This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145290.77 15898.89 898.28 5196.24 198.35 19895.76 5999.58 2199.59 19
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1399.58 2199.59 19
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5296.04 299.24 11195.36 7599.59 1799.56 25
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1399.72 299.77 1
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 999.66 1099.56 25
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 999.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14498.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 999.65 1299.74 7
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13698.08 6395.81 497.87 2798.31 4694.26 1399.68 4597.02 2099.49 3699.57 22
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30396.94 2199.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8593.90 1599.65 4996.62 2899.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15198.07 6893.54 7096.08 8097.69 9293.86 1699.71 3796.50 3299.39 4899.55 28
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6298.57 1398.35 3793.69 1899.40 9797.06 1999.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 16098.77 594.70 3597.99 2398.66 1493.61 1999.91 197.67 599.50 3399.72 10
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23798.15 5195.43 797.95 2498.56 1893.40 2099.36 10196.77 2599.48 3799.45 41
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11398.27 1898.65 1693.33 2199.72 3696.49 3399.52 2899.51 33
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17398.85 998.94 193.33 2199.83 2496.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12998.04 7895.96 297.09 4397.88 7893.18 2399.71 3795.84 5799.17 6799.56 25
9.1496.75 3198.93 4797.73 8298.23 4091.28 14597.88 2698.44 3193.00 2499.65 4995.76 5999.47 38
segment_acmp92.89 25
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17396.72 22194.17 5097.44 3197.66 9692.76 2699.33 10296.86 2497.76 11799.08 76
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10597.51 13993.92 5697.43 3398.52 2292.75 2799.32 10497.32 1799.50 3399.51 33
TEST998.70 5694.19 3896.41 20698.02 8388.17 23796.03 8197.56 10792.74 2899.59 61
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20698.02 8388.58 22696.03 8197.56 10792.73 2999.59 6195.04 8199.37 5299.39 49
test_898.67 5894.06 4596.37 21498.01 8688.58 22695.98 8597.55 10992.73 2999.58 64
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20993.97 13197.57 10592.62 3199.76 3194.66 9399.27 5799.15 68
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10897.97 9095.59 596.61 6097.89 7692.57 3299.84 2195.95 5299.51 3199.40 48
ZD-MVS99.05 3994.59 2898.08 6389.22 20497.03 4598.10 5992.52 3399.65 4994.58 9699.31 55
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18597.11 4298.01 6992.52 3399.69 4396.03 5099.53 2799.36 53
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8598.10 6191.50 13598.01 2298.32 4592.33 3599.58 6494.85 8699.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22898.90 294.30 4895.86 8897.74 9092.33 3599.38 10096.04 4999.42 4499.28 58
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 9098.49 1394.66 3897.24 3798.41 3492.31 3798.94 14596.61 2999.46 3998.96 87
旧先验198.38 7793.38 5997.75 11198.09 6192.30 3899.01 7699.16 66
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8297.18 3898.29 4992.08 3999.83 2495.63 6699.59 1799.54 29
test_prior296.35 21592.80 10396.03 8197.59 10492.01 4095.01 8399.38 49
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21597.88 9886.98 26896.65 5897.89 7691.99 4199.47 8992.26 13499.46 3999.39 49
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9196.45 7098.30 4891.90 4299.85 1695.61 6899.68 499.54 29
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4498.03 6691.72 4398.71 16797.10 1899.17 6798.90 95
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26897.62 12790.43 17695.55 9997.07 12891.72 4399.50 8689.62 18998.94 7998.82 104
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6298.29 4991.70 4599.80 2895.66 6199.40 4699.62 15
X-MVStestdata91.71 19889.67 25797.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6232.69 37491.70 4599.80 2895.66 6199.40 4699.62 15
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10896.39 7298.18 5691.61 4799.88 495.59 7199.55 2499.57 22
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10198.19 4492.82 10297.93 2598.74 1391.60 4899.86 896.26 3699.52 2899.67 11
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8597.14 4098.34 4091.59 4999.87 795.46 7399.59 1799.64 13
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23998.18 4695.23 1295.87 8797.65 9791.45 5099.70 4295.87 5399.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6197.45 3098.48 2891.43 5199.59 6196.22 3999.27 5799.54 29
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2391.40 5299.56 7296.05 4799.26 5999.43 45
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10596.70 5498.06 6391.35 5399.86 894.83 8799.28 5699.47 40
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8297.15 3998.33 4391.35 5399.86 895.63 6699.59 1799.62 15
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4797.97 7291.24 5598.75 16196.92 2299.33 5398.94 90
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 12098.04 7894.81 2996.59 6298.37 3691.24 5599.64 5695.16 7999.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 5595.89 5596.40 8597.16 13892.44 8297.47 11797.77 11094.55 4096.48 6794.51 25791.23 5798.92 14695.65 6498.19 10497.82 165
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9398.98 192.22 11597.14 4098.44 3191.17 5899.85 1694.35 9899.46 3999.57 22
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16298.06 7190.67 16495.55 9998.78 1291.07 5999.86 896.58 3099.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8195.95 8698.33 4391.04 6099.88 495.20 7899.57 2399.60 18
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 15096.40 7197.99 7090.99 6199.58 6495.61 6899.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8897.44 3198.55 2090.93 6299.55 7496.06 4699.25 6199.51 33
test1297.65 3998.46 7094.26 3597.66 12295.52 10290.89 6399.46 9099.25 6199.22 63
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13898.08 6395.07 2096.11 7998.59 1790.88 6499.90 296.18 4599.50 3399.58 21
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16697.73 11494.74 3496.49 6698.49 2590.88 6499.58 6496.44 3498.32 10099.13 70
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2390.71 6696.05 4799.26 5999.43 45
EIA-MVS95.53 6895.47 6195.71 12497.06 14789.63 17297.82 7497.87 10093.57 6693.92 13295.04 23490.61 6798.95 14494.62 9598.68 8798.54 118
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7895.54 10198.34 4090.59 6899.88 494.83 8799.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16797.72 11694.67 3796.16 7898.46 2990.43 6999.58 6496.23 3897.96 11198.90 95
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 26095.22 10697.68 9390.25 7099.54 7687.95 21999.12 7298.49 125
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17396.77 5198.35 3790.21 7199.53 7894.80 9099.63 1499.38 51
testdata95.46 14198.18 9488.90 20397.66 12282.73 32797.03 4598.07 6290.06 7298.85 15189.67 18798.98 7798.64 115
新几何197.32 4898.60 6593.59 5497.75 11181.58 33495.75 9297.85 8290.04 7399.67 4786.50 25199.13 7198.69 112
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15398.08 6388.35 23395.09 10997.65 9789.97 7499.48 8892.08 14398.59 9098.44 133
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22698.79 493.99 5495.80 9097.65 9789.92 7599.24 11195.87 5399.20 6598.58 116
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19990.69 16294.24 12397.62 10289.79 7698.81 15493.39 11996.49 15098.92 93
DROMVSNet96.42 4696.47 4296.26 9797.01 15291.52 11098.89 597.75 11194.42 4396.64 5997.68 9389.32 7798.60 17697.45 1399.11 7398.67 114
PAPR94.18 9993.42 11896.48 7897.64 12291.42 11695.55 25497.71 12088.99 21092.34 16695.82 19889.19 7899.11 12586.14 25797.38 12698.90 95
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23497.48 14293.47 7495.67 9698.10 5989.17 7999.25 11091.27 16198.77 8499.13 70
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13897.73 11491.80 12992.93 15796.62 16189.13 8099.14 12289.21 20197.78 11598.97 86
mvsany_test193.93 11393.98 9793.78 22594.94 26086.80 25594.62 28092.55 34588.77 22396.85 4898.49 2588.98 8198.08 22795.03 8295.62 16696.46 209
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9194.56 11798.39 3588.96 8299.85 1694.57 9797.63 11899.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9398.13 5494.81 2996.61 6098.35 3788.87 8399.51 8390.36 17497.35 12899.11 74
API-MVS94.84 8994.49 8995.90 11397.90 10892.00 9697.80 7697.48 14289.19 20594.81 11296.71 14488.84 8499.17 11888.91 20798.76 8596.53 204
test22298.24 8592.21 8995.33 26397.60 12879.22 34795.25 10497.84 8488.80 8599.15 6998.72 109
Test By Simon88.73 86
pcd_1.5k_mvsjas7.39 3489.85 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38088.65 870.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss93.74 12193.51 11194.44 18893.91 30189.28 19397.75 7997.56 13592.50 11089.94 22396.54 16488.65 8798.18 21293.83 11190.90 24095.86 224
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13290.66 14895.31 26597.48 14293.85 5996.51 6595.70 20888.65 8799.65 4994.80 9098.27 10196.17 214
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13490.50 15195.44 25997.44 15693.70 6496.46 6996.18 18088.59 9099.53 7894.79 9297.81 11496.17 214
PLCcopyleft91.00 694.11 10593.43 11696.13 10398.58 6891.15 13196.69 18497.39 16287.29 26391.37 18696.71 14488.39 9199.52 8287.33 23897.13 13797.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13392.67 14395.47 14095.34 23592.83 7297.17 14798.58 1192.98 9690.13 21495.80 19988.37 9297.85 26391.71 15183.93 31695.73 240
PVSNet_BlendedMVS94.06 10793.92 9894.47 18798.27 8289.46 18396.73 17898.36 1790.17 17994.36 12095.24 22888.02 9399.58 6493.44 11690.72 24394.36 310
PVSNet_Blended94.87 8894.56 8595.81 11698.27 8289.46 18395.47 25898.36 1788.84 21794.36 12096.09 18888.02 9399.58 6493.44 11698.18 10598.40 136
TAPA-MVS90.10 792.30 17991.22 19695.56 13198.33 7989.60 17496.79 17397.65 12481.83 33291.52 18297.23 12087.94 9598.91 14871.31 35598.37 9998.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15791.49 11197.50 11197.56 13593.99 5495.13 10897.92 7587.89 9698.78 15695.97 5197.33 12999.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 8794.62 8295.68 12596.83 16189.55 17796.70 18297.17 17991.17 15095.60 9896.11 18787.87 9798.76 16093.01 12997.17 13698.72 109
UniMVSNet (Re)93.31 13592.55 14995.61 12995.39 22993.34 6297.39 12598.71 693.14 8790.10 21894.83 24487.71 9898.03 23891.67 15483.99 31595.46 251
FC-MVSNet-test93.94 11293.57 10595.04 15495.48 22691.45 11598.12 4898.71 693.37 7890.23 20996.70 14687.66 9997.85 26391.49 15690.39 24895.83 228
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12894.52 4196.27 7596.12 18487.65 10099.18 11796.20 4494.82 17998.91 94
FIs94.09 10693.70 10295.27 14595.70 21792.03 9598.10 4998.68 893.36 8090.39 20696.70 14687.63 10197.94 25392.25 13690.50 24795.84 227
CDS-MVSNet94.14 10493.54 10795.93 11296.18 19891.46 11496.33 21797.04 19588.97 21293.56 13796.51 16587.55 10297.89 26189.80 18395.95 15798.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 8594.45 9196.36 9096.61 17191.47 11396.41 20697.41 16191.02 15594.50 11895.92 19287.53 10398.78 15693.89 10896.81 14198.84 103
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16890.45 15397.29 13597.44 15694.00 5395.46 10397.98 7187.52 10498.73 16395.64 6597.33 12999.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13698.25 3590.21 17894.18 12597.27 11787.48 10599.73 3393.53 11397.77 11698.55 117
mvs_anonymous93.82 11893.74 10194.06 20596.44 18685.41 28095.81 24597.05 19389.85 18790.09 21996.36 17387.44 10697.75 27393.97 10496.69 14699.02 79
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15597.96 9195.42 894.86 11197.81 8587.38 10799.82 2696.88 2399.20 6599.29 56
baseline95.58 6695.42 6496.08 10496.78 16490.41 15597.16 14897.45 15293.69 6595.65 9797.85 8287.29 10898.68 16995.66 6197.25 13399.13 70
TAMVS94.01 11093.46 11395.64 12696.16 20090.45 15396.71 18196.89 21189.27 20393.46 14296.92 13787.29 10897.94 25388.70 21195.74 16298.53 119
nrg03094.05 10893.31 12096.27 9695.22 24694.59 2898.34 2797.46 14792.93 9991.21 19696.64 15287.23 11098.22 20794.99 8485.80 28895.98 223
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24995.17 10798.03 6687.09 11199.61 5793.51 11499.42 4499.02 79
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20497.57 13292.04 12494.77 11397.96 7387.01 11299.09 12991.31 16096.77 14298.36 140
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13498.06 7193.92 5693.38 14498.66 1486.83 11399.73 3395.60 7099.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 18091.94 16893.34 24496.25 19486.97 25396.57 20097.05 19390.67 16489.50 23994.80 24686.59 11497.64 28189.91 18086.11 28695.40 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14992.88 13293.48 23995.77 21586.98 25296.44 20297.12 18390.66 16691.30 19097.64 10086.56 11598.05 23489.91 18090.55 24595.41 253
miper_enhance_ethall91.54 20891.01 20193.15 25195.35 23487.07 25193.97 30396.90 20986.79 27289.17 24993.43 30686.55 11697.64 28189.97 17986.93 27894.74 299
1112_ss93.37 13392.42 15596.21 10197.05 14990.99 13396.31 21996.72 22186.87 27189.83 22796.69 14886.51 11799.14 12288.12 21693.67 19498.50 123
diffmvspermissive95.25 7495.13 7295.63 12796.43 18789.34 18895.99 23897.35 16892.83 10196.31 7397.37 11486.44 11898.67 17096.26 3697.19 13598.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 9394.02 9696.79 6397.71 11792.05 9496.59 19797.35 16890.61 17094.64 11596.93 13486.41 11999.39 9891.20 16394.71 18398.94 90
EPNet95.20 7794.56 8597.14 5792.80 32992.68 7697.85 7194.87 31596.64 192.46 16097.80 8786.23 12099.65 4993.72 11298.62 8999.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 20391.13 19992.97 25795.55 22386.57 26394.47 28596.88 21287.77 25088.88 25494.01 28486.22 12197.54 29089.49 19186.93 27894.79 295
Fast-Effi-MVS+93.46 13092.75 13995.59 13096.77 16590.03 15996.81 17297.13 18288.19 23691.30 19094.27 27386.21 12298.63 17387.66 23096.46 15298.12 149
MVSFormer95.37 7095.16 7195.99 11196.34 19191.21 12398.22 4197.57 13291.42 13996.22 7697.32 11586.20 12397.92 25794.07 10299.05 7498.85 101
lupinMVS94.99 8494.56 8596.29 9596.34 19191.21 12395.83 24496.27 24888.93 21496.22 7696.88 13986.20 12398.85 15195.27 7799.05 7498.82 104
114514_t93.95 11193.06 12696.63 6799.07 3791.61 10597.46 11997.96 9177.99 35193.00 15297.57 10586.14 12599.33 10289.22 20099.15 6998.94 90
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17994.39 4596.47 6896.40 17185.89 12699.20 11496.21 4395.11 17598.95 89
WR-MVS_H92.00 19191.35 18793.95 21495.09 25389.47 18198.04 5498.68 891.46 13788.34 26594.68 25185.86 12797.56 28885.77 26584.24 31394.82 290
Test_1112_low_res92.84 16091.84 17195.85 11597.04 15089.97 16595.53 25696.64 22985.38 29489.65 23395.18 22985.86 12799.10 12687.70 22693.58 19998.49 125
HY-MVS89.66 993.87 11592.95 12996.63 6797.10 14392.49 8195.64 25296.64 22989.05 20893.00 15295.79 20285.77 12999.45 9289.16 20494.35 18597.96 155
c3_l91.38 21590.89 20392.88 26195.58 22186.30 26694.68 27996.84 21688.17 23788.83 25794.23 27685.65 13097.47 29789.36 19484.63 30694.89 285
IS-MVSNet94.90 8694.52 8896.05 10797.67 11890.56 14998.44 2396.22 25193.21 8293.99 12997.74 9085.55 13198.45 18889.98 17897.86 11299.14 69
MVS91.71 19890.44 22295.51 13595.20 24891.59 10796.04 23497.45 15273.44 35987.36 28895.60 21385.42 13299.10 12685.97 26297.46 12195.83 228
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11198.15 5193.87 5897.52 2997.61 10385.29 13399.53 7895.81 5895.27 17199.16 66
CNLPA94.28 9793.53 10896.52 7298.38 7792.55 7996.59 19796.88 21290.13 18191.91 17597.24 11985.21 13499.09 12987.64 23197.83 11397.92 157
F-COLMAP93.58 12692.98 12895.37 14398.40 7488.98 20197.18 14697.29 17387.75 25290.49 20397.10 12785.21 13499.50 8686.70 24896.72 14597.63 171
LCM-MVSNet-Re92.50 16792.52 15292.44 27296.82 16381.89 32096.92 16493.71 33492.41 11284.30 31994.60 25585.08 13697.03 31691.51 15597.36 12798.40 136
NR-MVSNet92.34 17691.27 19395.53 13494.95 25893.05 6897.39 12598.07 6892.65 10784.46 31795.71 20685.00 13797.77 27289.71 18583.52 32295.78 233
PAPM91.52 20990.30 22895.20 14795.30 24189.83 16893.38 32396.85 21586.26 28288.59 26195.80 19984.88 13898.15 21475.67 34195.93 15897.63 171
MAR-MVS94.22 9893.46 11396.51 7598.00 10192.19 9197.67 9097.47 14588.13 24093.00 15295.84 19684.86 13999.51 8387.99 21898.17 10697.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 8994.39 9396.18 10295.52 22490.93 13796.09 23296.52 23789.28 20296.01 8497.32 11584.70 14098.77 15995.15 8098.91 8198.85 101
jason: jason.
sss94.51 9493.80 10096.64 6597.07 14491.97 9796.32 21898.06 7188.94 21394.50 11896.78 14184.60 14199.27 10991.90 14496.02 15598.68 113
LS3D93.57 12792.61 14796.47 7997.59 12691.61 10597.67 9097.72 11685.17 29990.29 20898.34 4084.60 14199.73 3383.85 29198.27 10198.06 154
Vis-MVSNet (Re-imp)94.15 10193.88 9994.95 16397.61 12487.92 23298.10 4995.80 26792.22 11593.02 15197.45 11084.53 14397.91 26088.24 21597.97 11099.02 79
GeoE93.89 11493.28 12195.72 12396.96 15589.75 17098.24 3996.92 20889.47 19792.12 17197.21 12184.42 14498.39 19587.71 22596.50 14999.01 82
cdsmvs_eth3d_5k23.24 34430.99 3460.00 3620.00 3850.00 3860.00 37397.63 1260.00 3800.00 38196.88 13984.38 1450.00 3810.00 3790.00 3790.00 377
test_yl94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
DCV-MVSNet94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
CHOSEN 280x42093.12 14492.72 14294.34 19496.71 16987.27 24390.29 35097.72 11686.61 27591.34 18795.29 22484.29 14898.41 19093.25 12098.94 7997.35 185
baseline192.82 16191.90 16995.55 13397.20 13690.77 14497.19 14594.58 32092.20 11792.36 16496.34 17484.16 14998.21 20889.20 20283.90 31997.68 170
eth_miper_zixun_eth91.02 23490.59 21892.34 27595.33 23884.35 29594.10 30096.90 20988.56 22888.84 25694.33 26884.08 15097.60 28688.77 21084.37 31295.06 274
PCF-MVS89.48 1191.56 20689.95 24596.36 9096.60 17292.52 8092.51 33697.26 17479.41 34688.90 25296.56 16384.04 15199.55 7477.01 33797.30 13197.01 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16292.03 16495.14 15095.33 23889.52 18096.04 23497.44 15687.72 25386.25 30395.33 22383.84 15298.79 15589.26 19897.05 13897.11 190
DP-MVS92.76 16391.51 18596.52 7298.77 5390.99 13397.38 12796.08 25782.38 32889.29 24597.87 7983.77 15399.69 4381.37 31196.69 14698.89 98
3Dnovator+91.43 495.40 6994.48 9098.16 1596.90 15695.34 1698.48 2197.87 10094.65 3988.53 26398.02 6883.69 15499.71 3793.18 12198.96 7899.44 43
h-mvs3394.15 10193.52 11096.04 10897.81 11290.22 15797.62 10097.58 13195.19 1396.74 5297.45 11083.67 15599.61 5795.85 5579.73 33898.29 143
hse-mvs293.45 13192.99 12794.81 17197.02 15188.59 20996.69 18496.47 24095.19 1396.74 5296.16 18383.67 15598.48 18795.85 5579.13 34297.35 185
AdaColmapbinary94.34 9693.68 10396.31 9298.59 6691.68 10396.59 19797.81 10989.87 18492.15 16997.06 12983.62 15799.54 7689.34 19598.07 10897.70 169
DU-MVS92.90 15692.04 16395.49 13794.95 25892.83 7297.16 14898.24 3793.02 9090.13 21495.71 20683.47 15897.85 26391.71 15183.93 31695.78 233
Baseline_NR-MVSNet91.20 22690.62 21692.95 25893.83 30488.03 22997.01 15895.12 30188.42 23189.70 23095.13 23283.47 15897.44 30089.66 18883.24 32493.37 328
miper_lstm_enhance90.50 25390.06 24391.83 28795.33 23883.74 30393.86 30996.70 22587.56 25787.79 27993.81 29283.45 16096.92 32287.39 23684.62 30794.82 290
EPNet_dtu91.71 19891.28 19292.99 25693.76 30683.71 30596.69 18495.28 29293.15 8687.02 29595.95 19183.37 16197.38 30579.46 32396.84 14097.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)93.52 12992.92 13095.31 14496.77 16588.54 21294.82 27696.21 25389.61 19294.20 12495.25 22783.24 16299.14 12290.01 17796.16 15498.25 144
BH-untuned92.94 15492.62 14693.92 21997.22 13486.16 27196.40 21096.25 25090.06 18289.79 22896.17 18283.19 16398.35 19887.19 24197.27 13297.24 187
TranMVSNet+NR-MVSNet92.50 16791.63 17895.14 15094.76 27092.07 9397.53 10998.11 5992.90 10089.56 23696.12 18483.16 16497.60 28689.30 19683.20 32595.75 238
CHOSEN 1792x268894.15 10193.51 11196.06 10698.27 8289.38 18695.18 27298.48 1585.60 29193.76 13597.11 12683.15 16599.61 5791.33 15998.72 8699.19 64
PMMVS92.86 15892.34 15694.42 19094.92 26186.73 25894.53 28496.38 24484.78 30694.27 12295.12 23383.13 16698.40 19191.47 15796.49 15098.12 149
Effi-MVS+-dtu93.08 14693.21 12392.68 26996.02 20883.25 30997.14 15096.72 22193.85 5991.20 19793.44 30483.08 16798.30 20291.69 15395.73 16396.50 206
v891.29 22390.53 22193.57 23694.15 29488.12 22797.34 12997.06 19288.99 21088.32 26694.26 27583.08 16798.01 24087.62 23283.92 31894.57 304
mvsmamba93.83 11793.46 11394.93 16694.88 26590.85 14098.55 1495.49 28394.24 4991.29 19396.97 13383.04 16998.14 21595.56 7291.17 23395.78 233
DIV-MVS_self_test90.97 23790.33 22592.88 26195.36 23386.19 27094.46 28796.63 23287.82 24688.18 27294.23 27682.99 17097.53 29287.72 22385.57 29094.93 281
cl____90.96 23890.32 22692.89 26095.37 23286.21 26994.46 28796.64 22987.82 24688.15 27394.18 27982.98 17197.54 29087.70 22685.59 28994.92 283
BH-w/o92.14 18891.75 17393.31 24596.99 15485.73 27595.67 24995.69 27288.73 22489.26 24794.82 24582.97 17298.07 23185.26 27296.32 15396.13 218
v14890.99 23590.38 22492.81 26493.83 30485.80 27496.78 17596.68 22689.45 19888.75 25993.93 28882.96 17397.82 26787.83 22183.25 32394.80 293
HyFIR lowres test93.66 12392.92 13095.87 11498.24 8589.88 16794.58 28298.49 1385.06 30193.78 13495.78 20382.86 17498.67 17091.77 14995.71 16499.07 78
test_djsdf93.07 14792.76 13794.00 20993.49 31588.70 20798.22 4197.57 13291.42 13990.08 22095.55 21682.85 17597.92 25794.07 10291.58 22395.40 256
PatchmatchNetpermissive91.91 19391.35 18793.59 23495.38 23084.11 29993.15 32795.39 28589.54 19492.10 17293.68 29782.82 17698.13 21684.81 27695.32 17098.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 17798.45 130
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
patchmatchnet-post90.45 33782.65 18198.10 223
V4291.58 20590.87 20493.73 22694.05 29888.50 21497.32 13296.97 20088.80 22289.71 22994.33 26882.54 18298.05 23489.01 20585.07 30094.64 303
WR-MVS92.34 17691.53 18294.77 17695.13 25190.83 14196.40 21097.98 8991.88 12889.29 24595.54 21782.50 18397.80 26889.79 18485.27 29695.69 242
tpmrst91.44 21291.32 18991.79 29095.15 24979.20 34693.42 32295.37 28788.55 22993.49 14193.67 29882.49 18498.27 20490.41 17289.34 25797.90 158
MDTV_nov1_ep13_2view70.35 36293.10 32983.88 31693.55 13882.47 18586.25 25498.38 138
XVG-OURS-SEG-HR93.86 11693.55 10694.81 17197.06 14788.53 21395.28 26697.45 15291.68 13294.08 12897.68 9382.41 18698.90 14993.84 11092.47 20896.98 192
QAPM93.45 13192.27 15896.98 6296.77 16592.62 7798.39 2698.12 5684.50 30988.27 26997.77 8882.39 18799.81 2785.40 27098.81 8398.51 122
Patchmatch-test89.42 27287.99 27993.70 22995.27 24285.11 28688.98 35794.37 32581.11 33587.10 29393.69 29582.28 18897.50 29574.37 34594.76 18098.48 127
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13791.58 10898.26 3598.12 5694.38 4694.90 11098.15 5882.28 18898.92 14691.45 15898.58 9199.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 7894.44 9297.44 4596.56 17793.36 6198.65 1198.36 1794.12 5189.25 24898.06 6382.20 19099.77 3093.41 11899.32 5499.18 65
v1091.04 23390.23 23393.49 23894.12 29588.16 22697.32 13297.08 18888.26 23588.29 26894.22 27882.17 19197.97 24586.45 25284.12 31494.33 311
v114491.37 21790.60 21793.68 23193.89 30288.23 22296.84 17097.03 19788.37 23289.69 23194.39 26482.04 19297.98 24287.80 22285.37 29394.84 287
MVSTER93.20 13992.81 13694.37 19296.56 17789.59 17597.06 15297.12 18391.24 14691.30 19095.96 19082.02 19398.05 23493.48 11590.55 24595.47 250
CP-MVSNet91.89 19491.24 19493.82 22295.05 25488.57 21097.82 7498.19 4491.70 13188.21 27195.76 20481.96 19497.52 29487.86 22084.65 30595.37 259
Patchmatch-RL test87.38 29386.24 29490.81 30988.74 35878.40 35088.12 36193.17 33987.11 26782.17 33689.29 34681.95 19595.60 34288.64 21277.02 34698.41 135
sam_mvs81.94 196
pmmvs490.93 23989.85 24994.17 20093.34 32090.79 14394.60 28196.02 25884.62 30787.45 28495.15 23081.88 19797.45 29987.70 22687.87 27094.27 315
test_post17.58 37781.76 19898.08 227
XVG-OURS93.72 12293.35 11994.80 17497.07 14488.61 20894.79 27797.46 14791.97 12793.99 12997.86 8181.74 19998.88 15092.64 13392.67 20696.92 196
v2v48291.59 20390.85 20793.80 22393.87 30388.17 22596.94 16396.88 21289.54 19489.53 23794.90 24081.70 20098.02 23989.25 19985.04 30295.20 270
baseline291.63 20190.86 20593.94 21694.33 28986.32 26595.92 24191.64 35289.37 20086.94 29694.69 25081.62 20198.69 16888.64 21294.57 18496.81 199
v14419291.06 23290.28 22993.39 24293.66 31087.23 24696.83 17197.07 19087.43 25989.69 23194.28 27281.48 20298.00 24187.18 24284.92 30494.93 281
MDTV_nov1_ep1390.76 21195.22 24680.33 33593.03 33095.28 29288.14 23992.84 15893.83 28981.34 20398.08 22782.86 29694.34 186
HQP_MVS93.78 12093.43 11694.82 16996.21 19589.99 16297.74 8097.51 13994.85 2491.34 18796.64 15281.32 20498.60 17693.02 12792.23 21195.86 224
plane_prior696.10 20590.00 16081.32 204
v7n90.76 24389.86 24893.45 24193.54 31287.60 24097.70 8997.37 16588.85 21687.65 28294.08 28381.08 20698.10 22384.68 27883.79 32094.66 302
HQP2-MVS80.95 207
HQP-MVS93.19 14092.74 14094.54 18695.86 21089.33 18996.65 18897.39 16293.55 6790.14 21095.87 19480.95 20798.50 18492.13 14092.10 21695.78 233
CR-MVSNet90.82 24289.77 25393.95 21494.45 28587.19 24790.23 35195.68 27486.89 27092.40 16192.36 32180.91 20997.05 31581.09 31393.95 19297.60 176
Patchmtry88.64 28387.25 28692.78 26594.09 29686.64 25989.82 35495.68 27480.81 33987.63 28392.36 32180.91 20997.03 31678.86 32685.12 29994.67 301
v119291.07 23190.23 23393.58 23593.70 30787.82 23696.73 17897.07 19087.77 25089.58 23494.32 27080.90 21197.97 24586.52 25085.48 29194.95 277
cl2291.21 22590.56 22093.14 25296.09 20686.80 25594.41 28996.58 23587.80 24888.58 26293.99 28680.85 21297.62 28489.87 18286.93 27894.99 276
anonymousdsp92.16 18691.55 18193.97 21292.58 33389.55 17797.51 11097.42 16089.42 19988.40 26494.84 24380.66 21397.88 26291.87 14691.28 23194.48 305
RRT_MVS93.10 14592.83 13493.93 21894.76 27088.04 22898.47 2296.55 23693.44 7590.01 22297.04 13080.64 21497.93 25694.33 9990.21 25095.83 228
CLD-MVS92.98 15192.53 15194.32 19596.12 20489.20 19595.28 26697.47 14592.66 10689.90 22495.62 21280.58 21598.40 19192.73 13292.40 20995.38 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 33316.58 37880.53 21697.68 27786.20 255
VPA-MVSNet93.24 13792.48 15495.51 13595.70 21792.39 8397.86 6898.66 1092.30 11492.09 17395.37 22280.49 21798.40 19193.95 10585.86 28795.75 238
tpmvs89.83 26889.15 26791.89 28594.92 26180.30 33693.11 32895.46 28486.28 28188.08 27492.65 31280.44 21898.52 18381.47 30789.92 25296.84 198
PatchMatch-RL92.90 15692.02 16595.56 13198.19 9290.80 14295.27 26897.18 17787.96 24291.86 17795.68 20980.44 21898.99 14284.01 28797.54 12096.89 197
PEN-MVS91.20 22690.44 22293.48 23994.49 28387.91 23497.76 7898.18 4691.29 14287.78 28095.74 20580.35 22097.33 30785.46 26982.96 32695.19 271
Fast-Effi-MVS+-dtu92.29 18091.99 16693.21 25095.27 24285.52 27897.03 15396.63 23292.09 12289.11 25195.14 23180.33 22198.08 22787.54 23494.74 18296.03 222
MSDG91.42 21390.24 23294.96 16297.15 14088.91 20293.69 31596.32 24685.72 29086.93 29796.47 16780.24 22298.98 14380.57 31495.05 17696.98 192
v192192090.85 24190.03 24493.29 24693.55 31186.96 25496.74 17797.04 19587.36 26189.52 23894.34 26780.23 22397.97 24586.27 25385.21 29794.94 279
RPMNet88.98 27587.05 29094.77 17694.45 28587.19 24790.23 35198.03 8077.87 35392.40 16187.55 35680.17 22499.51 8368.84 36093.95 19297.60 176
ET-MVSNet_ETH3D91.49 21090.11 23895.63 12796.40 18891.57 10995.34 26293.48 33790.60 17275.58 35595.49 21980.08 22596.79 32594.25 10089.76 25498.52 120
PatchT88.87 27987.42 28493.22 24994.08 29785.10 28789.51 35594.64 31981.92 33192.36 16488.15 35280.05 22697.01 31972.43 35193.65 19597.54 179
our_test_388.78 28187.98 28091.20 30492.45 33682.53 31393.61 31995.69 27285.77 28984.88 31493.71 29479.99 22796.78 32679.47 32286.24 28394.28 314
DTE-MVSNet90.56 25089.75 25593.01 25593.95 29987.25 24497.64 9797.65 12490.74 15987.12 29195.68 20979.97 22897.00 32083.33 29281.66 33194.78 297
D2MVS91.30 22290.95 20292.35 27494.71 27585.52 27896.18 22998.21 4188.89 21586.60 30093.82 29179.92 22997.95 25289.29 19790.95 23993.56 324
TransMVSNet (Re)88.94 27687.56 28393.08 25494.35 28888.45 21697.73 8295.23 29687.47 25884.26 32095.29 22479.86 23097.33 30779.44 32474.44 35393.45 327
ACMM89.79 892.96 15292.50 15394.35 19396.30 19388.71 20697.58 10397.36 16791.40 14190.53 20296.65 15179.77 23198.75 16191.24 16291.64 22195.59 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18691.23 19594.95 16394.75 27290.94 13697.47 11797.43 15989.14 20688.90 25296.43 16979.71 23298.24 20589.56 19087.68 27195.67 244
PS-CasMVS91.55 20790.84 20893.69 23094.96 25788.28 21997.84 7298.24 3791.46 13788.04 27595.80 19979.67 23397.48 29687.02 24584.54 31095.31 262
ab-mvs93.57 12792.55 14996.64 6597.28 13391.96 9895.40 26097.45 15289.81 18993.22 15096.28 17679.62 23499.46 9090.74 16993.11 20098.50 123
v124090.70 24789.85 24993.23 24893.51 31486.80 25596.61 19497.02 19887.16 26689.58 23494.31 27179.55 23597.98 24285.52 26885.44 29294.90 284
CostFormer91.18 22990.70 21492.62 27094.84 26781.76 32194.09 30194.43 32284.15 31292.72 15993.77 29379.43 23698.20 20990.70 17092.18 21497.90 158
CANet_DTU94.37 9593.65 10496.55 7196.46 18592.13 9296.21 22796.67 22894.38 4693.53 14097.03 13179.34 23799.71 3790.76 16898.45 9797.82 165
OPM-MVS93.28 13692.76 13794.82 16994.63 27990.77 14496.65 18897.18 17793.72 6291.68 17897.26 11879.33 23898.63 17392.13 14092.28 21095.07 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final93.60 12493.11 12495.04 15497.13 14191.30 11897.92 6595.65 27692.98 9691.60 17996.64 15279.28 23998.13 21695.34 7691.49 22595.70 241
JIA-IIPM88.26 28787.04 29191.91 28493.52 31381.42 32389.38 35694.38 32480.84 33890.93 19980.74 36379.22 24097.92 25782.76 29891.62 22296.38 210
CVMVSNet91.23 22491.75 17389.67 32395.77 21574.69 35696.44 20294.88 31285.81 28892.18 16897.64 10079.07 24195.58 34388.06 21795.86 16098.74 108
LPG-MVS_test92.94 15492.56 14894.10 20396.16 20088.26 22097.65 9397.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
LGP-MVS_train94.10 20396.16 20088.26 22097.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
test-LLR91.42 21391.19 19792.12 28094.59 28080.66 32994.29 29592.98 34091.11 15290.76 20092.37 31879.02 24498.07 23188.81 20896.74 14397.63 171
test0.0.03 189.37 27388.70 27191.41 30092.47 33585.63 27695.22 27192.70 34391.11 15286.91 29893.65 29979.02 24493.19 36078.00 33089.18 25895.41 253
ADS-MVSNet289.45 27188.59 27392.03 28295.86 21082.26 31790.93 34694.32 32783.23 32491.28 19491.81 32879.01 24695.99 33379.52 32091.39 22997.84 162
ADS-MVSNet89.89 26588.68 27293.53 23795.86 21084.89 29190.93 34695.07 30383.23 32491.28 19491.81 32879.01 24697.85 26379.52 32091.39 22997.84 162
ppachtmachnet_test88.35 28687.29 28591.53 29692.45 33683.57 30793.75 31295.97 25984.28 31085.32 31294.18 27979.00 24896.93 32175.71 34084.99 30394.10 317
OpenMVScopyleft89.19 1292.86 15891.68 17796.40 8595.34 23592.73 7598.27 3398.12 5684.86 30485.78 30697.75 8978.89 24999.74 3287.50 23598.65 8896.73 201
LTVRE_ROB88.41 1390.99 23589.92 24794.19 19996.18 19889.55 17796.31 21997.09 18787.88 24585.67 30795.91 19378.79 25098.57 18081.50 30689.98 25194.44 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 19790.75 21294.81 17197.00 15388.57 21096.65 18896.49 23989.63 19192.15 16996.12 18478.66 25198.50 18490.83 16679.18 34197.36 183
pm-mvs190.72 24689.65 25993.96 21394.29 29289.63 17297.79 7796.82 21789.07 20786.12 30595.48 22078.61 25297.78 27086.97 24681.67 33094.46 306
PVSNet86.66 1892.24 18391.74 17593.73 22697.77 11483.69 30692.88 33196.72 22187.91 24493.00 15294.86 24278.51 25399.05 13786.53 24997.45 12598.47 128
ACMP89.59 1092.62 16692.14 16194.05 20696.40 18888.20 22397.36 12897.25 17691.52 13488.30 26796.64 15278.46 25498.72 16691.86 14791.48 22695.23 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 16591.97 16794.97 16197.16 13887.99 23096.15 23095.60 27790.62 16991.87 17697.15 12578.41 25598.57 18083.16 29397.60 11998.36 140
thres20092.23 18491.39 18694.75 17897.61 12489.03 20096.60 19695.09 30292.08 12393.28 14794.00 28578.39 25699.04 14081.26 31294.18 18796.19 213
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33882.57 31293.17 32595.15 29982.15 32967.65 36092.33 32478.20 25795.51 34477.33 33279.74 33794.31 313
tfpn200view992.38 17391.52 18394.95 16397.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.48 207
thres40092.42 17191.52 18395.12 15297.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.98 192
YYNet185.87 30884.23 31290.78 31292.38 33882.46 31593.17 32595.14 30082.12 33067.69 35992.36 32178.16 26095.50 34577.31 33379.73 33894.39 309
CL-MVSNet_self_test86.31 30285.15 30489.80 32288.83 35781.74 32293.93 30696.22 25186.67 27385.03 31390.80 33578.09 26194.50 35074.92 34271.86 35893.15 329
thres100view90092.43 17091.58 18094.98 16097.92 10689.37 18797.71 8794.66 31792.20 11793.31 14694.90 24078.06 26299.08 13181.40 30894.08 18896.48 207
thres600view792.49 16991.60 17995.18 14897.91 10789.47 18197.65 9394.66 31792.18 12193.33 14594.91 23978.06 26299.10 12681.61 30594.06 19196.98 192
tpm cat188.36 28587.21 28891.81 28995.13 25180.55 33292.58 33595.70 27074.97 35687.45 28491.96 32678.01 26498.17 21380.39 31688.74 26396.72 202
MVP-Stereo90.74 24590.08 23992.71 26793.19 32388.20 22395.86 24396.27 24886.07 28584.86 31594.76 24777.84 26597.75 27383.88 29098.01 10992.17 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 24789.81 25193.37 24394.73 27484.21 29793.67 31688.02 36489.50 19692.38 16393.49 30277.82 26697.78 27086.03 26192.68 20598.11 152
tfpnnormal89.70 27088.40 27593.60 23395.15 24990.10 15897.56 10598.16 5087.28 26486.16 30494.63 25477.57 26798.05 23474.48 34384.59 30892.65 336
tpm90.25 25789.74 25691.76 29393.92 30079.73 34293.98 30293.54 33688.28 23491.99 17493.25 30777.51 26897.44 30087.30 23987.94 26998.12 149
thisisatest051592.29 18091.30 19195.25 14696.60 17288.90 20394.36 29192.32 34687.92 24393.43 14394.57 25677.28 26999.00 14189.42 19395.86 16097.86 161
FMVSNet391.78 19690.69 21595.03 15696.53 18092.27 8897.02 15596.93 20489.79 19089.35 24294.65 25377.01 27097.47 29786.12 25888.82 26095.35 260
TR-MVS91.48 21190.59 21894.16 20196.40 18887.33 24195.67 24995.34 29187.68 25491.46 18495.52 21876.77 27198.35 19882.85 29793.61 19796.79 200
FE-MVS92.05 19091.05 20095.08 15396.83 16187.93 23193.91 30895.70 27086.30 28094.15 12694.97 23576.59 27299.21 11384.10 28596.86 13998.09 153
tttt051792.96 15292.33 15794.87 16797.11 14287.16 24997.97 6292.09 34890.63 16893.88 13397.01 13276.50 27399.06 13690.29 17695.45 16898.38 138
RPSCF90.75 24490.86 20590.42 31696.84 15976.29 35495.61 25396.34 24583.89 31591.38 18597.87 7976.45 27498.78 15687.16 24392.23 21196.20 212
tpm289.96 26389.21 26592.23 27994.91 26381.25 32493.78 31194.42 32380.62 34191.56 18193.44 30476.44 27597.94 25385.60 26792.08 21897.49 180
thisisatest053093.03 14992.21 16095.49 13797.07 14489.11 19997.49 11692.19 34790.16 18094.09 12796.41 17076.43 27699.05 13790.38 17395.68 16598.31 142
iter_conf0593.18 14392.63 14494.83 16896.64 17090.69 14697.60 10195.53 28292.52 10991.58 18096.64 15276.35 27798.13 21695.43 7491.42 22895.68 243
EU-MVSNet88.72 28288.90 26988.20 33093.15 32474.21 35796.63 19394.22 32885.18 29887.32 28995.97 18976.16 27894.98 34885.27 27186.17 28495.41 253
bld_raw_dy_0_6492.37 17491.69 17694.39 19194.28 29389.73 17197.71 8793.65 33592.78 10490.46 20496.67 15075.88 27997.97 24592.92 13190.89 24195.48 247
dp88.90 27888.26 27890.81 30994.58 28276.62 35292.85 33294.93 30985.12 30090.07 22193.07 30875.81 28098.12 22180.53 31587.42 27597.71 168
IterMVS-SCA-FT90.31 25589.81 25191.82 28895.52 22484.20 29894.30 29496.15 25590.61 17087.39 28794.27 27375.80 28196.44 32887.34 23786.88 28294.82 290
SCA91.84 19591.18 19893.83 22195.59 22084.95 29094.72 27895.58 27990.82 15692.25 16793.69 29575.80 28198.10 22386.20 25595.98 15698.45 130
IterMVS90.15 26189.67 25791.61 29595.48 22683.72 30494.33 29396.12 25689.99 18387.31 29094.15 28175.78 28396.27 33186.97 24686.89 28194.83 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 17191.89 17094.03 20893.33 32188.50 21497.73 8297.53 13792.00 12688.85 25596.50 16675.62 28498.11 22293.88 10991.56 22495.48 247
cascas91.20 22690.08 23994.58 18494.97 25689.16 19893.65 31797.59 13079.90 34489.40 24092.92 31075.36 28598.36 19792.14 13994.75 18196.23 211
VPNet92.23 18491.31 19094.99 15895.56 22290.96 13597.22 14397.86 10492.96 9890.96 19896.62 16175.06 28698.20 20991.90 14483.65 32195.80 231
N_pmnet78.73 32778.71 32878.79 34692.80 32946.50 37994.14 29943.71 38278.61 34980.83 33991.66 33174.94 28796.36 32967.24 36184.45 31193.50 325
mvs_tets92.31 17891.76 17293.94 21693.41 31888.29 21897.63 9997.53 13792.04 12488.76 25896.45 16874.62 28898.09 22693.91 10791.48 22695.45 252
DSMNet-mixed86.34 30186.12 29787.00 33689.88 35170.43 36194.93 27590.08 36077.97 35285.42 31192.78 31174.44 28993.96 35574.43 34495.14 17296.62 203
pmmvs589.86 26788.87 27092.82 26392.86 32786.23 26896.26 22295.39 28584.24 31187.12 29194.51 25774.27 29097.36 30687.61 23387.57 27294.86 286
OurMVSNet-221017-090.51 25290.19 23791.44 29993.41 31881.25 32496.98 16096.28 24791.68 13286.55 30196.30 17574.20 29197.98 24288.96 20687.40 27695.09 272
GBi-Net91.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
test191.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
FMVSNet291.31 22190.08 23994.99 15896.51 18192.21 8997.41 12096.95 20288.82 21988.62 26094.75 24873.87 29297.42 30285.20 27388.55 26595.35 260
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26493.79 22497.95 10387.13 25096.92 16495.89 26482.83 32686.88 29997.18 12273.77 29599.29 10878.44 32893.62 19694.95 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023120687.09 29586.14 29689.93 32191.22 34380.35 33496.11 23195.35 28883.57 32184.16 32193.02 30973.54 29695.61 34172.16 35286.14 28593.84 322
UGNet94.04 10993.28 12196.31 9296.85 15891.19 12697.88 6797.68 12194.40 4493.00 15296.18 18073.39 29799.61 5791.72 15098.46 9698.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111193.19 14092.82 13594.30 19797.58 12884.56 29498.21 4389.02 36293.53 7194.58 11698.21 5372.69 29899.05 13793.06 12598.48 9599.28 58
ECVR-MVScopyleft93.19 14092.73 14194.57 18597.66 12085.41 28098.21 4388.23 36393.43 7694.70 11498.21 5372.57 29999.07 13493.05 12698.49 9399.25 61
Anonymous2023121190.63 24989.42 26194.27 19898.24 8589.19 19798.05 5397.89 9679.95 34388.25 27094.96 23672.56 30098.13 21689.70 18685.14 29895.49 246
ACMH87.59 1690.53 25189.42 26193.87 22096.21 19587.92 23297.24 13896.94 20388.45 23083.91 32796.27 17771.92 30198.62 17584.43 28289.43 25695.05 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 21590.31 22794.59 18094.65 27787.62 23994.34 29296.19 25490.73 16090.35 20793.83 28971.84 30297.96 25087.22 24093.61 19798.21 146
SixPastTwentyTwo89.15 27488.54 27490.98 30693.49 31580.28 33796.70 18294.70 31690.78 15784.15 32295.57 21471.78 30397.71 27684.63 27985.07 30094.94 279
gg-mvs-nofinetune87.82 29085.61 29994.44 18894.46 28489.27 19491.21 34584.61 37280.88 33789.89 22674.98 36571.50 30497.53 29285.75 26697.21 13496.51 205
test20.0386.14 30585.40 30288.35 32890.12 34880.06 33995.90 24295.20 29788.59 22581.29 33893.62 30071.43 30592.65 36171.26 35681.17 33392.34 340
MS-PatchMatch90.27 25689.77 25391.78 29194.33 28984.72 29395.55 25496.73 22086.17 28486.36 30295.28 22671.28 30697.80 26884.09 28698.14 10792.81 333
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 34390.55 34995.60 27783.76 31883.00 33389.95 34171.09 30797.97 24582.75 29960.79 36995.31 262
GG-mvs-BLEND93.62 23293.69 30889.20 19592.39 33883.33 37387.98 27889.84 34371.00 30896.87 32382.08 30495.40 16994.80 293
ITE_SJBPF92.43 27395.34 23585.37 28395.92 26091.47 13687.75 28196.39 17271.00 30897.96 25082.36 30289.86 25393.97 320
IB-MVS87.33 1789.91 26488.28 27794.79 17595.26 24587.70 23895.12 27493.95 33289.35 20187.03 29492.49 31670.74 31099.19 11589.18 20381.37 33297.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 31282.95 31791.17 30593.13 32583.33 30894.56 28395.00 30584.57 30865.13 36492.65 31270.45 31195.85 33673.57 34877.49 34594.33 311
AllTest90.23 25888.98 26893.98 21097.94 10486.64 25996.51 20195.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
TestCases93.98 21097.94 10486.64 25995.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
ACMH+87.92 1490.20 25989.18 26693.25 24796.48 18486.45 26496.99 15996.68 22688.83 21884.79 31696.22 17970.16 31498.53 18284.42 28388.04 26894.77 298
test_vis1_n_192094.17 10094.58 8492.91 25997.42 13182.02 31997.83 7397.85 10594.68 3698.10 2098.49 2570.15 31599.32 10497.91 298.82 8297.40 182
KD-MVS_self_test85.95 30784.95 30688.96 32789.55 35479.11 34795.13 27396.42 24285.91 28784.07 32590.48 33670.03 31694.82 34980.04 31772.94 35692.94 331
Anonymous2024052991.98 19290.73 21395.73 12298.14 9689.40 18597.99 5697.72 11679.63 34593.54 13997.41 11369.94 31799.56 7291.04 16591.11 23598.22 145
pmmvs-eth3d86.22 30384.45 31091.53 29688.34 35987.25 24494.47 28595.01 30483.47 32279.51 34889.61 34469.75 31895.71 33983.13 29476.73 34991.64 345
test_fmvs193.21 13893.53 10892.25 27896.55 17981.20 32697.40 12496.96 20190.68 16396.80 4998.04 6569.25 31998.40 19197.58 898.50 9297.16 189
LFMVS93.60 12492.63 14496.52 7298.13 9791.27 12097.94 6393.39 33890.57 17396.29 7498.31 4669.00 32099.16 11994.18 10195.87 15999.12 73
TESTMET0.1,190.06 26289.42 26191.97 28394.41 28780.62 33194.29 29591.97 35087.28 26490.44 20592.47 31768.79 32197.67 27888.50 21496.60 14897.61 175
XVG-ACMP-BASELINE90.93 23990.21 23693.09 25394.31 29185.89 27395.33 26397.26 17491.06 15489.38 24195.44 22168.61 32298.60 17689.46 19291.05 23694.79 295
MVS-HIRNet82.47 32281.21 32486.26 33895.38 23069.21 36488.96 35889.49 36166.28 36280.79 34074.08 36768.48 32397.39 30471.93 35395.47 16792.18 343
VDD-MVS93.82 11893.08 12596.02 10997.88 10989.96 16697.72 8595.85 26592.43 11195.86 8898.44 3168.42 32499.39 9896.31 3594.85 17798.71 111
test_040286.46 29984.79 30891.45 29895.02 25585.55 27796.29 22194.89 31180.90 33682.21 33593.97 28768.21 32597.29 30962.98 36488.68 26491.51 348
test-mter90.19 26089.54 26092.12 28094.59 28080.66 32994.29 29592.98 34087.68 25490.76 20092.37 31867.67 32698.07 23188.81 20896.74 14397.63 171
VDDNet93.05 14892.07 16296.02 10996.84 15990.39 15698.08 5195.85 26586.22 28395.79 9198.46 2967.59 32799.19 11594.92 8594.85 17798.47 128
USDC88.94 27687.83 28192.27 27794.66 27684.96 28993.86 30995.90 26287.34 26283.40 32995.56 21567.43 32898.19 21182.64 30189.67 25593.66 323
pmmvs687.81 29186.19 29592.69 26891.32 34286.30 26697.34 12996.41 24380.59 34284.05 32694.37 26667.37 32997.67 27884.75 27779.51 34094.09 319
test250691.60 20290.78 21094.04 20797.66 12083.81 30298.27 3375.53 37793.43 7695.23 10598.21 5367.21 33099.07 13493.01 12998.49 9399.25 61
KD-MVS_2432*160084.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
miper_refine_blended84.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
K. test v387.64 29286.75 29390.32 31793.02 32679.48 34496.61 19492.08 34990.66 16680.25 34594.09 28267.21 33096.65 32785.96 26380.83 33494.83 288
tt080591.09 23090.07 24294.16 20195.61 21988.31 21797.56 10596.51 23889.56 19389.17 24995.64 21167.08 33498.38 19691.07 16488.44 26695.80 231
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33289.14 35573.12 36094.17 29896.80 21873.98 35773.65 35894.93 23866.36 33597.61 28583.95 28991.28 23192.48 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 22090.22 23594.68 17994.86 26687.86 23597.23 14297.46 14787.99 24189.90 22496.92 13766.35 33698.23 20690.30 17590.99 23897.96 155
lessismore_v090.45 31591.96 34179.09 34887.19 36780.32 34494.39 26466.31 33797.55 28984.00 28876.84 34794.70 300
Anonymous20240521192.07 18990.83 20995.76 11798.19 9288.75 20597.58 10395.00 30586.00 28693.64 13697.45 11066.24 33899.53 7890.68 17192.71 20499.01 82
new-patchmatchnet83.18 32081.87 32287.11 33486.88 36275.99 35593.70 31395.18 29885.02 30277.30 35388.40 34965.99 33993.88 35674.19 34770.18 36091.47 350
FMVSNet189.88 26688.31 27694.59 18095.41 22891.18 12797.50 11196.93 20486.62 27487.41 28694.51 25765.94 34097.29 30983.04 29587.43 27495.31 262
TDRefinement86.53 29884.76 30991.85 28682.23 36884.25 29696.38 21395.35 28884.97 30384.09 32494.94 23765.76 34198.34 20184.60 28074.52 35292.97 330
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 35082.40 31693.62 31897.37 16589.86 18578.59 35192.37 31865.25 34295.35 34782.27 30370.75 35994.10 317
LF4IMVS87.94 28987.25 28689.98 32092.38 33880.05 34094.38 29095.25 29587.59 25684.34 31894.74 24964.31 34397.66 28084.83 27587.45 27392.23 341
Anonymous2024052186.42 30085.44 30089.34 32590.33 34779.79 34196.73 17895.92 26083.71 31983.25 33091.36 33363.92 34496.01 33278.39 32985.36 29492.22 342
MIMVSNet88.50 28486.76 29293.72 22894.84 26787.77 23791.39 34194.05 32986.41 27987.99 27792.59 31563.27 34595.82 33877.44 33192.84 20397.57 178
test_fmvs1_n92.73 16492.88 13292.29 27696.08 20781.05 32797.98 5797.08 18890.72 16196.79 5098.18 5663.07 34698.45 18897.62 798.42 9897.36 183
FMVSNet587.29 29485.79 29891.78 29194.80 26987.28 24295.49 25795.28 29284.09 31383.85 32891.82 32762.95 34794.17 35478.48 32785.34 29593.91 321
testgi87.97 28887.21 28890.24 31892.86 32780.76 32896.67 18794.97 30791.74 13085.52 30895.83 19762.66 34894.47 35276.25 33888.36 26795.48 247
TinyColmap86.82 29785.35 30391.21 30394.91 26382.99 31093.94 30594.02 33183.58 32081.56 33794.68 25162.34 34998.13 21675.78 33987.35 27792.52 338
new_pmnet82.89 32181.12 32588.18 33189.63 35280.18 33891.77 34092.57 34476.79 35575.56 35688.23 35161.22 35094.48 35171.43 35482.92 32789.87 357
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 32190.83 30890.06 34984.05 30195.73 24894.04 33073.89 35880.17 34691.53 33259.15 35197.64 28166.92 36289.05 25990.80 354
test_fmvs289.77 26989.93 24689.31 32693.68 30976.37 35397.64 9795.90 26289.84 18891.49 18396.26 17858.77 35297.10 31394.65 9491.13 23494.46 306
test_vis1_n92.37 17492.26 15992.72 26694.75 27282.64 31198.02 5596.80 21891.18 14997.77 2897.93 7458.02 35398.29 20397.63 698.21 10397.23 188
MIMVSNet184.93 31383.05 31590.56 31489.56 35384.84 29295.40 26095.35 28883.91 31480.38 34392.21 32557.23 35493.34 35970.69 35882.75 32993.50 325
EG-PatchMatch MVS87.02 29685.44 30091.76 29392.67 33185.00 28896.08 23396.45 24183.41 32379.52 34793.49 30257.10 35597.72 27579.34 32590.87 24292.56 337
MVS_030488.79 28087.57 28292.46 27194.65 27786.15 27296.40 21097.17 17986.44 27788.02 27691.71 33056.68 35697.03 31684.47 28192.58 20794.19 316
UnsupCasMVSNet_bld82.13 32379.46 32790.14 31988.00 36082.47 31490.89 34896.62 23478.94 34875.61 35484.40 36156.63 35796.31 33077.30 33466.77 36591.63 346
EGC-MVSNET68.77 33463.01 33986.07 33992.49 33482.24 31893.96 30490.96 3570.71 3792.62 38090.89 33453.66 35893.46 35757.25 36884.55 30982.51 362
tmp_tt51.94 34253.82 34246.29 35833.73 38245.30 38178.32 36867.24 38118.02 37550.93 37187.05 35852.99 35953.11 37770.76 35725.29 37540.46 373
test_vis1_rt86.16 30485.06 30589.46 32493.47 31780.46 33396.41 20686.61 36985.22 29779.15 34988.64 34752.41 36097.06 31493.08 12490.57 24490.87 353
pmmvs379.97 32577.50 33087.39 33382.80 36779.38 34592.70 33490.75 35970.69 36078.66 35087.47 35751.34 36193.40 35873.39 34969.65 36189.38 358
DeepMVS_CXcopyleft74.68 35290.84 34664.34 37281.61 37565.34 36367.47 36188.01 35448.60 36280.13 37362.33 36573.68 35579.58 364
mvsany_test383.59 31782.44 32087.03 33583.80 36473.82 35893.70 31390.92 35886.42 27882.51 33490.26 33846.76 36395.71 33990.82 16776.76 34891.57 347
PM-MVS83.48 31881.86 32388.31 32987.83 36177.59 35193.43 32191.75 35186.91 26980.63 34189.91 34244.42 36495.84 33785.17 27476.73 34991.50 349
test_method66.11 33664.89 33869.79 35372.62 37635.23 38365.19 37192.83 34220.35 37465.20 36388.08 35343.14 36582.70 37173.12 35063.46 36691.45 351
APD_test179.31 32677.70 32984.14 34089.11 35669.07 36592.36 33991.50 35369.07 36173.87 35792.63 31439.93 36694.32 35370.54 35980.25 33689.02 359
ambc86.56 33783.60 36570.00 36385.69 36394.97 30780.60 34288.45 34837.42 36796.84 32482.69 30075.44 35192.86 332
test_fmvs383.21 31983.02 31683.78 34186.77 36368.34 36696.76 17694.91 31086.49 27684.14 32389.48 34536.04 36891.73 36391.86 14780.77 33591.26 352
test_f80.57 32479.62 32683.41 34283.38 36667.80 36893.57 32093.72 33380.80 34077.91 35287.63 35533.40 36992.08 36287.14 24479.04 34390.34 356
Gipumacopyleft67.86 33565.41 33775.18 35192.66 33273.45 35966.50 37094.52 32153.33 36957.80 37066.07 37030.81 37089.20 36748.15 37178.88 34462.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 34151.31 34454.39 35772.62 37645.39 38083.84 36575.51 37841.13 37240.77 37459.65 37330.08 37173.60 37528.31 37529.90 37444.18 372
FPMVS71.27 33069.85 33275.50 35074.64 37359.03 37591.30 34291.50 35358.80 36557.92 36988.28 35029.98 37285.53 37053.43 36982.84 32881.95 363
E-PMN53.28 33952.56 34355.43 35674.43 37447.13 37883.63 36676.30 37642.23 37142.59 37362.22 37228.57 37374.40 37431.53 37431.51 37244.78 371
PMMVS270.19 33166.92 33480.01 34476.35 37265.67 37086.22 36287.58 36664.83 36462.38 36580.29 36426.78 37488.49 36863.79 36354.07 37085.88 360
ANet_high63.94 33759.58 34077.02 34761.24 38066.06 36985.66 36487.93 36578.53 35042.94 37271.04 36925.42 37580.71 37252.60 37030.83 37384.28 361
LCM-MVSNet72.55 32969.39 33382.03 34370.81 37865.42 37190.12 35394.36 32655.02 36865.88 36281.72 36224.16 37689.96 36474.32 34668.10 36490.71 355
test_vis3_rt72.73 32870.55 33179.27 34580.02 36968.13 36793.92 30774.30 37976.90 35458.99 36873.58 36820.29 37795.37 34684.16 28472.80 35774.31 367
testf169.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
APD_test269.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
PMVScopyleft53.92 2258.58 33855.40 34168.12 35451.00 38148.64 37778.86 36787.10 36846.77 37035.84 37674.28 3668.76 38086.34 36942.07 37273.91 35469.38 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 34324.57 34726.74 35973.98 37539.89 38257.88 3729.80 38312.27 37610.39 3776.97 3797.03 38136.44 37825.43 37617.39 3763.89 376
MVEpermissive50.73 2353.25 34048.81 34566.58 35565.34 37957.50 37672.49 36970.94 38040.15 37339.28 37563.51 3716.89 38273.48 37638.29 37342.38 37168.76 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 34615.66 3495.18 3604.51 3843.45 38492.50 3371.81 3852.50 3787.58 37920.15 3763.67 3832.18 3807.13 3781.07 3789.90 374
testmvs13.36 34516.33 3484.48 3615.04 3832.26 38593.18 3243.28 3842.70 3778.24 37821.66 3752.29 3842.19 3797.58 3772.96 3779.00 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.06 34710.74 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38196.69 1480.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
eth-test20.00 385
eth-test0.00 385
IU-MVS99.42 795.39 1197.94 9390.40 17798.94 597.41 1699.66 1099.74 7
save fliter98.91 4994.28 3497.02 15598.02 8395.35 9
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 999.67 699.75 5
GSMVS98.45 130
test_part299.28 2595.74 898.10 20
MTGPAbinary98.08 63
MTMP97.86 6882.03 374
gm-plane-assit93.22 32278.89 34984.82 30593.52 30198.64 17287.72 223
test9_res94.81 8999.38 4999.45 41
agg_prior293.94 10699.38 4999.50 36
agg_prior98.67 5893.79 5098.00 8795.68 9599.57 71
test_prior493.66 5396.42 205
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
旧先验295.94 24081.66 33397.34 3698.82 15392.26 134
新几何295.79 246
无先验95.79 24697.87 10083.87 31799.65 4987.68 22998.89 98
原ACMM295.67 249
testdata299.67 4785.96 263
testdata195.26 27093.10 89
plane_prior796.21 19589.98 164
plane_prior597.51 13998.60 17693.02 12792.23 21195.86 224
plane_prior496.64 152
plane_prior390.00 16094.46 4291.34 187
plane_prior297.74 8094.85 24
plane_prior196.14 203
plane_prior89.99 16297.24 13894.06 5292.16 215
n20.00 386
nn0.00 386
door-mid91.06 356
test1197.88 98
door91.13 355
HQP5-MVS89.33 189
HQP-NCC95.86 21096.65 18893.55 6790.14 210
ACMP_Plane95.86 21096.65 18893.55 6790.14 210
BP-MVS92.13 140
HQP4-MVS90.14 21098.50 18495.78 233
HQP3-MVS97.39 16292.10 216
NP-MVS95.99 20989.81 16995.87 194
ACMMP++_ref90.30 249
ACMMP++91.02 237