16 6187.28 28586.16 32394.63 27077.57 28198.05 25074.48 36184.59 32792.65 356
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.48 223
c3_l91.38 23090.89 21892.88 27795.58 23586.30 28294.68 29896.84 22988.17 25888.83 27394.23 29385.65 14297.47 31389.36 20984.63 32594.89 305
CHOSEN 280x42093.12 15892.72 15694.34 20996.71 17987.27 25890.29 37297.72 12886.61 29691.34 20395.29 24084.29 16098.41 20693.25 13598.94 8997.35 198
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26695.27 25885.52 29397.03 16996.63 24592.09 13889.11 26795.14 24780.33 23498.08 24387.54 25094.74 19696.03 239
Effi-MVS+-dtu93.08 16193.21 13792.68 28596.02 22183.25 32597.14 16596.72 23493.85 7291.20 21393.44 32283.08 18098.30 21891.69 16895.73 17796.50 222
CANet_DTU94.37 10893.65 11796.55 7896.46 19792.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25099.71 4690.76 18398.45 10997.82 177
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18195.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
IterMVS-SCA-FT90.31 27089.81 26691.82 30495.52 23884.20 31494.30 31596.15 26890.61 18787.39 30494.27 29075.80 29796.44 34387.34 25386.88 30194.82 310
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
OPM-MVS93.28 15092.76 15194.82 18494.63 29690.77 15496.65 20597.18 19193.72 7591.68 19497.26 13479.33 25198.63 18992.13 15592.28 22895.07 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
ambc86.56 35683.60 38670.00 38385.69 38594.97 32180.60 36188.45 37037.42 38996.84 33982.69 31675.44 37192.86 352
MTGPAbinary98.08 74
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27697.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 231
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
new-patchmatchnet83.18 33881.87 34187.11 35386.88 38175.99 37493.70 33495.18 31285.02 32277.30 37388.40 37165.99 36093.88 37574.19 36570.18 38091.47 370
pmmvs687.81 30686.19 31392.69 28491.32 36186.30 28297.34 14496.41 25680.59 36484.05 34594.37 28367.37 35097.67 29484.75 29379.51 36094.09 338
pmmvs589.86 28388.87 28692.82 27992.86 34486.23 28496.26 23895.39 29984.24 33187.12 30894.51 27474.27 31097.36 32287.61 24987.57 29194.86 306
test_post192.81 35516.58 40080.53 22997.68 29386.20 271
test_post17.58 39981.76 21198.08 243
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25791.30 20694.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
patchmatchnet-post90.45 35782.65 19498.10 239
Anonymous2023121190.63 26489.42 27794.27 21498.24 8789.19 21298.05 5497.89 10779.95 36588.25 28794.96 25272.56 32198.13 23289.70 20185.14 31795.49 263
pmmvs-eth3d86.22 32184.45 32891.53 31288.34 37887.25 25994.47 30595.01 31883.47 34279.51 36789.61 36469.75 33995.71 35483.13 30976.73 36991.64 365
GG-mvs-BLEND93.62 24893.69 32589.20 21092.39 36083.33 39587.98 29489.84 36371.00 32996.87 33882.08 32095.40 18394.80 313
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
Anonymous2023120687.09 31386.14 31489.93 33891.22 36280.35 35196.11 24795.35 30283.57 34184.16 34093.02 32773.54 31795.61 35772.16 37186.14 30493.84 341
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
MTMP97.86 7982.03 396
gm-plane-assit93.22 33978.89 36884.82 32593.52 31998.64 18887.72 239
test9_res94.81 10399.38 5399.45 47
MVP-Stereo90.74 26090.08 25492.71 28393.19 34088.20 23895.86 25996.27 26186.07 30584.86 33494.76 26377.84 27997.75 28983.88 30598.01 12392.17 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.70 5694.19 4096.41 22398.02 9488.17 25896.03 9597.56 12192.74 3099.59 74
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24596.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
gg-mvs-nofinetune87.82 30585.61 31794.44 20394.46 30189.27 20891.21 36784.61 39380.88 35989.89 24274.98 38771.50 32597.53 30885.75 28297.21 14896.51 221
SCA91.84 21091.18 21393.83 23795.59 23484.95 30694.72 29795.58 29390.82 17392.25 18193.69 31275.80 29798.10 23986.20 27195.98 17098.45 137
Patchmatch-test89.42 28887.99 29593.70 24595.27 25885.11 30288.98 37994.37 33981.11 35787.10 31093.69 31282.28 20197.50 31174.37 36394.76 19498.48 134
test_898.67 5894.06 4796.37 23098.01 9788.58 24595.98 9997.55 12392.73 3199.58 77
MS-PatchMatch90.27 27189.77 26891.78 30794.33 30684.72 30995.55 27196.73 23386.17 30486.36 32195.28 24271.28 32797.80 28484.09 30198.14 12192.81 353
Patchmatch-RL test87.38 30986.24 31290.81 32588.74 37778.40 36988.12 38393.17 35787.11 28882.17 35589.29 36681.95 20895.60 35888.64 22877.02 36698.41 142
cdsmvs_eth3d_5k23.24 36530.99 3670.00 3840.00 4060.00 4090.00 39597.63 1400.00 4020.00 40396.88 15584.38 1570.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.39 3699.85 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40288.65 950.00 4030.00 4020.00 4010.00 399
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
tmp_tt51.94 36353.82 36346.29 38033.73 40345.30 40478.32 39067.24 40318.02 39750.93 39387.05 38052.99 38153.11 39970.76 37625.29 39740.46 395
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
anonymousdsp92.16 20191.55 19693.97 22892.58 35189.55 19197.51 12497.42 17489.42 21788.40 28194.84 25980.66 22697.88 27891.87 16191.28 24994.48 325
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
nrg03094.05 12293.31 13496.27 10595.22 26294.59 2998.34 2797.46 16192.93 11591.21 21296.64 16887.23 12298.22 22394.99 9885.80 30795.98 240
v14419291.06 24790.28 24493.39 25893.66 32787.23 26196.83 18897.07 20387.43 28089.69 24794.28 28981.48 21598.00 25787.18 25884.92 32394.93 301
FIs94.09 12093.70 11595.27 15995.70 23092.03 10198.10 4998.68 1393.36 9390.39 22296.70 16287.63 11297.94 26992.25 15190.50 26595.84 244
v192192090.85 25690.03 25993.29 26293.55 32886.96 26996.74 19497.04 20887.36 28289.52 25494.34 28480.23 23697.97 26186.27 26985.21 31694.94 299
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
v119291.07 24690.23 24893.58 25193.70 32487.82 25196.73 19597.07 20387.77 27189.58 25094.32 28780.90 22497.97 26186.52 26685.48 31094.95 297
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24091.45 12498.12 4898.71 1193.37 9190.23 22596.70 16287.66 11097.85 27991.49 17190.39 26695.83 245
v114491.37 23290.60 23293.68 24793.89 31988.23 23796.84 18797.03 21088.37 25389.69 24794.39 28182.04 20597.98 25887.80 23885.37 31294.84 307
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
v14890.99 25090.38 23992.81 28093.83 32185.80 28996.78 19296.68 23989.45 21688.75 27593.93 30582.96 18697.82 28387.83 23783.25 34294.80 313
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
AllTest90.23 27388.98 28493.98 22697.94 11086.64 27496.51 21895.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
TestCases93.98 22697.94 11086.64 27495.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
v7n90.76 25889.86 26393.45 25793.54 32987.60 25597.70 10297.37 17988.85 23587.65 29894.08 30081.08 21998.10 23984.68 29483.79 33994.66 322
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19696.64 16876.35 29298.13 23295.43 8891.42 24695.68 260
RRT_MVS93.10 15992.83 14893.93 23494.76 28888.04 24398.47 2296.55 24993.44 8890.01 23897.04 14680.64 22797.93 27294.33 11490.21 26895.83 245
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 31889.28 20797.75 9297.56 14992.50 12689.94 23996.54 18088.65 9598.18 22893.83 12690.90 25895.86 241
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28297.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 231
jajsoiax92.42 18691.89 18594.03 22493.33 33888.50 22997.73 9597.53 15192.00 14288.85 27196.50 18275.62 30098.11 23893.88 12491.56 24295.48 264
mvs_tets92.31 19391.76 18793.94 23293.41 33588.29 23397.63 11297.53 15192.04 14088.76 27496.45 18474.62 30898.09 24293.91 12291.48 24495.45 269
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
test_prior493.66 5596.42 222
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
v124090.70 26289.85 26493.23 26493.51 33186.80 27096.61 21197.02 21187.16 28789.58 25094.31 28879.55 24897.98 25885.52 28485.44 31194.90 304
pm-mvs190.72 26189.65 27493.96 22994.29 30989.63 18697.79 9096.82 23089.07 22586.12 32495.48 23678.61 26697.78 28686.97 26281.67 35094.46 326
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39691.70 4899.80 3095.66 7599.40 5099.62 18
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25681.66 35597.34 4898.82 16892.26 149
新几何295.79 262
新几何197.32 5198.60 6593.59 5697.75 12381.58 35695.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26297.87 11183.87 33799.65 5887.68 24598.89 105
原ACMM295.67 266
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28195.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
test22298.24 8792.21 9495.33 28097.60 14279.22 36995.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata95.46 15598.18 9788.90 21897.66 13482.73 34797.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
testdata195.26 28793.10 105
v891.29 23890.53 23693.57 25294.15 31188.12 24297.34 14497.06 20588.99 22988.32 28394.26 29283.08 18098.01 25687.62 24883.92 33794.57 324
131492.81 17792.03 17995.14 16495.33 25489.52 19496.04 25097.44 17087.72 27486.25 32295.33 23983.84 16598.79 17089.26 21397.05 15297.11 206
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35690.57 19096.29 8698.31 6069.00 34199.16 13294.18 11695.87 17399.12 80
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34599.39 11196.31 4994.85 19198.71 118
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30395.79 10598.46 4267.59 34899.19 12894.92 9994.85 19198.47 135
v1091.04 24890.23 24893.49 25494.12 31288.16 24197.32 14797.08 20188.26 25688.29 28594.22 29582.17 20497.97 26186.45 26884.12 33394.33 331
VPNet92.23 19991.31 20594.99 17395.56 23690.96 14597.22 15897.86 11592.96 11490.96 21496.62 17775.06 30398.20 22591.90 15983.65 34095.80 248
MVS91.71 21390.44 23795.51 14995.20 26491.59 11696.04 25097.45 16673.44 38187.36 30595.60 22985.42 14499.10 13985.97 27897.46 13595.83 245
v2v48291.59 21890.85 22293.80 23993.87 32088.17 24096.94 17996.88 22589.54 21289.53 25394.90 25681.70 21398.02 25589.25 21485.04 32195.20 288
V4291.58 22090.87 21993.73 24294.05 31588.50 22997.32 14796.97 21388.80 24189.71 24594.33 28582.54 19598.05 25089.01 22085.07 31994.64 323
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 31996.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS91.38 23090.31 24294.59 19594.65 29587.62 25494.34 31296.19 26790.73 17790.35 22393.83 30671.84 32397.96 26687.22 25693.61 21498.21 154
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
ADS-MVSNet289.45 28788.59 28992.03 29895.86 22382.26 33390.93 36894.32 34283.23 34491.28 21091.81 34879.01 26095.99 34879.52 33691.39 24797.84 174
EI-MVSNet93.03 16492.88 14693.48 25595.77 22886.98 26796.44 21997.12 19690.66 18391.30 20697.64 11486.56 12798.05 25089.91 19590.55 26395.41 270
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
CVMVSNet91.23 23991.75 18889.67 34095.77 22874.69 37596.44 21994.88 32685.81 30892.18 18297.64 11479.07 25595.58 35988.06 23395.86 17498.74 115
pmmvs490.93 25489.85 26494.17 21693.34 33790.79 15394.60 30096.02 27184.62 32787.45 30195.15 24681.88 21097.45 31587.70 24287.87 28994.27 335
EU-MVSNet88.72 29788.90 28588.20 34893.15 34174.21 37696.63 21094.22 34385.18 31887.32 30695.97 20576.16 29394.98 36485.27 28786.17 30395.41 270
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
test-LLR91.42 22891.19 21292.12 29694.59 29780.66 34694.29 31692.98 35891.11 16890.76 21692.37 33679.02 25898.07 24788.81 22496.74 15797.63 183
TESTMET0.1,190.06 27889.42 27791.97 29994.41 30480.62 34894.29 31691.97 36987.28 28590.44 22192.47 33568.79 34297.67 29488.50 23096.60 16297.61 187
test-mter90.19 27689.54 27592.12 29694.59 29780.66 34694.29 31692.98 35887.68 27590.76 21692.37 33667.67 34798.07 24788.81 22496.74 15797.63 183
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23092.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30695.75 255
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
testgi87.97 30387.21 30390.24 33492.86 34480.76 34496.67 20494.97 32191.74 14685.52 32795.83 21362.66 36994.47 36876.25 35488.36 28695.48 264
test20.0386.14 32385.40 32088.35 34690.12 36780.06 35695.90 25895.20 31188.59 24481.29 35793.62 31771.43 32692.65 38071.26 37581.17 35392.34 360
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27699.10 13981.61 32194.06 20896.98 208
ADS-MVSNet89.89 28188.68 28893.53 25395.86 22384.89 30790.93 36895.07 31783.23 34491.28 21091.81 34879.01 26097.85 27979.52 33691.39 24797.84 174
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs13.36 36616.33 3694.48 3835.04 4042.26 40893.18 3453.28 4062.70 3998.24 40021.66 3972.29 4062.19 4017.58 4002.96 3999.00 397
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.98 208
test12313.04 36715.66 3705.18 3824.51 4053.45 40792.50 3591.81 4072.50 4007.58 40120.15 3983.67 4052.18 4027.13 4011.07 4009.90 396
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30278.39 27099.04 15481.26 32894.18 20196.19 230
test0.0.03 189.37 28988.70 28791.41 31692.47 35385.63 29195.22 28892.70 36291.11 16886.91 31793.65 31679.02 25893.19 37978.00 34689.18 27795.41 270
pmmvs379.97 34477.50 34987.39 35282.80 38879.38 36492.70 35690.75 37870.69 38278.66 36987.47 37951.34 38393.40 37773.39 36869.65 38189.38 378
EMVS52.08 36251.31 36554.39 37972.62 39745.39 40383.84 38775.51 40041.13 39440.77 39659.65 39530.08 39373.60 39728.31 39829.90 39644.18 394
E-PMN53.28 36052.56 36455.43 37874.43 39547.13 40183.63 38876.30 39842.23 39342.59 39562.22 39428.57 39574.40 39631.53 39731.51 39444.78 393
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
LCM-MVSNet-Re92.50 18292.52 16692.44 28796.82 17281.89 33696.92 18093.71 35292.41 12884.30 33894.60 27185.08 14897.03 33291.51 17097.36 14198.40 143
LCM-MVSNet72.55 35069.39 35482.03 36270.81 39965.42 39190.12 37594.36 34155.02 39065.88 38481.72 38424.16 39889.96 38374.32 36468.10 38490.71 375
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
mvs_anonymous93.82 13293.74 11494.06 22196.44 19885.41 29595.81 26197.05 20689.85 20590.09 23596.36 18987.44 11797.75 28993.97 11996.69 16099.02 86
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
MDA-MVSNet-bldmvs85.00 33082.95 33591.17 32193.13 34283.33 32494.56 30295.00 31984.57 32865.13 38692.65 33070.45 33295.85 35173.57 36777.49 36594.33 331
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 28996.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive95.25 8695.13 8495.63 14196.43 19989.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline291.63 21690.86 22093.94 23294.33 30686.32 28195.92 25791.64 37189.37 21886.94 31594.69 26681.62 21498.69 18388.64 22894.57 19896.81 215
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 33897.68 182
YYNet185.87 32684.23 33090.78 32892.38 35682.46 33193.17 34695.14 31482.12 35167.69 38192.36 33978.16 27495.50 36177.31 34979.73 35894.39 329
PMMVS270.19 35266.92 35580.01 36376.35 39365.67 39086.22 38487.58 38764.83 38662.38 38780.29 38626.78 39688.49 39063.79 38254.07 39285.88 380
MDA-MVSNet_test_wron85.87 32684.23 33090.80 32792.38 35682.57 32893.17 34695.15 31382.15 35067.65 38292.33 34278.20 27195.51 36077.33 34879.74 35794.31 333
tpmvs89.83 28489.15 28391.89 30194.92 27980.30 35393.11 34995.46 29886.28 30188.08 29192.65 33080.44 23198.52 19981.47 32389.92 27096.84 214
PM-MVS83.48 33681.86 34288.31 34787.83 38077.59 37093.43 34291.75 37086.91 29080.63 36089.91 36244.42 38695.84 35285.17 29076.73 36991.50 369
HQP_MVS93.78 13493.43 13094.82 18496.21 20789.99 17697.74 9397.51 15394.85 3491.34 20396.64 16881.32 21798.60 19293.02 14292.23 22995.86 241
plane_prior796.21 20789.98 178
plane_prior696.10 21890.00 17481.32 217
plane_prior597.51 15398.60 19293.02 14292.23 22995.86 241
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 203
plane_prior297.74 9394.85 34
plane_prior196.14 215
plane_prior89.99 17697.24 15394.06 6592.16 233
PS-CasMVS91.55 22290.84 22393.69 24694.96 27588.28 23497.84 8398.24 4791.46 15388.04 29295.80 21579.67 24697.48 31287.02 26184.54 32995.31 280
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25192.83 7497.17 16298.58 1792.98 11290.13 23095.80 21588.37 10097.85 27991.71 16683.93 33595.73 257
PEN-MVS91.20 24190.44 23793.48 25594.49 30087.91 24997.76 9198.18 5791.29 15887.78 29695.74 22180.35 23397.33 32385.46 28582.96 34595.19 291
TransMVSNet (Re)88.94 29287.56 29893.08 27094.35 30588.45 23197.73 9595.23 31087.47 27984.26 33995.29 24079.86 24397.33 32379.44 34074.44 37393.45 346
DTE-MVSNet90.56 26589.75 27093.01 27193.95 31687.25 25997.64 11097.65 13690.74 17687.12 30895.68 22579.97 24197.00 33583.33 30781.66 35194.78 317
DU-MVS92.90 17192.04 17895.49 15194.95 27692.83 7497.16 16398.24 4793.02 10690.13 23095.71 22283.47 17197.85 27991.71 16683.93 33595.78 250
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24593.34 6497.39 13998.71 1193.14 10390.10 23494.83 26087.71 10998.03 25491.67 16983.99 33495.46 268
CP-MVSNet91.89 20991.24 20993.82 23895.05 27288.57 22597.82 8698.19 5591.70 14788.21 28895.76 22081.96 20797.52 31087.86 23684.65 32495.37 276
WR-MVS_H92.00 20691.35 20293.95 23095.09 27189.47 19598.04 5598.68 1391.46 15388.34 28294.68 26785.86 13997.56 30485.77 28184.24 33294.82 310
WR-MVS92.34 19191.53 19794.77 19195.13 26990.83 15196.40 22797.98 10091.88 14489.29 26195.54 23382.50 19697.80 28489.79 19985.27 31595.69 259
NR-MVSNet92.34 19191.27 20895.53 14894.95 27693.05 7097.39 13998.07 7992.65 12384.46 33695.71 22285.00 14997.77 28889.71 20083.52 34195.78 250
Baseline_NR-MVSNet91.20 24190.62 23192.95 27493.83 32188.03 24497.01 17495.12 31588.42 25289.70 24695.13 24883.47 17197.44 31689.66 20383.24 34393.37 347
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28892.07 9997.53 12398.11 7092.90 11689.56 25296.12 20083.16 17797.60 30289.30 21183.20 34495.75 255
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
n20.00 408
nn0.00 408
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
door-mid91.06 375
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28397.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22696.98 208
mvsmamba93.83 13193.46 12794.93 18194.88 28390.85 15098.55 1495.49 29794.24 6191.29 20996.97 14983.04 18298.14 23195.56 8691.17 25195.78 250
MVSFormer95.37 8295.16 8395.99 12496.34 20391.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27394.07 11799.05 8398.85 108
jason94.84 10194.39 10696.18 11295.52 23890.93 14796.09 24896.52 25089.28 22096.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
lupinMVS94.99 9694.56 9796.29 10496.34 20391.21 13395.83 26096.27 26188.93 23396.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
test_djsdf93.07 16292.76 15194.00 22593.49 33288.70 22298.22 4197.57 14691.42 15590.08 23695.55 23282.85 18897.92 27394.07 11791.58 24195.40 273
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19096.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
K. test v387.64 30886.75 31090.32 33393.02 34379.48 36396.61 21192.08 36890.66 18380.25 36494.09 29967.21 35196.65 34285.96 27980.83 35494.83 308
lessismore_v090.45 33191.96 35979.09 36787.19 38880.32 36394.39 28166.31 35897.55 30584.00 30376.84 36794.70 320
SixPastTwentyTwo89.15 29088.54 29090.98 32293.49 33280.28 35496.70 19994.70 33090.78 17484.15 34195.57 23071.78 32497.71 29284.63 29585.07 31994.94 299
OurMVSNet-221017-090.51 26790.19 25291.44 31593.41 33581.25 34096.98 17696.28 26091.68 14886.55 32096.30 19174.20 31197.98 25888.96 22287.40 29595.09 292
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29697.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22596.92 212
XVG-ACMP-BASELINE90.93 25490.21 25193.09 26994.31 30885.89 28895.33 28097.26 18891.06 17089.38 25795.44 23768.61 34398.60 19289.46 20791.05 25494.79 315
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 16992.56 16294.10 21996.16 21288.26 23597.65 10697.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
LGP-MVS_train94.10 21996.16 21288.26 23597.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
test1197.88 109
door91.13 374
EPNet_dtu91.71 21391.28 20792.99 27293.76 32383.71 32196.69 20195.28 30693.15 10287.02 31295.95 20783.37 17497.38 32179.46 33996.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 28998.48 2185.60 31193.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
EPNet95.20 8994.56 9797.14 6392.80 34692.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS89.33 203
HQP-NCC95.86 22396.65 20593.55 8090.14 226
ACMP_Plane95.86 22396.65 20593.55 8090.14 226
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.13 155
HQP4-MVS90.14 22698.50 20095.78 250
HQP3-MVS97.39 17692.10 234
HQP2-MVS80.95 220
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37393.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
DSMNet-mixed86.34 31986.12 31587.00 35589.88 37070.43 38194.93 29490.08 37977.97 37485.42 33092.78 32974.44 30993.96 37474.43 36295.14 18696.62 219
tpm289.96 27989.21 28192.23 29594.91 28181.25 34093.78 33294.42 33780.62 36391.56 19793.44 32276.44 29097.94 26985.60 28392.08 23697.49 192
NP-MVS95.99 22289.81 18395.87 210
EG-PatchMatch MVS87.02 31485.44 31891.76 30992.67 34885.00 30496.08 24996.45 25483.41 34379.52 36693.49 32057.10 37697.72 29179.34 34190.87 26092.56 357
tpm cat188.36 30087.21 30391.81 30595.13 26980.55 34992.58 35795.70 28474.97 37887.45 30191.96 34678.01 27898.17 22980.39 33288.74 28296.72 218
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
CostFormer91.18 24490.70 22992.62 28694.84 28581.76 33794.09 32294.43 33684.15 33292.72 17393.77 31079.43 24998.20 22590.70 18592.18 23297.90 170
CR-MVSNet90.82 25789.77 26893.95 23094.45 30287.19 26290.23 37395.68 28886.89 29192.40 17592.36 33980.91 22297.05 33181.09 32993.95 20997.60 188
JIA-IIPM88.26 30287.04 30691.91 30093.52 33081.42 33989.38 37894.38 33880.84 36090.93 21580.74 38579.22 25397.92 27382.76 31491.62 24096.38 226
Patchmtry88.64 29887.25 30192.78 28194.09 31386.64 27489.82 37695.68 28880.81 36187.63 29992.36 33980.91 22297.03 33278.86 34285.12 31894.67 321
PatchT88.87 29587.42 29993.22 26594.08 31485.10 30389.51 37794.64 33381.92 35292.36 17888.15 37480.05 23997.01 33472.43 37093.65 21297.54 191
tpmrst91.44 22791.32 20491.79 30695.15 26779.20 36593.42 34395.37 30188.55 24893.49 15593.67 31582.49 19798.27 22090.41 18789.34 27697.90 170
BH-w/o92.14 20391.75 18893.31 26196.99 16385.73 29095.67 26695.69 28688.73 24389.26 26394.82 26182.97 18598.07 24785.26 28896.32 16796.13 235
tpm90.25 27289.74 27191.76 30993.92 31779.73 35993.98 32393.54 35488.28 25591.99 18893.25 32577.51 28297.44 31687.30 25587.94 28898.12 160
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned92.94 16992.62 16093.92 23597.22 14386.16 28796.40 22796.25 26390.06 20089.79 24496.17 19883.19 17698.35 21487.19 25797.27 14697.24 203
RPMNet88.98 29187.05 30594.77 19194.45 30287.19 26290.23 37398.03 9177.87 37592.40 17587.55 37880.17 23799.51 9668.84 37993.95 20997.60 188
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20695.96 20682.02 20698.05 25093.48 13090.55 26395.47 267
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27095.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
GBi-Net91.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19594.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19694.36 13495.24 24488.02 10499.58 7793.44 13190.72 26194.36 330
UnsupCasMVSNet_eth85.99 32484.45 32890.62 32989.97 36982.40 33293.62 33997.37 17989.86 20378.59 37092.37 33665.25 36395.35 36382.27 31970.75 37994.10 336
UnsupCasMVSNet_bld82.13 34179.46 34690.14 33588.00 37982.47 33090.89 37096.62 24778.94 37075.61 37484.40 38356.63 37796.31 34577.30 35066.77 38691.63 366
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27598.36 2488.84 23694.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
FMVSNet587.29 31085.79 31691.78 30794.80 28787.28 25795.49 27495.28 30684.09 33383.85 34791.82 34762.95 36894.17 37078.48 34385.34 31493.91 340
test191.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
new_pmnet82.89 33981.12 34488.18 34989.63 37180.18 35591.77 36292.57 36376.79 37775.56 37688.23 37361.22 37194.48 36771.43 37382.92 34689.87 377
FMVSNet391.78 21190.69 23095.03 17196.53 19292.27 9397.02 17196.93 21789.79 20889.35 25894.65 26977.01 28497.47 31386.12 27488.82 27995.35 277
dp88.90 29488.26 29490.81 32594.58 29976.62 37192.85 35494.93 32385.12 32090.07 23793.07 32675.81 29698.12 23780.53 33187.42 29497.71 180
FMVSNet291.31 23690.08 25494.99 17396.51 19392.21 9497.41 13496.95 21588.82 23888.62 27694.75 26473.87 31297.42 31885.20 28988.55 28495.35 277
FMVSNet189.88 28288.31 29294.59 19595.41 24491.18 13797.50 12596.93 21786.62 29587.41 30394.51 27465.94 36197.29 32583.04 31087.43 29395.31 280
N_pmnet78.73 34678.71 34778.79 36592.80 34646.50 40294.14 32043.71 40478.61 37180.83 35891.66 35074.94 30596.36 34467.24 38084.45 33093.50 344
cascas91.20 24190.08 25494.58 19994.97 27489.16 21393.65 33897.59 14479.90 36689.40 25692.92 32875.36 30198.36 21392.14 15494.75 19596.23 227
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18691.87 19097.15 14178.41 26998.57 19683.16 30897.60 13398.36 147
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31899.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18794.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
XXY-MVS92.16 20191.23 21094.95 17894.75 29090.94 14697.47 13197.43 17389.14 22488.90 26896.43 18579.71 24598.24 22189.56 20587.68 29095.67 261
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23294.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27396.64 24285.38 31489.65 24995.18 24585.86 13999.10 13987.70 24293.58 21698.49 132
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29289.83 24396.69 16486.51 12999.14 13588.12 23293.67 21198.50 130
ab-mvs-re8.06 36810.74 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40396.69 1640.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27797.45 16689.81 20793.22 16496.28 19279.62 24799.46 10390.74 18493.11 21798.50 130
TR-MVS91.48 22690.59 23394.16 21796.40 20087.33 25695.67 26695.34 30587.68 27591.46 20095.52 23476.77 28698.35 21482.85 31293.61 21496.79 216
MDTV_nov1_ep13_2view70.35 38293.10 35083.88 33693.55 15282.47 19886.25 27098.38 145
MDTV_nov1_ep1390.76 22695.22 26280.33 35293.03 35195.28 30688.14 26092.84 17293.83 30681.34 21698.08 24382.86 31194.34 200
MIMVSNet184.93 33183.05 33390.56 33089.56 37284.84 30895.40 27795.35 30283.91 33480.38 36292.21 34357.23 37593.34 37870.69 37782.75 34893.50 344
MIMVSNet88.50 29986.76 30993.72 24494.84 28587.77 25291.39 36394.05 34586.41 29987.99 29392.59 33363.27 36695.82 35377.44 34792.84 22097.57 190
IterMVS-LS92.29 19591.94 18393.34 26096.25 20686.97 26896.57 21797.05 20690.67 18189.50 25594.80 26286.59 12697.64 29789.91 19586.11 30595.40 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21091.46 12396.33 23397.04 20888.97 23193.56 15196.51 18187.55 11397.89 27789.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref90.30 267
IterMVS90.15 27789.67 27291.61 31195.48 24083.72 32094.33 31396.12 26989.99 20187.31 30794.15 29875.78 29996.27 34686.97 26286.89 30094.83 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25495.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 34989.29 26197.87 9383.77 16699.69 5281.37 32796.69 16098.89 105
ACMMP++91.02 255
HQP-MVS93.19 15492.74 15494.54 20195.86 22389.33 20396.65 20597.39 17693.55 8090.14 22695.87 21080.95 22098.50 20092.13 15592.10 23495.78 250
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 32988.27 28697.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet82.47 34081.21 34386.26 35795.38 24669.21 38488.96 38089.49 38066.28 38480.79 35974.08 38968.48 34497.39 32071.93 37295.47 18192.18 363
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30198.49 1985.06 32193.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
EPMVS90.70 26289.81 26693.37 25994.73 29284.21 31393.67 33788.02 38589.50 21492.38 17793.49 32077.82 28097.78 28686.03 27792.68 22498.11 163
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
TAMVS94.01 12493.46 12795.64 14096.16 21290.45 16596.71 19896.89 22489.27 22193.46 15696.92 15387.29 12097.94 26988.70 22795.74 17698.53 126
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27197.71 13288.99 22992.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
RPSCF90.75 25990.86 22090.42 33296.84 16876.29 37395.61 27096.34 25883.89 33591.38 20197.87 9376.45 28998.78 17187.16 25992.23 22996.20 229
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27688.24 23197.97 12499.02 86
test_040286.46 31784.79 32691.45 31495.02 27385.55 29296.29 23794.89 32580.90 35882.21 35493.97 30468.21 34697.29 32562.98 38388.68 28391.51 368
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22893.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28597.18 19187.96 26391.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 213
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22394.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 220
Test By Simon88.73 94
TDRefinement86.53 31684.76 32791.85 30282.23 38984.25 31296.38 22995.35 30284.97 32384.09 34394.94 25365.76 36298.34 21784.60 29674.52 37292.97 350
USDC88.94 29287.83 29792.27 29394.66 29484.96 30593.86 33095.90 27587.34 28383.40 34895.56 23167.43 34998.19 22782.64 31789.67 27393.66 342
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 17994.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
PMMVS92.86 17392.34 17194.42 20594.92 27986.73 27394.53 30396.38 25784.78 32694.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
PAPM91.52 22490.30 24395.20 16195.30 25789.83 18293.38 34496.85 22886.26 30288.59 27795.80 21584.88 15098.15 23075.67 35795.93 17297.63 183
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 19991.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
PatchmatchNetpermissive91.91 20891.35 20293.59 25095.38 24684.11 31593.15 34895.39 29989.54 21292.10 18693.68 31482.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20397.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27390.49 21997.10 14385.21 14699.50 9986.70 26496.72 15997.63 183
ANet_high63.94 35859.58 36177.02 36861.24 40166.06 38985.66 38687.93 38678.53 37242.94 39471.04 39125.42 39780.71 39452.60 39130.83 39584.28 383
wuyk23d25.11 36424.57 36826.74 38173.98 39639.89 40557.88 3949.80 40512.27 39810.39 3996.97 4017.03 40336.44 40025.43 39917.39 3983.89 398
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20292.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 181
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ITE_SJBPF92.43 28895.34 25185.37 29895.92 27391.47 15287.75 29796.39 18871.00 32997.96 26682.36 31889.86 27193.97 339
DeepMVS_CXcopyleft74.68 37490.84 36564.34 39281.61 39765.34 38567.47 38388.01 37648.60 38480.13 39562.33 38473.68 37579.58 386
TinyColmap86.82 31585.35 32191.21 31994.91 28182.99 32693.94 32694.02 34783.58 34081.56 35694.68 26762.34 37098.13 23275.78 35587.35 29692.52 358
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26193.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS87.94 30487.25 30189.98 33792.38 35680.05 35794.38 31095.25 30987.59 27784.34 33794.74 26564.31 36497.66 29684.83 29187.45 29292.23 361
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33696.32 25985.72 31086.93 31696.47 18380.24 23598.98 15780.57 33095.05 19096.98 208
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 31990.29 22498.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
CLD-MVS92.98 16692.53 16594.32 21096.12 21789.20 21095.28 28397.47 15992.66 12289.90 24095.62 22880.58 22898.40 20792.73 14792.40 22795.38 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS71.27 35169.85 35375.50 37274.64 39459.03 39591.30 36491.50 37258.80 38757.92 39188.28 37229.98 39485.53 39253.43 39082.84 34781.95 385
Gipumacopyleft67.86 35665.41 35875.18 37392.66 34973.45 37866.50 39294.52 33553.33 39157.80 39266.07 39230.81 39289.20 38648.15 39278.88 36462.90 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015